ASYMPTOTIC BEHAVIOR OF MEROMORPHIC FUNCTIONS WITH EXTREMAL DEFICIENCIES

BY ALLEN WEITSMAN(1)

Introduction. This paper continues and completes the preceding one of A. Edrei. I shall adopt the terminology, the bibliographical references and all the notations and conventions of Edrei's paper. Whenever necessary, I shall refer to it as [L]. In view of my frequent use of specific formulae of this paper, as well as of [2], I shall write, for instance, [L, (2.9)] or [2, (2.9)] to denote, respectively, formula (2.9) of [L] or of [2]. Other references will be denoted in the same way as is done in [L].

One of the aims of my investigation is the completion of the proof of Theorem A of [L]. Since the relation [L, (7)] is already proved I have only to examine [L, (8)].

Using Theorem 2 of [L], Edrei had previously proved [L, (8)] for values of μ belonging to the sequence

$$\{1/2+1/2q\}$$
 $(q=1,2,\ldots).$

[Notices Amer. Math. Soc. 14 (1967), Abstracts 643–23 (p. 248) and 644–72 (p. 380).] The methods which I develop here enable me to prove [L, (8)] for all μ in the interval $(\frac{1}{2}, 1)$. They may be summarized as follows:

- I. Consider the sets $E_0(r_m)$ and $E_\infty(r_m)$ which appear in Theorem 1 of [L]. The limits of their measures have been determined but it is still possible that these sets be the union of many disjoint intervals. I first show that in some sense each of the sets $E_0(r_m)$ and $E_\infty(r_m)$ is "essentially" an interval.
- II. This enables me to return to the distribution of the zeros and poles lying in the annuli

(1)
$$R'_m < r = |z| \le R''_m \qquad (R'_m < r_m < R''_m)$$

where R'_m , r_m , and R''_m are quantities satisfying [L, (2.7)]. I prove that almost all the poles in (1) have arguments close to some quantity ω_m and almost all the zeros have arguments close to $\omega_m + \pi$.

- III. This knowledge about the zeros and poles of f in (1) is sufficient to determine the asymptotic behavior of f(z) on some circles in the annuli (1).
- IV. Theorem 2 of [L] shows that these arguments may be applied to f'(z). The asymptotic evaluation mentioned above, applied to f'(z), indicates that there exists a circle in the annulus (1) such that f'(z) is very small on a single arc \mathcal{C}_m of

Received by the editors February 5, 1968.

⁽¹⁾ The research of the author was supported in part by a grant from the National Science Foundation GP-7407. It was done, under the guidance of Professor Edrei, in partial fulfillment of the Ph.D. requirements at Syracuse University.

1. Statement of the main results. In addition to the notations of [L] I require the following ones, which will enable me to conveniently refer to some sets which appear in my proofs.

Throughout this paper, I denote by C the set of all the arguments θ such that $-\pi < \theta \le \pi$.

Since we are only interested in the circular arrangement of the elements of C, the points $\theta = -\pi$ and $\theta = \pi$ will be "identified" and, more generally, all the values $\theta + 2k\pi$ $(k=0, \pm 1, \pm 2, \pm 3, \ldots)$ will be considered as different numerical representations of a single element of C.

Beside C, I introduce

I. The sector

$$\mathscr{S}(\omega,\gamma;R',R'') = \{z \colon \omega - \gamma < \arg z \le \omega + \gamma; R' < |z| \le R''\}.$$

- II. Put $\theta = \arg z$. The "interval" $\omega \gamma < \theta \le \omega + \gamma$, considered as a subset of C, will be denoted by $\Gamma(\omega, \gamma)$.
- III. I extend Nevanlinna's notation and denote by $n(\mathcal{D}, f)$ the number of poles of f(z) which fall in the bounded set \mathcal{D} . (Multiple poles are counted as often as indicated by their multiplicity.)

With these conventions, we obtain a natural complement to Theorem 1 of [L].

Theorem 1. Let f(z) be a meromorphic function of lower order μ $(0 < \mu < 1)$ and let

(1.1)
$$\lim_{r\to\infty; r\notin\mathscr{E}} \frac{N(r,1/f)}{T(r,f)} = u, \qquad \lim_{r\to\infty; r\notin\mathscr{E}} \frac{N(r,f)}{T(r,f)} = v,$$

where & is any fixed set of density zero.

Assume that u and v satisfy

$$(1.2) u < 1, v < 1$$

and

(1.3)
$$\sin^2 \pi \mu = u^2 + v^2 - 2uv \cos \pi \mu.$$

Then, with every sequence $\{r_m\}$ of Pólya peaks of order μ of T(r, f), it is possible to associate four sequences $\{\omega_m\}$, $\{\gamma_m\}$, $\{\rho'_m\}$, and $\{\rho''_m\}$ having the following properties:

$$(1.4) 0 < \eta_m < \pi (m = 1, 2, ...), \eta_m \rightarrow \pi as m \rightarrow \infty,$$

$$(1.5) \rho'_m \to +\infty, r_m/\rho'_m \to +\infty, \rho''_m/r_m \to +\infty as m \to \infty,$$

and

$$n(\mathscr{S}(\omega_m, \eta_m; \rho'_m, \rho''_m), 1/f) = o(T(r_m, f)),$$

$$n(\mathscr{S}(\omega_m + \pi, \eta_m; \rho'_m, \rho''_m), f) = o(T(r_m, f)),$$

as $m \to \infty$.

(1.6)

Theorem 1 enables us to obtain an asymptotic evaluation of f(z) which leads to

THEOREM 2. Let the assumptions and notations of Theorem 1 be unchanged, and let s(0) and $s(\infty)$ be the quantities defined by [L, (2.4)] and [L, (2.5)], and let ε $(0 < \varepsilon < \frac{1}{2} \min \{\sigma(\infty), \sigma(0)\})$ be given.

Then there exists a sequence $\{\omega_m\}$, a positive sequence $\{\sigma_m\}$ $(\sigma_m \to +\infty)$ and a constant K > 0, such that

(1.7)
$$\log |f(re^{i\theta})| > KT(r, f) \qquad (\theta \in \Gamma(\omega_m, s(\infty)/2 - \varepsilon)), \\ \log |f(re^{i\theta})| < -KT(r, f) \qquad (\theta \in \Gamma(\omega_m + \pi, s(0)/2 - \varepsilon)),$$

provided

- (i) $r \to +\infty$ in the intervals $\sigma_m^{-1} r_m < r \le \sigma_m r_m$;
- (ii) r avoids in each of these intervals an exceptional set \mathscr{E}_m of measure not greater than $\sigma_m^{-2}r_m$.

From this theorem we deduce at once that:

The values of r for which the inequalities (1.7) are valid have upper density one.

Theorem 2 and the well-known relations between a function and its derivative lead to

THEOREM 3. Let f(z) be a meromorphic function satisfying the conditions of Theorem 1.

Then, if F'(z) = f(z), and if F(z) is meromorphic, it has at most two deficient values.

Theorem 3 is not vacuous because the meromorphic function

$$F(z) = \frac{\prod_{j=1}^{\infty} (1 + zn^{-1/\mu})}{\prod_{j=1}^{\infty} (1 - zn^{-(\mu+1)/\mu})} \qquad (\frac{1}{2} < \mu < 1)$$

satisfies the conditions $\delta(0, F) = 1 - \sin \pi \mu$, $\delta(\infty, F) = 1$ [see for example R. Nevanlinna, *Eindeutige analytische Funktionen*, p. 232], and hence, in view of Theorem 2 of [L], $u(F') = \sin \pi \mu$, v(F') = 0.

This shows that f = F' satisfies the conditions of Theorem 1.

It might be of interest to investigate whether there exist functions f(z), satisfying the conditions of Theorem 1 with $0 < \delta(\infty, f) < 1$, and having a meromorphic integral. I am at present unable to answer this question.

As an immediate consequence of Theorem 3 and [L, Theorem 2] we now obtain [L, (8)] which I restate for completeness.

