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Introduction.    Let/(z) be a meromorphic function; it is assumed that the reader

is familiar with the following symbols of frequent use in Nevanlinna's theory:

log + ,    m(r,f),   n(r,f),    N(r,f),   T(r,f),    8(r,f).

The lower order p and the order A of/(z) are defined by the familiar relations

..    . e log T(r,f) .. log T(r,f)      .
hm inf     , = u,       hm sup —-.—^^ = A.

r-oo logZ- r-.oo lOgr

In addition to these classical concepts, we shall consider the total deficiency A(f)

of the function /:

d) Ai/) = 2 8(r,f),
T

where the summation is to be extended to all the values t, finite or oo, such that

(2) 8(r,/) > 0.

The number of deficient values of/ that is the number of distinct values of t

for which (2) holds, will be denoted by v(fi) (S +<x>).

Nevanlinna's fundamental results show that

(3) A(/) S 2,

and it is not difficult to find functions such that equality holds in (3). However, all

the theorems and examples known to the author indicate that, if p is finite,

(i) the relation A(/) = 2 is only possible for particular values of p;

(ii) if A(/) = 2 the number of deficient values of/(z) remains finite.

These remarks lead to interesting questions which may be formulated as a

Deficiency problem. Let f(z) be a meromorphic function of lower order p< +co.

I. Determine, as explicitly as possible, a function E(p) such that

(4) A(/) S Sip)

be sharp for all values of p.
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II. Is it true that A(f) = E(p.) implies v(f) < + oo ? Determine as a function of p. the

correct bound for v(f).

The solution of this problem is more advanced for entire functions than for

general meromorphic functions. The following is known:

Let f(z) be a meromorphic function of finite lower order such that A(f) = 2,

S(oo,/) = l, and

(5) A < -fco.

Then p = A=q, where q is a positive integer, and v(fi) ^q +1.

This important result is essentially due to Pfluger [11]. [He proved it for entire

functions and did not assert that A=p.] Some complements and extensions were

obtained by Edrei and Fuchs [5]. One of the ideas used in the present note shows

that the restriction (5) is unnecessary.

It will be noticed that, for nonintegral values of p, Pfluger's theorem tells us

nothing more than E(p) < 2. The method developed here and in Weitsman's paper

[which follows in the same issue of this Journal] yields a complete solution of the

deficiency problem for entire functions of lower order p. < 1. More precisely, we

shall prove

Theorem A. Let f(z) be a meromorphic function of lower order p:

(6) i < pi < 1,

and let the poles of f(z) have maximum deficiency (8(oo,/)= 1).

Then

(7) A(/) ^ 2-sin^.

Moreover, if equality holds in (7), then

(8) vif) = 2.

Concerning the restrictions (6) we observe that :

(i) the limiting case p=l is covered by Pfluger's theorem ;

in) ifiO^p.^il/2), then v(J)=l. [For /x=0 this is proved in [4, p. 297]. For

0</Lt^l/2 the result is an obvious consequence of part I of Theorem 1 of this

paper.]

Theorem A is not obtained directly ; it will appear as a simple corollary of several

"locally tauberian" theorems which constitute the central topic of our investiga-

tion.

As far as I know, the first tauberian theorem in the theory of entire functions was

discovered by Valiron in 1913 [12, p. 237].

In 1930, Hardy and Littlewood recognized the tauberian character of Valiron's

statement and obtained several important generalizations. Their results are stated

in terms of Laplace and Stieltjes transforms [9] and the connection with entire

functions is no longer obvious.
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Recently, Edrei and Fuchs [8] returned to Valiron's original approach; they

proved a tauberian theorem concerning meromorphic functions of order A S I

having all their zeros negative and all their poles positive.

Theorem 1 of this note is, in many respects, similar to Theorem 1 of [8]. The

main difference lies in the fact that I do not impose geometrical restrictions on the

position of the zeros and poles. This yields a result, which is more readily applic-

able, but limits me to tauberian assertions of a local nature. More precisely, my

conclusions no longer hold as the relevant variable tends to +oo unrestrictedly:

it must be confined to infinitely many, well-chosen intervals [R'm, /?„] such that

7?"
lim R'm = +co, lim -=?- = +oo.

m-*co m-»oo Km

1. Definitions and notations. Throughout this note f(z) is a meromorphic

function of lower order p

(1.1) 0<p<l;

the order of/(z) plays no role and may be +oo. Since p>0,f(z) cannot be rational

and hence

(1.2) log r = o(T(r))       (r-> +oo).

I have defined, and used elsewhere [1], [2], [3], remarkable sequences of points

associated with T(r). The members of these sequences are the Pólya peaks, of order

p, of T(r) and may be introduced by the following

Definition 1. A positive sequence

(1.3) rur2,r3,...

of numbers tending to + oo is said to be a sequence of Pólya peaks, of order p, ofT(r),

if it is possible to find three positive sequences

(1.4) {r'm},   {C},   {em},

such that, as m-> + co,

(1.5) z-^+co,    rjr'm-+ +co,    r"Jrm-^ +co,    em -» 0,

and such that the inequalities

(1.6) r'm S t S r"m       (m > m0),

imply

(L7) T(t)/T(rm)S(l+em)(t/rmy.

We take for granted the fact that, if/(z) is of lower order p, then T(r) = T(r,fi)

has a sequence of Pólya peaks of order p. [A proof will be found in [2, pp. 85-86].

It might be of interest to mention that there exist sequences of Pólya peaks of every

finite order p in the interval pSpS A.]
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Let S denote a measurable subset of the axis r > 0 and let S\r', r"} be the portion

of S which lies in the interval [r1, r"].

