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BY
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Introduction.   This paper continues and completes the preceding one of A. Edrei.

I shall adopt the terminology, the bibliographical references and all the notations

and conventions of Edrei's paper. Whenever necessary, I shall refer to it as [L].

In view of my frequent use of specific formulae of this paper, as well as of [2], I

shall write, for instance, [L, (2.9)] or [2, (2.9)] to denote, respectively, formula (2.9)

of [L] or of [2]. Other references will be denoted in the same way as is done in [L].

One of the aims of my investigation is the completion of the proof of Theorem A

of [L]. Since the relation [L, (7)] is already proved I have only to examine [L, (8)].

Using Theorem 2 of [L], Edrei had previously proved [L, (8)] for values of p

belonging to the sequence

{l/2+l/2a}       (a =1,2,...).

[Notices Amer. Math. Soc. 14 (1967), Abstracts 643-23 (p. 248) and 644-72 (p. 380).]

The methods which I develop here enable me to prove [L, (8)] for all p in the

interval (\, 1). They may be summarized as follows:

I. Consider the sets E0(rm) and EK(rm) which appear in Theorem 1 of [L]. The

limits of their measures have been determined but it is still possible that these sets

be the union of many disjoint intervals. I first show that in some sense each of the

sets E0(rm) and Ex(rm) is "essentially" an interval.

II. This enables me to return to the distribution of the zeros and poles lying in

the annuli

(1) K < r - \z\ á K       (K <rn< Rm)

where R'm, rm, and R'm are quantities satisfying [L, (2.7)]. I prove that almost all the

poles in (1) have arguments close to some quantity wm and almost all the zeros

have arguments close to com + n.

III. This knowledge about the zeros and poles of/in (1) is sufficient to determine

the asymptotic behavior of/(z) on some circles in the annuli (1).

IV. Theorem 2 of [L] shows that these arguments may be applied to fi'(z). The

asymptotic evaluation mentioned above, applied to f'(z), indicates that there

exists a circle in the annulus (1) such that/'(z) is very small on a single arc #m of
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the circumference. By an obvious integration we then verify that/(z) is practically

constant on &m. On the complementary arc/(z) is very large so that/(z) can have

only one finite deficient value.

1. Statement of the main results. In addition to the notations of [L] I require

the following ones, which will enable me to conveniently refer to some sets which

appear in my proofs.

Throughout this paper, I denote by C the set of all the arguments 8 such that

— 7r<ö^7T.

Since we are only interested in the circular arrangement of the elements of C,

the points 6= — rr and 6 = rr will be "identified" and, more generally, all the values

6+2krr (k=0, ±1, ±2, ±3,...) will be considered as different numerical repre-

sentations of a single element of C.

Beside C, I introduce

I. The sector

Sfio>,y; R!, R") = {z:w-y < argz S co + y, R' < \z\ S R"}-

II. Put 6=argz. The "interval" w-y<6Sco + y, considered as a subset of C,

will be denoted by r(a>, y).

III. I extend Nevanlinna's notation and denote by n(3>, /) the number of poles

of/(z) which fall in the bounded set S¿. (Multiple poles are counted as often as

indicated by their multiplicity.)

With these conventions, we obtain a natural complement to Theorem 1 of [L].

Theorem 1. Let fi(z) be a meromorphic function of lower order p (0<p<l) and

let

/, n i- N(r, l/fi) .. N(r,fi)
(1.1) hmsup   1.   "' = u,        hmsup j±-j^ = v,

r-><o;rtg      l\r,J) r-oo-.rég   í(f,J)

where S is any fixed set of density zero.

Assume that u and v satisfy

(1.2) u < 1,       v < 1

and

(1.3) sin2 np = u2 + v2 — 2uv cos wp.

Then, with every sequence {rn} of Pólya peaks of order p ofT(r,f), it is possible

to associate four sequences {wm}, {r¡m}, {p'm}, and{p"m} having the following properties:

(1.4) 0 < rim < TT (m=l,2,...), Vm-^rr    as m -> 00,

(1.5) p'm -> +00,       rJ/4-H*+00,       P;/rm-^+oo   asm^>oo,

and

(1.6)
zz(^(ozm, r,m; p'm, p"m), 1/f) = o(T(rm, /)),

ZzOS^ + Tr, r,m; p'm, Pm), fi) = o(T(rm, /)),

as m -> oo.
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Theorem 1 enables us to obtain an asymptotic evaluation of f(z) which leads to

Theorem 2. Let the assumptions and notations of Theorem 1 be unchanged, and

let s(0) and s(oo) be the quantities defined by [L, (2.4)] and [L, (2.5)], and let e

(0 < e < \ min Moo), <t(0)}) be given.

Then there exists a sequence {o)m}, a positive sequence {om} (om^- -foo) and a

constant K>0, such that

log \fi(re<°)\ > KT(r, f) (9 e F(com, s(co)/2-e)),

log \fi(re'»)\ < -KT(r,f)       (6 e r(com + ir, s(0)/2-e)),

provided

(i) r^- +00 in the intervals o~1rm<r¿omrm;

(ii) r avoids in each of these intervals an exceptional set Sm of measure not greater

thano~2rm.