If f(z) is a meromorphic function of lower order μ ($\frac{1}{2} < \mu < 1$), if $\delta(\infty, f) = 1$, and if $\Delta(f) = 2 - \sin \pi \mu$, then $\nu(f) = 2$.

Hence any function f(z) satisfying the above conditions has precisely one finite deficient value τ , such that $\delta(\tau, f) = 1 - \sin \pi \mu$, and $f(z) - \tau$ has the asymptotic behavior described in Theorem 2.

2. Structure of the sets $E_0(r_m)$ and $E_\infty(r_m)$. Let E denote a measurable subset of C and let

$$(2.1) \gamma = \frac{1}{2} \operatorname{meas} E.$$

Consider the function $\mathcal{M}(\omega) = \text{meas } \{E - \Gamma(\omega, \gamma)\}\$ which is clearly a nonnegative function of ω , defined and continuous on C. Let $\tilde{\omega}$ be any one of the values of ω such that

$$\mathscr{M}(\tilde{\omega}) = \inf_{\omega \in C} \mathscr{M}(\omega) = \chi.$$

We shall say that $\tilde{\omega}$ is a center of E.

The inequalities $0 \le \mathcal{M}(\omega) \le 2\gamma$, $\mathcal{M}(\omega) \le 2(\pi - \gamma)$, are obvious.

If $\gamma=0$ or $\gamma=\pi$, we have $\mathcal{M}(\omega)\equiv 0$ and $\chi=0$ (trivially); in both cases, every $\omega\in C$ is a center of E. If $0<\gamma<\pi$, the inequality $\chi>0$ is possible; the quantity χ then represents, in some sense, the total measure of the "gaps" in E.

If $\gamma > 0$ and $\chi = 0$, we may think of E as being, apart from a set of zero measure, an interval on C. The following lemma shows that, for functions satisfying (1.3), the sets $E_{\infty}(r_m)$ and $E_0(r_m)$, tend, as $m \to +\infty$, toward this "single interval" structure.

LEMMA 1. Let f(z) satisfy the hypotheses of Theorem 1, and let $\{r_m\}$ be a sequence of Pólya peaks of order μ of T(r, f). Let

$$\gamma_m = \frac{1}{2} \operatorname{meas} E_{\infty}(r_m).$$

Then, there exists a sequence $\{\omega_m\}$ such that

(2.3)
$$\lim_{m \to \infty} \max \{ E_{\infty}(r_m) - \Gamma(\omega_m, \gamma_m) \} = 0,$$

$$\lim_{m \to \infty} \max \{ E_0(r_m) - \Gamma(\omega_m + \pi, \pi - \gamma_m) \} = 0.$$

Before proving Lemma 1 we prove two elementary lemmas.

LEMMA 2. Let E be a measurable subset of C. Then, if w is any value, real or complex,

$$\frac{1}{2\pi} \int_{E} \left| \log \left| 1 - we^{i\theta} \right| \, d\theta \le \left\{ \log \left(1 + |w| \right) + \left(1 + \log^{+} \frac{1}{\text{meas } E} \right) \right\} \text{ meas } E.$$

Proof. Put arg $w + \theta = \phi$.

Then

$$(2.4) |1-we^{i\theta}| = |1-|w|e^{i\phi}| = |e^{-i\phi}-|w|| \ge |\sin\phi|,$$

which may be sharpened to

$$(2.5) |1-we^{i\theta}| \ge 1,$$

if $\pi/2 \leq |\phi| \leq \pi$.

Now

1969]

$$|\sin \phi| \ge (2/\pi)|\phi| \qquad (|\phi| \le \pi/2)$$

and hence, if meas $E = \mathcal{K}$ and

$$(2.7) \alpha = \min \{\pi, \mathscr{K}\},$$

we observe, with Edrei and Fuchs [7, p. 338], that (2.4), (2.5), (2.6), and (2.7) imply

(2.8)
$$I(E) = \frac{1}{2\pi} \int_{E} \log^{+} \left| \frac{1}{1 - we^{i\theta}} \right| d\theta \leq \frac{1}{\pi} \int_{0}^{\alpha/2} \log \left(\frac{1}{\sin \phi} \right) d\phi$$
$$\leq \frac{1}{\pi} \int_{0}^{\alpha/2} \log \left(\frac{\pi}{2\phi} \right) d\phi \leq -\int_{0}^{\alpha/2\pi} \log t \, dt.$$

By definition $\alpha/2\pi \le \mathcal{K}/2\pi \le 1$, so that (2.8) yields

$$(2.9) I(E) \leq -\int_0^{\mathcal{X}/2\pi} \log t \, dt = \frac{\mathcal{X}}{2\pi} + \frac{\mathcal{X}}{2\pi} \log \left(\frac{2\pi}{\mathcal{X}}\right) \leq \mathcal{X} \left(1 + \log^+ \frac{1}{\mathcal{X}}\right).$$

We now obtain Lemma 2 by integrating over E the obvious relation

$$|\log |1 - we^{i\theta}|| \le \log (1 + |w|) + \log^+ |1/(1 - we^{i\theta})|,$$

and using the estimate (2.9).

LEMMA 3. Let E be a measurable subset of C, and let

$$(2.10) meas E = 2\gamma.$$

Assume

$$(2.11) \qquad \text{meas } \{E - \Gamma(0, \gamma)\} \ge 2\xi.$$

Then, if t is restricted to the range

$$(2.12) \sigma^{-1} \leq t \leq \sigma (1 < \sigma < +\infty),$$

we have

$$(2.13) \qquad \frac{1}{2\pi} \int_{-\gamma}^{\gamma} \log|1 + te^{i\theta}| \ d\theta - \frac{1}{2\pi} \int_{E} \log|1 + te^{i\theta}| \ d\theta \ge K = K(\sigma, \xi).$$

The constant K which appears in (2.13) may be chosen equal to

(2.14)
$$K(\sigma, \xi) = 2\xi \sin^2(\xi/2)/\pi \{4 + \sigma(1+\sigma)^2\},$$

which is clearly positive for $0 < \xi \le \pi/2$.

Proof. Put

$$\{E - \Gamma(0, \gamma)\} = G_1, \quad \{E \cap \Gamma(0, \gamma)\} = G_2,$$

so that $E = \{G_1 \cup G_2\}, \{G_1 \cap G_2\} = 0$. Hence, in view of (2.10) and (2.11), we have

$$(2.16) 0 \le 2\xi \le 2\eta = \text{meas } G_1 \le 2(\pi - \gamma), \text{ meas } G_2 = 2(\gamma - \eta).$$

We now use the familiar remark that, for any fixed t > 0, $\log |1 + te^{i\theta}|$ is an even function of θ , strictly decreasing as θ varies from 0 to π . By (2.15) and (2.16), this leads to the obvious inequalities:

$$\int_{G_{\Omega}} \log |1 + te^{i\theta}| \ d\theta \le 2 \int_{0}^{\gamma - \eta} \log |1 + te^{i\theta}| \ d\theta,$$

and

$$\int_{G_1} \log |1 + te^{i\theta}| \ d\theta \le 2 \int_{\gamma}^{\gamma + \eta} \log |1 + te^{i\theta}| \ d\theta = 2 \int_{\gamma - \eta}^{\gamma} \log |1 + te^{i(\phi + \eta)}| \ d\phi,$$

which, when added, yield

$$(2.17) \quad \int_{E} \log |1 + te^{i\theta}| \ d\theta \leq 2 \int_{0}^{\gamma} \log |1 + te^{i\theta}| \ d\theta - 2 \int_{\gamma - \eta}^{\gamma} \log \left| \frac{1 + te^{i\theta}}{1 + te^{i(\theta + \eta)}} \right| \ d\theta.$$

