ASYMPTOTIC BEHAVIOR OF MEROMORPHIC
FUNCTIONS WITH EXTREMAL DEFICIENCIES

BY
ALLEN WEITSMAN()

Introduction. This paper continues and completes the preceding one of A. Edrei.

I shall adopt the terminology, the bibliographical references and all the notations
and conventions of Edrei’s paper. Whenever necessary, I shall refer to it as [L].
In view of my frequent use of specific formulae of this paper, as well as of [2], I
shall write, for instance, [L, (2.9)] or [2, (2.9)] to denote, respectively, formula (2.9)
of [L] or of [2]. Other references will be denoted in the same way as is done in [L].

One of the aims of my investigation is the completion of the proof of Theorem A
of [L]. Since the relation [L, (7)] is already proved I have only to examine [L, (8)].

Using Theorem 2 of [L], Edrei had previously proved [L, (8)] for values of p
belonging to the sequence

{12+1)2¢y (g=1,2...).

[Notices Amer. Math. Soc. 14 (1967), Abstracts 643-23 (p. 248) and 644-72 (p. 380).]

The methods which I develop here enable me to prove [L, (8)] for all x in the
interval (3, 1). They may be summarized as follows:

I. Consider the sets Eq(r,) and E,(r,) which appear in Theorem 1 of [L]. The
limits of their measures have been determined but it is still possible that these sets
be the union of many disjoint intervals. I first show that iri some sense each of the
sets Eo(r,,) and E(r,) is “essentially” an interval.

II. This enables me to return to the distribution of the zeros and poles lying in
the annuli

(1) R, <r=|z| £ R, (R, < rn < Ryp)

where Ry, ry,, and Ry, are quantities satisfying [L, (2.7)]. I prove that almost all the
poles in (1) have arguments close to some quantity w,, and almost all the zeros
have arguments close to w,+.

ITI. This knowledge about the zeros and poles of fin (1) is sufficient to determine
the asymptotic behavior of f(z) on some circles in the annuli (1).

IV. Theorem 2 of [L] shows that these arguments may be applied to f'(z). The
asymptotic evaluation mentioned above, applied to f’(z), indicates that there
exists a circle in the annulus (1) such that f'(z) is very small on a single arc €,, of
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334 ALLEN WEITSMAN [June

the circumference. By an obvious integration we then verify that f(z) is practically
constant on %,,. On the complementary arc f (z) is very large so that f(z) can have
only one finite deficient value.

1. Statement of the main results. In addition to the notations of [L] I require
the following ones, which will enable me to conveniently refer to some sets which
appear in my proofs.

Throughout this paper, I denote by C the set of all the arguments 8 such that
—m<0Zm7.

Since we are only interested in the circular arrangement of the elements of C,
the points 8= —x and 6== will be *“identified” and, more generally, all the values
0+2km (k=0, +1, +2, £3,...) will be considered as different numerical repre-
sentations of a single element of C.

Beside C, I introduce

I. The sector

FLw,7; R,R) ={z:w—y < argz £ w+y; R < |z| £ R"}.

II. Put 6=arg z. The “interval” w—y< 0= w+1y, considered as a subset of C,
will be denoted by I'(w, v).

III. I extend Nevanlinna’s notation and denote by n(2, f) the number of poles
of f(z) which fall in the bounded set 2. (Multiple poles are counted as often as
indicated by their niultiplicity.)

With these conventions, we obtain a natural complement to Theorem 1 of [L].

THEOREM 1. Let f(z) be a meromorphic function of lower order p (0<p<1) and
let

im sup N LU _
(L1 e T )

where & is any fixed set of density zero.
Assume that u and v satisfy

u, lim sup NG, f)

rowirée 1(r, f) =v

(1.2) u<l, v<l
and
(1.3) sin? mp = u?+v%—2up cos mu.

Then, with every sequence {r,} of Pdlya peaks of order u of T(r, f), it is possible
to associate four sequences {wy}, {Nn}, {pm}> and {pm} having the following properties:

(1.4) O<u<m m=12,..), Y —>T as m—> o0,
1.5) pm—> +00,  Iplpp—> +00,  pp/rp—> +00 asm—> oo,
and

(L (@Oms M3 Pms Pm)s L) = o(T(rm, 1)),

(1.6) :
n(y(wm'l'"r’ Mms Pms Pm)s f) = o(T(rm, 1)),

as m — oo,
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Theorem 1 enables us to obtain an asymptotic evaluation of f(z) which leads to

THEOREM 2. Let the assumptions and notations of Theorem 1 be unchanged, and
let s(0) and s(c0) be the quantities defined by [L, (2.4)] and [L, (2.5)], and let
(0 < e< 1 min {o(0), a(0)}) be given.

