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Munn [9] has shown that for a semigroup S satisfying the minimal condition on

principal ideals, there is a natural one-to-one correspondence between irreducible

representations of S and irreducible representations vanishing at zero of its 0-simple

(or simple) principal factors; for the case of S finite, see Ponizovskii [11]. On the

other hand, Clifford, [3] and [4], has obtained all representations of a completely

0-simple semigroup as "extensions" of those of its maximal subgroups. Combining

their results, one can, in principle, obtain all irreducible representations of a semi-

group satisfying the minimal conditions on principal left and right ideals and thus

of finite semigroups. However, in constructing the representations of a completely

0-simple semigroup S=J(°(G;I, A;F), one has to solve the problem in matrix

theory of factoring the block matrix

Q = ly(PM)-y(pAiPu)U,      ie/\l,   AeA\l,

where y is an irreducible representation of G (see [5, §5.4]).

The main object of this paper is to show that, when dealing with finite semigroups

and irreducible representations, it is possible to avoid the factorization problem and

give explicit expressions for these representations. Let S be a finite semigroup and

J a regular ^-class of S. By M¡ denote the Schützenberger representation of

S by row-monomial matrices over G°, where G is the Schützenberger group of J

(isomorphic to the maximal subgroups of S contained in /) ([5, §§2.4, 3.5], or [12]).

For every x e S, let T(x) = y[Mj(x)], where y is a proper irreducible representation

of G° by matrices over a field O, and y[Mj(x)] denotes the matrix over i> obtained

by replacing each entry gKlt of M¡(x) by y(gAß). Then T is a representation of S by

matrices over <I>, and we prove (Theorem 1.7) that T has a unique nonnull irreducible

constituent T* for which [T*(S)] = [T*(J)], where [r*(F)] denotes the linear closure

of T*(F) (r* is given by (10)). The importance of this constituent Y* lies in the

fact that every nonnull irreducible representation of S is equivalent to the con-

stituent T* of some representation T relative to a suitable ./-class of S. This is an

analogue to the well-known result in the theory of group representations : every

irreducible representation of a group occurs as a constituent of the regular repre-

sentation [1, 15.2]; this points to the fact that the direct sum of all Schützenberger

representations of a semigroup is a suitable analogue of the right regular representa-

tion of a group. The proof depends essentially on an analogous property of finite
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0-simple semigroups (in this case T* is the only nonnull constituent of T; Theorem

1.4) and an application of a theorem of Munn ([5, 5.28]). Hence the paper is

mainly concerned with finite 0-simple semigroups and the determination of their

irreducible representations. The explicit form of these representations (see (12))

also yields the solution for the finite case to the problem (stated on p. 168, [5]) of

finding the radical of the contracted algebra Q>0[S] of a finite 0-simple semigroup

S=Ji°(G; I, A; P) over a field 0. Indeed, in the Munn algebra 93 (isomorph'c to

<P0[S], see [5, p. 162])

rad 93 = {X e 93 | PXP e (rad <D[G])m x »}»

An important question from the point of view of algebras is the determination

of tPofSJ/rad O0[5]. In the case of an algebraically closed field, Theorem 3.6 gives

a necessary and sufficient condition on the matrix P of S=J?°(G; I, A; F) in order

that

<D0[S]/rad <D0[5] 2 (<P[G]/rad <P[G])t

where t is the invertibility rank of F (see Definition 3.3). Without any restriction

on <I>, we prove that

<t>0[S]/rad <b0[S] £ 0>[G]/rad <P[G]

if and only if all the entries of F are elements of G in the class of e mod rad ^[G],

where e is the identity of G.

Except for the concepts introduced in the paper, we adhere to the terminology

and notation of Clifford and Preston [5]. If 9t is an algebra over a field <P, (9')m » „

denotes the 9t-module of mxn matrices over 91; in case m=n, we write (9l)m.

Throughout the whole paper <P will denote an arbitrary field unless expressly

stated otherwise. If M is a matrix over <1> (or over an algebra 9Í with identity)

whose entries are not explicitly defined, Mst denotes its (s, /)-entry. By /m_n (m^ri)

we denote the mxn matrix whose entries are (Im,n)tj=l if i=j and 0 if i==j; as

usual, I, denotes the r x r identity matrix. If M is a matrix over O, M denotes the

linear transformation defined by M relative to a given basis. In order to avoid

repetition, an irreducible representation is always assumed to be nonnull. If G is a

group, whenever we speak of a representation y of G° it is understood that y is

obtained from a representation y of G by setting y'(0) = 0, the zero matrix. In

order to simplify our notation y and y will be denoted by the same letter. As a

consequence of this convention, the unit representation of the semigroups con-

sidered (under which every element is mapped onto the identity of ®) will be

excluded from our consideration. We suppose also that the reader is familiar with

the content of Chapter V (§§5.1-5.4) of [5].

1. The main results. Let S be a finite semigroup and J a ,/-class of S (recall

that in a finite semigroup 2=/). Denote by M¡ the Schiitzenberger representation

of S defined by J (see [5, §3.5]).
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Definition 1.1. Let J be a regular ¿/-class of a finite semigroup S and G be its

Schützenberger group. If y is a representation of G° by matrices over a field í>,

define T(x) for every xeS by T(x)=y[M}(x)], where y[M}(x)] is the matrix

obtained by replacing each entry of M}(x) by its image under y. Then T is a

representation of S by matrices over 0 which we call the standard representation

defined by J and y.

