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Introduction. Given a field k and a fc-algebra A, Gerstenhaber has introduced

the concept of a deformation of A [8] which is a £[[/]]-algebra structure on the

module A[[/]]. One of the main problems of the theory of deformations is to

determine those algebras for which the only deformation (modulo an equivalence

relation) is the usual A-[[r]]-algebra structure on .4[[«*]]. Such algebras are said to be

rigid. If A is a commutative /c-algebra, we may restrict our attention to those

deformations of A which are commutative. This leads us to consider the commuta-

tive cohomology groups of A, Hn(A, M)s, defined by Harrison [11]. The principal

purpose of this paper is to investigate the following conditions on a commutative

algebra A over a field k:

(1) H2(A, M)s = 0 for all ^-modules M.

(2) H\A,Äf=0.
(3) A is a rigid /r-algebra in the commutative deformation theory.

(4) The module of differentials of A over k is a projective /4-module.

(5) A is a finite product of (not necessarily algebraic) separable extension fields

of k.

We may show that (1) implies (4) [9, Theorem (20.4.9)] and that (2) implies (3)

[8, p. 65]. Condition (1) may be expressed by saying that A is a formally smooth

fc-algebra [9, §19.4.4].

When A is a field, Gerstenhaber has shown that (1), (2), and (5) are equivalent

and he conjectured that these conditions were equivalent to (3). We show that

(1), (2), (3), and (5) are equivalent even for A semisimple (Theorem 6.5). Moreover,

if A is artinian, then (1) and (5) are equivalent (Proposition 5.9). In another

direction, if A is a geometric complete intersection, then (1), (2), and (3) are

equivalent (Theorem 6.8a). If in addition A is an integral domain with a separable

quotient field, then (1), (2), (3), and (4) are equivalent (Theorem 6.8c).

In the final section, we investigate the above conditions for the group algebra

B[G] of an abelian group G which is a direct sum of cyclic groups with B a com-

mutative algebra over a field k of positive characteristic p. In addition, we consider

the following condition on G and k:

(6) G has no element of order p = char (k).
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If Bis a noetherian formally smooth A-algebra, we show that (1) and (6) are equiva-

lent for the algebra A=B[G] (Theorem 7.2). If in addition B is a geometric complete

intersection or a semisimple A-algebra, then (1), (2), (3), and (6) are equivalent

(Corollary 7.3).

The results on rigidity depend on the vanishing of the third commutative co-

homology groups of the algebra in question. We show that if A is a geometric

complete intersection or if A is semisimple, then Ha(A, M)s = 0 for all /4-modules M

(Corollary 6.4). The essential tools for the computation of these groups are an exact

sequence of Harrison [11, Theorem 2] and a representation of the symmetric

cochain complex by means of a chain complex. In §2, we discuss the relationship

of the groups (ExtJ (ü4/fc, M))n±0 and (Hm(A, M)s)miX where QAlk denotes the

module of differentials of A over k.

This paper is the author's doctoral dissertation written under the direction of

Professor Daniel Zelinsky at Northwestern University. I would like to express my

appreciation to Professor Zelinsky for his encouragement and advice during the

preparation of this thesis. I would also like to thank the referee for many valuable

suggestions and comments.

Notation. All rings will be assumed to have an identity and a ring homo-

morphism wili preserve the identity. The expression "A is a /V-algebra" will imply

that A: is a field. Except for §1, all rings will be commutative.

1. Preliminary remarks. Let A be a A-algebra, M an /1-bimodule, and Cn(A, M)

the A-module of all zz-linear maps over k of A into M. As usual [13], we define the

coboundary operator S by

8nf(ax,..., an + x) = axf(a2, ...,an + 1)

+ Sls,Sn(-l),/(a1>. . .,ataj + 1,.. .,an + x)

+ (-l)n+1/(a1,...,anK + 1

where fie Cn(A, M). The zzth cohomology group of this complex is denoted by

Hn(A,M) = Zn(A,M)/Bn(A,M) and the elements of Zn(A, M) = ker (Sn) and

Bn(A, M) = im(8n_x) are called zz-cocycles and zz-coboundaries respectively.

Let A[[t]] denote the formal power series ring in one variable over A. A de-

formation of the A-algebra A [8] is an associative A[[i]]-bilinear map/ on A[[t]]

which is expressible in the form

fi(a, b) = ab + tfiiia, b) + t%(a, &)+•••

where "ab" denotes the usual product in A[[t]] and where each/ is a A-bilinear

map on A extended in the natural manner to a zc[[/]]-bilinear map on ^[[z]].

The associativity condition on/ is equivalent to the system of equations

(1) ^o<P<nfp(fin-p(a, b), c)-f„(a,fn-p(b, c)) = 8fn(a, b, c)

for all a,b,ce A and each n = 0, 1,2,.... Note that/ gZ2(^, A). One may show
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that if H3(A, A) = 0, then every element of Z2(A, A) determines a deformation of A

[8, p. 64].
Let/ and gt be deformations of A. We say that/ is equivalent to gt if there is a

Ar[[f]]-linear automorphism pt of A[[t]] of the form

pt(a) = a + tpx(a) + t2p2(a)+ ■ ■ ■

where each p¡ is a /c-linear map on A extended in the natural manner to a £[[/]]-

linear map on A[[t]] such that pt(gt(a, b)) =ft(pt(a), pt(b)) for all a, b e A[[t]].