Then there exists a sequence {w,}, a positive sequence {o,} (0, — +0) and a
constant K> 0, such that

log | f(re®)| > KT(r, f) (0 € T(wn, s(0)/2—¢)),

-7 log |f(re®)] < —KT(r,f)  (0€T(wn+m,5(0)/2—e)),

provided

(i) r — +o0 in the intervals o *rp, <r<ourm;

(ii) r avoids in each of these intervals an exceptional set &, of measure not greater
than o %r,,.

From this theorem we deduce at once that:

The values of r for which the inequalities (1.7) are valid have upper density one.

Theorem 2 and the well-known relations between a function and its derivative
lead to

THEOREM 3. Let f(z) be a meromorphic function satisfying the conditions of
Theorem 1.
Then, if F'(z)= f(2), and if F(z) is meromorphic, it has at most two deficient values.

Theorem 3 is not vacuous because the meromorphic function

ﬁ (1+zn~1»)

: G<p<l
(1 —zn—®+Diw)

satisfies the conditions 8(0, F)=1—sin wp, 8(c0, F)=1 [see for example R. Nevan-
linna, Eindeutige analytische Funktionen, p. 232], and hence, in view of Theorem 2
of [L], u(F")=sin mp, v(F')=0.

This shows that f=F’ satisfies the conditions of Theorem 1.

It might be of interest to investigate whether there exist functions f(z), satisfying
the conditions of Theorem 1 with 0<8(c0, f)<1, and having a meromorphic
integral. I am at present unable to answer this question.

As an immediate consequence of Theorem 3 and [L, Theorem 2] we now obtain
[L, (8)] which I restate for completeness.

If f(2) is a meromorphic function of lower order n (3 <p<1), if 8o, f)=1, and if
A(f)=2—sin wu, then v(f)=2.

Hence any function f(z) satisfying the above conditions has precisely one finite
deficient value =, such that §(r, f)=1—sin =, and f(z)— = has the asymptotic
behavior described in Theorem 2.
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2. Structure of the sets Ey(r,) and E,(r,). Let E denote a measurable subset of
C and let
2.1 y = } meas E.

Consider the function .#(w)=meas {E —I'(w, y)} which is clearly a nonnegative
function of w, defined and continuous on C. Let & be any one of the values of w
such that

M (@) = inf M(w) = y.
weC

We shall say that & is a center of E.

The inequalities 0 < A(w) <2y, A (w) < 2(w—y), are obvious.

If y=0 or y=m, we have #(w)=0 and xy=0 (trivially); in both cases, every
w € C is a center of E. If 0<y <, the inequality y>0 is possible; the quantity x
then represents, in some sense, the total measure of the “gaps” in E.

If y>0 and y=0, we may think of F as being, apart from a set of zero measure,
an interval on C. The following lemma shows that, for functions satisfying (1.3),

the sets E,(r,) and Ey(r,), tend, as m — +oo, toward this ‘“single interval”
structure.

LeEMMA 1. Let f(z) satisfy the hypotheses of Theorem 1, and let {r,} be a sequence
of Pélya peaks of order p of T(r, f). Let

2.2) ¥Ym = 3 meas E(ry).
Then, there exists a sequence {w,} such that
lim meas {E.(rn) — '(wn, ym)} = 0,

2.3) .
lim meas {Eq(rp) —'(wn+m, 7—yn)} = 0.

Before proving Lemma 1 we prove two elementary lemmas.
LEMMA 2. Let E be a measurable subset of C. Then, if w is any value, real or
complex,

zlﬂ L |log |1 —we| | d8 < {log 1+ |w|)+(1 +log* n%sE)} meas E.
Proof. Put arg w+0=¢.
Then
@4) |1—we| = |1—|w]e] = [e=—|w| | 2 |sin 4],
which may be sharpened to
2.5) [T—we®| 2 1,
if w25 |$| <.
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Now
@6) sing| = @Il (4] = =/2)
and hence, if meas E=2" and
2.7 a = min {m, X},

we observe, with Edrei and Fuchs [7, p. 338], that (2.4), (2.5), (2.6), and (2.7) imply

o<1 [ 1og (=
s3], o8 (mg) #

< (g (Z)ap < — [ 10g1d
s ), s (5y) o = [ s
By definition «/27 <" /27 <1, so that (2.8) yields

1
1—we*

1
IE) = 5= [ 1og*

2.8)

A1 A A, (2 1
29) KE)< — fo log#dt = 2 + 2 log (7) < .%’(l+log 7)

We now obtain Lemma 2 by integrating over E the obvious relation
|log [1—we®| | < log (1+|w]) + log* [1/(1—we®),
and using the estimate (2.9).

LeEMMA 3. Let E be a measurable subset of C, and let

(2.10) meas E = 2y.
Assume
2.11) meas {E—T'(0, y)} = 2¢.
Then, if t is restricted to the range
2.12) 71 tLo (1 <0< +o),
we have

N i 4 i0 _i 10 —
@2.13) 2ﬂf_ylogll+te | do 2"L10g|l+te |d8 2 K = Ko, §).