From this theorem we deduce at once that:

The values of r for which the inequalities (1.7) are valid have upper density one.

Theorem 2 and the well-known relations between a function and its derivative

lead to

Theorem 3. Let f(z) be a meromorphic function satisfying the conditions of

Theorem 1.

Then, ifF'(z) =f(z), and ifF(z) is meromorphic, it has at most two deficient values.

Theorem 3 is not vacuous because the meromorphic function

Ó (l+z«-1'")
F(z) = -¿=i-       (i < p < 1)

n (i-z«-("+i>"')

satisfies the conditions 8(0, F)= 1 —sin irp, S(oo, F)= 1 [see for example R. Nevan-

linna, Eindeutige analytische Funktionen, p. 232], and hence, in view of Theorem 2

of [L], tz(F') = sin -np, v(F') = 0.

This shows that/=F' satisfies the conditions of Theorem 1.

It might be of interest to investigate whether there exist functions/(z), satisfying

the conditions of Theorem 1 with 0<8(oo,/)<l, and having a meromorphic

integral. I am at present unable to answer this question.

As an immediate consequence of Theorem 3 and [L, Theorem 2] we now obtain

[L, (8)] which I restate for completeness.

Iff(z) is a meromorphic function of lower order p (%<p.< 1), z/8(oo,/)=1, and if

A(/) = 2-sin irp, then v(f) = 2.

Hence any function/(z) satisfying the above conditions has precisely one finite

deficient value t, such that S(t, /) = 1 - sin -np, and f(z) — t has the asymptotic

behavior described in Theorem 2.
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2. Structure of the sets E0'rm) and Ex(rm). Let E denote a measurable subset of

C and let

(2.1) y = +measF.

Consider the function ^(W) = meas {E— T(o¡>, y)} which is clearly a nonnegative

function of co, defined and continuous on C. Let w be any one of the values of to

such that

J((Gf) = inf Jt(co) = v.
coeC

We shall say that w is a center of E.

The inequalities 0S-^(co)S2y, M(of)S2(rr—y), are obvious.

If y=0 or y=7r, we have Jt(u>) = 0 and v = 0 (trivially); in both cases, every

co e C is a center of E. If 0 < y < 7r, the inequality x > 0 is possible ; the quantity x

then represents, in some sense, the total measure of the "gaps" in E.

If y>0 and x=0, we may think of Fas being, apart from a set of zero measure,

an interval on C. The following lemma shows that, for functions satisfying (1.3),

the sets Ex(rm) and E0(rm), tend, as zzz^ +oo, toward this "single interval"

structure.

Lemma 1. Let f(z) satisfy the hypotheses of Theorem 1, and let {rm} be a sequence

ofPólya peaks of order p ofT(r, /). Let

(2.2) ym = \ meas F„(>m).

Then, there exists a sequence {com} such that

lim meas{Fœ(z-m)-T(a>m, ym)} = 0,

(2.3)
hm meas{£0(i'm)-r(üj,n+7r,7r-y,n)} = 0.

m-» oo

Before proving Lemma 1 we prove two elementary lemmas.

Lemma 2. Let E be a measurable subset of C. Then, if w is any value, real or

complex,

1 £ |log \l-we¡°\ | dd S {log(l + M) + (l+log+ „¿-^jmeas E.

Proof. Put argvt>+0 = <¿.

Then

(2.4) |l-w<?ie| = |l-|w|e'*l = |e_i*-M I = lsin^l>

which may be sharpened to

(2.5) |l-wei9| ^ 1,

\fTT/2S\<p\S7T.
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Now

(2.6) \sin<b\^(2/Tr)\<b\       (|*|£*£)

and hence, if meas E=Jf and

(2.7) a. = min {n, Jf},

we observe, with Edrei and Fuchs [7, p. 338], that (2.4), (2.5), (2.6), and (2.7) imply

1(E) = £- f log+   ——r.   d0£- i"'2 log (-X-t) d<b
2-ttJe    b     l-weiB 7tJ0       6\sin<¿/

1   Ca'2 I tt\ /vrza«
^j„iogy^-i i°*<*-

By definition a/2ir^ Jf/2ir^ 1, so that (2.8) yields

(2.9) ICE) * - J*"" log / * = g + g log (£) S *■(! + log+ ¿)-

We now obtain Lemma 2 by integrating over E the obvious relation

|log |1 —weie| |¿ log(l-r-JH-l) + log+ |l/(l-wei9)|,

and using the estimate (2.9).

Lemma 3. Let E be a measurable subset of C, and let

(2.10) meas£ = 2y.

Assume

(2.11) meas {E- T(0, y)} ê 2f.

TTze«, z/ / z'i restricted to the range

(2.12) a"1 ^ / ^ a       (1 < a < +oo),

we have

(2.13) ¿ Í  log |l+/ei9| dO~ f log |l+/ei9| d8ZK= K(o, f).
¿TTJ-y ¿T JE

The constant K which appears in (2.13) may èe chosen equal to

(2.14) tf(or, 0 = 2¿ sin2 (|/2)M4 + a(l +a)2},

w/zz'c/z zj clearly positive for 0 < £ ̂  w/2.