Consider now the positive function

(2.18)
$$H(t, \theta, \eta) = \left| \frac{1 + te^{i\theta}}{1 + te^{i(\theta + \eta)}} \right|^2 = 1 + \frac{2t(\cos \theta - \cos (\theta + \eta))}{1 + t^2 + 2t \cos (\theta + \eta)}$$

which appears in the last integral of (2.17). From (2.16) we deduce $\gamma + \eta/2 \le \pi - \eta/2$, $\eta/2 \le \gamma - \eta/2$, and hence

$$(2.19) \quad \cos \theta - \cos (\theta + \eta) = 2 \sin (\theta + \eta/2) \sin \eta/2 \ge 2 \sin^2 (\eta/2) \qquad (\gamma - \eta \le \theta \le \gamma).$$

Combining (2.18), (2.12) and (2.19), we find

$$H(t, \theta, \eta) - 1 \ge \frac{4\sigma^{-1} \sin^2(\eta/2)}{(1+\sigma)^2} = \zeta,$$

$$\log H(t, \theta, \eta) \ge \log(1+\zeta) > \frac{\zeta}{1+\zeta} \ge \frac{4\sin^2(\eta/2)}{4+\sigma(1+\sigma)^2},$$

$$\int_{0}^{\gamma} \log H(t, \theta, \eta) d\theta \ge \frac{4\eta \sin^2(\eta/2)}{4+\sigma(1+\sigma)^2},$$

and, since $0 < \xi \le \eta$, it is obvious that (2.17), (2.18) and (2.19) imply (2.13) and (2.14). This completes the proof of Lemma 3.

Proof of Lemma 1. The assumptions of Lemma 1 coincide with those of Theorem 1 so that (1.1), (1.2) and (1.3) hold. Then, in view of assertion II of [L, Theorem 1], we have

$$(2.20) \quad 0 < \beta = \lim_{m \to \infty} \gamma_m = \frac{1}{\mu} \cos^{-1} v = \frac{s(\infty)}{2} < \pi \qquad \left(0 < \cos^{-1} v \le \frac{\pi}{2}\right),$$

where $2\gamma_m = \text{meas } E_{\infty}(r_m)$.

Let ω_m be a center of $E_{\infty}(r_m)$; we first examine the implications of

(2.21)
$$\limsup_{m\to\infty} \operatorname{meas} \{E_{\infty}(r_m) - \Gamma(\omega_m, \gamma_m)\} \neq 0.$$

From (2.21) we deduce the existence of a constant $\xi > 0$ and of an unbounded sequence \mathcal{M} , of positive integers, such that

(2.22)
$$\operatorname{meas} \{ E_{\infty}(r_m) - \Gamma(\omega_m, \gamma_m) \} \ge 2\xi \qquad (m \in \mathcal{M}).$$

Let $\sigma > 1$ be a given, fixed quantity and let $a = |a|e^{i\psi}$ be any one of the zeros of f(z) such that

$$(2.23) \sigma^{-1}r_m < |a| \leq \sigma r_m.$$

In view of the extremal character of the centers ω_m , the inequalities (2.22) remain true if ω_m is replaced by any other point of C; in particular

(2.24)
$$\operatorname{meas} \{ E_{\infty}(r_m) - \Gamma(\psi + \pi, \gamma_m) \} \ge 2\xi \qquad (m \in \mathcal{M}).$$

The transformation of the set C defined by

$$\phi = \theta - \psi - \pi \qquad (\theta \in C),$$

is a "translation" which leaves C invariant and transforms the subsets of C without affecting their measures. In particular, the sets $E_{\infty}(r_m)$, $\Gamma(\psi+\pi, \gamma_m)$ are transformed, respectively, into sets \tilde{E}_m and $\Gamma(0, \gamma_m)$ and the inequalities (2.24) become

meas
$$\{\tilde{E}_m - \Gamma(0, \gamma_m)\} \ge 2\xi$$
 $(m \in \mathcal{M})$.

Hence, in view of (2.23) and (2.25), Lemma 3 yields

$$\frac{1}{2\pi} \int_{E_{\infty}(r_{m})} \log \left| 1 - \frac{r_{m}e^{i\theta}}{a} \right| d\theta = \frac{1}{2\pi} \int_{\tilde{E}_{m}} \log \left| 1 + \frac{r_{m}}{|a|} e^{i\phi} \right| d\phi$$

$$\leq -K + \frac{1}{\pi} \int_{0}^{\gamma_{m}} \log \left| 1 + \frac{r_{m}e^{i\theta}}{|a|} \right| d\theta$$

$$(m \in \mathcal{M}; K = K(\sigma, \mathcal{E})),$$

where the positive constant K depends on no parameters other than σ and ξ .

There are $\tilde{n}_m = n(\sigma r_m, 1/f) - n(\sigma^{-1}r_m, 1/f)$ zeros of f(z) characterized by the inequalities (2.23). Since our assumptions imply the validity of assertion II of [L, Theorem 1], we deduce from [L, (2.9)] and [L, (2.11)]

(2.27)
$$\lim_{m\to\infty; m\in\mathscr{M}} \frac{\tilde{n}_m}{T(r_m, f)} = \mu u(\sigma^{\mu} - \sigma^{-\mu}).$$

We denote by a_j the zeros of f(z) and by b_j its poles and, in the following inequality, confine our attention, and our summations, to the zeros satisfying (2.23). Then (2.26) and (2.27) yield

(2.28)
$$\sum \frac{1}{2\pi} \int_{E_{\infty}(r_{m})} \log \left| 1 - \frac{r_{m}e^{i\theta}}{a_{j}} \right| d\theta$$

$$\leq \frac{1}{\pi} \int_{0}^{r_{m}} \left\{ \sum \log \left| 1 + \frac{r_{m}e^{i\theta}}{|a_{j}|} \right| \right\} d\theta - K_{1}T(r_{m}, f)u(1 + o(1))$$

$$(m \to +\infty, m \in \mathcal{M}),$$

where $K_1 = K(\sigma, \xi)\mu(\sigma^{\mu} - \sigma^{-\mu})$.

We now examine a proof of Edrei [2, pp. 87-94] and consider, in particular, the fundamental inequality [2, (2.18)]. With our notations this inequality implies

$$(2.29) m(r_m, f) \leq \sum_{0 < |a_j| \leq R_m} \frac{1}{2\pi} \int_{E_{\infty}(r_m)} \log \left| 1 - \frac{r_m e^{i\theta}}{a_j} \right| d\theta$$

$$- \sum_{0 < |b_j| \leq R_m} \frac{1}{2\pi} \int_{E_{\infty}(r_m)} \log \left| 1 - \frac{r_m e^{i\theta}}{b_j} \right| d\theta$$

$$+ 15 \frac{r_m}{R_m} T(2R_m) + o(T(r_m))$$

$$(m \to \infty, r_m \leq \frac{1}{2} R_m, T(r) = T(r, f),$$

where it is understood that, subject to the restriction $R_m \ge 2r_m$, the size of the error term is not affected by the choice of R_m .

The arguments in [2, p. 90] may be repeated with the following minor modification: instead of using [2, (2.20)] to estimate all the terms of the first sum in the right-hand side of (2.29), we use (2.28) to evaluate the contribution of all the a_j such that $\sigma^{-1}r_m < |a_j| \le \sigma r_m$.

We thus obtain

$$T(r_m) \leq \frac{1}{\pi} \int_0^{\gamma_m} \left\{ \sum_{0 < |a_j| \leq R_m} \log \left| 1 + \frac{r_m e^{i\theta}}{|a_j|} \right| \right\} d\theta + \int_0^{\pi - \gamma_m} \left\{ \sum_{0 < |b_j| \leq R_m} \log \left| 1 + \frac{r_m e^{i\theta}}{|b_j|} \right| \right\} d\theta + 15 \frac{r_m}{R_m} T(2R_m) + o(T(r_m)) - K_1 u T(r_m) \qquad (m \to +\infty, m \in \mathcal{M}, r_m \leq \frac{1}{2} R_m),$$

instead of [2, (2.22)].