We say that S has density zero if

(1.8) lim meaS^°'r] = 0.
r-. oo r

We consider systematically the two quantities

(1.9) lim sup     _' [J   = u,       hm sup -$rf±¿ = v.
r-"o;rtg       1 [T ) r-.x-.rtg     1 \T )

The set S, which is avoided as r -> oo, is always assumed to be of density zero.

If ê is a bounded set, the formulae (1.9) reduce to

(1.10) 1-8(0,/) = «,       l-8(co,/) = i».

For the applications which we have in mind it would be sufficient to introduce in

(1.9) exceptional sets of finite measure. However, the "larger" sets of density zero

create no additional complications and are in some respects more natural.

Throughout the paper we use the symbol A to denote a positive absolute constant

and the symbol K to denote a positive constant depending on one or more param-

eters.

Most of our inequalities are only valid for sufficiently large values of certain

parameters m, t, r,.... We usually indicate this fact by writing, immediately after

the relevant inequality, (m > m0), (t > t0), (r > r0),....

The quantities A, K, m0, t0, r0,... are not necessarily the same ones each time

they occur.

For sake of clarity, we shall sometimes indicate the parameters which are

implicit in K, m0, t0, r0 and write, for instance, t0(e), K(q),....

2. Statement and discussion of the locally tauberian results.

Theorem 1. Let fi(z) be a meromorphic function of lower order p (0<p<l)

and let u and v be defined by (1.9).

I. Then

(2.1) Sin2 irp 5; U2 + V2 — 2uV COS trie.

Moreover, v á cos -rrp implies u = 1 and u g cos np implies v=l.

II. Let {rm} be a sequence ofPólya peaks of order p ofT(r) and let £œ(r) and E0(r)

be sets of6 (—tt^6<tt) defined by

(2.2) £„(/) = {d : l/M > r«},       E0(r) = {6 : \f(reie)\ < r~a},

where a is an arbitrary, nonnegative constant.

Assume that equality holds in (2.1) and that

(2.3) u < 1,    v < 1.
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FAezz all the following limits exist and satisfy the relations stated

(2.4) lim meas E^(rm) = s(co) = (2/p)cos~1 v       (0 < cos"1/; S rr/2),
m-»oo

(2.5) lim meas E0(rm) = s(0) = (2/p) cos"1 u        (0 < cos-1 u S n/2),

(2.6) í(0)+í(oo) = 2tt.

Moreover, there exist three positive sequences {R'm}, {R'm}, {é~m} such that, as m~> + go,

(2.7) R'm = +co,   z-m/7?;^ +co,    R"Jrm^+co,   êm-»0,

and such that

(2.8) R'mStSRm       (m> m0)

imply

(2.9) (//rm)«(l + èm) -1 S T(t)/T(rm) S (t/rmf(l + êm),

(2.10) u-ëmS N^t!p S u + êm,   v-ëms^^Sv + ëm,

and

(2.11) pu-ëm S "^P S pu + èm,   t,v-èmSn-^-Spv + ëm.

The property of T(t), expressed by (2.9), may be stated in the following equivalent

form.

Let a > 1 and let

(2.12) Ia(rm) = {t:o-hmStS orm},    V = Va({rm}) =  (J F,0v>.
m=l

Then, for any fixed a > 1, we have

(2.13) lim    5^ = A«,
t->co;ieV   1(1)

uniformly in any finite interval 0 < Aj S X S X2.

The relations (2.10) and (2.11) may be restated in a similar manner. For instance,

the last of the relations (2.11) is equivalent to the following assertion : for any fixed

o>l,

(2.14) lim    r%Q = pv       (V= Va({rm})).
Z-»oo;teV   l\t)

The statements concerning (2.13) and (2.14) may be considered as "locally

tauberian" because they only assert the existence of the limits in the vicinity

Va({rm}) of the Pólya peaks {rm}. They are no longer true if we omit the restriction
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/ e V: there exist functions(2) satisfying all the conditions of part II of Theorem 1

and such that each of the ratios

T(Xt)    N(t, l/fi)    N(t,fi)    «(/, l/fi)    «(/,/)
T(t) '       £(/)   '      T(t) '       £(/)   '     £(/) '

has no limit as / -> + oo [A ̂ 0, A fixed].

Theorem 1 is unsatisfactory in one respect : it provides no information concerning

the angular distribution of the zeros and poles whose moduli are, in an obvious

sense, determined by (2.11). A. Weitsman has filled this gap and developed an

ingenious method which yields (in asymptotic form) the arguments of almost all

these zeros and poles. The asymptotic evaluation of f(z) which may be derived

from this additional knowledge is essential in the proof of Theorem A.

The deficiency problem stated in the Introduction appears to be simpler for

entire functions than for general meromorphic functions. The simplification

depends on the simultaneous consideration of functions and derivatives.

Let g(z) be an entire function of finite order, or more generally a meromorphic

function of finite order such that S(oo, g)= 1, it is well known [13, p. 22] that the

total deficiency A(g) satisfies the condition A(g) ̂  1 + 8(0, g').

If the lower order of g is finite, its order may be +oo and the preceding inequality

must be weakened by the introduction of exceptional sets, of finite measure.

My Theorem 1 is not affected by the presence of such exceptional sets so that it is

possible to investigate its implications concerning g'(z), when g(z) is of lower order

P< 1.

Vut g'(z)=f(z) and

(2.15) £(/, g') = £(/,/) = TAJ),       T(t, g) = £(/),

(2.16) u(g') = lim sup ̂ '//f0,       v(g') = lim sup ̂ ¿l
r-KB-.rig      Ji(r) r^oo;ré<?    1 lV )

where the set $, which depends on £(/), is of finite measure (and hence of density

zero).

Using these notations, I deduce from Theorem 1 :

Theorem 2. Le/ g(z) be a meromorphic function of lower order p, \<p<I,

and let 8(00, g)=l.