The constant K which appears in (2.13) may be chosen equal to

214 K(o, £) = 2¢ sin? (§/2)/m{4+o(1 +0)%},
which is clearly positive for 0 < ¢ <m/[2.

Proof. Put
@.15) {E-T0,7)} = G, {ENTQO, )} =Gy,

so that E={G, U G}, {G; N G;}=0. Hence, in view of (2.10) and (2.11), we have
(2.16) 0 <2¢ <29 =meas G, < 2(m—y), meas G, = 2(y—n).
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We now use the familiar remark that, for any fixed >0, log |1 +*| is an even
function of 6, strictly decreasing as 8 varies from 0 to =. By (2.15) and (2.16),
this leads to the obvious inequalities:

y—=n
f log |1+t€| d6 < 2f log |1+1¢*| do),
Ga Y
and
y+n 14
f log |1+1€°| do < 2f log |1+1e®| df = 2f log [1+1e"¢*™]| g,
G v y—=n

which, when added, yield

(2.17) f log |1+1te'| df < 2‘[7 log |1+te*| d6—2 J” lo 1+te® o
o E g = o g yen g 1+’e{(9+") .
Consider now the positive function
| 14 |2 . 2t{cos §—cos (6+n)}
(2.18) H(t, 0,7) = | rpg@wn | = 17525 21 cos (91 7)

which appears in the last integral of (2.17). From (2.16) we deduce y+7/2 <7 —7/2,
n/2<y—n/2, and hence

(2.19) cos 8—cos (0+1) = 2sin (0+7/2) sinn/2=25sin% (n/2) (y—n < 0 = y).
Combining (2.18), (2.12) and (2.19), we find

401 sin? (n/2) _ ¢
(s

¢ 4 sin® (9/2)
> 2 ’
log H(t, 8,9) = log (1+) > 1+ = 44o(1+0)?

H(t’ 0, 77)_1 g

Y 4y sin? (9/2)
L_n log H(t, 0,7) do 2 L0 2),
and, since 0< ¢ <1, it is obvious that (2.17), (2.18) and (2.19) imply (2.13) and
(2.14). This completes the proof of Lemma 3.
Proof of Lemma 1. The assumptions of Lemma 1 coincide with those of Theorem
1 so that (1.1), (1.2) and (1.3) hold. Then, in view of assertion II of [L, Theorem 1],
we have

(220) 0 < B = lim y,,,=£cos‘lv=scT.o)<7r (0<cos‘1v§7—27),

where 2y, =meas E,(rn).
Let w,, be a center of E,(r,); we first examine the implications of

2.21) lim sup meas {E,(r,) — INwn, ym)} # 0.
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From (2.21) we deduce the existence of a constant £>0 and of an unbounded
sequence 4, of positive integers, such that

2.22) meas {Eo(rm) — Nwp, ym)} = 2¢ (me ).

Let o>1 be a given, fixed quantity and let a=|ale¥ be any one of the zeros of
f(2) such that

(2.23) o~ r, < |a| £ orp.

In view of the extremal character of the centers w,, the inequalities (2.22)
remain true if w,, is replaced by any other point of C; in particular

(2.24) meas {E,(rn)—TW+m y,)} 2 26 (meA).
The transformation of the set C defined by
2.25) ¢=0—y—m (0€0),

is a “translation’ which leaves C invariant and transforms the subsets of C without
affecting their measures. In particular, the sets E,(r,), ['(¢+m, y,) are trans-
formed, respectively, into sets E,, and T'(0, y,,) and the inequalities (2.24) become

meas {E,—T(0, yn)} 2 2¢  (me A).
Hence, in view of (2.23) and (2.25), Lemma 3 yields
1

2m Eo(rp)

r,,,e

log dé

d0—2 f log‘l+ et

(2.26)

rne'

l+H dé

—K+l f log

(m eM; K= K(09 E))y

where the positive constant K depends on no parameters other than o and £.

There are fi,=n(ory, 1/f)—n(c~1ry, 1/f) zeros of f(z) characterized by the in-
equalities (2.23). Since our assumptions imply the validity of assertion II of [L,
Theorem 1], we deduce from [L, (2.9)] and [L, (2.11)]

~

1 L = —_g—k
(.27 lim o7 pte(o* — "),

We denote by a, the zeros of f(z) and by b, its poles and, in the following inequality,
confine our attention, and our summations, to the zeros satisfying (2.23). Then
(2.26) and (2.27) yield

Z 27 fsw(rm) I 1—_1
(2.28) < }7 f m {Z log

where K, =K(o, é)u(c*—a4).

dé

i0
1+

|aj|

} d8— K, T(rm, (1 +0(1))

(m— +o0, me MA),
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We now examine a proof of Edrei [2, pp. 87-94] and consider, in particular, the
fundamental inequality [2, (2.18)]. With our notations this inequality implies

1 )
m(rn, f) = 5= lo ——=—|df
ns 1) 0<lagsrn 2™ JEatw &
e 15
—_ — log|1—-—|d6
(2.29) 0< |g§ Rm 2” E o (tm) g bj

+15 2= TQRp)+o(T(ry)
(m—>oo, m = %Rma T(I') = T(",f)),

where it is understood that, subject to the restriction R,=2r,, the size of the
error term is not affected by the choice of R,,.