If S is a finite 0-simple semigroup, S is isomorphic to a Rees matrix semigroup

Ji°(G; 7, A; F) over a finite group G, with finite index sets 7, A and with a A x 7

sandwich matrix F=(pAj) [5, §3.2]. Since we are dealing with representations, we

can assume without loss of generality, that S coincides with M\G; I, A; F), that

I and A have an element 1 in common and that Pn = e, the identity of G. Thus,

whenever we speak of a finite 0-simple semigroup S, then S=JÍ°(G;I, A; F)

where |7| =m, | A| =«, 7, A, F satisfying also the preceding requirements. For such

a semigroup, the Schützenberger representation defined by J= 5\0 is simply

Mj(a;i,X) = P(a;i, A),

where P(a; i, X) denotes the ordinary product of the matrix F by (a; /, A) considered

as an Ix A matrix over G° having the (/, A)-entry equal to a and 0 elsewhere ([5,

Theorem 3.17]). The standard representation defined by 5\0 and y is then

Tía; /, A) = y[P(a; i, A)].

The first two propositions are of independent interest illustrating the nature of

the standard representation. Recall that V is called proper if

(i) T(z) = 0 if S has a zero z;

(ii) T is not decomposable into two representations, one of which is null.

Proposition 1.2. The standard representation of S=Jt\G; I, A; F) defined by a

proper representation of G is proper.

Proof. Let y be a proper representation of G of degree r by matrices over <fc.

The corresponding standard representation r of S is of degree nr. If V is a vector

space of dimension nr over 3>, for every xe S, T(x) is the matrix of the linear

transformation T(x) of V, relative to some fixed basis

Ks I fi = L2,...,«; s = I, ...,#■}

of V. To establish the proposition, it is sufficient to show that the subspace W of V

generated by the ranges of T(x) (x e S), coincides with V. We have

A

r(a;z, A)=    VO    ••■    0   Y(piia)   0    •■•    0'

0 o  y(Puia)  0 o

0    •••    0   y(pnia)   0    ■■■    0



396 GÉRARD LALLEMENT AND MARIO PETRICH [May

Recall that y(g)st denotes the (s, O-errtry of y(g) (ISsSr, IStSr); then

t = r

eusT(a; i, A) = 2 viPmà)*?»-
í = i

In particular for p e A such that/zMi#0 and a=pü¡1, we obtain

í = r

<?«sF(/z-x ; /, X) = 2 y(e)stext = eks,
t = i

since y(e) is the rxr identity matrix. It follows that for every À g A and s=l,.. .,r,

eAs is in the range of F(/z~ * ; /, A). Therefore W= V and T is a proper representation

of S.

By [5, Theorem 5.43], every proper representation of S extending a proper

representation y of G is obtained from a factorization of the matrix Q = (QAi),

where A e A* = A\l, z'e/* = /\l, and Q.M = y(PM)-y(PMPu)-

Proposition 1.3. The standard representation of S = Jl'°(G; I, A; F) defined by a

proper representation of G of degree r, corresponds to the factorization 0 = /r(n_1)i2.

Proof. The factorization of Q. is obtained by adapting a basis of V (see the proof

of Proposition 1.2) to the range and null-space of F(e; 1, 1) [5, p. 178], If T denotes

the standard representation defined by a proper representation y of G of degree r,

we have

T(e; 1, 1) = y[P(e; I, 1)] =

y(e)     0

y(PAi)   0

0'

0

ly(pnx)    0     ■■■     0.

In order to obtain an expression for T(e; 1, 1) of the form

T'(e;l,l) =
I,   0

0    0

the change of the basis of V is given by the invertible matrix

/ 0 ••• 0'
-y(p2i)   F    0     •■• 0

-y(Pxi)   0    ...     0    L   0   •••    0
A =

L-r(/>»i)  o o lr.

Note that A'1 has the same form as A, with y(pA1) instead of —y(pxi) for every

A e A*. Setting T'(a; i, X) = AF(a; i, X)A~1 and following Clifford's theory, we
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obtain a factorization of Q of the form 0. = QR by factoring QAi = gAF4 ; QA and

Ft are given by

r'(<?; /, i)
y(Pii)  o

F,      0
and    r'(e;l,A) =

APm)    Qx

0        0

(cf. [5, pp. 178-179]). Since

>(/>ii)   0

T'(e; i, l) = A

we have

F,

y(pM)  o 0

ly(pni)   0    ■••    0.

"2i

A'1

y(Pu)

r(Pu)-y(PAiPii)   0

.y(Pni)-y(PnlPli)    0     •••     oj

a,

<>

and    F = [R2 F, F„ Ü.

Similarly, computing T'(e; 1, A), we obtain ßA = [0    • • ■    0   Ir   0    • • •    0] with

F in position (1, A) and Q = L(n-iy Note that the width of the factorization

D = 7r(n_1)Disr(n-l).

The next theorem is crucial for most results of the paper.

Theorem 1.4. Let S=JP°(G; I, A;F) be a finite 0-simple semigroup. Let V be

the standard representation of S defined by an irreducible representation y of G.

Then T has only one nonnull irreducible constituent. This irreducible constituent

defines an irreducible representation of S which extends y. Conversely, every ir-

reducible representation of S is equivalent to the representation defined by the nonnull

irreducible constituent of the standard representation defined by an irreducible

representation y of G.

We first prove two lemmas in which S=Jt°(G; I, A; F) and T is the standard

representation defined by a representation y of G of rank r. If P=(pM), y(P)

denotes the block matrix [y(pM)]-

Lemma 1.5. There exists a change of basis of V, defined by a matrix A, such that

for every (a; i, X) e S,

|T*(a; /, A)    A12(a; /, A)]

0 0
(1) ^r(a;z, A)^-1 =

where T*(a; /, A) is a / x / matrix (/ = rank y(P)) and A12(a; /, A) is some tx(nr-t)

matrix.
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Proof. Note that

r(a; /, A) = y[P(a; i, A)] = y(P)y[(a; i, A)].