I. Then

(2.17) A(g)^2-smirp.

II. Assume that equality holds in (2.17).

Then

(2.18) u(g') = sin np,       v(g') = 0,

(2) Such functions have been constructed by H. Silverman in his doctoral dissertation

[Syracuse University]. His examples have a prescribed lower order ¡i (0 < n < 1) and a prescribed

order A, chosen arbitrarily in the range (i < A g 1. It is not certain that it is also possible to find

similar functions such that /x< 1 < A.
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and, if{rm} is a sequence of Pólya peaks (of order p) ofTi(r), there exist three positive

sequences {R'm}, {R'm}, {êm} satisfying the conditions (2.7) and such that

(2.19) R'mStSRl       im> m0)

implies

(2.20) it/rj'il + êm) - » S F1(/)/F1(rm) 5 (1 + Sm)(t/rmy,

(2.21) -Èm + sinirp S Nit, \/g')/Tx(t) S èm + sinnp,       N(t,g')/Tx(t) S ëm,

(2.22) -ëm+p sin rrp S n(t, l/g')/Tx(t) S ëm+p sin rrp,       n(t, g')/Tx(t) S êm,

and

(2.23) (1 + ëm) -1 S T(t)/Tx(t) ¿(1 + ëm).

Since (2.20) and (2.23) imply

(2.24) (1 + êm) -3(t/rmy S T(t)/Tirm) S (1+ ëm)3(t/rmY,

we have

Corollary 2.1. A sequence of Pólya peaks (of order p) ofTx(r) is also a sequence

of Pólya peaks iof order p) of Tir).

One last remark concerns the possibility of replacing, in the statements of

Theorems A, 1 and 2, the lower order p by the order A.

The resulting theorems are true because an inspection of our proofs shows that

the lower order p is only used to assert the existence of a sequence of Pólya peaks

of order p. Hence it is possible to restate our theorems with p replaced by any p

(< 1) such that there exists a sequence of Pólya peaks of order />, of T(r). In view

of the remark in §1 (following formula (1.7)), any p satisfying the conditions

P S p S A,       P < 1,

is acceptable.

The following Corollary 1.1 is an easy consequence of these observations.

Corollary 1.1. Let f(z) be a meromorphic function of order A < 1 and lower

order p. Assume that the quantities u and v defined by (1.9) satisfy the conditions

(2.25) sin2/nA = u2+ v2-2uv cos irA,       u < 1, v < 1.

FAezz p = A.

Minor modifications of an argument of Edrei and Fuchs [8, pp. 351-352]

readily yield this corollary. For sake of completeness a brief sketch of its proof is

given in §11.

3. Influence of the exceptional set. Since ê is of density zero, there exists a

positive sequence {r¡m} such that

,, ,,                               meas«?[0, /] .. .
(3.1) sup--t—'- < T)m,       hm r¡m = 0.

rmSt I m-.<o
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Consider the sequences which appear in (1.5) and let

(3.2) Pm = min K,rJ(Vmy%

so that, as m -> oo, we have

(3.3) pm/rm^ +00

and

(3.4) meas S\r'm, Pm] < VmPm ̂  (ijn)1/2rm.

Assume further that {ym} is a real sequence such that

(3.5) r, < ym < ir—r, (0 < 2r, < it),

with r¡ fixed.

We now set

(16) P(?'r'y) = ^/2 + z-2+2/z-cosy'

(this notation will be used throughout the paper) and prove that

(3.7) Jm =  f £(/)£(/, rm, ym) dt Ú M^ T(rm)       im > m0).
J'rrí,.Pm] sin rj

Notice that

t2 + r2 + 2tr cosy = (/ + r cos y)2 + r2 sin2 y

= ir +1 cos y)2 + t2 sin2 y ^ (l/2)(/2 + r2) sin2 y,

and hence

^smym J^,^, Z2 + r2

In view of (1.7)

(3.8) /.aW J^í1)        (->-o).
smym J^^.flm](i/z-m)2+l    \rj

The change of variable x = (//rm) transforms the set <%[r'm, pm] into a set êm which,

in view of (3.4), has a measure not exceeding (^m)1'2. Hence (3.7) is an obvious

consequence of (3.8) and (3.5).

4. The main lemmas.

Lemma 1. £e//(z) ¿>e a meromorphic function of lower order p,(0<p<l) and let

£co(r) and{rm} be defined as in Theorem 1.

£<?<

(4.1) yir) = \ meas E„(r),       yirm) = ym

and assume that, for a fixed -n,

(4.2) r] < ym < tr—n im > m0, 0 < 2r¡ < it).
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Then there exist two sequences {p'm}, {p'm} such that, as zzz -> oo,

ti

(4.3) Pm -> 4-00,   ^ -> +oo,    p-f -> +ao       (,,; = r'm, 2P"m S O,
Pm rm

and such that if

(4.4) Hm = [p'm, p'm]-S[p'm, P"m],

we have (with the notation (3.6))

T(rm) S   f    Nit, 1//)F(/, rm, ym) dt
(4.5) JS?m

+ f    N(t,fi)P(t, rm, rr-ym) dt + o(T(rm))       (m -> +co).