We may easily check that gx =fix + 8px in this case. A deformation/ of A is said to

be Zrz'zz'fl/if/is equivalent to the deformation gt of A defined gt(a, b) = ab. Thus if the

cocycle/j of the deformation/ is not a coboundary, it follows that/ is a nontrivial

deformation. If every deformation of A is trivial, we say that A is a rigid k-algebra.

Gerstenhaber proved that if H2(A, A) = 0, then A is a rigid /:-algebra [8, p. 65].

In general, the converse is not known. We refer the reader to [8] for a detailed

discussion of the deformation of an algebra.

If the /c-algebra A is commutative, it is natural to consider only those deforma-

tions/ of A which define a commutative structure on .4 [[?]]. / will be a commutative

deformation of A if and only iff ¡(a, è)=/(è, a) for all a, b e A and each z'=l, 2,....

Thus we are led to the commutative cohomology theory of Harrison [11]. Since we

shall be concerned with this cohomology theory only through dimension 3, we shall

limit our discussion to these groups.

If A is a commutative /:-algebra and M an /Fmodule, Harrison defines a certain

subcomplex (Cn(A, M)s)niX of Hochschild's complex. We shall call the elements

of these groups symmetric n-cochains. Cn(A, M)s is the set of all Fe C(A, M) such

that F(a, b) = F(b, a) for all a, b e A if zz = 2 and such that F(a, b, c)-F(b, a, c)

+ F(b,c,a) = 0 for all a, b, c e A if n = 3. We set C\A, M)S = C\A, M) and let

H"(A, M)s denote the zzth commutative cohomology group of this subcomplex.

The reader should note that H\A, M) = H\A, M)s = Verk(A, M), the /Fmodule

of ^-derivations of A into M, and that H2(A, M)s is a submodule of H2(A, M).

All of the above definitions and remarks apply to the commutative deformation

theory simply by replacing the Hochschild cohomology theory by the Harrison

commutative cohomology theory.

Definition 1.1. Let A be a commutative A-algebra and let lázzS4. Set An + 1

= A ®fc • • • ®kA (n+l factors) and consider An + 1 as an ^-module by multi-

plication on the first factor. Let In be the submodule of An + 1 generated by elements

of the form

x0 ®- • • ® xn + S1<i<n (- l)i_1x0 ® x2 ® • • • ® .v¡ ® xx ® xi + 1 ®- • ■ ® .Y„

+ (- l)"-1*«, ® x2 ® • • • ® xn <g> xx

for zz = 2, 3, and 4 and set /=0. We define the module of symmetric n-chains of A

over k to be Cn(A/k)s = An + l/In.
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By direct computation, we may check that the mapping dn : An +1 -> An defined by

dn(x0 ® • • • <8> xn) = x0xx ®- • • ® xn-x0 <g) xxx2 ®- ■ • <g> x„H-

+ (-l)nJC„X0 ®---® *»_!

maps In into /n_j and that dn defines a boundary operator on the complex C^Ajkf.

We shall denote the homology groups of this complex by Hn(A/k)s.

We may easily check that C*(A, MF^Hom^ iC^A/k)3, M) as cochain com-

plexes through dimension 3. Thus if we have available a universal coefficient

theorem, this representation of the symmetric cochain complex gives us the

possibility of applying direct limit arguments since homology commutes with

exact functors of complexes.

We recall that if A^l~[Xaièm At is a product of commutative rings and if M is an

.¿(-module, then M^\~lXáiSm M¡ where A/¡ = e¡M with e¡ = (0,..., 1, 0,..., 0), the

1 being the z'th position. In addition, Mt^At ®AM [16, Chapter IX, Proposition

9.2], Whenever H\A, M)s is contained in HniA, M), we may easily show that

HniA, M)s^riisism HniAu Mi)s by using the corresponding result for the Hoch-

schild cohomology groups [13, Theorem 4]. Unfortunately, it is not known whether

or not H3iA, M)s is contained in H3iA, M) if char(A) = 2. However, the above

isomorphism will be true in this case. Michael Barr has communicated to me a

proof due to Michel André which establishes this isomorphism for dimensions

1, 2, and 3. (More generally, the proof establishes this isomorphism whenever

Harrison's cohomology agrees with the cohomology groups defined via cotriples.)

Definition 1.2. Let L be an extension field of zc. We say that L is a separable

extension of k if one of the following equivalent conditions is satisfied:

(1) Every finitely generated subfield of L is separably generated over k.

(2) L and kllp are linearly disjoint over k.

We refer the reader to [5] for details. Recall also that Gerstenhaber proved that

these conditions are equivalent to the following conditions [8, Theorem 3]:
(3) H2iL,L)s = 0.

(4) H\L, M)s = 0 for all L-modules M.