Let f=rank y(P) and let A be the matrix of a change of basis of the vector space

on which y(P) acts adapted to the nullspace of y(P). Then AT(a;i,X)A~1

= Ay(P)y[(a; i, A)]/!-1, where Ay(P) is an nrxmr matrix having 0 in the nr—t last

rows. It follows that AT(a; i, X)A ~1 has the form (1) and Y* defines a representation

of 5 of degree t.

Lemma 1.6. rank y(P) = rank il + r where r is the degree ofiy.

Proof. Suppose that y(P) has rank t. Then y(P) has a set Z of t linearly indepen-

dent rows. Since y(pxx) = y(e) = Ir, we may suppose that Z contains the first r rows

of y(P). Let F be the subset of A x {1,..., r} which serves as the index set of rows

in Z. We will show that the corresponding rows in Q. are linearly independent.

Assume that for scalars aAs we have, for every i e I*, k= 1, 2,..., r,

2      aAs[y(FM)-y(FMFi()L = 0-
(A,s)er;A*l

Then

(2) 2     «Jmpm)^- 2 [y(FAi)Uy(Fi<)u| = 0.
(A,s)sr;A#l I. u = l J

Since y(p\X) — y(p\Xpxx) = 0 (pxx = e), (2) is valid for every i el. Hence the left-

hand side of (2) is a linear combination of the rows of y(P) indexed by the set F.

These rows are linearly independent; since the different aAs appear as coefficients

in (2), it follows that aAs = 0 for every (A, s) e T, X==l. Therefore rank Q.^t — r.

Conversely, suppose that Í2 has rank t'. Similarly as above, let Z' be a set of t'

linearly independent rows of Q and F'£ A*x{l, 2,..., r} be the index set of

rows in Z'. Let Tx = T' u ({1} x {1, 2,..., r}) and suppose that for elements aAs of

<P and for every ieI, k=l,2,.. .,r, ■we have

(3) 2   "*s[y(Pm)U = o.
a.s)eTx

In particular for /= 1, (3) gives

(4) 2    ^M/>»i)Lu = 0       (u=l,2,...,r).
(A.s)éTi

Multiplying each equality in (4) by [yipu)]uk and adding, we obtain

2  a^\ 2 [y(Fza)]»..tr(Fi.)]uk \ =   2  aAs[y(FMFii)k = °-
(\,s)eTx U = l J (A.sjeTi

Performing similar operations on (4) for every k = 1, 2,..., r, i e I, we get

(5) 2    «AS[y(FAiFii)k = 0       (k = 1, 2,..., r ; i e I).
(A,s)eri
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Subtracting (5) from (3) yields

(6) 2    a^[y(PAi)-y(PMPii)]sk = 0       (k = 1, 2,..., r; i e I*).
(A,s)eT!

By the definition of T' these equalities imply aAs = 0 for every (A, s) e T. Then,

for A= 1 and /= 1, (5) becomes

2 aAy(e)\k = 0       (k = 1,2, ...,r),

which implies ais = 0 for every s=l,2,..., r. Therefore rank y(P)^t' + r. Conse-

quently, if t and /' are the ranks of y(F) and Q, respectively, then t=t' + r.

We are now in a position to prove Theorem 1.4.

Proof of 1.4. By [5, Theorem 5.51 ] we get all the irreducible representations of S

as the basic extensions of irreducible representations of G. If y is an irreducible

representation of G of degree r, and if the extending matrix Q of y has rank /',

then y possesses to within equivalence exactly one extension r0 of degree r+t' (T0

is obtained by a basic factorization of Í2; see [5, 5.46]). Let T* be the nonnull

constituent of the standard representation T of S defined by y (see formula (1)).

By Lemma 1.5, the degree of T* is rank y(P). Moreover,

r(a; I, 1)

y(a)      0

y(p^a)   0

(yPnio)   0

0

0

thus by the change of basis indicated in the proof of Proposition 1.3 (matrix A),

one obtains

AY(a; 1, IM"1 =
y(a)   0

0     0

Since T* is a nonnull constituent of T, its restriction to the ¿¿"-class Hxx is equivalent

to a representation of the form

(a; 1,1)
y(a)   0

0     0

Thus T* extends y in Clifford's sense. It follows from Lemma 1.6 (t = r+t') that

T0 (the basic extension of y) and T* are equivalent. Hence all the irreducible

representations of S are obtained as the nonnull constituents of standard represen-

tations defined by various irreducible representations of G.

The next theorem describes all irreducible representations of a finite semigroup.
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Theorem 1.7. Let S be a finite semigroup. Let Y be the standard representation

defined by a regular ß -class J of S and an irreducible representation y by matrices

over í> of the Schützenberger group G of J. Then Y has a unique nonnull irreducible

constituent Y* such that [T*(S)] coincides with [T*(J)] where [T*(T)] (FeS)

denotes the linear closure of T*(T). Conversely, every irreducible representation of

S is equivalent to the constituent Y* of a standard representation Y defined above.

Proof. First observe that the Schützenberger representation relative to a regular

./-class J coincides on J with the Schützenberger representation of the principal

factor Q(J) relative to J. Consequently the standard representation restricted to

J and the standard representation of Q(J) restricted to J coincide. Since J is a

regular ./-class of S, we have that Q(J)^Jiy°(G; I, A; P) for some sandwich

matrix F. Even though there are different choices of F, in what follows, they lead

to equivalent representations since any two such matrices F are equivalent (see [5,

Corollary 3.12]).