In view of (2.20), $0 < \gamma_m < \pi$ $(m > m_0)$ and we obtain, as in [2],

(2.30)
$$T(r_{m}) \leq \int_{0}^{R_{m}} N_{0}(t) P(t, r_{m}, \gamma_{m}) dt + \int_{0}^{R_{m}} N_{\infty}(t) P(t, r_{m}, \pi - \gamma_{m}) dt - K_{1} u T(r_{m}) + A \frac{r_{m}}{R_{m}} T(2R_{m}) + o(T(r_{m})) \qquad (m \to +\infty, m \in \mathcal{M}),$$

where A (>0) is an absolute constant and the symbols N_0 , N_∞ , P have the same meaning as in [2] or in [L, (4.8)].

The main difference between (2.30) and [L, (4.8)] is the presence, in (2.30), of the negative quantity $-K_1uT(r_m)$. The arguments which, in [L], lead to [L, (4.12)] now yield

$$(2.31) \sin \pi \mu \leq u \sin \beta \mu + v \sin (\pi - \beta) \mu - K_1 u \sin \pi \mu.$$

Using the Cauchy-Schwarz inequality, as in [L, (5.1)], we deduce from (2.31)

$$(K_1u+1)\sin^2\pi\mu \le u^2+v^2-2uv\cos\pi\mu$$
.

and hence, by (1.3), u=0.

We have thus shown that, if $u \neq 0$, the relation (2.21) is impossible and therefore

(2.32)
$$\lim_{m \to \infty} \max \{ E_{\infty}(r_m) - \Gamma(\omega_m, \gamma_m) \} = 0.$$

This is the first of the relations (2.3).

From (2.32) and (2.20) we deduce

(2.33)
$$\lim_{m\to\infty} \operatorname{meas} \{E_{\infty}(r_m) \cap \Gamma(\omega_m, \gamma_m)\} = \lim_{m\to\infty} (2\gamma_m) = s(\infty).$$

The sets $E_0(r_m)$ and $E_{\infty}(r_m)$ are disjoint by definition so that C may be represented as the union of three pairwise disjoint sets:

$$(2.34) C = \{E_0(r_m) \cup E_{\infty}(r_m) \cup E_1(r_m)\}.$$

Then, by [L, (2.6)]

$$\lim_{m \to \infty} \operatorname{meas} E_1(r_m) = 0.$$

From (2.34) we deduce

meas
$$\{E_0(r_m) \cap \Gamma(\omega_m, \gamma_m)\}$$
 + meas $\{E_{\infty}(r_m) \cap \Gamma(\omega_m, \gamma_m)\}$
+ meas $\{E_1(r_m) \cap \Gamma(\omega_m, \gamma_m)\}$ = $2\gamma_m$,

and hence, by (2.33) and (2.35)

(2.36)
$$\lim_{m\to\infty} \operatorname{meas} \{E_0(r_m) \cap \Gamma(\omega_m, \gamma_m)\} = 0.$$

Finally, $\Gamma(\omega_m \gamma_m)$ and $\{(\pi + \omega_m, \pi - \gamma_m) \text{ are disjoint and their union is } C.$ Therefore

meas
$$\{E_0(r_m) \cap \Gamma(\pi + \omega_m, \pi - \gamma_m)\} + \text{meas } \{E_0(r_m) \cap \Gamma(\omega_m, \gamma_m)\} = \text{meas } E_0(r_m)$$

which, in view of (2.36), yields

$$\lim_{m\to\infty} \max \{E_0(r_m) \cap \Gamma(\pi+\omega_m, \pi-\gamma_m)\} = \lim_{m\to\infty} \max E_0(r_m),$$

and proves the second relation in (2.3).

We have thus completed the proof of Lemma 1 in the case $u \neq 0$. If u = 0, we certainly have $v \neq 0$ (by (1.3)) and hence Lemma 1 follows from the consideration of the function 1/f, instead of f.

3. Arguments of the zeros and poles of f(z). Lemma 1 gives a precise meaning to step I of the general argument outlined in the Introduction. The following Lemma 4 clarifies, in a similar manner, step II.

LEMMA 4. Let the assumptions and notations of Lemma 1 be unchanged. Let σ and η be given, fixed quantities such that

(3.1)
$$1 < \sigma, \qquad 0 < \pi - \eta < \min(s(0), s(\infty)).$$

[s(0) and $s(\infty)$ are defined as in [L, Theorem 1]].

I. Then, if $K(\sigma, \xi)$ is the constant in (2.14), and if

$$(3.2) 2K_2 = K(\sigma, (\pi - \eta)/2),$$

we have

$$(3.3) \qquad \frac{1}{2\pi} \int_{E_{\infty}(r_m)} \log \left| 1 - \frac{r_m e^{i\theta}}{a} \right| d\theta \leq \frac{1}{\pi} \int_0^{r_m} \log \left| 1 + \frac{r_m e^{i\theta}}{|a|} \right| d\theta - K_2,$$

provided

(3.4)
$$a \in \mathcal{S}(\omega_m, \eta; \sigma^{-1}r_m, \sigma r_m)$$

and $m > m_2$.

The bound m_2 , which depends on f, $\{r_m\}$, σ and η , holds uniformly for all a satisfying (3.4).

II. The counting functions of all zeros and poles of f(z) satisfy the relations

$$(3.5) n(\mathscr{S}(\omega_m, \eta; \sigma^{-1}r_m, \sigma r_m), 1/f) = o(T(r_m, f)),$$

$$(3.6) n(\mathscr{S}(\omega_m + \pi, \eta; \sigma^{-1}r_m, \sigma r_m), f) = o(T(r_m, f)),$$

as $m \to \infty$.

Proof. The assumptions of Lemma 4 coincide with those of Lemma 1 as well as with those of [L, Theorem 1, assertion II]. Hence if $\{r_m\}$ is a sequence of Pólya peaks, of order μ , of T(r) = T(r, f), we see that (2.2) and (2.3) hold and that

(3.7)
$$0 < \lim_{m \to \infty} 2\gamma_m = s(\infty) < 2\pi, \qquad 0 < \lim_{m \to \infty} 2(\pi - \gamma_m) = s(0) < 2\pi.$$

Consider the sets

(3.8)
$$C_{m1} = \{ E_{\infty}(r_m) \cap \Gamma(\omega_m, \gamma_m) \},$$

$$C_{m2} = \{ E_{\infty}(r_m) - \Gamma(\omega_m, \gamma_m) \} = \{ E_{\infty}(r_m) - C_{m1} \},$$

$$C_{m3} = \{ \Gamma(\omega_m, \gamma_m) - E_{\infty}(r_m) \} = \{ \Gamma(\omega_m, \gamma_m) - C_{m1} \},$$

and notice that, in view of the first of the relations (2.3), we have

(3.9)
$$\lim_{m\to\infty} \operatorname{meas} C_{m1} = \lim_{m\to\infty} \operatorname{meas} E_{\infty}(r_m) = s(\infty),$$

and hence, as $m \to \infty$,

(3.10) (meas
$$C_{m2} + \text{meas } C_{m3}$$
) = $c_m \to 0$.