The arguments in [2, p. 90] may be repeated with the following minor modifica-
tion: instead of using [2, (2.20)] to estimate all the terms of the first sum in the
right-hand side of (2.29), we use (2.28) to evaluate the contribution of all the a;
such that o~ 'r, <|a;| S orp.

We thus obtain

T(r,) < 1 f:”{ S log

0<|ajISRm

rpe'

14m
[,]

r. e EL o

14+0me }d0+ ) { lo } d8
|ay| 0 oqggn,,. g

+15 22 TQR)+o(T(rn) — KuiT(r)  (m— +00, me& M, Iy < §Ry),

instead of [2, (2.22)].
In view of (2.20), 0 <y, <7 (m>m,) and we obtain, as in [2],

76w s || " NP, s o) e+ " N o (O)P(t, 71— ym) dt — Kyt T(r)
(2.30) 0 0
+A4 2 TQR)+o(T(rm)  (m— +00, me M),

where 4 (>0) is an absolute constant and the symbols Ny, N, P have the same
meaning as in [2] or in [L, (4.8)].

The main difference between (2.30) and [L, (4.8)] is the presence, in (2.30), of
the negative quantity — K;uT(r,,). The arguments which, in [L], lead to [L, (4.12)]
now yield

(2.31) sin mp < wsin Bu+ v sin (r— B)p — K,yu sin .
Using the Cauchy-Schwarz inequality, as in [L, (5.1)], we deduce from (2.31)
(Kyu+1)sin? mu < w?+ 0% —2uv cos mpu,

and hence, by (1.3), u=0.
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We have thus shown that, if u#0, the relation (2.21) is impossible and therefore

(2.32) lim meas {Ew(rn) — I'(@n, ym)} = 0.

This is the first of the relations (2.3).
From (2.32) and (2.20) we deduce
(2.33) lim meas {E(r,) N TNwy, yn)} = lim (y,) = s(0).
m- m-—» oo

The sets Eq(r,,) and E(r,,) are disjoint by definition so that C may be represented
as the union of three pairwise disjoint sets:

(2.34) C = {Ey(rn) Y Ex(rn) U Ey(ra)}-
Then, by [L, (2.6)]
(2.35) lim meas E\(r,) = 0.

m-— ©

From (2.34) we deduce

meas {Eo(rn) N [(wp, ym)} +meas {Eq(rn) N [(wm, vm)}
+meas {E,(rn) N F(wm, Ym)} = 2Ym

and hence, by (2.33) and (2.35)
(2.36) lim meas {Ey(r,,) N T(wm, ym)} = 0.

Finally, I'(w,, y») and {(z + w,,, #—y,,) are disjoint and their union is C. Therefore
meas {Eo(ry) N (7 + wp, 7—yn)} + meas {Eo(rn) N [(wp, ya)} = meas Eo(rn)
which, in view of (2.36), yields

lim meas {Eo(r,) N T(r+wp,, m—v,)} = lim meas Ey(r,),
and proves the second relation in (2.3).

We have thus completed the proof of Lemma 1 in the case u#0. If u=0, we
certainly have v#0 (by (1.3)) and hence Lemma 1 follows from the consideration
of the function 1/f, instead of f.

3. Arguments of the zeros and poles of f(z). Lemma 1 gives a precise meaning
to step I of the general argument outlined in the Introduction. The following
Lemma 4 clarifies, in a similar manner, step II.

LEMMA 4. Let the assumptions and notations of Lemma 1 be unchanged. Let o
and 7 be given, fixed quantities such that

3.1 l <o, 0 < 7—n < min(s(0), s(c0)).
[5(0) and s(c0) are defined as in [L, Theorem 1]].
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L. Then, if K(o, £) is the constant in (2.14), and if

(32 2K; = K(o, (m—7)/2),

we have

(.3) ziﬂ me log | -i'eéef dh st fo ™ Jog 1+’|"‘7"|w d0—K,,
provided

(3.4 a€ F(wn, ;0" ry, ory)

and m> m;.