2. The module of differentials. For the remainder of this paper, all rings will be

assumed to be commutative. Let zL4) be the set of zero-divisors of a ring A. We

recall that the total quotient ring of A is the localization of A at the multiplicatively

closed set A—ziA). If M is an ,4-module, an element me M is said to be a torsion

element if there exists a e A—ziA) such that am=0. We say that M is torsion-free

if the submodule of torsion elements of M is zero. Note that a submodule of a free

module is torsion-free. We shall need the following lemma.

Lemma 2.1. Let A be a (zioi necessarily commutative) ring and X an A-module.

If ExtJ+1 iX, M) = 0 whenever M is a submodule of a free A-module, then the

projective dimension of X is á zz.
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Proof. Let 0^K—>F-+X-+0bean exact sequence of ^4-modules where F is

free.

Suppose zj = 0. We obtain an exact sequence

0 -> Hom„ (X, K) --» Hom¿ (X, F) -> Hom¿ (X, X) -* Exti (X, K) = 0.

Hence X is projective since the map F-» X splits.

By induction, suppose that the lemma is true for all 0Sm<n. It will suffice to

show that the projective dimension of K is S n — 1. Let M be a submodule of a free

yl-module. Then

0 = Ext5 (F, M) -> Extä (K, M) -+ Ext$+1 (X, M) = 0

is an exact sequence and so the projective dimension of K is ^zz — 1 by induction.

Definition 2.2. Let A be a /r-algebra and M an .4-module. The module of

k-dififerentials of A is an /1-module üAlk and a ^-derivation d: A -> D.^ which is

universal with respect to ^-derivations of A into .4-modules. Hence we have a

natural isomorphism

(1) HomA(£lAlk,M)?Derk(A, M)

where M is an ,4-module.

In the terminology of [10, Chapter 2], (ExtJ (&A/k, ))nio is a universal connected

3-functor. Since (Hm(A, ))mÈ1 is a connected 8-functor [11, Theorem 1], there is a

unique morphism (pn)ni0 of S-functors where

Pn:ExtA(LÏAik,-)^H" + 1(A, ■)'

and p0 is the isomorphism of (1).

Proposition 2.3. Let A be a k-algebra and M an A-module. The map

px:LyX\(CiMk,M)^H2(A,My

is a monomorphism.

Proof. Let 0 -> M -*■ / -> I/M -> 0 be an exact sequence where / is an injective

/1-module. This sequence induces the following commutative diagram with exact

rows where Q. = Q.Alk.

Honu (Q, /) -> UomA (Q, I/M) -> Exti (Û, A/)-> 0

Ml

//i(^, /)«-> H\A, I/Mf-> H2(A, M)s -> H2(A, If

Since p0 is an isomorphism, px is a monomorphism by the four lemma [16, p. 14].

In general, px is not an epimorphism. If A is any field, then Exti (Í-W-, M) = 0.

But if A is not a separable extension of at, H2(A, W)V0 [8, Theorem 3].

Corollary 2.4. Let A be a k-algebra. If H2(A, Mf = 0 whenever M is a sub-

module of a free A-module, then QAlk is a projective A-module.
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Proof. Apply Lemma 2.1 and Proposition 2.3.

We may show that the zero ideal of a ring A is the intersection of a finite number

of prime ideals if and only if the total quotient ring of A is a finite product of fields

[2, p. 117].

Proposition 2.5. Let A be a k-algebra such that the total quotient ring of A is a

finite product of separable extension fields of k. If M is a torsion-free A-module,

then

pn: Ex« (üAlk, M) -> H» + \A, M)°

is an isomorphism for n = 1 and a monomorphism for n = 2.

Proof. Let S~ 1A he the total quotient ring of A and set K= S~ XA¡A. The sequence

0->M-+S~1M->K®AM->0 is exact since M is torsion-free. We claim that

S~1M is an injective ,4-module. Since a product of injective modules is an injective

module, we may assume that S~lA is a field. But if Xis any ^-module, we have an

isomorphism [1, §4, Proposition 1]

Honis-i, (S~XX, S^M) s Horn, (A', S~XM).

Hence Hom¿ (•, S'1 M) is the composite of two exact functors and so 5_1Mis an

injective ^-module.

By [11, Theorem 16], the map A -> S"lA induces an isomorphism H2(A,S'1M)S

^H2(S'1A, S~1M)S. Hence using the hypothesis on 5" 1A and the remark follow-

ing Definition 1.1, we have that H2(A, S'1M)s = 0 since the 2nd cohomology

group of a separable extension is always zero [8, Theorem 3]. Thus we obtain the

following commutative diagrams with exact rows where we set Q. = Q.Aik.

Horn,, (Í2, S-xM) -> Hom„ (Q, K ®A M) -> Exti (Q, M) -> 0

J,1"0 j^0 i^1
H\A, S^My -> H\A, K ®AM)S -» H\A, Mf -> 0

0 -> Exti (Í2, K ®A M) -> Ext?, (ü, M) -> 0

\PX U2

0 -> H2(A, K ®A Mf -> H3(A, Mf.

Since p.0 is always an isomorphism, p.x is an isomorphism in the first diagram. In the

second diagram, p.x is a monomorphism by Proposition 2.3. Hence p2 is a mono-

morphism.

Corollary 2.6. Let A be a k-algebra which satisfies the hypothesis of Proposition

2.5.