Proof. Put

(2.15) {E- T(0, y)} = d,       {E n TÍO, y)} = G2,

so that E={Gi u G2}, {Gi n G2}=0. Hence, in view of (2.10) and (2.11), we have

(2.16) 0^2£ S2r¡ = meas Gj ^ 2(rr-y),   meas G2 = 2(y-ij).
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We now use the familiar remark that, for any fixed />0, log 11 + teie\ is an even

function of 0, strictly decreasing as 0 varies from 0 to ir. By (2.15) and (2.16),'

this leads to the obvious inequalities:

f   log|l + /e(Vö = 2 f "log|l + /ei(
Jg2 Jo

de,

and

f   log 11 + te,e\ dd S 2 P " log 11 + tew\ d8 = 2 f    log 11 + /eiW+n)| df>,
Jgx Jy Jy-n

which, when added, yield

(2.17)    f log |l + /eifl| de S 2 P log |l + /eie| ¿0-2 f    log
Je Jo Jy-n

l+teu

l+te «e + n) de.

Consider now the positive function

(2.18) H(t, e, v) =
l + tew

l+teiW + v)
= 1 + 2/{cos 6-COS (6+r¡)}

l+/2 + 2/COS (0 + 7/)'

which appears in the last integral of (2.17). From (2.16) we deduce y+r¡/2STr-r¡/2,

T)/2Sy—r\/2, and hence

(2.19)   cos e - cos (0+7)) = 2 sin (0+v/2) sin tj/2 ̂  2 sin2 (rj/2)       iy—qSeSy).

Combining (2.18), (2.12) and (2.19), we find

Hit, M)-l j%ffiTC.-fc

log77(/,0,7?)eIog(l+O>T^^^|.

f   log H(t,e,v)do^
Jy-n

4V sin2 (7?/2)

4 + a(l+<r)2'

and, since 0<i^77, it is obvious that (2.17), (2.18) and (2.19) imply (2.13) and

(2.14). This completes the proof of Lemma 3.

Proof of Lemma 1. The assumptions of Lemma 1 coincide with those of Theorem

1 so that (1.1), (1.2) and (1.3) hold. Then, in view of assertion II of [L, Theorem 1],

we have

(2.20)   0 < ß =  lim ym = - cos"1 v = ^ <
m-*oo Lt 2

7T       JO < cos-1 v S ?)'

where 2ym = meas Em(rm).

Let ojm be a center of £„(r«); we first examine the implications of

(2.21) lim sup meas {F0O(rm)-r(cüm, ym)} # 0.
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From (2.21) we deduce the existence of a constant f >0 and of an unbounded

sequence J(, of positive integers, such that

(2.22) meas {EM - T(com, yj) ^ 2(       (me M).

Let o> 1 be a given, fixed quantity and let a= \a\e'* be any one of the zeros of

f(z) such that

(2.23) a"Vm < \a\ Ú crM.

In view of the extremal character of the centers a>m, the inequalities (2.22)

remain true if wm is replaced by any other point of C; in particular

(2.24) meas {EM-T(xb+n, ym)} ä 2f       (me Jf).

The transformation of the set C defined by

(2.25) <b = B-xb—rr       (OeC),

is a " translation " which leaves C invariant and transforms the subsets of C without

affecting their measures. In particular, the sets Ex(rJ, r(</i+Tr,ym) are trans-

formed, respectively, into sets Em and T(0, ym) and the inequalities (2.24) become

meas{Em-T(0, ym)} £ 2*       (me JT).

Hence, in view of (2.23) and (2.25), Lemma 3 yields

¿J    ̂ 1
r e"

de

(2.26)

-¿ f   logll+^e
2îr JÈm I |ö|

¿-Jf+ii'log
ff Jo

d<b

rme" de

(meJ(;K= K(o, £)),

where the positive constant K depends on no parameters other than <r and (¡.

There are ñm=n(orm, l//)-n(a_1rm, l/fi) zeros of f(z) characterized by the in-

equalities (2.23). Since our assumptions imply the validity of assertion II of [L,

Theorem 1], we deduce from [L, (2.9)] and [L, (2.11)]

(2.27) lim
m -> eo : msjt    T(rm, f)

= pu^-a-").

We denote by a¡ the zeros of/(z) and by bf its poles and, in the following inequality,

confine our attention, and our summations, to the zeros satisfying (2.23). Then

(2.26) and (2.27) yield

Iff        logl.-^
^ 2tt J£oo(rm)    ° I        a,

where Kx = K(c, í)p(au-a-").

de

1 +
r eK

}de-KxT(rn,fi)u(l+o(l))

(m->- +00, m eJ(),
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rme" de

1-
rj¡£

b,
de

We now examine a proof of Edrei [2, pp. 87-94] and consider, in particular, the

fundamental inequality [2, (2.18)]. With our notations this inequality implies

m(rmJ)S      2     ¿Í lQg

(2-29) 0<IMáZím27r jE„(rm)

+ 15 ̂ T(2Rm) + o(T(rm))
Km

(m^cv,rmS\Rm,T(r) = T(r,f)\

where it is understood that, subject to the restriction Rm^2rm, the size of the

error term is not affected by the choice of Rm.