The bound mg, which depends on f, {r,}, o and n, holds uniformly for all a satisfying
(3.4).
II. The counting functions of all zeros and poles of f(z) satisfy the relations

(3'5) n(y(wma uB L Orm), l/f) = o(T(rm, f))s
(36) n(y(wm'*'”’ 75 o7y, or, 'm)s f) = O(T(I' 'ms f))’
as m— oo,

Proof. The assumptions of Lemma 4 coincide with those of Lemma 1 as well
as with those of [L, Theorem 1, assertion II]. Hence if {r,} is a sequence of Pélya
peaks, of order u, of T(r)=T(r, ), we see that (2.2) and (2.3) hold and that

3.7 0 < lim 2y, = s(©0) < 27, 0 < lim 2(r—7y,) = s(0) < 2=.
m-» oo m-+ o

Consider the sets
Cm = {Eeo(r m) N F(‘”m; ')’m)}’

(3.8) Cnz = {Ex(tm) = [(wm, Ym)} = {Eo(r, m)— Cmi}s
Cns = {T(@m, Ym)— Ex(r m)} = {L(@n, Ym)— Cm}

and notice that, in view of the first of the relations (2.3), we have

3.9 lim meas C,,; = lim meas E,(r,) = s(0),

m— @

and hence, as m — o0,
(3.10) (meas C,,;+meas Cp3) = ¢, = 0.

Let j' indicate integration of some measurable function defined on C; then, by
(3.8),

(3.11) fEn(rm)—jP(mm.rm) B fcmg—fc,a - Cm-
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In particular, if we apply (3.11) to the function

3.12) log |1—rne®lal  (la| £ ory),

we obtain, in view of (3.10) and Lemma 2,

(3.13) |Ca| < dmepflog(1+0)+1+log(l/ca)}  (m > my(o)).
Now let

(3.14) a = |a|e¥

satisfy the condition (3.4) so that

(3.15) ™! S ry/lal < o,

(3.16) Y =w,+knp (-1l <k=1)

With a suitable choice of m;,(c, ) we may, in view of (3.1), assume
3.17) 0 < m—n < min Qyp, 27—2y,)  (m > my(o, 1)).
The change of variable ¢=60—7— leads to

raet

(.18) J' log | 1="=" | 4p = f log | 1+ | ag,
T(Om, m) (Omo ¥m) |a]

where

(3.19) @y = Wp—p—.

Using (3.16) in (3.19), we find &, = —7—«, and therefore

—T < @y < —m+y f —1<k<0,

m—n S 2rt+@, S fOS k=1L
Hence if wy, is defined by the relations

O = @p if -1 <k<O,
wn =21+&, f0Sk=1,

we always have

(3.20) D(dm, ym) = T(wp, Ym),
with
(3.21) 0<m—n = |wg| S

343

Before applying Lemma 3 to the last integral in (3.18), we require the following

elementary remark:

3.2) meas {T'(wp, Ym) = T(0, yn)} = min {|wn|, 2ym, 2(7—ym)}

(lom| £ 7,0 < yp < 7).
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In order to verify this relation consider the set

(3.23) Y(w) = {[(w, y)-T0, y)},

for y fixed and w variable.
A. First assume 0< 2y <= and, as w increases from 0 to =, follows the positions
of the points w—y, w+y in the interval (—y, 2m—y]. Obviously

a2 26— oo mts] Hop <o n
B. Similarly, if = <2y <2, then
Y(w) = (v, 0+y] if0 < w=2nr—y),
Y(w) = (v, 27—y) f2Ar—y)<w=m

The relations (3.23), (3.24) and (3.25) yield

(3.25)

meas %(w) = meas ¥(—w) = min (|w|, 2y, 2(r—y)) (0| 27, 0<y = 2),

and (3.22) follows.
In view of (3.17) and (3.21) we have

0 < m—n = min (|p|, 2ym, 27—2y,) (M > my(o, 7)),
which used in (3.22) yields
(3.26) meas {L'(wh, Yn)— T, yu)} = 7—7 > 0.
Consider the constant K(o, £) defined by (2.14) and set
2K, = 2Ky(c, 7) = K(o, 3(m—1n)) > 0.
By (3.15), (3.26) and Lemma 3, we find

1
(3.27) 27 Jrwn,rm

rne’

+
la|

1 +'i"e|

log 48 < —2K,+1 f log a8

(m > my(o, 7).
In view of (3.18) and (3.20) the left-hand side of (3.27) may be replaced by
1

rpe'
2m T(wWm, Ym)

log doé.

If we combine the resulting inequality with (3.11), we find

1

1 log r,,.e
(3.28) 27 Jeoomw

rne®
Tal

(m > my(o, 7).

do

do < —2K2+2£"'+ f logl 14+

Now by (3.10) and (3.13)
lim ¢, =0,

m-» o
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uniformly for all a satisfying (3.4). Hence, if m, is chosen large enough, the
inequality m>m, implies m>m,(o, 1), {./2m < K,, and (3.3) follows from (3.28).
We have thus proved assertion I of Lemma 4.