(a) If H3(A, M)s = 0 whenever M is a submodule of a free A-module, then the

projective dimension of QAlk is ^ 1.

(b) IfO.Alk is a projective A-module, then A is a rigid k-algebra in the commutative

deformation theory.
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Proof. Apply Lemma 2.1 and Proposition 2.5 and note that H2(A, A)s = 0 under

the hypothesis of part (b).

3. The cohomology of a localization of an algebra. The following lemma is a

rewording of [14, Lemma 4.1].

Lemma 3.1. Let A be a ring and let F* be a chain complex of A-modules such

that K-i is projective for m SiSn. IfZm(K*) is projective and if //¡(A-*) is projective

for m S i < n, then the natural map

H'(HomA (K*, M)) -» HomA (H<(K*), M)

is an isomorphism for mSiSn where M is an A-module.

Lemma 3.2. Let B be a polynomial k-algebra, S a multiplicatiiely closed subset

of B, and A = S~lB. Then the complex C^(A/k)s of Definition 1.1 satisfies the

hypotheses on K* in Lemma 3.1 where m= 1 and n = 3.

Proof. Let A be any /r-algebra and consider Cn(A/k)s. Let Jn be the /r-submod-

ule of An = A ®fc • • -®k ^(zz factors) generated by elements of the form xx ®

■ • -® xn-x2 ® xx ® x3 ®- • • ® xn+ • • • +(- ir_1X2 ®- • • ® xn ® Xj. Clearly

A ®kJn^In using the notation of Definition 1.1. Since A is flat over k, Cn(A/k)s

^A ®k(An/Jn) and therefore Cn(Ajk)s is a free /1-module. Also note that Zx(A/k)s

= Cx(A/k)s = A ®kA. Now Bx(A/k)s is generated as an /Fmodule by elements of the

form a ®b-l ®ab + b®a. Thus Hx(Alk)s^QAlk [5].

Now assume that A = S~lB with B a polynomial /r-algebra. Since QBlk is a free

F-module [9, §20], then H1(A/k)s^^Aik^S-1Çim is a free /(-module. Applying

Lemma 3.1 to the case m= 1 and zz = 2, we have that

H2(A, Mf s HomA(H2(A/ky, M).

By [11, Theorem 15], the 2nd cohomology group of a localization of a polynomial

/c-algebra is always zero. Hence H2(A/k)s = 0 and so the hypotheses of Lemma 3.1

are satisfied for zzz=l and zz = 3.

Let A be a /c-algebra, / an ideal, and M an Ajl-module. We shall make repeated

use of the following exact sequence [11, Theorem 2]:

0 -> H\A/I, Mf -> H\A, Mf -> Horn, (/, M) -* H2(A\l, M)s

-> H2(A, M)s -> Cl(A, I, M) -> H\A\I, M)s -> H3(A, M)>

where C1(A, I, M) is a submodule of Exti (F M).

Theorem 3.3. Let B be a polynomial k-algebra and S a multiplieatively closed

subset of B. If M is an S-1B-module, then H3(S~1B, M)s = 0.

Proof. Let A = S~1B. By Lemma 3.2, it will suffice to show that H3(A/k)s = 0.

Recall that if B is any commutative ring and S is a multiplicatively closed

subset of B, then 5_15^inj lim Bf where the direct limit is over all / in S. Bf
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denotes the localization Sf lB where Sf is the set of all/", zz 3:0. Since the process

of taking a direct limit over a filtered index set is an exact functor, we have that

C*(A/k)°zin} lim C*(Bflky and Hn(A/ky^injhmHn(B,lky where A = S~1B.
Thus it will suffice to show that H3iB,¡k)s = 0 for any fe B.

Let Y be an indeterminate over B. Then we have an isomorphism Bf^B[Y]/If

where I¡ is the ideal in B[Y] generated by fY—l. If A' is a /?rmodule, using

the exact sequence (1) we obtain an exact sequence

Cl(B[ Y], If, N) -> H3(Bh Nf -+ H3(B[ Y], Nf = 0

since the 3rd cohomology group of a polynomial A-algebra is always zero. But

since Ir is principal and B[Y] is an integral domain, Ext¿m (I¡, N) = 0. Hence

H3(B¡, N)s = 0 for all iîf-modules N and so, using Lemma 3.2, we have that

H3(B,/ky = 0.

4. The symmetric algebra of a projective module. Let A be a ring and M an

/1-module. The symmetric A-algebra of M is an /1-algebra SA(M) and an /1-module

map y: A/-> SA(M) which is universal with respect to /f-module maps of M into

/1-algebras.

If B is an /1-algebra and if M and M' are /1-modules, then SB(B ®AM)^

B 0ASA(M) and SA(M © M')^SA(M) ®ASA(M'). If M is à free /1-module, then

SA(M) is a polynomial /(-algebra with indeterminates in 1-1 correspondence with a

basis of M over A.

Theorem 4.1. Let A be a k-algebra and M a projective A-module. Let n = 2 or 3.

Then H"(SA(M), N)s = 0for all SA(M)-modules N if and only if Hn(A, P)s = 0far all

A-modules P.