The arguments in [2, p. 90] may be repeated with the following minor modifica-

tion: instead of using [2, (2.20)] to estimate all the terms of the first sum in the

right-hand side of (2.29), we use (2.28) to evaluate the contribution of all the a¿

such that CT_1rm< \a}\ S<?rm.

We thus obtain

nrm) = l[m{    I     log
77 JO      U<|oj|SSm

1 +
r e"1 my-

d6 +
JO \.0<\b¡¡SRm

log 1 + de

+15 -^ T(2Rm) + o(T(rm))-KxuT(rm)       (m -> +co, zzz 6 A, rm S \Rm),
^m

instead of [2, (2.22)].

In view of (2.20), 0<ym<7r (m>m0) and we obtain, as in [2],

T(rm) S  f " N0(t)P(t, rm, ym) dt+ f" Nx(t)P(t, rm, Tr-ym) dt-KxuT(rm)
Jo Jo

(2.30)
+ A±p- T(2Rm) + o(T(rm))       (m^+co,me JÍ),

Km

where A (>0) is an absolute constant and the symbols N0, Nm, P have the same

meaning as in [2] or in [L, (4.8)].

The main difference between (2.30) and [L, (4.8)] is the presence, in (2.30), of

the negative quantity -KxuT(rm). The arguments which, in [L], lead to [L, (4.12)]

now yield

(2.31) sin Trp S usin ßp+vsinin —ß)p — Kxu sin Trp.

Using the Cauchy-Schwarz inequality, as in [L, (5.1)], we deduce from (2.31)

(Kxu +1) sin2 np S u2 + v2 — 2uvcosTTp,

and hence, by (1.3), w=0.
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We have thus shown that, if u^O, the relation (2.21) is impossible and therefore

(2.32) lim meas {EM ~ I>m, yj} = 0.
m-*oo

This is the first of the relations (2.3).

From (2.32) and (2.20) we deduce

(2.33) lim meas {EM ^ I>m, ym)} = lim (2yM) = i(oo).
m-» co m-. co

The sets E0(rm) and En(rm) are disjoint by definition so that C may be represented

as the union of three pairwise disjoint sets :

(2.34) C = {E0(rm) u EM u Ex(rm)}.

Then, by [L, (2.6)]

(2.35) lim meas Ex(rJ = 0.
m-» co

From (2.34) we deduce

meas {E0(rJ n r(a>m, ym)} + meas {Ea(rm) n T(wm, ym)}

+ meas {Ex(rJ n T(wm, ym)} = 2ym,

and hence, by (2.33) and (2.35)

(2.36) lim meas {E0(rn) n r(com, ym)} = 0.
m-* co

Finally, r(ajm ym) and {(7r+cum, n — ym) are disjoint and their union is C. Therefore

meas {E0(rm) n r(7r + «,m, 7r-ym)} + meas {E0(rm) n r(<om, ym)} = meas E0(rJ

which, in view of (2.36), yields

lim meas {E0(rm)n T(Tr + wm, -n-yj} = lim meas E0(rm),
m-, co m-» co

and proves the second relation in (2.3).

We have thus completed the proof of Lemma 1 in the case iz=^0. If m=0, we

certainly have t;#0 (by (1.3)) and hence Lemma 1 follows from the consideration

of the function l/fi instead of/

3. Arguments of the zeros and poles of fi(z). Lemma 1 gives a precise meaning

to step I of the general argument outlined in the Introduction. The following

Lemma 4 clarifies, in a similar manner, step II.

Lemma 4. Let the assumptions and notations of Lemma I be unchanged. Let o

and r¡ be given, fixed quantities such that

(3.1) 1 < o,       0 < rr-Tj < min (s(0), s(oo)).

[s(0) and s(oo) are defined as in [L, Theorem 1]].
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I. Then, if K(o, () is the constant in (2.14), and if

(3.2) 2K2 = K{p, (ir-i?)/2),

we have

[June

(3.3)

provided

(3.4)

Z,T Ji»(rm)
1

z-me" i/oS if .egw Jo
1 + dO-K2,

aeif(mm,-n;<j lrm,o-rm)

and m > m2.

The bound m2, which depends onfi, {rm}, o and r¡, holds uniformly for all a satisfying

(3.4).
II. The counting functions of all zeros and poles of f(z) satisfy the relations

n(£f(com, r,; <rhm orm), l/fi) = o(T(rm,fi)),

n(^(com + TT, 7?; CT-Vm, <rrm),f) = o(T(rm,f)),

(3.5)

(3.6)

as m ->■ oo.