If A is the matrix of a change of basis adapted to the null space of y(P), then for

every xe S,

T*(x)     A12(x)1

Am(x)    A22(x)J '
(7) AY(x)A^ =

where Y*(x) is a / x / matrix (z = rank y(P)). We will show that Y* has the required

properties.

If x eJ, by Lemma 1.5, A21(x) = A22(x)=0. Extending Y* to the principal factor

Q(J) by letting T*(0) = 0, Y* becomes an irreducible representation of Q(J) by

Theorem 1.4. By [5, Lemma 5.32], there exists e e $[J] such that r*(e) = 7(. In

order to establish that Y* is a representation of S, we show that for every x e S,

r*(x) = r*(xe) where x-^x is the natural homomorphism of «^[S^FS1] onto

O0[ß(7)]. If ze ®0[Q(J)], then z = 2oeJßbb; we define Mj(z) by M}(z) = 2bsJßbMj(b).

Hence for xe S, Mj(xe) is a matrix over 3>[G] obtained from the expression for

xe as a linear combination of elements of Q(J). Note that Mj(xe) is the zero matrix

if and only if xe = 0, the zero of Q(J). Writing e = 2ae/ «a^ with aa e <t>, we obtain

xe = 2ae7 <*axa and thus

Mj(xe) = 2 ciaMj(xa).
aeJ

For a eJ and x £ 5, xa = 0 in Q(J) implies M}(xa) = 0 and also M,(xa)=0; if

xa=^0 in Q(J), then M,(xa) = M}(xa) so that in any case Mj(xa)=Mj(xa). Con-

sequently

Mj(xe) = 2 <xaMj(xa) = 2 ccaM}(xa) = Mj(x) 2 <*aMj(a) = M}(x)Mj(e).
aeJ asJ aeJ

It follows that

Y(xe) = y[Mj(xe)\ = y[M}(x)Mj(e)] = y[Mj(x)]y[M}(e)] = Y(x)Y(e)
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and AT(xe)A-1 = AT(x)A-1AT(e)A-1. Thus by (7),

T*(xe)   Ax2(xe)

.0 0

Since F*(e)=It, this implies for every x e S,

(8) T*(xe) = r*(x).

Observing that F*(xe) = r*(ex), a straightforward computation shows that

r*(x)r*(y) = r*(xy) (see [5, p. 173], where a similar computation is performed).

Thus T* is a representation of S; it is irreducible since it is irreducible on Q(J).

Moreover [r*(S)] = [r*(.F)]. For any irreducible constituent r¡ of T distinct from

T*, T¡(J) = 0 by Theorem 1.4; hence T* is the unique nonnull constituent r¡ of T

suchthat [rj(S)] = [ri(7)].

To prove the converse, let T0 be an irreducible representation of S. By ([5,

Theorem 5.33]), the apex J of r0 is a regular ^-class, and there exists an irreducible

representation V of the principal factor Q(J) and ee<t>[J] such that T'(e) = It

(here / is the degree of r0) ; furthermore for every xe S,

(9) T0(x) = T'(*e).

T' is equivalent to the irreducible constituent of the standard representation of

Q(J) defined by an irreducible representation y of the group G of J. Let Fx be the

standard representation of S defined by J and y. Using the same notation as in the

first part of the proof and the results of this part, we have (cf. (8))

(8i) T*(x) = F*ixe).

Theorem 1.4 implies that T* and T' are equivalent representations of ®o[Q(J)]-

In view of (9) and (8j), it follows that T0 and T* are equivalent, which establishes

the second assertion.

The preceding proof yields a general formula for an irreducible representation

T* of S defined by its apex J and an irreducible representation y of the group of J.

For every xe S,

(10) r*(x) = I^AyiMjWA-1!^,

where r is the degree of y, ? = rank y(P) (P is a matrix of Q(J)), and A the matrix

of a change of basis adapted to the null-space of y(P).

Remark. If S is a finite 0-simple semigroup, the standard representation T,

defined by an irreducible y, has only one nonnull constituent F*. If S is not 0-

simple, then T has, in gênerai, nonnull constituents distinct from T*. The following

example illustrates this situation. Let T=J?°({e}; I, A; P) where

F =

F*(x)

A21(x)

Ai2(x)

A22(x)

-V*(e)

0

A12(e)

0

e   0

0   e

e    e
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(thus |/| =2, |A| =3), and let S he the semigroup F with an identity u adjoined.

The standard representation Y of S defined by F\0 and the unique representation y

of{e}(y(<0=l)is

T(e; i, X) =

1    0

0 1

1 1

(1;/,A);       Y(u) =

1 0 0

0 1 0

0   0    1

where (1 ; /, A) is the 2 x 3 matrix whose (/, A)-entry equals 1 and the others are 0.

T has two constituents: Y* of degree 2 and A of degree 1, viz.,

r*(e;/,A) = (l;/,A)

1    0"

0 1   ;      r*(M) =

1 1.

A(e;i, X) = 0;       A(u) = 1.

1    0

0    1

2. The radical of the algebra of a finite 0-simple semigroup. Let S=^°(G ; 7, A ; F)

be a finite 0-simple semigroup. For a given irreducible representation y of G of

degree r over i>, as before we denote by A the nr x nr matrix defining a change of

basis of the vector space on which y(P) acts, adapted to the null-space of y(P).

