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1. Introduction. In this paper we consider families Fs of analytic functions /(z)

such that the derivatives fin)(z0) ; n=0, 1,2,... all lie in a given finite set S of

complex numbers. Since the value of z0 is irrelevant we shall assume z0=0. If S

consists of a single element j then Fs = {sez}. We shall therefore assume |5|>1.

The family Fs clearly consists of entire functions of bounded exponential type.

It is closed under differentiation and compact under the usual topology of uniform

convergence on bounded sets. This topology is that of the space Sa of sequences of

elements of S; in other words, the topology for which the elements of a convergent

family of sequences are ultimately constant. One could instead consider the

Laplace transforms, thereby obtaining the family Fs of functions whose Taylor

series expansion at 0 has only a finite number of different coefficients.

In an earlier paper [3] Sato and Straus proved that any function fie Fs whose

derivatives at any point z0/0 form a finite set satisfies a differential equation

f(n)(z) =/<m)(z), n^m so that the set of derivatives at every point is finite. In §2

we investigate the value distributions of the functions in Fs under more general

conditions. In particular we show that the closure </>(z0) of the set {/<n)(zo) I n

=0, 1,2,...}, if infinite, has the same cardinality (which is either X0 or 2K°)

at every point z0 / 0 and that for all z0, except for a totally disconnected perfect

set, the continuous mapping from Fs to the set of values Fs(z0) is one-to-one.

In §3 we examine the structure of the sets </> in greater detail, by looking at the

successive derived sets and the order type beyond which the derived sets are the

same. This investigation is essentially independent of function theory and could

equally concern the behavior of the fractional parts of numbers bnx where b > 1

is an integer and x a real number.

A rather striking result in Theorem 3.13 shows that denumerably infinite closed

subsets of the unit interval which are closed under multiplication (mod 1) by an

integer b > 1 must contain an infinite closed set of rational numbers.

Throughout the paper we shall use the following notation:

min    |í|, M = max |í|,
st=S\(0) ses

min       \sx—s2\,       A =   max   \sx—s¡¡\.
si, s2eS, si # S2 S1.S2&S
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1.3. Definition. Let G be a (closed) set, then for every ordinal a we define

Ga inductively by G0 = G, GX = G', Ga+x = G'a, the derived set of Ga and if A is a

limit ordinal then

G* =   D G«.
cc<\

1.4. Definition. The topological order type of a (closed) set G is 'the least

ordinal a = a(G) such that Ga + x = Ga.

1.5. Definition. If G is a set of functions then G(zQ) = {g(z0) \ g e G}.

1.6. Definition. Ns={z |/(z)=0 for some fie Fs, fi¥=0}.

1.7. Definition. A point z0 is a representation point of Fs if the mapping

•Fs -* Fs(^o) is one-to-one.

1.8. Definition. If A, B are sets of numbers then ^4-7i={a-¿z \ae A, be B}.

1.9. Definition. For every fie Fs the set </> is the closure of the set {/<n) | «=0,

1,2,...}.

2. The value distributions of functions in Fs.

2.1. Theorem. Let fie Fs, f not identically 0, and let n0 denote the number of

zeroes of fat 0 while n(r) denotes the number of zeros, z, off which satisfy 0< \z\ <r.

Then

(2.2) „(^log^l+^^-l))

and

n*(r) = n0 + n(r)

(2-3) l     M   2r    I,       2r Ar2 \\
Ú «0 + log2   1+--r   1+--z+,-¡y¡r-—rri+   •))■

°¿ \      m «o+l \     "o + 2   (n0 + 2)(«0 + 3) //

Proof. Inequality^.2) is a consequence of (2.3) and the fact that

2r    /,       2r 4r2 \ ^ „ /,    2z-    4z-2 \        9r    ,
—TT    1+-nï + 7-T^v-F5\+--    = 2r 1+T+T-5+--    = e   ~L
«o+l \     «0 + 2   («o + 2)(«o + 3) / \      2    2-3 /

Now, iff e F s has a zero of order «0 at 0 then

with cn e S, cno + 0. Thus, if zx,..., zn(r) are the zeros of fi—and hence of g—in the

punctured disk 0< \z\ <r, then by Jensen's formula

(2.5) i- P log Ig(2re^)\ dO = log |g(0)\ + log J
¿•rr Jo \zi

(2rT
^71(2^1
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or, as a result of (2.4),

log 2"(r» S log ,}   }_    | S log
\zx---z n(r)| zn(2r)|

(2.6) de
1   f2\     \g(2rew)

< 1     /i    ^ /   2z- 4r2

= 1°8x      m U+l+(«o+l)(«o + 2)
+ '))•

which yields (2.3).

Of course if 0 £ 5 then zz0 = 0.