Proof. If A' is a free /1-module, we will let X* denote a A-module with the same

number of basis elements as X. Hence X% A <g>fc X*. Since M is projective, there are

free ^-modules M' and £such that M © M' = F. We have the isomorphisms

SA(F) S SA(A ®fcF*) £ A ®kSk(F*) ~ SA(M © M')

= SA(M) ®ASA(M') s SA(M) ®kSk(M'*).

Recall that the cohomology of a polynomial A-algebra is zero in dimensions 2 and 3

[11, Theorem 11]. Hence if N is an S^Fj-module

(1) Hn(SA(F), NY S H\A, N)> s H\SA(M), N)'

since the cohomology group of a tensor product of two A-algebras is isomorphic

to the product of the cohomology groups of the A-algebras for dimensions 1, 2,

and 3 [11, Theorem 5].

Assume that Hn(SA(M), N)s = 0 for all S^(zW)-modules N and let P be any

/1-module. Consider P as an SA(M)-modu\e via the projection SA(M) —> A. But

this is the same as considering P as an S,,(iW)-module via SA(M) ->- SA(F) -> /l
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where the first map is induced by the map M -> F. Since A -> SA(M) -> SA(F) -> A

is the identity, the above isomorphism (1) shows that Hn(A, P)s = 0.

Conversely, assume that Hn(A, P)s = 0 for all /(-modules F and let A be an

SA(M)-module. M is a direct summand of F and so we have a projection map

F^M which induces SA(F)-+SA(M) and SA(M)-+SA(F)-*-SA(M) is the

identity. Hence using the isomorphism of (1), we have that Hn(SA(M), N)s = 0.

5. Formally smooth algebras and rigidity. The following definition is due to

Grothendieck [9, §19].

Definition 5.1. Let A be a Ar-algebra. We say that A is a formally smooth

k-algebra if H\A, Mf = 0 for all /1-modules M [9, §19.4.4.1].

Using this terminology, [8, Theorem 3] may be rephrased as: If A is an extension

field of k, then Ais a separable extension of A- if and only if A is a formally smooth

A-algebra.

Proposition 5.2. (a) Let (/f¡)iSiSn be a collection of k-algebras. Then Y}Xiiin A,

is a formally smooth k-algebra if and only if each A-t is a formally smooth k-algebra.

(b) Let (Ai)ie, be a collection of k-algebras. If each A¡ is a formally smooth

k-algebra, then the tensor product (x)ieI A¡ is a formally smooth k-algebra.

(c) Let (Ai)iel be a collection of k-algebras where I is a filtered index set and set

A = in) lim Af. If ílAlk is a projective A-module and if each A¡ is a formally smooth

k-algebra, then A is a formally smooth k-algebra.

Proof. Part (a) follows immediately from the remark following Definition 1.1.

See also [9, Proposition (19.3.5)]. By [11, Theorem 5],

H2( (g) Ai, MY s Ff H2(Ai> M)s
\ iel I t=Z

and so we have part (b).

Consider (c). By Lemma 3.1 applied to the complex C^(Ajk)s with zzz=l and

zz = 2, we have that H2(A, M)s^HomA (H2(A¡k)s, M) since Q.Alk^Hx(Ajk)s is

projective. Since H2(A/k)s^in] lim H2(Afk)s, it will suffice to show that H2(Ai/k)s

= 0. By the same reasoning as above, we have that H2(Ai, N)s^ Hom^ (H2(At/k)s, N)

since £lAiiic is a projective /frmodule (Corollary 2.4). Thus since A¡ is a formally

smooth A-algebra H2(Ai/k)s = 0.

The following theorem is a generalization of [11, Corollary 23] and the footnote

of [11] added in proof.

Theorem 5.3. Let A be a k-algebra and let A = B\l where B is a formally smooth

k-algebra. The following conditions are equivalent:

(i) A is a formally smooth k-algebra.

(ii) H2(A,I/I2)s = 0.

(iii) The k-algebra extension 0 -> I/I2 -+ B\I2 -> A -> 0 is equivalent to the trivial

k-algebra extension of A by I/I2.
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Ifi I\I2 is a finitely generated A-module, the above conditions are equivalent to:

(iv) H2(A, M)$ = 0 for all finitely generated A-modules M.

Proof. Clearly (i) implies (ii), (ii) implies (iii), and (i) implies (iv). Since (iv)

implies (ii) whenever I/I2 is finitely generated, it will suffice to show that (iii)

implies (i).

Since 0 ->■ 1/12 -» B/P—t—^A -^- 0 is equivalent to the trivial A-algebra extension

of A by I ¡I2, there is a A-algebra map p: A -> B/l2 such that yp= 1. Hence I- py

maps B/I2 into ker (y) = I/I2 since y(l - py) = y — ypy = 0. Now Ijl2 has square zero

and so for all a, be B/I2

(I-py)(a)(I-py)(b) = 0

= ab- apyib) - bpy(a) + py(a)py(b).

Hence ab - py(a)py(b) = ab- apy(b) + ab- bpy(a). Thus D = 1 - py e Derfc (B/I2, I/I2).

Note also that D\m*=l.