Let F be the mr x mr matrix defining a change of basis of the vector space of y(P)

adapted to the range of y(P). Then

(11) Ay(P)B-1 =
Uy   Z

0     0

where Uy is an invertible txt matrix (Z = ranky(P)). A specialization of (10) gives

the irreducible representation Y* of S extending y, viz., for every (a; i, X) e S,

(12) Y*(a;i,X) = It,nrAy[P(a;i,X)]A-1I, nr.t-

By ([5, Lemma 5.17]) the (contracted) algebra <S>0[S] is isomorphic to the Munn

algebra S3 = ^#(<1>[G]; 7, A;F). Recall that 93 is the vector space over <t> of all

mxn matrices over <I>[G] with multiplication ° defined by I» Y=XPY for

every X, Y e 93.

Theorem 2.1. Let S=J(°(G; I, A;P) be a finite 0-simple semigroup, and let 93

be the Munn algebra isomorphic to O0[S]. Then

rad 93 = {X e 93 | PAFe(rad 0[G])„xm}.

Proof. Recall that an element x = J.(a:i¡ms <x(a;i,A)(a; /, A) of Q>0[S] is in rad <t>0[S]

if and only if T*(x) = 0 for every irreducible representation F* of OofS]. By (12),

and with the same meaning for y, r, t, we have

(13) Y*(x) = It,nrA\   2    ^a,iMy[P(a;i,X)\)A-'In



1969] MATRIX REPRESENTATIONS OF FINITE SEMIGROUPS 403

Setting gtA = 2osg a(a;i,A)a, the isomorphism 6 of i^tS] onto 93 is given by x8

= [giALz:Ae^ = Ar. Introducing X in (13) yields

T*(x) = Ii,nrAy(P)y(X)A-1Inr,t.

Thus the following conditions are equivalent :

(i) xerad0)0[S];

(ii) for every irreducible representation y of G with X=xd,

(14) It,nrAy(P)y(X)A'1Inr¡t = 0.

Partitioning A ~1 into two submatrices A  1 = [C    D] where C is an nrxt matrix,

(14) is equivalent to

(15) ,4y(F)y(*)[C   0] = 0,

where [C 0] is an nrxnr matrix; the equivalence of (14) and (15) follows from

the fact that the multiplication of (14) by I„¿ on the left and by 7!>nr on the right

gives (15); similarly (15) implies (14). We show next that (15) is equivalent to

(16) y(PXP) = 0.

Multiplying (15) by A'1 on the left and by

Uy Z

0      0
B

on the right yields

y(P)y(X)[C   0]

Further,

[C   0]
Uy Z

0      0
= [C   D]

Uy Z

0      0

Uy Z

0      0

B = 0.

= A
Uy Z

0      0

which together with the preceding formula and (11) implies

0 = y(F)y(*M-1
Uy Z

LO    o

Thus (15) implies (16). Conversely, (16) implies

"<7V   Z

B = y(P)y(X)y(P) = y(PXP).

Ay(P)y(X)A-1

which in turn yields

o    o

BB-

B = 0,

Uy'1 0
= 0,



404 GÉRARD LALLEMENT AND MARIO PETRICH [May

and thus (15) holds. From the equivalence of (14) and (16) it follows that

rad <P0[5] s rad 93 = {X e 93 | PXP e (rad <J>[G])n x m}.

Corollary 2.2.

rad 93 = {Xe® \ for all M, Ne®, M=IoJVe(rad ®[G])mxn}.

Proof. If PXP e (rad <P[G])n xm, then for all M, N e 93,

M o X o N = MPXPN e (rad 0[G])m * „

since rad <D[G] is an ideal of <P[G]. Conversely, if PXP $ (rad <¡>[G])nxm, then

cAi <£ rad <I>[G] for some entry of PXP. Letting M=(e; i, A), we get the (/, A)-entry

of MPXPM equal to cAi, so that M ° X ° M $ (rad 0[G])m xn.

Remarks. In fact, we have proved more: if M ° X° Me (rad 0[G])mxn for

all M e S, then J\f e rad 93 (here 5 is considered as a subset of 93).

So, if char <J> = 0, letting 9t = O0[5] and 9î = rad d>0[5], then 9I9Î9I = 0 and con-

versely, if for xe9i, 31x31 = 0, then x e SK (Teissier [14] and Munn [5, p. 168]).

Furthermore, by the preceding remark a e 91 is properly nilpotent if and only if

(ax)2 = 0 for every x e 31.

In the case that S is left simple, |A|=zz=l. In 93, if FÀ'ËÎnid 0[G])lxl =

rad <D[G], then clearly PXP e (rad ^[G])x xm. Conversely, FAT s (rad 0[G])lxm

implies that each entry of PXP e rad ^[G]. Since F= [ee ■ ■ ■ e] each entry of

PXP is equal to PX; thus PXe rad 0[G]. Hence, for S left simple

rad 93 = {X e 93 | PXe rad <J>[G]}

= {Xe93 | for all Me 93, M° ^e (rad 0[G])mxl}.

In particular, for char <J> = 0 (considered by Teissier [14]), 9i9î = 0, and conversely

9tx = 0 implies x e 9Î (i.e., the radical is the right annihilator of 91).

Returning to the general case of a finite 0-simple semigroup, writing for ^£93,

X=(xjll), the relation PXP e (rad ^a{G])n xm is equivalent to the system

2 PuXjuPm e rad °[G]       (' e A A e A).

Thus if char O = 0 and pM = e for every i e I, X e A, in the Munn algebra the radical

is given by the subalgebra of Ix A matrices over 0[G] whose entries xju satisfy

2;,« xiu = 0- Translated into the semigroup algebra, this yields the following

corollary, generalizing the result of Teissier [13] concerning finite left simple

semigroups.