Proof. The assumptions of Lemma 4 coincide with those of Lemma 1 as well

as with those of [L, Theorem 1, assertion II]. Hence if {rm} is a sequence of Pólya

peaks, of order p, of T(r)=T(r,f), we see that (2.2) and (2.3) hold and that

(3.7) 0 <  lim 2ym = s(oo) <2rr,       0 < lim 2(ir-ym) = s(0) < 2tt.
m-» co m-»oo

Consider the sets

Cmi  = {EM) n r(<°m, Ym)},

(3.8) Cm2 = {EM - IX«». y»)} = {EM - cmi},

Cms = {r(wm, Ym)-Ex,(rm)} = {r(ajm, ym)-Cmi},

and notice that, in view of the first of the relations (2.3), we have

(3.9) lim meas Cml = lim meas E«,(rm) = s(<x>),
m-* co m-, co

and hence, as m -> oo,

(3.10) (meas Cm2 + meas Cm3) = cm -> 0.

Let J indicate integration of some measurable function defined on C; then, by

(3.8),

(3.11) J        'i = 1    "i     -^««(rm)     Jr(com,ym) JCm2     JCm3
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In particular, if we apply (3.11) to the function

(3.12) log|l-z-mei8/fl|       (\a\S°rm),

we obtain, in view of (3.10) and Lemma 2,

(3.13) \U Ú 47rcm{log (1 +o)+1 +log(1/cJ}       (m > m0(o)).

Now let

(3.14) a = \a\e»

satisfy the condition (3.4) so that

(3.15) a"1 S rj\a\ < o,

(3.16) 4> = cOm + K-n        (-1 < «i 1)

With a suitable choice of mxio, r¡) we may, in view of (3.1), assume

(3.17) 0 < tt-t; < min(2ym, 27T-2ym)       (m > mx(o,v)).

The change of variable </> = 6—tt — iJí leads to

(3.18)
/•Ttom.l'm)

log 1
rme"

a
de -f. log

I'm)

1 +
rme"

d</>,

where

(3.19) cöm = w»-«A-*r.

Using (3.16) in (3.19), we find com= — 77-/01, and therefore

— 77   <   CÔm    <    — 77 + 7/       if  —1    <   K   <   0,

TT-T) S 2rr + wm S TT      if 0 S k S  1.

Hence if co'm is defined by the relations

<*>'m = Ùm if - 1   <  #C  <  0,

tu; = 27r+¿ím 'úosksi,

F(¿Jm, Ym) =  Tí"'™» Vm),

0   <   TT — 7)   S 0>m\    5=   77.

343

we always have

(3.20)

with

(3.21) u < 77—77

Before applying Lemma 3 to the last integral in (3.18), we require the following

elementary remark :

(3.22)
meas {T(w'm, ym)-Y(0, ym)} = min {\co'm\, 2ym, 20r-ym)}

(\co'm\ Stt,0 <ym< 77).
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In order to verify this relation consider the set

(3.23) ^(cu) = {r(a,,y)-r(0,y)},

for y fixed and m variable.

A. First assume 0 < 2y ̂  ir and, as o> increases from 0 to -n, follows the positions

of the points co—y, co+y in the interval (—y,2rr—y]. Obviously

(3.24)

(3.25)

&(co) = (y, co + y] if 0 < co < 2y,

Si (tu) = (cu — y, co + y]    if 2y < co ^ -rr.

B. Similarly, if -n < 2y < 2rr, then

S?(co) = (y, co + y]      if 0 < co ^ 2(7T-y),

^(to) = (y, 27T-y)     if 2{rr-y) < CO g 7T.

The relations (3.23), (3.24) and (3.25) yield

meas í^(co) = meas ^( — co) = min (|cu|, 2y, 2(tt —y))       (|co| ^ tt, 0 < y ?£ 7r),

and (3.22) follows.

In view of (3.17) and (3.21) we have

0 < ir-t] ^ min i\co'm\, 2ym, 2rr-2yJ       im > mxi<j, r¡)),

which used in (3.22) yields

(3.26) meas {T(w'm, ym) - T(0, ym)} ̂  n - r, > 0.

Consider the constant AT(ct, f) defined by (2.14) and set

2K2 = 2K2io, r,) = K{o, ^TT-rj)) > 0.

By (3.15), (3.26) and Lemma 3, we find

1

(3.27) j .Jr(co„
log

r(ram,ym)

1 +
r e"1 mc

1 +
rme" dede -¿ -2K2 + - rmlog

"■ Jo

(m > mxia, r¡)).

In view of (3.18) and (3.20) the left-hand side of (3.27) may be replaced by

hi     * 1-
r e"' mc de.

If we combine the resulting inequality with (3.11), we find

¿7T JEco(rm)

1
r e"

(3.28)   2t

Now by (3.10) and (3.13)

dd ^ -2K2+¡p-+l
¿TT

lim Cm = 0,

i flog
rr Jo

1 +
r e"

de

(m > mxia, r¡)).



1969] ASYMPTOTIC BEHAVIOR OF MEROMORPHIC FUNCTIONS 345

uniformly for all a satisfying (3.4). Hence, if m2 is chosen large enough, the

inequality m>m2 implies m>mxio,rf), ^m/2TrSK2, and (3.3) follows from (3.28).

We have thus proved assertion I of Lemma 4.