Let M be an /1-module. We obtain the exact sequence

CO

H\B, M)s —> HomB (/, M) —> H2(A, M)s —> 0

by using exact sequence (1) of §3. u> is defined by w(d) = d\,. Since IM = 0,

HomB (/, M)sHomB/; (If2, M) and H\B, M)s = Devk (B, M)^Derk (B/I2, M)

= H1(B/I2,Mf. Hence if fie Homß/;(///2, M), we have that w(fiD)=f since

D\uji = 1 where D is the derivation defined above. Thus oj is onto and so H2(A, M)s

= 0.

Definition 5.4. Let A be a A-algebra. We say that A is a geometric k-algebra if A

is a localization of a finitely generated A-algebra.

Theorem 5.5. Let A be a k-algebra such that H3(A, M)s = 0 whenever M is a

submodule of a free A-module. The following conditions are equivalent:

(i) H\A, M)s = 0 far all finitely generated A-modules M.
(ii) H2iA,A)s = 0.

(iii) A is a rigid k-algebra in the commutative deformation theory. If in addition, A

is a geometric k-algebra, then the above conditions are equivalent to :

(iv) A is a formally smooth k-algebra.

Proof. Since H3(A, A)s=0, (ii) and (iii) are equivalent. By Theorem 5.3, (i) and

(iv) are equivalent since we may choose / to be a finitely generated ideal in the

presentation of A as B/I. It will suffice to show that (ii) implies (i).

Let N be a finitely generated /1-module and let 0-^K^F->N->0 be an

exact sequence where £ is a finitely generated free module. This sequence induces

the exact sequence

H'(A, F)s -* H2(A, N)s -> H\A, K)s = 0

by [11, Theorem 1]. But since £=0láiSn/li, A¡ = A for each i, we have that

H\A, £)s^©1SiSn H2(A, Ads = 0.
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We refer the reader to [20] for the definition and properties of regular local rings.

We need the following theorem which is due to Harrison [11, Theorem 19, Theorem

22] but has a weaker hypothesis.

Theorem 5.6 (Harrison). Let A be a local k-algebra such that A/M is a separable

extension of k where 9JÍ is the maximal ideal of A. The following conditions are

equivalent :

(i) H2(A, N)s = 0fior all A/W-modules N.

(ii) H2(A,A/Wy = 0.
(iii) A is a regular local ring.

If A is a geometric local k-algebra, then the above are equivalent to the following

conditions :

(iv) A is a formally smooth k-algebra.

(v) H2(A, N)s = 0 for all finitely generated A-modules A.

Proof. We may remove Harrison's restriction that k be perfect by using the fact

that a separable extension of k is a formally smooth A-algebra [8, Theorem 3]. By

Theorem 5.3, (v) implies (iv).

Remark 5.7. Let A be a A-algebra and let k0 be a subfield of k with k a separable

extension of k0. By utilizing the exact sequence of [9, Corollary (20.2.3)] and

[8, Theorem 3], we may easily show that if A is a formally smooth A-algebra, then

A is a formally smooth A-0-algebra. In particular, let A be a formally smooth

noetherian local A-algebra. Since every extension of the prime field k0 of k is a

separable extension, it follows immediately that A is a regular local ring.

Corollary 5.8. Let Abe a k-algebra with a noetherian total quotient ring S"1A.

If S'1A is a formally smooth algebra over some subfield of k, then A is reduced

( = no nonzero nilpotent elements). Hence a noetherian formally smooth k-algebra is

reduced.

Proof. The final assertion follows from the first assertion since the map A->S~1A

induces an isomorphism H2(S~lA, M)S~H2(A, MY where M is an 5_1/i-module

[11, Theorem 16].

Since A is contained in S~XA, it will suffice to show that S~lA is reduced. By

Remark 5.7, each localization of S~1A at a prime ideal is a regular local ring. But

the nilradical of a ring is zero if and only if the nilradical of each of its localizations

is zero. Hence S'rA is reduced.

Proposition 5.9. Let A be an arfmian k-algebra. Then A is a formally smooth

k-algebra if and only if A is a product of separable extension fields of k.

Proof. If A is a product of separable extension fields of k, then A is a formally

smooth A-algebra by Proposition 5.2(a) since a separable extension of k is a formally

smooth /c-algebra [8, Theorem 3].



66 D. W. KNUDSON [June

Conversely, assume that A is a formally smooth A-algebra. Since A^TJ-m Am

with the product over the set of maximal ideals W of A, we may assume that A is a

local algebra by the remark following Definition 1.1. But by Remark 5.7, A is a

regular artinian local A-algebra and so A is a field. Hence A must be a separable

extension of A.

Lemma 5.10. Let A be a k-algebra with an artinian formally smooth total quotient

ring. Suppose that H3(A, N)s = 0 whenever N is a submodule of a free A-module. If M

is any A-module, then

p,x:Ext\(LÏAlk,M)^H\A,My

is an isomorphism where p.x is the map of Proposition 2.3.

Proof. Let 0->K->F-+M-^-0bean exact sequence of /1-modules with £free.

Thus Ext2 (QA!k, K) = 0by Proposition 2.5. Setting L~l = QAlk, we obtain the follow-

ing commutative diagram with exact rows.