Proof. Put

Noit)   r^(x,i//)-zz(o,i//)^
Jo •*•

(4.6)

AM(/)=f^^-^^t7x.
Jo x

Then, as I have shown elsewhere [2, pp. 89-91], the inequalities R^2r and

(4.7) 0 < y(r) < ir,

imply, for all such y(r),

Tir) S  f A0(/)F(/, r, y(r))dt+ f A„(/)P(/, r, 7r-y(r)) dt
(4.8) Jo Jo

+ A^T(2R) + Klogr       (r^oo),

where A is an absolute constant and K depends only on / and a. We set in this

inequality

f = I'm, R =  Pm/2 =  p"m-

The quantity pm, which depends on the exceptional set S, is defined by (3.2);

hence 2p"mSr'm. In view of (4.2), (4.4) and (1.2), we deduce from (4.8)

T(rm) S Noip'm)       P(t, rm, ym) dt + Nx(P'm)       P(t, rm, rr-ym) dt
Jo Jo

+ 2A^ T(pm) + o(F(rm)) + f    A0(/)F(/, rm, ym) dt
Pm Jsem

(4'9) +Í    Na,it)Pit,rm,n-ym)dt
J&m

+ 2 f F(/)[F(/, rm, yn)+Pit, rm, 7r-ym)] dt
J#l0m,0m1

im ^co,p'm = r'm).
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By (3.7), the integral over $[p'm, p'ñ] is o(T(rm)) and therefore may be absorbed by

the term o(T(rm)) which is already present.

Similarly, by (1.1), (1.7), (3.2) and (3.3)

(4.10) £ T^ = 2 - (T'Y T^ = °^r^       (m "* +0°)-
Pm Pm \rml

The terms, in (4.9), involving N0ip'm) and N^p'm) may be estimated immediately

since each one of them is dominated by

(4.11) 2TiP'm) ¡°m '" dt ï ATiP'm) 9f = o(T(rm))       im -* oo).
JO     '   T'm- Llrm i m

Finally, we observe that, for / ^ 1

JV0(0 Ú Nit, l/fi),       N„(t) Ú N(t,f),

and since all the points of J£?m exceed one (for zn > zw0), we may in (4.9) replace

Noit), Nx(t) by Nit, l/fi), NitJ), respectively.

The inequality (4.5) is now obvious if we take into account (4.10) and (4.11).

Lemma 1, which we have thus proved, will be first used to obtain the following

lemma, fundamental in this investigation. I proved a similar lemma in [2, pp. 87-

94] ; the new form is slightly more general because of the presence of exceptional

sets.

Lemma 2. £e//(z), {rm}, {ym} have the same meaning as in Lemma 1 and let u and v

be defined by (1.9). [The restrictions (4.2) are omitted.]

Then, if ß is any point of accumulation ofi{ym}, we have

(4.12) sin rrp ~í u sin ßp+v sin (n—ß)p,.

Proof. Assume first that ß # 0, ß # rr and confine z« to a sequence of integers such

that

(4.13) ym-+ß       (m^+co).

On the sets ¿¡fm we have, by definition,

Nit, l/fi) Í iu + UAt),

where {£„} is a suitable sequence tending to zero.

Hence, by (1.7),

è iu+U f" (1 + sm)(-f)"p(t, rm, ym) dt
J Pm Vm/

<i (u + U(l+em) f+°° x«P(x, 1, ym) dx = (u + U(l+em) 5^>
Jo Sin rrp.
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where the explicit evaluation of the last integral is a simple consequence of contour

integration.

This inequality and a similar one involving N(t,f), v and -n — ym (instead of

Nit, I/fi), u and ym), used in (4.5), yield (4.12) provided ß^O and ß^n. The latter

restrictions are easily removed. Assume, for instance that, as m -> +oo by a suitable

set of integers,

(4.14) ym^rr = ß.

This means that l/\firmem)\ > 1 for a set of values of 6 of measure £m —> 0.

By a lemma proved elsewhere [7, Lemma III, p. 322], we have

m{r""fi) - Rl^n T(R*'f)im{1 +1°g+ ¿)       {m > m°l

where we may choose R* = 2rm. In view of (1.7), this leads to

(4.15) m (rm, I) = o(T(rm))       (m -> + oo).

Let £ (> 0) be given. Since ê is of density zero, each interval [rm, rm(l +e)] contains

a point r* $ S, provided m is large enough. Hence, by the first fundamental theorem

of Nevanlinna

T(rm)SN(rm,j)+o(T(rm))

S N(r*,j)+o(T(rm)) S (u + e)^T(rm) + o(T(rm)).

After dividing by T(rm) we use (1.7) and let zzz ̂ +oo by suitable values. This

yields

1 S (u+e)(l+eY,

and since e (>0) is arbitrary, we obtain w^ 1, which is precisely (4.12) for/3 = 7r. The

case ß = 0 is analogous and requires the consideration of m(r,fi) instead of m(r, l/f).

The proof of Lemma 2 is complete.

5. Proof of assertion I of Theorem 1. The inequality (2.1) is an immediate

consequence of (4.12) and of the Cauchy-Schwarz inequality:

sin trp S (u—v cos irp) sin ßp + v sin np cos ßp

S ((u-V COS Trp)2+ V2 Sin2 trp)112 = (u2 + V2-2uV COS rrp)112.

We have thus proved (2.1) and examine now the implications of

(5.2) v S cos np.

[Since v^O, this is only possible if pS%-]
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As shown by Edrei and Fuchs [6, pp. 241-242] (4.12) and (5.2) yield

u sin ßp ^ sin -n-p — cos np sin (-n — ß)p

ä sin irp cos (n—ß)p —eos irp. sin (ir—ß)p = sin ßp,

where ß^O (by (1.1), (4.12) and (5.2)). Hence (5.2) implies u^ 1. We complete the

proof of assertion I Theorem 1 by noticing that the roles of u and v may be

exchanged.

6. Behavior of T(r) if equality holds in (2.1). If equality holds in (2.1) it must

also hold in (5.1) and hence strict inequality is precluded in our application of the

Cauchy-Schwarz inequality. As is well known, this implies the existence of some

factor i such that

u — v cos irp = I sin ßp,       v sin -rrp = l cos ßp.