As a result of Theorem 2.1 we see that there exists a neighborhood, U, of 0

such that no nonzero function of Fs has a zero different from 0 in U. We can find

the best possible bounds for the radius of U that can be expressed in terms of zrz

and M.

2.7. Theorem. Iff e Fs,f£0 then fi(z)^0 for

(2.8) 0 < |z| < log(l+zzj/AF>.

If/has a zero of order zz0 at 0 then/(z)^0 for 0< |z| <z-s(w0) where z" = rs(zz0)

is the positive solution of

(2.9)

In particular,

(2.10)

zrz(z-no/zz0!) = M(er-l-r/l!-rno/n0\).

rJ»\^      w(«o+l)(«o + 2)
rs(n0) >

m(n0 + l) + M(n0 + 2)

Proof. The equations z ̂  0 and

„  . V   CnZ" Z"0  / ,   Cn0 + 1 \ n
f(z)=   >   -V = —-,    cn H-—-rZ-{-     =0

n^„   n] »0    \     °     «0+1 /

lead to

(2.11)

m S \cno\ =
~n0 + l

Z +
cn0 + 2

«o+l       («o+l)("o + 2)
z¿ +

S Me1*1-F
1! «0

n0\

\z\<

Since the right side of (2.11) is an increasing function of |z|, it follows that |z|

^rs(n0) where rs(n0) is the solution of (2.9). To verify (2.10) it is clear that it holds

when r ^ zz0 + 2. If r < n0 + 2 then

m = MH-3^ = M^(1+^ + (n0 + 2)(zz0 + 3)+'--)

-      »o+l fc4o\"o + 2/ «o+l/I     "0 + 2/

leads to (2.10).
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For «o = 0 equation (2.9) becomes m = M(er— 1) leading to

rs(0) = log(l+g)

and for each «0 > 0 we have

m

m m(«o+l)(«o + 2) ,   .
M<«z(«o+l) + A7(«o + 2) <rs^-

Thus \z\ ̂ rs(n0) for any «0 implies \z\ ars(0) which verifies (2.8).

2.12. Corollary. 7//n e Fs,fn^0,fn -> 0 andfin(zn)=0, z„#0, Z«e« zn -> co.

Proof. This is an immediate consequence of (2.10) since z-s(«0) -> co as «0 -> oo

and, as/, -> 0, the multiplicity, «0, of the zero of/ at 0 tends to infinity.

2.13. Corollary. For every value, a, there is a neighborhood UofOso that no

fie Fs which is not identically equal to a attains the value a in U\{0}. The radius

of U can be chosen as

log (1 +m(a)/M) where  m(a) = min {\s—a\ \ s e S, s =± a},

2.14. Corollary. Every point z satisfying

(2.15) 0 < \z\ < log (1 + 8/A)

is a representation point of Fs.

Proof. A point z0 fails to be a representation point of Fs only if/(z0)=g(z0)

for two different functions fige Fs, in other words, if the nonzero function

f—geFS-S has a zero at z0. The corollary now follows from the application of

Theorem 2.7 to Fs_s.

2.16. Theorem. The set Ns of zeros of the nonzero elements of Fs is a totally

disconnected and nowhere dense closed set. If 0 e S then 0 is an isolated point of

Ns. In any case Ns\{0} is perfect.

Proof. The fact that 0 is isolated follows from Theorem 2.7. If zn e Ns and

z„ -> z0^0 then there exist nonzero functions/, e Fs so that/n(zn) = 0 and since Fs

is compact there is a convergent subsequence /„, ->-/0 e Fs. Since {zn} is bounded,

it follows from Corollary 2.12 that/0^0. On the other hand

/o(z0) = Um fn¡(z0) = lim(/,.(zo)-/n,(zn,)) = 0.

Thus z0 e Ns and Ns is closed.

The set Es is perfect so that for every/, e Fs\{0} with/0(z0) = 0, z0 e 7VS\{0} there

exists a sequence /, eFs, /,^/0, /,->/>• By Rouche's theorem all/, sufficiently

near to/0 have a zero, z„, arbitrarily close to z0. On the other hand, zn=£z0 for large

«, since otherwise/,—/) would have a zero at z0 in contradiction to Corollary 2.12.

Thus z0 is a limit point of Ns and Ns\{0} is perfect.
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Now assume that As contains a continuum C (compact connected set consisting

of more than one point). If we divide C into |S|n (not necessarily disjoint) closed

sets of zeros of functions fie Fs with fixed values of/(v)(0); v = 0, 1,..., zz— 1

then at least one of these sets must contain a subcontinuum Cx. Let the correspond-

ing subset of Fs be Fx.