Proof of assertion II of Lemma 4. The parameters o, 7, as well as the sequence
{w,}, are fixed. Explicit reference to all these quantities is unnecessary and we
simplify our notation by setting

Ay = n(y(wmy 75 a_lrmv arm), l/f)-

Assume that (3.5) is false. Then there exists some constant £>0 and some
unbounded sequence 4, of positive integers such that

Ay > ET(r,) (me M)

This yields a contradiction as may be seen by a repetition, with minor modifica-
tions, of the proof of Lemma 1:

(i) start from (2.29). Consider its right-hand side and use (3.3) (instead of (2.28))
to estimate the contribution of the 7, terms involving the zeros of f(z) in

L (W, 75 o7y, ory);

(ii) we are thus led to an inequality such as (2.30) with — K,uT(r,,) replaced by
—K,€T(r,), and finally to

sin 7 < u sin Bu+v sin (7 —B)pu— K€ sin mp

(instead of (2.31)).
Hence £=0, a contradiction which proves (3.5). The relation (3.6) is obtained
by applying our arguments to 1/finstead of /. This completes the proof of Lemma 4.

4. Proof of Theorem 1. Let />2 be a fixed integer. By Lemma 4 it is possible
to determine my; so that m> m, implies

n(y(wm, T l/l; rm/l, Irm)’ I/f)+n(y(wm+”’ 77—1/1; rm/’; Irm)a f) < T(rm)/l'
We then set

(4'1) NMm = m—1/, P:u = I',,,/I, P;:l =lIr,
for
(4.2) m < m =< myya (I = 3, 4, 5, . .).

Theorem 1 is now obvious since the quantities defined by (4.1) and (4.2) clearly
satisfy the relations (1.4), (1.5) and (1.6).

5. Preliminary steps leading to Theorem 2, Let the assumptions of Theorem 2
be satisfied. Since they include those of Theorem 1, the existence and the properties
of the four sequences {w,}, {m}, {pm}, {pm} May be taken for granted. In particular,
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“consider the left-hand sides of the two relations (1.6) and let n,, denote their sum;
by Theorem 1

é.1) N/ T(rp) = 8, —0 (m— +o0, T(t) = T(t, f)).
We define
(5.2 o2 = 3 min {ry/pm, 'm/Rns Pm/Tms Run/Tms 1// 8}y

where R;, and R}, are the quantities in [L, Theorem 1]; by (1.5), [L, (2.7)], and (5.1)
this implies

(5.3) lim o, = +o0,
as well as
. NMpop
(54) oy =
Given e (0 < &< 4 min {s(0), s(c0)}), we define » by the relation
(5.5) m—n = &2,

and from now on write
Fom = S (Wns 0; 05 'y OTm),
Fom = L@+ wp, 0; On I, Oalw),
Ay = {z:05%ry < |2| £ Bra)s
Hom = {Fn—Fom}ps  Hom = {Fn—Fom}-
By (5.2), (5.4), (5.5) and (5.6)

. ((Soms 1)+ (S oms fom _
oim () =0.

We propose to study the asymptotic behavior of f(z) as z— co by values such
that

(5.6)

5.7

(5.8) oty <r S optn (z = re"),
and
.9) 6e r(w,,,, -‘%-e) -T,

Consider the fundamental representation [2, (2.6)]; for our purposes this relation
may be rewritten in the form

log (0 = log | [T (1-2)
1, (-3)

0<lajlSop3rm

—log bl];[ﬂ (I—Ez;)
1, (--3)

0<|bjlSop3rm 1

(5.10) +log —log

+log (le|r?)+ S(z, onrn) (0 <lz]=r= %),
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where ¢ (#£0) and g (an integer) are constants and the “error term” S(z, o2r,,)
satisfies the inequality
r

arznr m

IS(z, omrm)| = 15 TQ2onrm).

By (5.2), (5.8) and [L, (2.9)], it follows that
(5.11) [S(z, o2rp)| < 300,C-YT(r) (m > my).
Since for any nonrational meromorphic function f,
log r = o(T(r, 1)) (r > +o),
it is obvious that (5.3) and (5.11) yield
(5.12) |log (|c|r?)| +[S(z, omrm)| = o(T(r))  (r— +c0).

Let L, (z) denote the sum of the third and fourth terms in the right-hand side of
(5.10). In order to estimate L,,(z) we observe that if |z| satisfies (5.8) and |a| £ 6, %7y,
then |z|/|a| > o,, and therefore

0 < —log2+log(r/|a]) < log|l—z/a| < log(r/|a])+log2  (m > my),
which yields

log

0<lajiSon2rm

1 _‘% < (log2+31log am)"(ar;z’m’ })

(5.13)

+N (a,,', 2F s }) +O(logr) (m — o).

There is a similar formula involving the poles of f(z).
By [L, (2.9)] and (5.8)

(5.149) T(on2r,) < 20;*T(r)  (m > my).

We now use (5.14) in (5.13), and in the analogous inequality for poles, and take
into account [L, (2.10)], [L, (2.11)] and (5.3). This yields

(5.15) L.(2) = o(T(r)) (m — +o0).

Denote by A,(z) the sum of the two first terms in the right-hand side of (5.10);
in view of (5.12) and (5.15) we have

(5.16) log |f(2)] = An(2)+0(T(r)),

uniformly as r — oo in the intervals (5.8).
The next two sections are devoted to the study of A,(z).