Returning to (5.1), in which equality must hold everywhere, we find t, = simrp,

and hence

(6.1) v = cos ßp.

Since ß is any one of the limit-points of {ym}, we must have O^ß-irr and con-

sequently

(6.2) 0 -^ ßp -¿-rr.

Now (2.3) and the definition of v yield 0^z;< 1 and hence (6.1) shows that (6.2)

may be replaced by the sharper inequalities

(6.3) 0 < ßp Ú rr/2.

From (6.1) and (6.3) we deduce

(6.4) ß = (l/p) cos"1 v       (0 < cos"1 v <: tt/2),

which determines uniquely ß. This shows that the sequence {ym} has a single point of

accumulation; it is therefore convergent and (2.4) follows.

If we rewrite (5.1) as

Sin rrp g Cv — U COS rrp) sin (w — ß)p + U Sin np COS {rT — ß)p,

the arguments which lead to (6.4) now yield

(6.5) rr-ß = il/p) COS"1 U (0 < COS"1 U g tt/2).

Let hiz)= l/fiiz) and notice that the Pólya peaks of £(r, «) coincide with those of

£(r,/) since

Tir,f) ~ Tir, h)       (r-> +00).

For h(z), the formula corresponding to (2.4) is

lim meas £0(rm) = (2/p) cos ~1 u
m-*oo
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where

Loir) = {e : |«(reie)| ^ r').

We have thus proved (2.5) and, in view of (6.5), we also obtain (2.6).

In the remainder of this section we prove

Lemma 3. The conditions

(6.6) U2 + V2 — 2UV COS irp = sin2 irp, u <  1, v <  1,

imply the following property of Tir):

For every fixed A (0 < A < + oo)

(6.7) lim ^ = A".
m->oo i yrm)

Proof. Notice first that (1.7) implies

(6.8) iimsuplW^A„
m-*co       1 \rm)

Hence, if we assume (6.7) to be false, there exist A (0 < A < + oo) and w (0 < a> < 1)

such that

(6.9) TiXrm)/Tirm) < co2"\"       im > m0),

as m -> + oo by a suitable sequence of integers. If necessary, we renumber the

points rn and assume that (6.9) holds for all m > m0.

We now consider Lemma 1, which is certainly applicable because, by (6.4) and

(6.5),

(6.10) 0 < ß < ir,

and hence it is possible to find a suitable r¡ such that the condition (4.2) be satisfied.

Given e (0<e< 1), we deduce from (4.5) and (1.9)

(l-e)£(z-m) Éiu + e) \"mTit)Pit,rm,ym)dt
JPm

+ iv + e) [°m £(/)£(/, rm, 77 - ym) dt       im > m0(e)).

(6.11)

The range of integration [p'm, p"m] will be divided in three subintervals

[p'm, ">Arm],    [tuArm, ArJ,    [Arm, p"m],

denoted, respectively, by 71(rm), 72(rm), 73(z-m).

Our aim is to verify that, in (6.11), the portion of the integrals extended over

hifm) is too small to allow equality to hold in (4.12).
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Since T(t) is not decreasing, (6.9) yields

=}—  f T(t)P(t, rm, ym) dt S co2"X"   f        P(t, rm, ym) dt
,s ,~. I\rm)Jt2(rm) Jt2<.r„)

'   • '   ' /»A

= cü2«A« i   F(x, l,ym)dx,
J û>A

and a similar relation holds with ym replaced by -n—ym.

A direct application of (1.7) and the observation that

/ / *\    It ¿*       It

Pm = rm, ¿Pm = Pm  = rm>

yield

^{f      +f      )F(/)F(/,rm,ym)ci/
,, .,,      •* W   Uz»(rm)     Jz3(rm);

^ /* /»»A   r+°°i
^ (1 + «») |Jo    + J^     jx»P(x, 1, ym) dx.

Combining (6.12) and (6.13), we find

f " T(t)P(t, rm, ym) dt S 0 +em) f   " x«P(x, 1, ym) dx

-f (*--«a"À*)P(x, l.yjdx,
Jtz)A

(6.14)       T(rm)

and a similar relation holds with ym replaced by n—ym. Hence (6.11) implies

(1-.) S (u + e)(l+em)^^ + (v + e)(l+em)^p^
Sin Trp Sin Trp

(6.15) - (U + e)  f    (x« - a,2« A«)P(x, 1, ym) dx
J(OA

-(v + e) C    (x» - cu2"A")F(X, 1, TT - ym) dx        (m > m0).
*i wA

In the interval [ojX, A], we have, since 0<cu< 1,

0 < w^X^l-co") S x"-w2HA",

and hence as m -> 4- oo, (6.15) yields

(1 -«) Í («+4 ?£&*(v+.) **£-**
sin np sin trp

(6.16) -co"X"(l -co")I(u + e) f P(x, l,ß)dx
I JcoA

+ (tz + e)  f    F(X, 1, rr-B) dx\        (0 < ß < ir).
JcoA J
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We now let e -*■ 0, in (6.16), and notice that the inequality

(6.17) u+v > 0

(which follows from (4.12) and (1.1)) leads to

(6.18) sin -np < usinßp + vsm(n—ß)p.

In view of (5.1), the relations (6.18) and (6.6) are incompatible. The origin of this

contradiction is to be found in (6.9). Hence (6.7) must hold and Lemma 3 is

proved.

7. Proof of (2.9). As might be expected, the relation (6.7) and the fact that T(t)

is nondecreasing enable us to obtain uniform upper and lower bounds for T(t)/T(rJ,

provided t/rm is suitably restricted. For sake of completeness, I sketch, very briefly,

a proof of the following

Lemma 4. Let <b(t) be a nondecreasing junction such that

(7.1) lim ^ = A«,
m-» <p(rm)

for every fixed A (0< A< +00).