Now according to Corollary 2.12 we can choose n so large that no two distinct

functions which have the same first n derivatives can have the same value at any

point of C\, since otherwise their difference would approximate 0 and at the same

time have a zero in the bounded set Cx. Thus for sufficiently large n the set Fx

must consist of a single function fx which vanishes on Cx and therefore vanishes

identically—a contradiction.

2.17. Corollary. The correspondence /<->/(z) is a homeomorphism between

Fs and Fs(z) whenever z $ Ns_s. That is, Fs and Fs(z) are homeomorphic for all z

except for a nowhere dense totally disconnected perfect set of nonrepresentation

points and the origin.

Proof. The continuity of the mapping Fs -*■ Fs(z) is obvious. Now assume

/n(z) ->• w0, then, by the compactness of Fs, there exists a subsequence f„t -*/0

with f0{z) = w0. Now, unless/,->/o, there would exist another subsequence

fim-^ go ̂ fio- Then g0(z) = w0 and (fo-go)(z) = 0 so that zeNs-s contrary to

hypothesis.

2.18. Theorem. The number of different functions of Fs which attain the same

value at a point z0 # 0 is less than

¿V(z0,S) = |S||2oKi + ¿'«-i.

Proof. If the number of functions is at least ¿V(z0, S) then there must exist

two functions/ geFs with/(z0)=g(z0) and/(v)(0)=g(v>(0) for v = 0, 1,.. .,n0-l

where n0>\z0\(l + A/8)-l so that (f-g)(zo) = 0 and

8(zz0+l) §(zz0+l)(zzo + 2)

|Zo1 =    S + A        8(zz0+l) + A(zz0 + 2)'

which contradicts (2.10) as applied to the set S—S, that is with zzz replaced by S

and M replaced by A.

2.19. Corollary. If G is an infinite subset of Fs then |G(z0)| = |G| for every

z0¥=0.

The continuous finite-to-one map G -> G(z0) of any G<=FS preserves more than

the cardinality of infinite G, it also preserves the topological order types of denumer-

able closed sets.

2.20. Lemma. For any G^FS the derived sets satisfy Gx(z0) = (G(z0))x for any

Zo^O.
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Proof. Assume g„(z0) -> w e (G(z0))x where (g„(z0)) is an infinite sequence with

gn e G. Then there exists a convergent subsequence gn¡ -> g0 e Gx so that w=g0(z0)

e Gx(z0). Thus (G(z0))icG1(z0). Now assume gn -*-g0 e Gx where (gn) is an infinite

sequence. Then, by Theorem 2.13, the sequence (g„(z0)) contains infinitely many

distinct elements so that Urn gn(z0)=g0(z0) 6 (G(z0))i- Thus (G(z0))x^Gx(z0).

2.21. Corollary. For each ordinal a and any G<^FS we have Ga(z0) = (G(zcy)a

for any z0^0.

Proof. By Lemma 2.20 the corollary holds for a= 1. If the corollary holds for a

then

(G(z0))a + 1 = {(G(z0))a)i = (Ga(z0))i = (Ga)x(z0) = Ga+X(z0).

If A is a limit ordinal and the corollary holds for all a < A then

(G(z0))Á =   H (G(z0))„ =   H Ga(z0) = I H GaUz0) = Gdzo).
a<A a<K \a<A /

Thus the corollary holds by transfinite induction.

2.22. Corollary. For every G<^FS and every z0 # 0 we have a(G(z0)) Ú «(G).

Proof. If Ga + x = Ga then

(G(z0))„ + 1 = Ga + X(z0) = Ga(z0) = (G(z0))a.

2.23. Theorem. For every GCFS the topological order type a(G) is denumerable

and Ga{G) is the set of all condensation points of G, which is the maximal perfect

set in the closure G of G. In particular, if the closure of G is denumerable, then

Ga(G> = 0.

Proof. Since (Ga(G))' = Ga(G) it follows that the set is perfect. Since every perfect

subset of G belongs to all derived sets of G it follows that it is contained in Ga(G).

Thus Ga(G) is the maximal perfect subset of G. The set of all condensation points of

G is clearly perfect and every point of a nonempty perfect set is a condensation

point. Now if a(G) were nondenumerable then the set G\GaiG) would be non-

denumerable. By the separability of Fs there would be a neighborhood U of

Ga(G) so that |G\C/|>K0. Hence G\U would have condensation points not in

Ga(G), a contradiction.

2.24. Theorem. If G^FS is closed and denumerable then a(G) = a(G(z0)) for

every z0^0.