6. Bounds for the primary factors. Consider a zero a of f(z) such that
6.1) a = |ale", ae Ao,
and let z satisfy the conditions (5.8) and (5.9).
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By (6.1) and (5.5) there exists a determination of ¢ such that w,+7—s&/2<
Swp+7+¢/2, and by (5.9) w,—5(0)/2+e< 0= wy,+5(00)/2—e.
Hence

(—s(0)+¢€)/2 < 0+m—3p < (s(c0)—¢)/2,

which, in view of the fact that log |1 +te'®| decreases as || increases from O to =,
yields

log| 1-2| = og | 1.+ 7 XR [t m=¥)]
a |al
(6.2) refh
> log l+m (ae Hop, 0€Ty),
where
(6.3) A= (s(0)—¢e)f2, O0<A<m

Similarly, if b is a pole of f(z) lying in X%, and if 8 € I';,, then
6.4) log |1 —re®/b| < log |1—re?/|b] |.
The inequalities (6.2) and (6.4), and our definition of A,(z), yield

A2 > log| T (1+"’“) og| IT (1 "’“)
mlZ) > 10 —_— —lo —_
g a,e.ﬂm lafl g b/Eﬂm |bj|
re* rett
6.5) —log (1+—) ‘ +log (1——)
a;l:?‘[o,,, Ia] ] b;el.;gm |bfl
+l0g| ] (1-03)‘ —log| TT (1-7)| @<t
aeSLom g befom ]

If a € &, and r satisfies (5.8), we have sin A< |1+re/|a| | <205, and hence, by
(5.4) and [L, (2.9)],

rei)\

j A

15,|

+ 2

b,e.?’ wom

< ny(log2+3logoy,) = o(T(r)) (m > my, r— +0).

log

iA
> I log | 1+7&
(6.6) |a;|

aj€Fom

The two last terms of (6.5) are estimated by the following straight-forward
application of the lemma of Boutroux-Cartan: if z € o, and if z avoids finitely
many disks with sum of diameters equal to o, %r,,/2, we have

,1;{ lz-al 2 (g%) (n = n(Som 1/)),
I1

(1+om)
a€Fom

v

VA
1-7 2 Best)™
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The same bounds hold for the polynomial formed with the poles b, (€%,n).
Hence, the arguments used in the proof of (6.6), yield

[1(1=5) ] + e T1(-5)
< ny(log (8e)+4 log o,,) = o(T(r)) (r > ),

provided r (confined to %7,) avoids a set &,,, of measure not greater than o, %r,,.

log

log

6.7)

7. Proof of Theorem 2. Let I,(r) denote the first term in the right-hand side of
(6.5). The elementary identity

(1.1) log 1+

gee{ J‘la, t(z+t) (a #0),

valid if z is not real and negative, shows that

L) = .@e{ f«ﬂrm n(t, 1/f)—n(on>rm, 1/f) dt

(1.2) - DN
7.
o n(amrm, llf) n(am 2rm’ l[f) IhN

and using again (7.1)

O ate(z [ ) dt ) n(or, 111 log

—n(oy%r,, 1)) log|1 (z = re?).
Now log |1+ z/o%ry,| =O(r/s2r,), and
log = log (m"') +o(1),

uniformly as r — +oo0 in the intervals (o, '7,,, o,.7]. Hence, obvious estimates using
[L, (2.9)] and [L, (2.11)] show that (7.3) reduces to

L{r) = @e{ faa:r:' ’i((t -il-/tf)) dt}+o(T(r))

(z=re*r— 4w, o7lr, <r < oury).

7.4)

Rewriting (7.4) in the form

Ii(r) “a'm n(t, 1) T(t) dt
T =% { [ 2, T@) T 1EHD

we obtain, in view of [L, (2.9)] and [L, (2.11)],
11(" ) Tam (t\*
iy = 2elam [ () mf+om
= %e{,u.ue"‘ f _1e“i,\x}+o(1),

+o(1),

7.5)
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as r — +o0 in the intervals (o 'r,, o,rn]. The value of the last integral in (7.5) is
well known to be me™*®~V/sin mu, and hence we are finally led to

[T (++7a)

a;e.ﬂ

= % cos An+o(1).

(7.6) o sin 7y

) ~ () 8

The same method yields
11 (-7 -
T( ) bjel |bfl

Combining (5.16), (6.5), (6.6), (6.7), (7.6) and (7.7) we obtain, uniformly in z,

(1.7 log ”" €08 (m— o).

(18) log /()] = L) 2 fu cos ()= 008 (= ) +o(T()

provided
(i) |z| =r — +o0 in the intervals (r,o5 ", rnoml;
(ii) r avoids the exceptional sets &,, (meas &, Lo0,%ry);

(iii) argz = fe I‘(w,,,, S“T”)-s).