Proof of assertion II of Lemma 4. The parameters o, t?, as well as the sequence

{com}, are fixed. Explicit reference to all these quantities is unnecessary and we

simplify our notation by setting

h"m = n(H(<i>m, tf, o'^m, OTm), 1/fi).

Assume that (3.5) is false. Then there exists some constant f>0 and some

unbounded sequence J(, of positive integers such that

ñm>ÍT(rm)      (me M).

This yields a contradiction as may be seen by a repetition, with minor modifica-

tions, of the proof of Lemma 1 :

(i) start from (2.29). Consider its right-hand side and use (3.3) (instead of (2.28))

to estimate the contribution of the ñm terms involving the zeros of f(z) in

y(<»m, ■n;°~1rm, °rm);

(ii) we are thus led to an inequality such as (2.30) with —KxuT(rm) replaced by

— K2£T(rm), and finally to

sin irp S u sin ßp+v sin (Tr—ß)p—K2^ sin rrp

(instead of (2.31)).

Hence ¿¡=0, a contradiction which proves (3.5). The relation (3.6) is obtained

by applying our arguments to 1//instead off. This completes the proof of Lemma 4.

4. Proof of Theorem 1. Let /> 2 be a fixed integer. By Lemma 4 it is possible

to determine zzz, so that m>m¡ implies

zz(^(com, 77-1//; rjl, lrn), l//) + „(^(cum + 7r, 77-1//; rm/l, lrm),fi) < T(rm)/l.

We then set

■nm = TT—l/l, Pm = r ml I, p"m = A"m

m¡ < m S nti + 1       (I = 3, 4, 5,...).

Theorem 1 is now obvious since the quantities defined by (4.1) and (4.2) clearly

satisfy the relations (1.4), (1.5) and (1.6).

5. Preliminary steps leading to Theorem 2. Let the assumptions of Theorem 2

be satisfied. Since they include those of Theorem 1, the existence and the properties

of the four sequences {ojm}, {r¡m}, {p'm}, {p"m} may be taken for granted. In particular,

(4.1)

for

(4.2)
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consider the left-hand sides of the two relations (1.6) and let nm denote their sum;

by Theorem 1

(5.1) nm/Tirm) = Sm -> 0       (m -> +oo, T(t) = T(t,fi)).

We define

(5.2) o\ = \ min {rJPm, rm/R'm, p"Jrm, R"Jrm, I/y/8m},

where R'm and R"m are the quantities in [L, Theorem 1]; by (1.5), [L, (2.7)], and (5.1)

this implies

(5.3) lim (7m = +00,
m-*co

as well as

(5.4) lim %& - 0.
m-. + co i (rm)

Given e (0 < e < \ min {s(0), s(oo)}), we define r¡ by the relation

(5.5) rr-r, = e/2,

and from now on write

^Om =  ^K, V, CTm2''m> "m^m),

^mm = ^("Tdl,, îj; CTmVm, amrm),

<< = {z: trm2rm < \z\ -¿ o2rm},

•*0m = V&m- ¿*0m}i •*- torn ~ V**™-"^com}-

By (5.2), (5.4), (5.5) and (5.6)

(5 7) lim   (n(^om,l/f) + n(^m,f))ol m 0
m -. + oo i V m)

We propose to study the asymptotic behavior of f(z) as z -> oo by values such

that

(5.8) cr-% < /• ^ <rmrm       (z = rei9),

and

(5.9) 0er(com,^-£) = rm.

Consider the fundamental representation [2, (2.6)] ; for our purposes this relation

may be rewritten in the form

¿J. \   aii\      \ »ii. V   Vafitfm    \   ,   *W  I I b^m

log |/(z)| = log

(5.10) +iogi   n  ('-^l-M  n  (i-r)

+ log (|c|r«) + S(z, olrm)       (o < \z\ = r Ú ^)-
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where c (^0) and q (an integer) are constants and the "error term" S(z, omrm)

satisfies the inequality

\S(z, o2rm)\ Û15-J- T(2o2mrm).
amrm

By (5.2), (5.8) and [L, (2.9)], it follows that

(5.11) \S(z, o2mrm)\ S 30o-'1 ~*Tir)      im > m0).

Since for any nonrational meromorphic function /

logr = o(T(r,fi))       (r-* +oo),

it is obvious that (5.3) and (5.11) yield

(5.12) |log (\c\r")\ + \S(z, omrm)\ = o(T(r))       (r-> +co).

Let Lm(z) denote the sum of the third and fourth terms in the right-hand side of

(5.10). In order to estimateLm(z) we observe that if \z\ satisfies (5.8) and \a\ SCm2rm,

then |z|/|a| >om and therefore

0 < -log2+log(r/|a|) < log \l-zja\ < log(r/|a|) + log 2       (m > m0),

which yields

(5.13)
0<|a,|Scrm2r,

2        log   l-j     S (log 2 + 3 log Om)n(om2rm,-f)

+ A^2rm, j) + 0(log r)       (m -> co).

There is a similar formula involving the poles of/(z).

By [L, (2.9)] and (5.8)

(5.14) F(a-2z-m) < 2a-«F(z-)       (m > m0).