Let \int indicate integration of some measurable function defined on C; then, by (3.8),

(3.11)
$$\int_{E_{\infty}(\tau_m)} - \int_{\Gamma(\omega_m, \tau_m)} = \int_{C_{m2}} - \int_{C_{m3}} = \zeta_m.$$

In particular, if we apply (3.11) to the function

$$(3.12) \log|1-r_m e^{i\theta}/a| (|a| \le \sigma r_m),$$

we obtain, in view of (3.10) and Lemma 2,

$$|\zeta_m| \leq 4\pi c_m \{\log(1+\sigma) + 1 + \log(1/c_m)\} \qquad (m > m_o(\sigma)).$$

Now let

$$(3.14) a = |a|e^{i\psi}$$

satisfy the condition (3.4) so that

$$\sigma^{-1} \leq r_m/|a| < \sigma,$$

$$\psi = \omega_m + \kappa \eta \qquad (-1 < \kappa \le 1).$$

With a suitable choice of $m_1(\sigma, \eta)$ we may, in view of (3.1), assume

$$(3.17) 0 < \pi - \eta < \min(2\gamma_m, 2\pi - 2\gamma_m) (m > m_1(\sigma, \eta)).$$

The change of variable $\phi = \theta - \pi - \psi$ leads to

(3.18)
$$\int_{\Gamma(\omega_m, r_m)} \log \left| 1 - \frac{r_m e^{i\theta}}{a} \right| d\theta = \int_{\Gamma(\widetilde{\omega}_m, r_m)} \log \left| 1 + \frac{r_m e^{i\phi}}{|a|} \right| d\phi,$$

where

$$\tilde{\omega}_m = \omega_m - \psi - \pi,$$

Using (3.16) in (3.19), we find $\tilde{\omega}_m = -\pi - \kappa \eta$, and therefore

$$-\pi < \tilde{\omega}_m < -\pi + \eta \quad \text{if } -1 < \kappa < 0,$$

$$\pi - \eta \le 2\pi + \tilde{\omega}_m \le \pi \quad \text{if } 0 \le \kappa \le 1.$$

Hence if ω'_m is defined by the relations

$$\omega'_m = \tilde{\omega}_m \quad \text{if } -1 < \kappa < 0,$$

$$\omega'_m = 2\pi + \tilde{\omega}_m \quad \text{if } 0 \le \kappa \le 1,$$

we always have

(3.20)
$$\Gamma(\tilde{\omega}_m, \gamma_m) = \Gamma(\omega'_m, \gamma_m),$$

with

$$(3.21) 0 < \pi - \eta \leq |\omega'_m| \leq \pi.$$

Before applying Lemma 3 to the last integral in (3.18), we require the following elementary remark:

(3.22)
$$\max \{ \Gamma(\omega'_m, \gamma_m) - \Gamma(0, \gamma_m) \} = \min \{ |\omega'_m|, 2\gamma_m, 2(\pi - \gamma_m) \}$$

$$(|\omega'_m| \le \pi, 0 < \gamma_m < \pi),$$

In order to verify this relation consider the set

(3.23)
$$\mathscr{G}(\omega) = \{\Gamma(\omega, \gamma) - \Gamma(0, \gamma)\},\$$

for γ fixed and ω variable.

A. First assume $0 < 2\gamma \le \pi$ and, as ω increases from 0 to π , follows the positions of the points $\omega - \gamma$, $\omega + \gamma$ in the interval $(-\gamma, 2\pi - \gamma]$. Obviously

(3.24)
$$\mathcal{G}(\omega) = (\gamma, \omega + \gamma] \quad \text{if } 0 < \omega < 2\gamma, \\ \mathcal{G}(\omega) = (\omega - \gamma, \omega + \gamma] \quad \text{if } 2\gamma < \omega \le \pi.$$

B. Similarly, if $\pi < 2\gamma < 2\pi$, then

(3.25)
$$\mathscr{G}(\omega) = (\gamma, \omega + \gamma] \quad \text{if } 0 < \omega \le 2(\pi - \gamma),$$

$$\mathscr{G}(\omega) = (\gamma, 2\pi - \gamma) \quad \text{if } 2(\pi - \gamma) < \omega \le \pi.$$

The relations (3.23), (3.24) and (3.25) yield

meas
$$\mathscr{G}(\omega) = \text{meas } \mathscr{G}(-\omega) = \min(|\omega|, 2\gamma, 2(\pi - \gamma))$$
 $(|\omega| \le \pi, 0 < \gamma \le \pi),$ and (3.22) follows.

In view of (3.17) and (3.21) we have

$$0 < \pi - \eta \leq \min(|\omega'_m|, 2\gamma_m, 2\pi - 2\gamma_m) \qquad (m > m_1(\sigma, \eta)),$$

which used in (3.22) yields

(3.26)
$$\operatorname{meas} \left\{ \Gamma(\omega_m', \gamma_m) - \Gamma(0, \gamma_m) \right\} \ge \pi - \eta > 0.$$

Consider the constant $K(\sigma, \xi)$ defined by (2.14) and set

$$2K_2 = 2K_2(\sigma, \eta) = K(\sigma, \frac{1}{2}(\pi - \eta)) > 0$$

By (3.15), (3.26) and Lemma 3, we find

$$(3.27) \qquad \frac{1}{2\pi} \int_{\Gamma(\omega'_m, \gamma_m)} \log \left| 1 + \frac{r_m e^{i\theta}}{|a|} \right| d\theta \leq -2K_2 + \frac{1}{\pi} \int_0^{\gamma_m} \log \left| 1 + \frac{r_m e^{i\theta}}{|a|} \right| d\theta$$

$$(m > m_1(\sigma, \eta)).$$

In view of (3.18) and (3.20) the left-hand side of (3.27) may be replaced by

$$\frac{1}{2\pi} \int_{\Gamma(\theta = r, r_m)} \log \left| 1 - \frac{r_m e^{i\theta}}{a} \right| d\theta.$$

If we combine the resulting inequality with (3.11), we find

$$(3.28) \quad \frac{1}{2\pi} \int_{E_{\infty}(r_m)} \log \left| 1 - \frac{r_m e^{i\theta}}{a} \right| d\theta \le -2K_2 + \frac{\zeta_m}{2\pi} + \frac{1}{\pi} \int_0^{\gamma_m} \log \left| 1 + \frac{r_m e^{i\theta}}{|a|} \right| d\theta$$

$$(m > m_1(\sigma, \eta)).$$

Now by (3.10) and (3.13)

$$\lim_{m\to\infty}\zeta_m=0,$$

uniformly for all a satisfying (3.4). Hence, if m_2 is chosen large enough, the inequality $m > m_2$ implies $m > m_1(\sigma, \eta)$, $\zeta_m/2\pi \le K_2$, and (3.3) follows from (3.28). We have thus proved assertion I of Lemma 4.

Proof of assertion II of Lemma 4. The parameters σ , η , as well as the sequence $\{\omega_m\}$, are fixed. Explicit reference to all these quantities is unnecessary and we simplify our notation by setting

$$\tilde{n}_m = n(\mathscr{S}(\omega_m, \eta; \sigma^{-1}r_m, \sigma r_m), 1/f).$$

Assume that (3.5) is false. Then there exists some constant $\xi > 0$ and some unbounded sequence \mathcal{M} , of positive integers such that

$$\tilde{n}_m > \xi T(r_m) \qquad (m \in \mathcal{M}).$$

This yields a contradiction as may be seen by a repetition, with minor modifications, of the proof of Lemma 1:

(i) start from (2.29). Consider its right-hand side and use (3.3) (instead of (2.28)) to estimate the contribution of the \tilde{n}_m terms involving the zeros of f(z) in

$$\mathscr{S}(\omega_m, \eta; \sigma^{-1}r_m, \sigma r_m);$$

(ii) we are thus led to an inequality such as (2.30) with $-K_1uT(r_m)$ replaced by $-K_2\xi T(r_m)$, and finally to

$$\sin \pi \mu \leq u \sin \beta \mu + v \sin (\pi - \beta) \mu - K_2 \xi \sin \pi \mu$$

(instead of (2.31)).

Hence $\xi = 0$, a contradiction which proves (3.5). The relation (3.6) is obtained by applying our arguments to 1/f instead of f. This completes the proof of Lemma 4.

4. **Proof of Theorem 1.** Let l>2 be a fixed integer. By Lemma 4 it is possible to determine m_l so that $m>m_l$ implies

$$n(\mathscr{S}(\omega_m, \pi-1/l; r_m/l, lr_m), 1/f) + n(\mathscr{S}(\omega_m+\pi, \pi-1/l; r_m/l, lr_m), f) < T(r_m)/l.$$

We then set

(4.1)
$$\eta_m = \pi - 1/l, \quad \rho'_m = r_m/l, \quad \rho''_m = lr_m$$

for

$$(4.2) m_l < m \le m_{l+1} (l = 3, 4, 5, \ldots).$$

Theorem 1 is now obvious since the quantities defined by (4.1) and (4.2) clearly satisfy the relations (1.4), (1.5) and (1.6).