If we choose any K such that

T s(O)p _ep) _ ( _ (00)) ) _
(7.9 O<K<simw(ucos{ 3 2} vcos{n ) 2 =K,
we see that (7.8) and (6.3) imply the first of the inequalities (1.7). We must still
verify that K> 0 since otherwise it will be impossible to find a K satisfying (7.9).
The relations [L, (2.4)], [L, (2.5)] and [L, (2.6)] yield an explicit value of K:
K="t {u sin (s(_oo—)_t_:.)_'_v sin (@) sin £ > 0.
sin 7 2 2 2
The second inequality (1.7) is obtained by considering 1/f instead of f. Our
proof of Theorem 2 is now complete.

8. Proof of Theorem 3. Assume that the Theorem is false. Then there exists a
meromorphic function F(z) of lower order p (0 <p < 1) having at least two finite,
distinct, deficient values 7, 7, and such that f(z)= F'(z) satisfies the conditions of
Theorem 1.

By the elements of Nevanlinna’s theory

m(r, fIF)+m(r, fI(F— 1)) +m(r, fl(F—13)) = o(T(r, F))
8.1)
(r¢é, r— +o0),

where & is an exceptional set of finite measure. It is well known that this relation
implies

8.2) T(r,f) < 2T(r, F)(1+0(1)) (r¢ &, r— +0),



1969] ASYMPTOTIC BEHAVIOR OF MEROMORPHIC FUNCTIONS 351
and also (since the relation [L, (9.3)] is valid with g replaced by F),

N(r, 1[f)+m(r, 1/(F—1))+m(r, 1/(F—13)) £ T(r,f)+o(T(r, F))

¢ (r¢ &, r—> +o).

From the definition of deficient value, we deduce
8.9 m(r, 1/(F—1) > 38(7,, F)T(r, F) (r>ro; k=1,2),
and hence, in view of (8.2) and (8.3), there exist two constants «,, «, such that
8.5 0<wy <T)T(r,F) < kg < +0  (r¢é,r > ro).

Let J be any measurable subset of C such that meas {J}=4e>0; then, by a lemma
of Edrei and Fuchs [7, p. 322, Lemma III],

—l-f log* L
@86 2nJ); % |F—r,

’do - m(r, ;J) < A,TCr, F)e(l+log+ %)

1
F_ T
(I' > rO;k = 1,2)’
where 4, is an absolute constant.
From now on r will be restricted to the intervals (r,,, 2r,,], and {r,,} is the sequence
of Pdlya peaks (of T(r, f)) which appears in Theorems 1 and 2. By [L, (2.9)], (8.5)
and the fact that the characteristic functions are increasing,

8.7 T(Qr, F) < K,I(r, F) (rn <r22rp,réé, m> my);

the constant K, depends only on «,, x, and p.
Using (8.7) in (8.6) we obtain

1 .1
m(r,m,l) < AKT(r, F)e(l+log ;)

Pn<rS2rp,réé,m>myk =1,2),

(8.8)

and choose ¢ (0 < & <4 min (s(0), s(c0))) so small that the right-hand side of (8.8) is
less than

1 min {8(ry, F), 8(rg, F)}T(r, F).
We use this value of ¢ in Theorem 2 and select a sequence {f,} such that
Pn < Fp S 20y, Fnéé, Fnédén (m > my).
This is certainly possible because & is of finite measure and
meas &, < 073, = o(r,)  (m— o0).
The set
Jn = C—{T(wp, $(0)/2—&) U ['(m+ wp, 5(0)/2—e)}

is of measure 4¢ and hence (8.8) and our choice of ¢ and 7, imply

(8.9 My 1(F—7i); ) < 38(7c, )T, F) (k= 1,2).
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Now (8.1), the first relation (1.7) and the elementary inequality

log* |1/(F—m0)| < log* |f](F—m0)|+log* |1/f],
yield

(8'10) m(fm’ 1/(F- Tk); F(wma s(oo)/2—e)) = O(T(Fma F)) (m_) 0, k= 1’ 2)

If we consider the inequalities (8.4) with r=F,, and compare them with (8.9) and
(8.10), we see that for m large enough, there will exist points

Zim = Fm €Xp (iolm)5 Zom = Fm €Xp (i02m)a
such that 6,,,, 0,,, € I'(w, +7, 5(0)/2—¢),
(8.11) |F(zim)— 71| < ¥|ro— 7], | F(zgm)— 72| < H"’z—‘fll-

Let €,, denote the subinterval of I'(w, +m, s(0)/2—¢) having end points 6,,, 0,,,.
Then, the obvious relation

|F(z1m) — F(zom)| = ‘ f S(Fne®)Fne'® db |»
Cm

the second relation (1.7), and the fact that log 7,,=o(T(, F)), imply
(8.12) |F(z1m) — F(zam)| < ¥(r3—71)  (m > my).

The inequalities (8.11) and (8.12) are clearly incompatible. This contradiction
shows that F(z) cannot have the finite, distinct, deficient values r;, 7, and hence
proves Theorem 3.
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