We call a completely (O)-simple semigroup S a rectangular group (with zero) if

the matrix P of S has all its entries equal to e. Such a semigroup is isomorphic to

the Cartesian product G x E of a group and a rectangular band ((G x E)°).
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Corollary 2.3. If S is a finite rectangular group and if <J> has characteristic 0,

then

rad <D[S] = (x =   2   a(a;i.»(a; i, X) \for every ae G^a^» = 0\.

3. Quotient algebras. The next problem we consider is the determination of the

quotient algebra Q>0[S]/rad ̂ ot^] where 5 is a finite 0-simple semigroup. First of

all, as a direct corollary of Theorem 2.1, we obtain the result of Munn [8],

Ponizovskii [10], concerning the semisimplicity of •PotS]-

Theorem 3.1. (Cf. [5, Theorem 5.20].) Let S=Ji°(G; I, A; F) be a finite 0-simple

semigroup and O be afield. Then <t>0[S] is semisimple ¡fand only if the characteristic

o/í> does not divide the order of G and P is nonsingular as a matrix over $[G].

Proof. We identify <&0IS] with the Munn algebra 93. Assume that <&0IS] is

semisimple. Then by Theorem 2.1, PAFe (rad ®[G])nxm implies X=0. If F is

singular, by ([5, Theorem 5.11 and Corollary 5.10]) there exists a nonzero mx«

matrix X over <t>[G] such that PX or XP=0; in either case, PAF=0 with AV0,

a contradiction. Thus F is nonsingular and m = n. If A e (rad $[G])m)(m, then

A=P(P-1AP~1)Pe(rad 0[G])mxm, so that P^AP-1 erad 93 by Theorem 2.1.

The hypothesis then implies P~1AP~1=0 and thus A=0. Hence rad O[G] = 0

(take for A a matrix having a single nonzero entry). By Maschke's theorem the

characteristic of <D does not divide the order of G. The converse follows easily

from Theorem 2.1.

Remark. With the hypothesis of Theorem 3.1, for every irreducible representa-

tion y of G, y(P) is invertible. By (12), it follows immediately that the standard

representation defined by y is irreducible (r* is equivalent to the standard represen-

tation). By Theorem 1.4 all the irreducible representations of S are given exactly

by the standard representations (see [5, Theorem 5.28]).

We now answer the following question. When is Oot^j/rad <&0[S] isomorphic

to (b[G]/rad 0[G]? In his dissertation, Munn has proved that this holds if S is a

rectangular group and $ has characteristic 0 (see [5, p. 168]), the next theorem

gives necessary and sufficient conditions.

Theorem 3.2. Let S=^°(G; I, A;P) be a finite 0-simple semigroup and <I> a

field. Then O0[S]/rad <D0[5] is isomorphic to <D[G]/rad <D[G] if and only if

pM-eerad $[G]       (XeA,ieI)

where e is the identity of G.

Proof. Suppose that <[)0[5]/rad <D0[S] and <D[G]/rad <P[G] are isomorphic. For

X in the Munn algebra 93 of S, PXP e (rad 0[G])n xm is equivalent to the system

(17) 2 PixkXkyP« e rad ^l       (A e A> ' 6 -0-
k.v
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For a fixed couple A, i let 93iA denote the subspace of 93 formed by the matrices

Xe® whose entries xkv satisfy (17).

We show next that the codimension over O of 93iA is equal to the dimension

over <J> of <J>[G]/rad OfG]. In case <D[G] is semisimple (17) becomes

(17i) 2 FAfcXfcv/Zw = 0       (A e A, i e I).
fc.v

Expressing every unknown xfcv of (17j) as a linear combination over <J> of elements

of G, (17i) yields o(G) (the order of G) independent linear equations over <J> (the

unknowns are now the coefficients of the xfcv). Thus

codim4 93iA = o(G) = dim* (0[G]).

In case Í>[G] is not semisimple, a similar argument applies to the equation

2_, pMcXkvPvi  = 0
k.v

over <D[G]/rad <D[G]. Indeed, an element x=2f=i &g. e 0[G] is in rad <D[G] if and

only if the £( are solutions of a system of r independent linear equations

h

^4 = 0,       /= l,2,...,r,
i = l

with r = codim0 rad <J>[G] = dim« (<D[G]/rad <3>[G]). Writing (17) in the form of a

system of linear equations in the coefficients r¡kv of

h

Xfcv - 2 rf^gn
i = i

yields a new system with unknowns r¡kv which is still of rank r. Thus

coding 93iA = dim» (<D[G]/rad <D[G]) = dim« ($>0[S]/rad %[S])

= codim» (rad O0[S]).