5. Preliminary steps leading to Theorem 2. Let the assumptions of Theorem 2 be satisfied. Since they include those of Theorem 1, the existence and the properties of the four sequences $\{\omega_m\}$, $\{\rho_m'\}$, $\{\rho_m''\}$, $\{\rho_m''\}$ may be taken for granted. In particular,

consider the left-hand sides of the two relations (1.6) and let n_m denote their sum; by Theorem 1

$$(5.1) n_m/T(r_m) = \delta_m \to 0 (m \to +\infty, T(t) = T(t, f)).$$

We define

(5.2)
$$\sigma_m^2 = \frac{1}{2} \min \{ r_m / \rho_m', r_m / R_m', \rho_m'' / r_m, R_m'' / r_m, 1 / \sqrt{\delta_m} \},$$

where R'_m and R''_m are the quantities in [L, Theorem 1]; by (1.5), [L, (2.7)], and (5.1) this implies

$$\lim_{m\to\infty} \sigma_m = +\infty,$$

as well as

$$\lim_{m \to +\infty} \frac{n_m \sigma_m^2}{T(r_m)} = 0.$$

Given ε (0 < ε < $\frac{1}{2}$ min {s(0), s(∞)}), we define η by the relation

$$(5.5) \pi - \eta = \varepsilon/2,$$

and from now on write

(5.6)
$$\mathcal{S}_{0m} = \mathcal{S}(\omega_m, \eta; \sigma_m^{-2} r_m, \sigma_m^2 r_m),$$

$$\mathcal{S}_{\infty m} = \mathcal{S}(\pi + \omega_m, \eta; \sigma_m^{-2} r_m, \sigma_m^2 r_m),$$

$$\mathcal{A}_m = \{z: \sigma_m^{-2} r_m < |z| \leq \sigma_m^2 r_m\},$$

$$\mathcal{K}_{0m} = \{\mathcal{A}_m - \mathcal{S}_{0m}\}, \qquad \mathcal{K}_{\infty m} = \{\mathcal{A}_m - \mathcal{S}_{\infty m}\}.$$

By (5.2), (5.4), (5.5) and (5.6)

(5.7)
$$\lim_{m \to +\infty} \frac{(n(\mathcal{S}_{0m}, 1/f) + n(\mathcal{S}_{\infty m}, f))\sigma_m^2}{T(r_m)} = 0.$$

We propose to study the asymptotic behavior of f(z) as $z \to \infty$ by values such that

$$\sigma_m^{-1}r_m < r \leq \sigma_m r_m \qquad (z = re^{i\theta}),$$

and

(5.9)
$$\theta \in \Gamma\left(\omega_{m}, \frac{s(\infty)}{2} - \varepsilon\right) = \Gamma_{m}.$$

Consider the fundamental representation [2, (2.6)]; for our purposes this relation may be rewritten in the form

$$|\log |f(z)| = \log \left| \prod_{a_j \in \mathscr{A}_m} \left(1 - \frac{z}{a_j} \right) \right| - \log \left| \prod_{b_j \in \mathscr{A}_m} \left(1 - \frac{z}{b_j} \right) \right|$$

$$+ \log \left| \prod_{0 < |a_j| \le \sigma_m^{-2} r_m} \left(1 - \frac{z}{a_j} \right) \right| - \log \left| \prod_{0 < |b_j| \le \sigma_m^{-2} r_m} \left(1 - \frac{z}{b_j} \right) \right|$$

$$+ \log \left(|c| r^q \right) + S(z, \sigma_m^2 r_m) \qquad \left(0 < |z| = r \le \frac{\sigma_m^2 r_m}{2} \right),$$

1969]

where $c \ (\neq 0)$ and q (an integer) are constants and the "error term" $S(z, \sigma_m^2 r_m)$ satisfies the inequality

$$|S(z, \sigma_m^2 r_m)| \leq 15 \frac{r}{\sigma_m^2 r_m} T(2\sigma_m^2 r_m).$$

By (5.2), (5.8) and [L, (2.9)], it follows that

$$|S(z, \sigma_m^2 r_m)| \le 30 \sigma_m^{-(1-\mu)} T(r) \qquad (m > m_0).$$

Since for any nonrational meromorphic function f,

$$\log r = o(T(r, f)) \qquad (r \to +\infty),$$

it is obvious that (5.3) and (5.11) yield

$$(5.12) |\log(|c|r^q)| + |S(z, \sigma_m^2 r_m)| = o(T(r)) (r \to +\infty).$$

Let $L_m(z)$ denote the sum of the third and fourth terms in the right-hand side of (5.10). In order to estimate $L_m(z)$ we observe that if |z| satisfies (5.8) and $|a| \le \sigma_m^{-2} r_m$, then $|z|/|a| > \sigma_m$ and therefore

$$0 < -\log 2 + \log (r/|a|) < \log |1 - z/a| < \log (r/|a|) + \log 2 \qquad (m > m_0),$$

which yields

(5.13)
$$\left| \sum_{0 < |a_{f}| \le \sigma_{m}^{-2} r_{m}} \log \left| 1 - \frac{z}{a_{f}} \right| \right| \le (\log 2 + 3 \log \sigma_{m}) n \left(\sigma_{m}^{-2} r_{m}, \frac{1}{f} \right) + N \left(\sigma_{m}^{-2} r_{m}, \frac{1}{f} \right) + O(\log r) \qquad (m \to \infty).$$

There is a similar formula involving the poles of f(z).

By [L, (2.9)] and (5.8)

$$(5.14) T(\sigma_m^{-2}r_m) < 2\sigma_m^{-\mu}T(r) (m > m_0).$$

We now use (5.14) in (5.13), and in the analogous inequality for poles, and take into account [L, (2.10)], [L, (2.11)] and (5.3). This yields

$$(5.15) L_m(z) = o(T(r)) (m \to +\infty).$$

Denote by $\Lambda_m(z)$ the sum of the two first terms in the right-hand side of (5.10); in view of (5.12) and (5.15) we have

(5.16)
$$\log |f(z)| = \Lambda_m(z) + o(T(r)),$$

uniformly as $r \to \infty$ in the intervals (5.8).

The next two sections are devoted to the study of $\Lambda_m(z)$.

6. Bounds for the primary factors. Consider a zero a of f(z) such that

$$(6.1) a = |a|e^{i\psi}, a \in \mathscr{K}_{0m}$$

and let z satisfy the conditions (5.8) and (5.9).

By (6.1) and (5.5) there exists a determination of ψ such that $\omega_m + \pi - \varepsilon/2 < \psi \le \omega_m + \pi + \varepsilon/2$, and by (5.9) $\omega_m - s(\infty)/2 + \varepsilon < \theta \le \omega_m + s(\infty)/2 - \varepsilon$.