Then, given B > 1 and e(0<e<l),it is possible to determine m0 = mQ(B, e) such that

the inequalities

(7.2) £"Vm g / è Brm,       (m > m0),

imply

(7.3) (1 + e) - \t/rmy Ú <b(t)l<l>(rm) ¿ 0 + •Xi/r-V-

It is also possible to find three sequences {R'm}, {R'm}, {ëm}, satisfying the conditions

(7.4) R'm -> + 00,    rm/R'm -> + 00,    RnJrm -> + 00,    «B -> 0,

and such that

(7.5) KrútúK       (m>m0)

implies

(7.6) (1 + é-m) - Htfrmy â <b(t)l<Krm) í= (1 + ëm)(t/rmy.

Proof. Set \=Bllk and let the positive integer k be so large that

(7.7) A" ¿ (l + e)112.

We now determine w0 so that m>m0 implies

(7.8) A>»(1 + e) - ™ ï <b(X'rm)l<b(rm) g A"(l + ey2

for all integers j such that

(7.9) -kijZk.
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If / is in an interval determined by (7.2), we have

(7.10) rmA> í / í rmA>+\

for some suitable integer j (—k^j^k—I).

Since <b(t) is nondecreasing, we obtain, in view of (7.8), (7.10) and (7.7)

m  > <b(X'rm)Ï A-(l-e-)-1'2 ä X-^lJii-e)-^2 7, (l_.)-l^'
<t>(rm)   :   xb(rm)

as well as

We have thus proved that (7.2) implies (7.3); these relations may be used with

B = l,   e = l/l      (1 = 2,3,4,...).

As / -> + oo by integral values we are led to a sequence mx (which may be assumed

to be strictly increasing and unbounded) such that the inequalities

(7.11) rm/lú túK,   m ^m„

imply

(¿)(¿MB«H)(¿)"
Consider successively the intervals

m, Ú m < ml + i       (I = 2,3,4,...)

and set

(7.13) R'm = max (/"Vm, (rj™),    R'm = lrn, iM = l/l.

The sequences {R'm}, {R"m}, {¿m} thus defined satisfy the relations (7.4) and, by

using (7.13) in (7.11) and (7.12), we see that (7.5) implies (7.6).

The particular choice <£ = £and (6.7) show that (2.8) implies (2.9).

8. Proof of (2.10) and (2.11). In view of the symmetrical roles played by u and v,

it is convenient to write w instead of u or v and an N(/) instead of Af(/, 1//) or

N(t,f). It is clear that the interpretation u=w is to be associated with N(t) = N(t, l/fi)

and v = w with N(t) = N(t,f).

We prove first

(8.1) limsup^^w;
m-oo    1 \rm)

this is not obvious because of the presence of the exceptional set S in the definitions

(1.9).
If (8.1) were wrong, we would have for a suitable k> 0,

(8.2) N(rJ/T(rm) > w+k,
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as zzz runs through values of some unbounded sequence Jl. Consider now the

intervals

(8.3) rm S t S (z^iz)1'"^       («i);

let °ll be their union and notice that W is certainly not a set of density zero.

If / e aU, we deduce from (8.2), (8.3), (2.9) and the fact that N(t) is nondecreasing:

N(t) > (w+k) ^ T(t) ä (w+^ -M.       (m e Jt),

v    ■ f N(t) . Khminf =j-{ ^ W+-Z-
t-m-.teW I (I) Z.

As this contradicts (1.9) we see that (8.1) must hold.

We now turn to the proof of

(8.4) lim ̂ f\ = w.
m-»oo 1 \rm)

In view of (8.1), if (8.4) does not hold, we have w>0 and, for a suitable

K (0 < K < w) and all m belonging to some unbounded sequence J?,

(8.5) N(rm)IT(rm) < w-k.

Put

W-k}11"

and notice that, if / lies in the interval [£rm, rm], (8.5) and (2.9) yield

N(t) S N(rm) < (w-k) ^ m S (w-^)T(t)(l+êm)

S (w — $k)T(t)       imeJÍ,m>m0).

Consider (8.6) in the case w = u and use it to estimate the first integral in the

right-hand side of (4.5). We see at once that, given c>0, this integral cannot

exceed

iw + e){ f'" + rmJF(/)P(7, rm, ym) dt
Wflm Jrm J

+ (w-$k) f " T(t)P(t, rm, ym) dt       (m eJi,m> m0(e)).
Jirm

Hence we deduce from (4.5)

(1 -e)T(rm) S (u + e) \"m T(t)P(t, rm, ym) dt
JPm

Cm
(8.7) + (v + s)        T(t)P(t, rm, TT -Ym) dt

•Ipm

K f1
—^ T(irm)      F(x, 1, ym) dx       (meJi,m> m0).
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Since

lim llÈfÀ - fos
m - =0 £(rm)

it is clear that if we let z« -> +00 by values of J(, the method used in §6 leads to

/.     \ ^ ,      \ sin ßu.   ,      x sin (77—ß)a   k ¿   f1 _.    ,       ,
(1-e) ^ (M + e) ^—i-^ + C^ + e)-r-—-, f        P(x, l, ß) dx.

Sin -rrp Sin Tr/i 3       J{

Letting e->0, we obtain again (6.18) which is incompatible with (6.6). Hence

(8.5) cannot hold and we thus obtain (8.4) in the case w = u. The case w = v is

covered by the same arguments and requires no special study.

Before proving the relations (2.10) we notice that for A fixed (0<A< +00), two

applications of (2.9) show that, if / satisfies (2.8), then

(8.8) (z/Arm)«(l 4-e~m)-2 ï £(/)/£(Az-m) $ (//Arm)«(l +ënf.