Returning to (17) whose solutions determine rad Í>0[S], by the property just

established, rad <¡>0[S] is completely determined by the solutions of any one of the

equations (17). Thus

(18) 2 Fifc*fcvFvi g rad 0>[G]
fc.v

is equivalent to each of

(19) 2 FAfcXfcV/zvi e rad 4>[G],       (A e A, i e I, (A, /) / (1, 1)).
fc.v

If Pit = 0 for some t e I, then for every v e A, xlv does not appear in (18). From the

equivalence of (18) and (19), for every v e A, xiv cannot appear in (19). But xiv

certainly appears in (19) relative to the couple (A, i) such that pkt¥=0 and Pn^Q-

Thus pit ^ 0, and a similar proof shows that phk ̂  0 for every A e A, k e I. S is then
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a 0-simple semigroup without zero divisors. Assuming that F has been normalized

so that for every A e A, /zA1=e, and for every i e I, pXi = e, ( 18) and (19), respectively,

become

(20) 2 **v e rad °[G]>
fc.v

(21) xxx +      2     W* e rad *[G]       (A e A' 'e L (A> 0 * (1> !))•
(*,v)#(l,l)

If pßt — e xi rad 0[G] for a certain couple (/a, /), /x/1, i^ 1, the relation

(22) 2     (P»kXkvPn -xkv) e rad <D[G]       (/ e 7, / # 1)

obtained by subtracting (20) from (21) written for X=p., is not satisfied by all

xkv e 3>[G] (i.e., (22) is not an identity), since the coefficient of xtx, which is equal

to put-e, is not in rad 0[G]. Since (20) and (21) are equivalent, (20) and (22) are

also. But (20) contains xxx and (22) does not, which is a contradiction. Thus

p)lt — ee rad 0[G] for every p. e A, tel.

The converse part will follow from Theorem 3.6 which deals with a more general

situation.

Remark. In the course of the proof of Theorem 3.2, we have shown that

dim4 (0[G]/rad ®[G]) equals the rank of the system of linear equations over i>

obtained by writing (17) in terms of the unknown coefficients rfiy of xkv = 2r=i vVgi

for an arbitrarily fixed pair k, v. We will make use of this remark in the proof of

Theorem 3.6.

In order to state the next theorem in a convenient form, we introduce new

definitions concerning matrices over an algebra £ with identity e over O.

Definition 3.3. Let F be an « x m matrix over an algebra 2 with identity over i>.

The invertibility rank or i-rank of F is the largest integer r such that F has an

invertible rxr submatrix M.

In general, the /-rank of F is less than or equal to the usual rank of F as defined

in [2, p. 166]. Note that even if all the entries of F are different from 0, F may

have /-rank 0. In the next definition, by a permutational matrix we mean a matrix

having only one nonzero entry, equal to e, in each row and in each column.

Definition 3.4. Let F be an « x m matrix over £ of /-rank / > 0 and let M be a

/ x t invertible submatrix of P. Denote by A and B the permutational matrices of

degrees « and m, respectively, such that

APB-

and set

M    PX2

F21   F22

AM'1   0]

= B   0     0/
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F is called a (¡»-matrix if

(23) PQP-Pe (rad fl)nxm.

In the case of matrices over a field <î (~ 0[{e}]), the /-rank coincides with the

usual rank, and it can easily be shown that every nonnull matrix over <P is a

O-matrix. In general, to show that F is a <î-matrix one has to find a submatrix M

satisfying the requirements of Definition 3.4. However, it will follow from the

proof of the next lemma, that if F is a O-matrix, then F has property (23) with Q

relative to any maximal invertible submatrix M. If/-rank of F equals min {|/|, |A|}

(i.e., P is of maximal /-rank), then F is a O-matrix. This can be verified directly but

it also follows obviously from the next lemma.

Lemma 3.5. Let P=(pm) be an nxm matrix over an algebra £ with identity over

<I>. Suppose that P has invertibility rank t over 0[G]. FAezz the following conditions

are equivalent

(i) F is a ^-matrix;

(ii) For every irreducible representation y of £ by rxr matrices over Q>, the block

matrix y(P) obtained by replacing pAi by y(pM) has rank rt over <I>.

Proof. Suppose that F is a «t-matrix. Using the notation introduced in Definition

3.4, let P' = APB-\ With

AT1   0"

0       oj'

we have

P'Q'P'-P' = APQPB^-APB-1 = A(PQP-P)B-\

Since F is a O-matrix, (23) implies that P'Q'P'-P' e (rad £)nxm. Consequently

for every irreducible representation y of £ of degree r

■AP'Q'P') = y(P')y(Q')y(P') = y(P'f

But then

ranky(M) S rank y(F') S rank y(Q') = rank y(Af).

Thus rank y(P') = rank y(M) = rt. Since P' = APB~1, with A and B invertible, it

follows that

rank y(F) = rank y(P') = rt.

Conversely, assume that y(P) has rank rt where r is the degree of the irreducible

representation y. Let M be any invertible / x t submatrix of P. With suitable

permutational matrices A and B, we have

.F21    F22

0' =
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For P' = APB~1, rank y(P') = rank y(P) = rt. Thus y(M) is a maximal invertible

submatrix of y(F'). Since a matrix over O is always a O-matrix, we have

(24) Y(P')ImrAy(M)] - 'Lt.nrAP') = Vi?')-

With

\M~X   01

Lo      oj
we get

y(Q') = lmr.rMM)]-'lrt,nr,

and (24) implies y(P'Q'P') = y(P') for every irreducible representation y. Hence

P'Q'P'-P'e (rad S)nxm. Letting ß = ß-1ß'/4, it follows easily that PQP-P

e (rad £)n „ m, i.e., F is a O-matrix.

Theorem 3.6. Fe? S=J¿°(G;I, A; F) ¿>e a finite 0-simple semigroup and $ a

field. Let t be the invertibility rank ofiP over <t[G]. If P is a ^-matrix, then

fl)0[5]/rad <S>0[S] s (4>[G]/rad <D[G])t.

F«e converse holds if í> íj algebraically closed.

Proof. (1) We may assume that F has a Zx / invertible submatrix M contained

in the first / rows and columns of F. (If not, replacing F by an equivalent matrix

P', we obtain an isomorphic copy of S.) Thus

(25) PIm,tM- %,nP-P e (rad <B[G])t.