Hence

$$(-s(\infty)+\varepsilon)/2 < \theta+\pi-\psi < (s(\infty)-\varepsilon)/2$$

which, in view of the fact that $\log |1 + te^{i\phi}|$ decreases as $|\phi|$ increases from 0 to π , yields

where

$$(6.3) \lambda = (s(\infty) - \varepsilon)/2, 0 < \lambda < \pi.$$

Similarly, if b is a pole of f(z) lying in $\mathscr{K}_{\infty m}$, and if $\theta \in \Gamma_m$, then

$$(6.4) \log |1-re^{i\theta}/b| < \log |1-re^{i\lambda}/|b| |.$$

The inequalities (6.2) and (6.4), and our definition of $\Lambda_m(z)$, yield

$$\Lambda_{m}(z) > \log \left| \prod_{a_{j} \in \mathscr{A}_{m}} \left(1 + \frac{re^{t\lambda}}{|a_{j}|} \right) \right| - \log \left| \prod_{b_{j} \in \mathscr{A}_{m}} \left(1 - \frac{re^{t\lambda}}{|b_{j}|} \right) \right| \\
- \log \left| \prod_{a_{j} \in \mathscr{S}_{0m}} \left(1 + \frac{re^{t\lambda}}{|a_{j}|} \right) \right| + \log \left| \prod_{b_{j} \in \mathscr{S}_{\infty m}} \left(1 - \frac{re^{t\lambda}}{|b_{j}|} \right) \right| \\
+ \log \left| \prod_{a_{j} \in \mathscr{S}_{0m}} \left(1 - \frac{z}{a_{j}} \right) \right| - \log \left| \prod_{b_{j} \in \mathscr{S}_{\infty m}} \left(1 - \frac{z}{b_{j}} \right) \right| \quad (\theta \in \Gamma_{m}).$$

If $a \in \mathcal{A}_m$ and r satisfies (5.8), we have $\sin \lambda \le |1 + re^{t\lambda}/|a| | < 2\sigma_m^3$, and hence, by (5.4) and [L, (2.9)],

$$(6.6) \quad \sum_{a_{j} \in \mathscr{S}_{0m}} \left| \log \left| 1 + \frac{re^{t\lambda}}{|a_{j}|} \right| \right| + \sum_{b_{j} \in \mathscr{S}_{\infty m}} \left| \log \left| 1 - \frac{re^{t\lambda}}{|b_{j}|} \right| \right| \\ \leq n_{m} (\log 2 + 3 \log \sigma_{m}) = o(T(r)) \qquad (m > m_{0}, r \to +\infty).$$

The two last terms of (6.5) are estimated by the following straight-forward application of the lemma of Boutroux-Cartan: if $z \in \mathcal{A}_m$ and if z avoids finitely many disks with sum of diameters equal to $\sigma_m^{-2}r_m/2$, we have

$$\prod_{a_j \in \mathscr{S}_{0m}} |z - a_j| \ge \left(\frac{\sigma_m^{-2} r_m}{8e}\right)^n \qquad (n = n(\mathscr{S}_{0m}, 1/f)),$$

$$(1 + \sigma_m^4)^n \ge \prod_{a_i \in \mathscr{S}_{0m}} \left|1 - \frac{z}{a_j}\right| \ge (8e\sigma_m^4)^{-n}.$$

The same bounds hold for the polynomial formed with the poles b_j ($\in \mathscr{S}_{\infty m}$). Hence, the arguments used in the proof of (6.6), yield

(6.7)
$$\left| \log \left| \prod \left(1 - \frac{z}{a_j} \right) \right| \right| + \left| \log \left| \prod \left(1 - \frac{z}{b_j} \right) \right| \right| \le n_m (\log(8e) + 4 \log \sigma_m) = o(T(r)) \qquad (r \to \infty),$$

provided r (confined to \mathscr{A}_m) avoids a set \mathscr{E}_m , of measure not greater than $\sigma_m^{-2}r_m$.

7. **Proof of Theorem 2.** Let $I_1(r)$ denote the first term in the right-hand side of (6.5). The elementary identity

(7.1)
$$\log \left| 1 + \frac{z}{|a|} \right| = \Re e \left\{ z \int_{|a|}^{+\infty} \frac{dt}{t(z+t)} \right\} \qquad (a \neq 0),$$

valid if z is not real and negative, shows that

(7.2)
$$I_{1}(r) = \Re e \left\{ z \int_{\sigma_{m}^{-2}r_{m}}^{\sigma_{m}^{2}r_{m}} \frac{n(t, 1/f) - n(\sigma_{m}^{-2}r_{m}, 1/f)}{t(z+t)} dt + z \int_{\sigma_{m}^{2}r_{m}}^{+\infty} \frac{n(\sigma_{m}^{2}r_{m}, 1/f) - n(\sigma_{m}^{-2}r_{m}, 1/f)}{t(z+t)} dt \right\} \qquad (z = re^{t\lambda}),$$

and using again (7.1)

(7.3)
$$I_{1}(r) = \Re \left\{ z \int_{\sigma_{m}^{-2}r_{m}}^{\sigma_{m}^{2}r_{m}} \frac{n(t, 1/f)}{t(z+t)} dt \right\} + n(\sigma_{m}^{2}r_{m}, 1/f) \log \left| 1 + \frac{z}{\sigma_{m}^{2}r_{m}} \right| \\ - n(\sigma_{m}^{-2}r_{m}, 1/f) \log \left| 1 + \frac{z}{\sigma_{m}^{-2}r_{m}} \right| \qquad (z = re^{i\lambda}).$$

Now $\log |1 + z/\sigma_m^2 r_m| = O(r/\sigma_m^2 r_m)$, and

$$\log \left| 1 + \frac{z}{\sigma_m^{-2} r_m} \right| = \log \left(\frac{r \sigma_m^2}{r_m} \right) + o(1),$$

uniformly as $r \to +\infty$ in the intervals $(\sigma_m^{-1}r_m, \sigma_m r_m]$. Hence, obvious estimates using [L, (2.9)] and [L, (2.11)] show that (7.3) reduces to

(7.4)
$$I_1(r) = \Re \left\{ z \int_{\sigma_m^{-2}r_m}^{\sigma_m^2 r_m} \frac{n(t, 1/f)}{t(z+t)} dt \right\} + o(T(r))$$

$$(z = re^{i\lambda}, r \to +\infty, \sigma_m^{-1} r_m < r \le \sigma_m r_m).$$

Rewriting (7.4) in the form

$$\frac{I_1(r)}{T(r)} = \Re \left\{ z \int_{\sigma_m^{-2} r_m}^{\sigma_m^2 r_m} \frac{n(t, 1/f)}{T(t)} \frac{T(t)}{T(r)} \frac{dt}{t(z+t)} \right\} + o(1),$$

we obtain, in view of [L, (2.9)] and [L, (2.11)],

(7.5)
$$\frac{I_{1}(r)}{T(r)} = \mathcal{R}e\left\{z\mu u \int_{\sigma_{m}^{-2}r_{m}}^{\sigma_{m}^{2}r_{m}} \left(\frac{t}{r}\right)^{\mu} \frac{dt}{t(z+t)}\right\} + o(1)$$

$$= \mathcal{R}e\left\{\mu u e^{i\lambda} \int_{0}^{\infty} \frac{x^{\mu-1} dx}{x + e^{i\lambda}}\right\} + o(1),$$

as $r \to +\infty$ in the intervals $(\sigma_m^{-1} r_m, \sigma_m r_m]$. The value of the last integral in (7.5) is well known to be $\pi e^{i\lambda(\mu-1)}/\sin \pi \mu$, and hence we are finally led to

(7.6)
$$\frac{I_1(r)}{T(r)} = \frac{1}{T(r)} \log \left| \prod_{a_i \in \mathscr{A}_m} \left(1 + \frac{re^{i\lambda}}{|a_i|} \right) \right| = \frac{\pi \mu u}{\sin \pi \mu} \cos \lambda \mu + o(1).$$

The same method yields

(7.7)
$$\frac{1}{T(r)}\log\left|\prod_{b\in\mathscr{A}_{-}}\left(1-\frac{re^{i\lambda}}{|b_{j}|}\right)\right| = \frac{\pi\mu\nu}{\sin\pi\mu}\cos(\pi-\lambda)\mu + o(1).$$

Combining (5.16), (6.5), (6.6), (6.7), (7.6) and (7.7) we obtain, uniformly in z,

(7.8)
$$\log |f(z)| \geq \frac{\pi \mu T(r)}{\sin \pi \mu} \{ u \cos (\lambda \mu) - v \cos (\pi - \lambda) \mu \} + o(T(r)),$$

provided

- (i) $|z| = r \rightarrow +\infty$ in the intervals $(r_m \sigma_m^{-1}, r_m \sigma_m]$;
- (ii) r avoids the exceptional sets \mathscr{E}_m (meas $\mathscr{E}_m \leq \sigma_m^{-2} r_m$);