From (8.8) we deduce that, for every fixed A > 0, the sequence {Arm} is a sequence

of Pólya peaks of T(r). Hence (8.4) also implies

(8.9) hm   £&{-*.
ro-» + 00  1 \rxrm)

for every fixed A > 0.

Assume first that w^O. Then (8.9) yields

,.     N(Xrm)T(rm) =

¿™ £(Arm)7V(rm)

and since {£(rm)/£(Arm)} -> A-", we deduce that

N(Xrm)      ia(8.10) lim
m-» 00 N(rm)

for every fixed A > 0.

Since A^(/) is nondecreasing, (8.10) enables us to apply Lemma 4 with <b(t) = N(t).

We thus obtain

Ifw^Oandif

(8.11) K*t£K       (m^m0),

then

(8.12) (t/rmy(l + »J - » g N(t)/N(rm) è (//rm)«(l + Sm).

The arguments do not prove that the quantities R'm, R"m, im in (8.11) and (8.12)

coincide with those in (2.8) and (2.9). This is unimportant because an inspection

of (8.11 ) and (8.12) (and of their analogues (2.8) and (2.9)) show that these relations

remain true if ¿"m and R'm are replaced by larger values and R"m by a smaller value.

Hence any conflict can always be resolved by a change of notation.
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From (2.9) and (8.12), we deduce

NM(i+gy2<m<Mrm)
T(rm)(l+£m)     = T(t) - T(ryi+tm) '

provided / lies in the interval (8.11) and w^O.

Hence (8.4) and, if necessary, a change of notation lead to the relations (2.10).

The case w=0 requires a slightly different treatment since it is no longer certain

that (8.12) is true.

Let /> 1 be an integer and let

(8.13) l-hm S t S lrm.

Since N(t) and T(t) are nondecreasing, we obtain, in view of (2.9) and (8.9)

(8 14) 0 < "Q <   N(K)   < ^ /*•(! +B )2 < -,(8.14) = m = r(/_Vm) = T{K)l   {i+em)   <  p

provided zzz exceeds a suitable bound zzz,.

The arguments following formula (7.12) show that (8.14) yields (2.10) in the

special case w = 0. Hence (2.10) is proved in all cases.

In order to pass from (2.10) to (2.11), we use a straightforward tauberian

argument.

Let 1 < A<2; start from the obvious relations

(8.15) „<t)i\zl s  r 5Êâ dx = N(Xt) - N(t)
A Jt       X

and confine / to the intervals [2R'm, R"m/2], so that A/ lies in [27C, Rm]-

From (8.15) and (2.10) we deduce

"(O^p S (w + ëm)T(Xt)-(w-ëm)T(t) S w[T(Xt)-T(t)] + 2ëmT(Xt),

and by (2.9)

^ ^1 S w{X\l + êm)2-l} + 2e~mA«(l + èmf,

(8.16)
nit)   . .    A«-l    llêmA« + 1 .
tJT) - Xw~X=T+    A-l (m > i«o. «■ < 1).

If we set A = l+(êm)1/2. let zzz-^ 4-oo and notice that (A«-1)/(A-1) ->/x, we

deduce from (8.16)

(8.17) zz(/)/F(/) Spw+tm       (27?; S t S \Rm),

where 1^^« t,m = 0.

A lower bound for n(t)/T(t) may be obtained by the same method: start from

N(t) - N(Xt) S «(/)(! - A)/A       (i < X < 1),



328 ALBERT EDREI [June

set A= 1 — (cm)1/2 and let m -> +00. The resulting inequality and (8.17) lead to (2.11)

after an obvious modification of the definitions of R'm, R"m and ëm.

9. Proof of assertion I of Theorem 2.    Let

(9.1) Tí, T2, T3, ...

be an infinite sequence containing all the finite deficient values of g(z). We assume

that some member of (9.1), say ru has a positive deficiency:

(9.2) 8x = 8(rx,g)>0;

this is no restriction because, if g(z) has no finite deficient values, (2.17) is trivial.

Let q > 0 he an integer and let

Hq(z) = Yl(g(^)-ri).
i = i

It is well known that, for all r^O,

C3)       ir(''m^)Sm(4)+m(r-H)+m-

where the constant K(q) depends only on the first q members of (9.1). [The in-

equality (9.3) is implicit in the proof of Nevanlinna's second fundamental theorem.

An explicit formulation and proof will be found in [5, pp. 284-285].]

The classical estimates of the logarithmic derivative [10, p. 40] show that

(9.4) m(r, Hq/Hq) Ú 10 {log T(r, g) + log r}       (r$$,r> r0),

(9.5) m(r, g'/g) ^ 10 {log T(r, g) + log r}       (r$ë,r> r0),

where S is a set of finite measure. In (9.4) the finite quantity r0 depends on g, q and

the sequence (9.1 ). On the other hand, it is important for our purposes to observe

with Hayman [10, p. 41] that the set ê depends only on T(r, g) and not on q or

(9.1).
By assumption p>0 so that (9.3), (9.4) and (9.5) yield

2 mir, -L-) í mir, i) + lo(l +-) log T(r)
(9.6) i-i   \   g-Til V   SI        \     N

(T(r) = T(r,g),riê,r>ro(q)),

(9.7) m(r, g'/g) g 10(1 + 2/p) log T(r)       (r$ê,r> r0).

The latter inequality and the familiar relations

(9.8) m(r, g') Ú m(r, g'/g) + m(r, g),       N(r, g') S 2N(r, g)

imply

T(r, g') = Tx(r) ï T(r) + N(r, ^+10(1+2/^) log T(r)       (r$S,r> r0),
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and in view of 8(00, g)= 1

(9.9) Txir) S F(r)(l +o(l))       (r -> +00, r i S).