We now use (5.14) in (5.13), and in the analogous inequality for poles, and take

into account [L, (2.10)], [L, (2.11)] and (5.3). This yields

(5.15) Lm(z) = o(T(r))       (zzz - +oo).

Denote by Am(z) the sum of the two first terms in the right-hand side of (5.10);

in view of (5.12) and (5.15) we have

(5.16) log|/(z)| = Am(z) + o(F(r)),

uniformly as r ->- oo in the intervals (5.8).

The next two sections are devoted to the study of Am(z).

6. Bounds for the primary factors.   Consider a zero a of/(z) such that

(6.1) a = |a|e'*,       ae%~am

and let z satisfy the conditions (5.8) and (5.9).
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By (6.1) and (5.5) there exists a determination of </j such that cum+7r—e/2<</<

Scom + Tr+e/2, and by (5.9) wm-s(co)/2+E<eSoim+sioo)/2-e.

Hence

(-s(oo) + e)/2 <   e + TT-tft < (s(00)-e)/2,

which, in view of the fact that log 11 + /ef*| decreases as \</>\ increases from 0 to 77,

yields

log

(6.2)

l-Z-
a

= log

> log

1 +
rexp [z'(0 + 7T — if/)]

1 +
re"

iaeJt0m,eerm),

where

(6.3) A = Cs(oo)-e)/2,       0 < A < 77.

Similarly, if b is a pole of/(z) lying in ->Cm, and if 0 e rm, then

(6.4) log 11 - reiB/b \ < log 11 - reiA/ \ b \ \.

The inequalities (6.2) and (6.4), and our definition of Am(z), yield

A-wHjJ>w)M n(>-l9|
n (i+S)|+'o8 n ('-9|(6.5) -log

+ log
aje^on b^,,

If aesám and z- satisfies (5.8), we have sin A^ 11 +reiK/\a\ \ <2om, and hence, by

(5.4) and [L, (2.9)],

2
(6.6)      a,e^o»

log 1 +
re" + 2

b/G^oom

log 1-
re"

^ zzm(log 2+3 log om) = »(IT»)       (>" > w0, r ^ +00).

The two last terms of (6.5) are estimated by the following straight-forward

application of the lemma of Boutroux-Cartan: if ze stfm and if z avoids finitely

many disks with sum of diameters equal to o~2rm/2, we have

Il      \Z~a'\   =   {^rj 6» = n^m, Hfi)),

^ (Seom)-n.

ajeS?om

(i+omy^  n l-z-
a
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The same bounds hold for the polynomial formed with the poles b¡ (eSfam).

Hence, the arguments used in the proof of (6.6), yield

(6.7)
log nK) +log nK)

è »„(log (8e) + 4 log om) = o(T(r))       (r -> oo),

provided r (confined to sdj avoids a set Sm, of measure not greater than o~2rm.

7. Proof of Theorem 2.   Let Ix(r) denote the first term in the right-hand side of

(6.5). The elementary identity

.+.     df
(7.1) log l+i = ®e{z V

t(z+t)
(a * 0),

valid if z is not real and negative, shows that

Ix(r) = @e\ z

(7.2)
J"m2r

lr- nit, l^-njoM l/fi)

tiz + t)

+ °° v,(„1r      Mf\ — nt„-1r

dt

+zT<^yf)-<frm,i/f) |     m

and using again (7.1)

(7.3)

h{r) = Ste\z £5; ^^ dt}+n(o2mrm, l/fi) log .+-
omr„

-n(o~2rm, l¡fi) log   l+;

Now log 11 + z/o2mrm\ = O(r/olrm), and

(z = reiK).

log 1+-
°m*rn.

-hf(a)+^

uniformly as r -*■ +oo in the intervals (cr~1z-m, amrm]. Hence, obvious estimates using

[L, (2.9)] and [L, (2.11)] show that (7.3) reduces to

(7.4)
^—Í'JX^H™

Rewriting (7.4) in the form

h(r) rc2r™
m

J°m2r,

t(z+t)

(z = réÁ,r^ +00, a~Vm < r ¿ omrm).

nit, l/fi) Tit)    dt
Tir) ■wÍ*L«r.    Tit)' T(r) t{z+t)) +

we obtain, in view of [L, (2.9)] and [L, (2.11)],

h{r) r       rc*r

(7.5)
T(r)

= 0teipueiÁ \
x + e"
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as r -> +00 in the intervals fc'zK, crmrm]. The value of the last integral in (7.5) is

well known to be 77eiA(u ~ 1)/sin -np, and hence we are finally led to

™     m = W)l°* n (i+!^\\ = ^Lcosxp+o(i).
a¡ejtfm

The same method yields

(7.7) j^log n (>-iS)
Sin 77/X

Combining (5.16), (6.5), (6.6), (6.7), (7.6) and (7.7) we obtain, uniformly in z,

(7.8) log |/(z)| £ ^^ {w cos (Xp)-v cos (tt- AV} + o(F(r)),
Sin 77jLi

provided

(i) |z| =/• -> +00 in the intervals (/„a"1, rmtrm];

(ii) r avoids the exceptional sets <#m (meas vfm^(7~2rm);

(in) argz = öer(o>m,^-e).