We define a mapping 8 of the Munn algebra 93 = .#(<I>[G]; /, A; F) into

(0[G]/rad <D[G])( by

Xo = It¡nPXPIm_tM-í + (rad <P[G])(.

Clearly, 8 preserves addition and scalar multiplication. As for multiplication,

(ZS)(F8) = It,nPXPIm,tM-%nPYPIm,tM-' + rad(<¡?[G])t.

Every irreducible representation y of (0[G]/rad <I)[G])i canonically induces an

irreducible representation of (^[Gj^. Denoting both of them by y, for every

irreducible representation y of (0[G]/rad (I)[G])i, we have

y[(X8)(Y8)] = y(71,nFA-)y(F/m,íM-1/(,„F)y(FF/m,íM-1).

Since F is a <D-matrix, (23) yields y(F/m,iA/-17i,nF) = y(F). It follows that

y[(A-8)(F8)] = y[7t,nF(A'FF)F/m,íM-1] = y[(X o Y)8].

Since (0[G]/rad i>[G])( is semisimple, it follows that (X8)( Y8) = (X o F)8 and S is

a homomorphism of 93 into (i>[G]/rad <ï>[G])t. Let /l + (rad <t>[G])t he an element
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of (4>[G]/rad <D[G])( and let .Te 93 be defined by X=Im¡tM-xAIt,n. A straight-

forward computation shows that

A-S = ^ + (rad<P[G])i;

which proves that S is onto. Finally

Ker S = {Xe 93 | I^PXPI^M-1 e (rad <D[G])(}.

Thus X £ Ker 8 implies

(PI^tM-Ht^XiPI^M-1^?) e (rad <D[G])nxm,

which by (25) in turn implies PXPe (rad í>[G])n xm. Conversely, PA7>£ (rad <&[G])nxm

implies I^PXPI^tM-1 e (rad <D[G])(. Thus

Ker S = {Xe 93 | PAT £ (rad <D[G])n xm} = rad 93

by Theorem 2.1. Therefore

(26) <D0[S]/rad cD0[5] s (4>[G]/rad <D[G])t.

(2) Suppose that 3> is an algebraically closed field and that (26) holds. We will

show that for every irreducible representation y„ of G (a= 1, 2,..., s) of degree ra,

the matrix y„(P) has rank zy over <I> (recall that t is the /-rank of F). By Lemma 3.5,

it will follow that F is a i>-matrix. Keeping the same notation

rad 93 = {X e 93 | PXP e (rad <D[G])n x m}

= {*-£93|y<,(P*-p) = 0,a= l,2,...,s}.

It has been shown (see Remark after the proof of Theorem 3.2) that

dim» (<D[G]/rad <D[G])

is equal to the rank of the linear system obtained from (17) by writing xkv =

2"=i V^gi- But (17) is equivalent to the system

y^2 FAfcXfcV/zvi\ =0       (/ = 1, 2,..., s, A £ A, i e I).

Finally, dim« (93/rad 93) is equal to the rank k of the system of linear equations

over O obtained from

(27) ya(P)ya(X)ya(P) = 0        (c = 1, 2,..., s).

(Recall that the unknowns are the coefficients r¡kv of the entries xkv of X.)

If ta denotes the rank over O of ya(P), let us show that fc»2J-i *!• For this

purpose we introduce the system

(28) ya(P)Z¡,yc(P) = 0       (a =1,2,..., s),

where the unknowns are the entries (in <1>) of Za, o= 1, 2,..., s. Every solution of

(27) yields a solution of (28) by letting Z„ = ya(X). Conversely, if Za (<j= 1, 2,..., s)
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is a solution of (27), by Burnside's theorem ([6, 27.4] or [1, 13.1]) for every Zff

there exists Xce$S such that yg(X„)=Za. By the Frobenius-Schur theorem ([1,

10.10]), there exists Xe 93 such that y„(X) = ya(X(,) = Zc for every a—I, 2,..., s.

Thus the linear systems arising from (27) and (28) are equivalent. Since rank

y„(P) = ta, the rank of the latter is 2o = 11%. Hence k = 2J = i t„ ; moreover, for every

o= 1, 2,..., s, t0^r„t. On the other hand, by [1, 12.7], noting that <D[G]/rad 3>[G]

has dimension 2» = i r% over 0, we obtain

dim» (<D[G]/rad 0>[G])t = t2 ¿ *?■
(7 = 1

From the hypothesis, dim« (<D[G]/rad 0[G])t = dim* (93/rad 93)=fc, so that

g=1 a=l

This together with ta^tra, yields ta = tra. Thus, for every a= 1, 2,..., s, y„(P) has

rank r„i and F is a O-matrix.

In conclusion, we list a few open problems. Theorem 3.2 shows that for the case

i = 1, the converse part of 3.5 holds without the assumption that 0 be algebraically

closed. Is it possible to drop this assumption also in the case t> 1? When the

sandwich matrix F of a finite 0-simple S is not a 4>-matrix, what is the structure of

<i>0[S]/rad O0[5]? In [7, Theorem 5.20], Hewitt and Zuckerman have characterized

the radical of the algebra of any finite semigroup over the field of complex numbers.

Can Theorem 2.1 be derived from their result ?

We are grateful to the referee for pointing out that Corollary 2.2 is contained

in Munn's doctoral dissertation, Semigroups and their algebras, (Cambridge Univ.,

1955) and for suggesting several improvements concerning the presentation of the

paper. We also wish to thank Dr. D. B. McAlister for pointing out that the original

version of Theorem 3.2 was incorrect.
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