By (9.6) and the first fundamental theorem we obtain

(9,0) N{r'F)+%m(r'I^) = ™+10K) **>+*

(r^S,r> r0(q)),

and hence, in view of (9.2),

(9.11) \oxT(r) S Tx(r)       (r$£,r>r0).

Using (9.11) in (9.10), we find

Air,-)     T, ,    „  m\r'-^L~)

<'-i2>   m*mJi^r-sl+<,<" fr-*+"-'*')-
Consider (2.16) and let r -> 4- 00 by a sequence of values {rm} such that rm £ S

and

m-»«»        J IV'm)

Hence (9.12), with r=rm, and (9.9) yield

"(y) + 2S(T3,g)á 1,
i = i

and therefore

(9.13) «(f') + îsK^)^ 1.
i = l

The second inequality in (9.8) and (9.11) imply

N(r,g') ^  4N(r,g)

(9.14) vig')S^il-8iœ,g)) = 0.

From (9.9) and (9.11), we deduce that the lower order of g'(z) coincides with the

lower order of giz). Hence, applying assertion I of Theorem 1 to the function g',

and using (9.14), we find

(9.15) sin Tip S u(g').

In view of the assumption 8(00, g) = l, (9.13) and (9.15) yield

(9.16) A(g) = 8(00, g) + f 8(r„ g) S 1 + (1 - sin np)
z=i

and (2.17) follows.
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10. Proof of assertion II of Theorem 2. By assumption, equality holds in (9.16)

so that

(10.1) 28(^,^=1-8^^,
i = l

which used in (9.13) yields u(g')^simrp and, in view of (9.15), u(g') = sin vp.,This

equality and (9.14) prove (2.18). Hence

Sin2 rrp = U2(g') + V2(g') - 2u(g')v(g') COS rrp (v(g') = 0).

Since i < p < 1 we also have u(g') < 1 and part II of Theorem 1 may be applied to

the function g'; this yields (2.20), (2.21) and (2.22).

In order to complete the proof of Theorem 2, we now study the ratio T(t)/Tx(t)

on the set Va({rm}) introduced in (2.12).

Given e (0 < e < 1 — sin np), choose q so large that

(10.2) Y mit,-) > (I-sin 77p-e)T(t)       (t > t0(e));
j=l    \   g-Tj/

this is possible by the definition of deficiency and (10.1).

Given /, denote by t' = t'(t), /" = /"(/), points such that

t-l£t' £t,   tút"St+l,   t'xtë,   t"xti.

If t ^ to, such points /', /" always exist because S is of finite measure. Notice also

that / e Va({rJ) (t^to) implies

(10.3) t'eV0 + x({rm}),       t" e Va + X({rm}).

Hence, given e>0, we deduce from (2.21)

(10.4) (-e + sin rrp)Tx(t") è N(t", l/g') (/" = /"(/), / E Va({rm}), t > t0(e)),

and from (10.2)

(10.5) 2, m(í"' -~r) > (! -sin TTp-e)T(t").

Similarly (9.12) holds with r=t" and, in view of (10.4) and (10.5), leads to

( - e + Sin rrp)Ti(t") + (1 - sin rrp - e)T(t") g (1 + e)Ti(t"),

(10.6) 7/(/)    . l-sin7r/x+2£<
Ti(t") - 1-sin 77/i-e

Using (2.20), we eliminate /" from (10.6):

(/ e Va({rJ), t > t0(e)).

^ ^ (l+gJ2(ïiy(l + 3e[l-simTp-e]-i)

<, (l+£)(l + 3e[l-si

provided / is large enough (and / e V„({rm})).

(10.7) Ti
è (l+e)(l + 3e[l-simrp-e]-1)
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A lower bound for T(t)/Tx(t) follows readily from (9.9), which holds for r=t'(t):

Tx(t')ST(t')(l+e)ST(t)(l + e)       (tZt0).

As in (10.6), we eliminate /' by using (2.20) and find

(10.8) (1 +e)-2 S (1 +êm)-2[j)\l +*)-1 Ú ^       (te Va({rn}), t > t0(e)).

From (10.7) and (10.8), we deduce that for o (> 1) fixed,

(10.9) T(t)/Tx(t)^l

as / -> +00, t e Va({rm}). With minor modifications, the arguments of §7 (following

formula (7.12)) show that (10.9) is equivalent to (2.23). A change of notation (such

as the one described after formula (8.12)) enables us to ensure that R'm, R"m and ëm

have the same meaning throughout the statement of Theorem 2.

11. Proof of Corollary 1.1.    From part I of Theorem 1 we deduce

(11.1) m2 4- v2 — 2uv cos 77/Li 2: sin2 np,

and

cos Trp < u < 1,        cos TTp < v < 1.

The latter inequalities imply

(11.2) 1-cosw/a > |«-iz|.

Returning to (11.1) and using (11.2), we find

2uv(l— COSnp) ^ sin2 wp — (u— v)2 > Sin2 77t —(1— COS irp)2

= 2 COS Trp(l — COS Trp),

(11.3) 2uv > 2 COS np ^ COS Trp + COS ttA.

The inequality (11.1) may be rewritten as

(11.4) u2 + v2 — 2uv cos 7rA ^ sin2 77*+2uv(cos Trp—cos 7rA).

Assume Corollary 1.1 to be wrong. Then cos rrp — cos 7rA>0, and (11.3) yields

2utz(C0S 7TjLi — COS7tA) > COS2 Trp — cos2 ttA,

which, used in (11.4), leads to

u2 + v2 — 2uv cos 7TA > sin2 7rA.

This contradicts (2.25) and hence proves Corollary 1.1.
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