ExtJ (LI, K) -> Exti (Í2, £) -> Exti (Q, M) -» 0

i i 1*
H2(A, K)s -> H2(A, F)s -> H2(A, M)s -» 0.

The first two vertical arrows are isomorphisms by Proposition 2.5. Hence px is an

isomorphism.

Theorem 5.11. Let A be a k-algebra with an artinian formally smooth total

quotient ring. Suppose that H3(A, N)s = 0 whenever N is a submodule of a free A-

module. The following conditions are equivalent:

(i) A is a formally smooth k-algebra.

(ii) ü.Alk is a projective A-module.

If in addition A is a geometric k-algebra, then the above are equivalent to the following

conditions :

(iii) H2(A, M)s = 0 for all finitely generated A-modules M.
(iv) H2(A,A)s = 0.

(v) A is a rigid k-algebra in the commutative deformation theory.

Proof. By Lemma 5.10, (ii) is equivalent to (i). Conditions (i), (iii), (iv), and (v)

are equivalent by Theorem 5.5.

6. Complete intersections and a conjecture of Gerstenhaber.

Definition 6.1. Let A be a ring and M an /1-module. We say that an element

fie A is M-regular if/is not a zero-divisor in M. A sequence (/)iSiSn of elements

of A is an M-regular sequence if for each z'=l,..., zz, / is A/¡_i-regular where

M0 = M and M,-i=*M/(fi,. ..,f,x)M for i> I.

Theorem 6.2. Let B be a k-algebra and let I be an ideal of B which is generated

by a B-regular sequence. If M is a Bjl-module, then the map

pn: Hn(B/I, M)s -> H"(B, M)s
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induced by the projection B —> B/I is an epimorphism for zz = 2 and a monomorphism

for n = 3.

Proof. Let (/Dissts* be a Ä-regular sequence which generates /. Let

Bi = B/(fx,...,/); thus B0 = B and Bn = B\I. Since/i, the image of/ in Bt_x, is not

a zero-divisor in Bi_x,fi'iBi-x is a free ideal. Hence Ext¿(_, (/ÍF¡_i, A/) = 0 and so

C1(Bi_x,f'iBi-x, M) = 0 using the notation of exact sequence (1), §3. Thus we have a

sequence of epimorphisms

H2(Bn, M)s-> H2(Bn -1, M Y -s--> H2(B0, M )s

and the composite is the required epimorphism. We use a similar argument for the

final assertion.

Definition 6.3. Let A be a A-algebra. We say that A is a geometric complete

intersection if A is a localization of a A-algebra of the form k [Xx,. .., Xn]/(fx,.. .,fm)

where (/)iSiSm is a k[Xx,..., Yn]-regular sequence.

We recall that a noetherian local ring A is said to be a local complete intersection

if there is a regular local ring B such that A 2 B/I where / is an ideal such that the

minimal number of generators of/is equal to dim (ß)-dim (A) (Krull dimension).

We may choose a set of generators for /which form a F-regular sequence [12], [21].

However, note that we do not require that a geometric complete intersection be a

local ring.

Corollary 6.4. Let A be a k-algebra and M an A-module.

(a) If A is a geometric complete intersection, then H3(A, M)s = 0.

(b) If A is a semisimple k-algebra, then H3(A, M)s = 0.

Proof. Part (a) follows immediately from Theorem 3.3 and Theorem 6.2.

Consider part (b). By the remark following Definition 1.1, we may assume that A

is an extension field of A. Now since A is afield, H3(A, M)s^HomA (H3(A/k)s, M).

Since A g inj lim A{ where the direct limit is over the set of subfields of A which are

finitely generated over k, we have that //3(,4/A)s^inj lim //3F4¡/A)S. Hence we may

assume that A is a finitely generated extension field of A. But then A is a regular

geometric complete intersection and so H3(A/k)s = 0 by part (a).

Note that Corollary 6.4(a) generalizes [11, footnote 4]. The following theorem

answers a conjecture of Gerstenhaber [8, p. 80].

Theorem 6.5. Let A be a semisimple k-algebra. The following conditions are

equivalent :

(i) A is a formally smooth k-algebra.
(ii) H2(A,A)s = 0.

(iii) A is a rigid k-algebra in the commutative deformation theory.

(iv) A is a product of separable extension fields ofik.

Proof. Conditions (i) and (iv) are equivalent by Proposition 5.9 and (ii) and (iii)

are equivalent since H3(A, A)s = 0. Since A is semisimple, we have that H2(A, M)s
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^HomA(H2(Alky, M). Thus if H2(A, A)s = 0, we have that H2(A¡k)s = 0 and so

(ii) implies (i).

If A is an L-algebra and if A is a subfield of L, we shall let Hk(A, M)s denote the

/7th commutative cohomology group of A considered as a A-algebra.

Proposition 6.6. Let A be an L-algebra which is a geometric complete intersection

and let M be an A-module. If k is any subfield of L, then Hl(A, M)s = 0.

Proof. By Corollary 6.4(b), Theorem 4.1, and Theorem 3.3, the 3rd cohomology

group of the A-algebra S~1L[XX,..., Xn] vanishes. Hence Hk(A, M)s = 0 by

applying Theorem 6.2.