(iii)
$$\arg z = \theta \in \Gamma\left(\omega_m, \frac{s(\infty)}{2} - \varepsilon\right).$$

If we choose any K such that

$$(7.9) \quad 0 < K < \frac{\pi\mu}{\sin\pi\mu} \left(u \cos\left\{\frac{s(\infty)\mu}{2} - \frac{\varepsilon\mu}{2}\right\} - v \cos\left\{\left(\pi - \frac{s(\infty)}{2}\right)\mu + \frac{\varepsilon\mu}{2}\right\} \right) = \tilde{K},$$

we see that (7.8) and (6.3) imply the first of the inequalities (1.7). We must still verify that $\tilde{K} > 0$ since otherwise it will be impossible to find a K satisfying (7.9). The relations [L, (2.4)], [L, (2.5)] and [L, (2.6)] yield an explicit value of \tilde{K} :

$$\widetilde{K} = \frac{\pi\mu}{\sin\pi\mu} \left\{ u \sin\left(\frac{s(\infty)\mu}{2}\right) + v \sin\left(\frac{s(o)\mu}{2}\right) \right\} \sin\frac{\varepsilon\mu}{2} > 0.$$

The second inequality (1.7) is obtained by considering 1/f instead of f. Our proof of Theorem 2 is now complete.

8. **Proof of Theorem 3.** Assume that the Theorem is false. Then there exists a meromorphic function F(z) of lower order μ ($0 < \mu < 1$) having at least two finite, distinct, deficient values τ_1 , τ_2 and such that f(z) = F'(z) satisfies the conditions of Theorem 1.

By the elements of Nevanlinna's theory

(8.1)
$$m(r, f/F) + m(r, f/(F - \tau_1)) + m(r, f/(F - \tau_2)) = o(T(r, F))$$

$$(r \notin \mathscr{E}, r \to +\infty),$$

where \mathscr{E} is an exceptional set of finite measure. It is well known that this relation implies

$$(8.2) T(r,f) \leq 2T(r,F)(1+o(1)) (r \notin \mathscr{E}, r \to +\infty),$$

and also (since the relation [L, (9.3)] is valid with g replaced by F),

(8.3)
$$N(r, 1/f) + m(r, 1/(F - \tau_1)) + m(r, 1/(F - \tau_2)) \le T(r, f) + o(T(r, F))$$

$$(r \notin \mathscr{E}, r \to +\infty).$$

From the definition of deficient value, we deduce

(8.4)
$$m(r, 1/(F-\tau_k)) > \frac{1}{2}\delta(\tau_k, F)T(r, F)$$
 $(r > r_0; k = 1, 2),$

and hence, in view of (8.2) and (8.3), there exist two constants κ_1 , κ_2 such that

$$(8.5) 0 < \kappa_1 < T(r,f)/T(r,F) < \kappa_2 < +\infty (r \notin \mathscr{E}, r > r_0).$$

Let *J* be any measurable subset of *C* such that meas $\{J\} = 4\varepsilon > 0$; then, by a lemma of Edrei and Fuchs [7, p. 322, Lemma III],

$$(8.6) \quad \frac{1}{2\pi} \int_{J} \log^{+} \left| \frac{1}{F - \tau_{k}} \right| d\theta = m \left(r, \frac{1}{F - \tau_{k}}; J \right) \leq A_{0} T(2r, F) \varepsilon \left(1 + \log^{+} \frac{1}{\varepsilon} \right)$$

$$(r > r_{0}; k = 1, 2),$$

where A_0 is an absolute constant.

From now on r will be restricted to the intervals $(r_m, 2r_m]$, and $\{r_m\}$ is the sequence of Pólya peaks (of T(r, f)) which appears in Theorems 1 and 2. By [L, (2.9)], (8.5) and the fact that the characteristic functions are increasing,

$$(8.7) T(2r, F) < K_0 T(r, F) (r_m < r \le 2r_m, r \notin \mathscr{E}, m > m_0);$$

the constant K_0 depends only on κ_1 , κ_2 and μ .

Using (8.7) in (8.6) we obtain

(8.8)
$$m\left(r, \frac{1}{F - \tau_k}; J\right) \leq A_0 K_0 T(r, F) \varepsilon \left(1 + \log^+ \frac{1}{\varepsilon}\right)$$

$$(r_m < r \leq 2r_m, r \notin \mathscr{E}, m > m_0; k = 1, 2),$$

and choose ε (0 < ε < $\frac{1}{2}$ min (s(0), s(∞))) so small that the right-hand side of (8.8) is less than

$$\frac{1}{4}$$
 min $\{\delta(\tau_1, F), \delta(\tau_2, F)\}T(r, F)$.

We use this value of ε in Theorem 2 and select a sequence $\{\tilde{r}_m\}$ such that

$$r_m < \tilde{r}_m \le 2r_m, \quad \tilde{r}_m \notin \mathcal{E}, \quad \tilde{r}_m \notin \mathcal{E}_m \qquad (m > m_0).$$

This is certainly possible because \mathscr{E} is of finite measure and

meas
$$\mathscr{E}_m \leq \sigma_m^{-2} r_m = o(r_m) \qquad (m \to \infty).$$

The set

$$J_m = C - \{\Gamma(\omega_m, s(\infty)/2 - \varepsilon) \cup \Gamma(\pi + \omega_m, s(0)/2 - \varepsilon)\}\$$

is of measure 4ε and hence (8.8) and our choice of ε and \tilde{r}_m imply

(8.9)
$$m(\tilde{r}_m, 1/(F-\tau_k); J_m) < \frac{1}{4}\delta(\tau_k, F)T(\tilde{r}_m, F) \qquad (k = 1, 2).$$

Now (8.1), the first relation (1.7) and the elementary inequality

$$\log^+ |1/(F - \tau_k)| \le \log^+ |f/(F - \tau_k)| + \log^+ |1/f|,$$

yield

$$(8.10) \quad m(\tilde{r}_m, 1/(F-\tau_k); \Gamma(\omega_m, s(\infty)/2-\varepsilon)) = o(T(\tilde{r}_m, F)) \qquad (m \to \infty, k = 1, 2).$$

If we consider the inequalities (8.4) with $r = \tilde{r}_m$, and compare them with (8.9) and (8.10), we see that for m large enough, there will exist points

$$z_{1m} = \tilde{r}_m \exp(i\theta_{1m}), \qquad z_{2m} = \tilde{r}_m \exp(i\theta_{2m}),$$

such that θ_{1m} , $\theta_{2m} \in \Gamma(\omega_m + \pi, s(0)/2 - \varepsilon)$,

$$(8.11) |F(z_{1m}) - \tau_1| < \frac{1}{3} |\tau_2 - \tau_1|, |F(z_{2m}) - \tau_2| < \frac{1}{3} |\tau_2 - \tau_1|.$$

Let \mathscr{C}_m denote the subinterval of $\Gamma(\omega_m + \pi, s(0)/2 - \varepsilon)$ having end points θ_{1m} , θ_{2m} . Then, the obvious relation

$$|F(z_{1m})-F(z_{2m})| = \left| \int_{\mathscr{C}_{-}} f(\tilde{r}_{m}e^{i\theta})\tilde{r}_{m}e^{i\theta} d\theta \right|,$$

the second relation (1.7), and the fact that $\log \tilde{r}_m = o(T(\tilde{r}_m, F))$, imply

$$|F(z_{1m}) - F(z_{2m})| < \frac{1}{3}(\tau_2 - \tau_1) \qquad (m > m_0).$$

The inequalities (8.11) and (8.12) are clearly incompatible. This contradiction shows that F(z) cannot have the finite, distinct, deficient values τ_1 , τ_2 , and hence proves Theorem 3.

SYRACUSE UNIVERSITY,
SYRACUSE, NEW YORK