If we choose any K such that

™ « ̂¡Ê^Hv^-f}-»-{(-^*î})-<
we see that (7.8) and (6.3) imply the first of the inequalities (1.7). We must still

verify that R>0 since otherwise it will be impossible to find a K satisfying (7.9).

The relations [L, (2.4)], [L, (2.5)] and [L, (2.6)] yield an explicit value of R:

R = ^-tu sin (S-^t) + v sin (*M[ sin ft > o.
Sin rrp

.   (s(co)p\        .   (s(ó)p\\
u sin I -"-y-1 + v sin I -^ I f

The second inequality (1.7) is obtained by considering 1//instead off. Our

proof of Theorem 2 is now complete.

8. Proof of Theorem 3. Assume that the Theorem is false. Then there exists a

meromorphic function F(z) of lower order p (0<p< 1) having at least two finite,

distinct, deficient values rlt t2 and such that f(z) = F'(z) satisfies the conditions of

Theorem 1.

By the elements of Nevanlinna's theory

m(r,fi/F) + m(r,fi/(F- rx)) + m(r,f/(F- r2)) = o(T(r, F))

(ri£,r^+co),

where ê is an exceptional set of finite measure. It is well known that this relation

implies

(8.2) T(r,f) S 2T(r, F)(l +o(l))       (r$£,r-> +oo),



1969] ASYMPTOTIC BEHAVIOR OF MEROMORPHIC FUNCTIONS 351

and also (since the relation [L, (9.3)] is valid with g replaced by F),

Nir, l/fi) + mir, \/iF-rx)) + mir, l/(F-r2)) è T{r,f) + oiTir, F))
{O.ó)

(rxi£,r^ +oo).

From the definition of deficient value, we deduce

(8.4) mir, 1/(F-tJ) > |S(rfc, F)T(r, F)       (r > r0;k = 1,2),

and hence, in view of (8.2) and (8.3), there exist two constants ku k2 such that

(8.5) 0 < kx < T(r,fi)/T(r, F) < k2 < +oo       (r$ë,r> r0).

Let y be any measurable subset of C such that meas {J}=4s>0; then, by a lemma

of Edrei and Fuchs [7, p. 322, Lemma III],

(8.6)
¿ Ilog+1 fhrjide = "»('■ 7=2J) * A°T^ F>{l+lo*+1)

(r > r0;k = 1,2),

where A0 is an absolute constant.

From now on r will be restricted to the intervals (rm, 2rm], and {rm} is the sequence

of Pólya peaks (of T(r,f)) which appears in Theorems 1 and 2. By [L, (2.9)], (8.5)

and the fact that the characteristic functions are increasing,

(8.7) T(2r, F) < K0T(r, F)       (rm < r £ 2rm, r xt S, m > m0);

the constant K0 depends only on ku k2 and p.

Using (8.7) in (8.6) we obtain

(8.8) 4^;^W(^)e(l+log+i)

(rm < r ^ 2rm, r xt S, m > m0; k = 1, 2),

and choose e (0 < e < \ min (s(0), s(co))) so small that the right-hand side of (8.8) is

less than

imin{8(T1,F),8(T2,F)}F(r,F).

We use this value of e in Theorem 2 and select a sequence {rm} such that

rm< rn-¿ 2rm,   rm xf£,   rmxt Sm       (m > m0).

This is certainly possible because S is of finite measure and

meas êm g o--2rm = o(rm)       (m -»- oo).

The set

Jm = C-{T(com,s(co)/2-e) U r(7r + com,i(0)/2-£)}

is of measure 4e and hence (8.8) and our choice of e and rm imply

(8.9) m(rm, l/(F-rk);Jm) < $8(rk, F)T(rm, F)       (k = 1, 2).
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Now (8.1), the first relation (1.7) and the elementary inequality

log+ |l/(F-Tfc)|  S log+ \fi/(F-rk)\ + log+ |1//|,

yield

(8.10) m(rm, 1/(F- rk); T(ojm, i(oo)/2-«)) = o(T(fm, F))       (m -> co, k = 1, 2).

If we consider the inequalities (8.4) with r=fm, and compare them with (8.9) and

(8.10), we see that for m large enough, there will exist points

Zim = rm exp (z'0lm),       z2m = rm exp (z'02m),

such that 0lm, 02m e r(Wm + w, .s(0)/2-F),

(8.11) |F(zlm)-Tj| < í|t2-Ti|,       |F(z2m)-r2| < $\t2-ti\.

Let ^m denote the subinterval of T(œm + Tr, s(0)/2-e) having end points 0lm, 02m.

Then, the obvious relation

|F(zlm)-F(z2m)| = I f   f(Fne^)rmeu de\,

the second relation (1.7), and the fact that log rm = o(T(rm, F)), imply

(8.12) |F(zlm)-F(z2m)| <i(r2-r1)       (zzz>zzz0).

The inequalities (8.11) and (8.12) are clearly incompatible. This contradiction

shows that F(z) cannot have the finite, distinct, deficient values tx, t2, and hence

proves Theorem 3.
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