Corollary 6.7. Let A be an L-algebra which is a geometric complete intersection

and let k be a subfield of L. If the total quotient ring of A is an artinian formally

smooth k-algebra, then the projective dimension of ilA/k is S 1.

Proof. Apply Proposition 6.6, Proposition 5.9, and Corollary 2.6(a).

Theorem 6.8. Let A be an L-algebra which is a geometric complete intersection

and let k be any subfield of L.

(a) The following conditions are equivalent:

(i) A is a formally smooth k-algebra.

(ii) Hk(A, M y = 0 for all finitely generated A-modules M.

(iii) m(A,Ay=o.
(iv) A is a rigid k-algebra in the commutative deformation theory.

(b) If A is also a local ring with maximal ideal 9)1 and if A/M is a separable

extension ofk, then the conditions of (a) are equivalent to:

(v) A is a regular local ring.

(c) If the total quotient ring of A is an artinian formally smooth k-algebra, then

the conditions of (a) are equivalent to :

(vi) LlA/k is a projective A-module.

Proof. The equivalence of the conditions of (a) follows immediately from

Proposition 6.6 and the reasoning of Theorem 5.5. Part (b) is Theorem 5.6. Part (c)

is an application of Theorem 5.11.

7. Group algebras. Let G be a group and A a ring. The group algebra of G

over A, A[G], is the free ^-module with basis (x9)gea where the multiplication is

defined by xgxh = xgh. We shall be concerned only with abelian groups G so that the

algebra A[G] will be commutative. If G and G' are abelian groups, we have that

A[G © G']?A[G] ®AA[G'] and, if A is a subring of A, A[G]^A ®kk[G].

Lemma 7.1. Let G be an abelian group which is a direct sum of cyclic groups and let

A be a k-algebra. IfH3(A, M)s = Ofior all A-modules M, then H3(A[G], N)s = Ofor all

A[G]-modules N.
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Proof. Since the 3rd cohomology group of a tensor product of A-algebras is

isomorphic to the product of the 3rd cohomology groups of the algebras [11,

Theorem 5], it will suffice to consider H3(k[G], M)s. By hypothesis, G = (¡£)i<¡ICi

where each C¡ is cyclic. Since A[G]^(x)iE/ A[C,], we may assume that G = Z or

G = Z/nZ again using [11, Theorem 5]. But k[Z]^k[X, y]/(AT-l) and A[Z/zzZ]

^k[X]l(Xn— 1) and each of these algebras is a geometric complete intersection

and so we may apply Corollary 6.4(a).

Theorem 7.2. Let G be an abelian group which is a direct sum of cyclic groups and

let A be a formally smooth k-algebra.

(a) If char (A) = 0 or if char (k)=p^0 and no element of G has order p, then

A [G] is a formally smooth k-algebra.

(b) If char (k)=p^0 and A is noetherian, then A[G] is a formally smooth k-

algebra if and only if G has no element of order p.

Proof. By the argument used in the proof of Lemma 7.1, it will suffice to prove

part (a) for A=k and for G = Z and G = ZjnZ. Under either of the hypotheses of

part (a), Xn— 1 is a separable polynomial and so k[Z/nZ]zk[X]/(Xn — I) is a

product of separable extensions of k. Hence by Proposition 9.10, k[Z/nZ] is a

formally smooth A-algebra. Now

k[Z] s k[X, Y]/(XY-1) ~ k[X, l/X]

is a localization of a polynomial A-algebra and so k[Z] is a formally smooth

A-algebra [11, Theorem 15].

Conversely, suppose that A[G] is a formally smooth A-algebra with char (A)

=p¥=0 and A a noetherian A-algebra. Assume that G has a direct summand of the

form Z/nZ with n=pm. The projection G -> Z/zzZ induces a map p: A\G}->

A[Z/nZ] and the composite

A[ZjnZ] —'-> A[G] -^» A[Z/nZ]

is the identity where i is induced by the inclusion Z\nZ -> G. Let M be an A[Z/nZ]-

module. Considering M as an /f[G]-module via p, we have that H2(A[G], M)" = 0.

If G = Z/zzZ©G', then

H2(A[G], M)s s H2(A[Z/nZ], M)s ® H2(k[G'], M)s = 0

by [11, Theorem 5]. Since pi=\, A[ZjnZ] is a formally smooth A-algebra. Thus

A[Z/nZ] is a reduced algebra by Corollary 5.8. Write A[Z/nZ] = A[X]l(Xn-l)

= A[x] where x=X+(Xn— 1). Since n=pm, xm-l is nilpotent of order p. But

.vm— 1 /0 and so n^pm.

Corollary 7.3. Let G be a finitely generated abelian group with torsion subgroup

T. Let A be a formally smooth k-algebra which is either semisimple or a geometric

complete intersection. If'char (k)=p^=0, then the following conditions are equivalent:

(i) A [G] is a formally smooth k-algebra.
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(ii) H2(A[G],A[G]Y = 0.
(iii) A[G] is a rigid k-algebra in the commutative deformation theory.

(iv) p does not divide the order of T.
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