Proof. If G is finite then trivially a(G) = a(G(z0)) = l. If ß+l<a(G) then GB is

infinite and hence, according to Corollary 2.19, Gs(z0) is infinite. Since GB(z0) is

compact it follows that (G(zo)),3 + x¥= 0 so that a(G(z0))>ß+l. Now the topological

order type of a denumerable compact set cannot be a limit ordinal since the

intersection of a nested family of nonempty compact sets is nonempty. Hence we
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can  write a(G(z0))=|8+l,  and j8+l<a(G)  would  lead  to  the  contradiction

j8+l<a(G(z0)).

3. On denumerable sets </>. In this section we wish to consider the closure

of the set of all derivatives of a function / in Fs, in particular in the exceptional

cases in which </> is denumerable. It will be convenient to identify the function/

with the sequence (fin)(0)) whose elements are in S. Such sequences in turn can be

identified with numbers in the interval [0, 1] by introducing a basis o=|S| and a

mapping ß(sv) = v — 1 ; v = 1, 2,..., b of the elements of 5 onto the integers 0, 1,...,

b-l. We then let

(3.1) /♦+ C/(n>(0)) -* x(f) =  2 |8(/<»>(0))*--1.
n = 0

The last mapping is not quite one-to-one because of the ambiguity in the expansion

of è-adic fractions. The differentiation operation for / corresponds to the shift

operation for the sequence and to multiplication by b (mod 1) for the real number.

Thus </> corresponds to the closed set invariant under multiplication by b (mod 1)

which is generated by a single point x(f) of [0, 1].

3.2. Definition. To a set Gcfs we assign the measure p{G) = p{x{G)), where

x{G) = {xig) | g e G}, provided the latter measure exists.

3.3. Theorem. For almost all {in the sense of p) functions of Fs we have </> = FS.

Proof. If xif) is normal to the base b then *(</» = [0, l] = x{Fs) and </> =FS.

Of course </> may equal Fs even when xif) is not normal.

It will be convenient to see that the structure of the sets of Fs which we wish to

examine is the same as the structure of the sets we get for S with 2 elements.

3.4. Lemma. Given G<=FS then there exists a G*cF(0,i} which is homeomorphic

to G.

Proof. To each s e S we associate the block B{s) of length ß{s) + 2 consisting

of ß{s) digits 0 and digits 1 at the ends. To each sequence g e G we now associate the

sequence g* e F(0¡1} obtained by replacing each element s of g by the block B{s).

This one-to-one association between Fs and Fg <= FlQ,X} is clearly a homeomorphism.

The correspondence established in Lemma 3.4 will, in general, associate a set G*

which is not closed under differentiation to a given G^FS which is closed under

differentiation. However the behavior of G* under differentiation can be

determined.

3.5. Lemma. If G<^FS is closed under differentiation, then the closure under

differentiation G** ofG*<^FlQX) is

(3.6) G** g G(*0) u (?<*„ u-uC,

where G^-, = G*, each G*> is the union of a finite number of sets each homeomorphic
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to a subset of G where the closures of these subsets are disjoint, and the closures of

G(* and Gfn are disjoint for i=£j.

Proof. Let Gfn for i > 0 consist of the sequences in G* preceded by a digit 1 which

in turn is preceded by i— 1 digits 0. These are clearly all the sequences of F(0>1> ob-

tained by successive differentiation of the elements of G*. The closures of Gfo and

Gfn are disjoint for z'#y since the initial blocks of length b are distinct. Finally each

G(t) corresponds to those elements in G whose initial digit is sß with ß^i. In other

words there are b — i+1 subsets of G with distinct initial digits, the union of whose

homeomorphic images in F{0>1) is G&.

3.7. Theorem. For each G<=FS there is a G*<=F{01) so that a(G) = a(G*). If G

is closed under differentiation then there is a G**<^Fl0¡1) so that G** is closed under

differentiation and a(G) = a(G**). If G is also closed under integration (that is, if

every element of G is the derivative of an element of G) then G** is closed under

integration. For every fie Fs there is anfi* e F{0il) so that a«/» = o¡«/*>).

Proof. The first statement is an immediate consequence of Lemma 3.4 since

a{G) is a topological invariant. The second statement follows from Lemma 3.5

and
a{G) = a(G*) S a(G**) = a(G* U G*X) U • • • U G$ + 1))

= max {a(G*l a(G*x>), ..., *(G(*6 + 1))} = a(G*).

It is clear that G** is closed under integration whenever G is.

Finally, if we define/* by {/}*={/*} then </>** = </*> so that the last statement

of the theorem is a special case of a(G**) = a(G).

3.8. Lemma. For every denumerable closed set Ccf(oa) there exists a closed

G~cF(0ili2}, which is closed under integration, so that

a(G~) = a(G)+l,       G~(G) = {2e2}.

If G is closed under differentiation then so is G~.

Proof. Let G~ consist of the sequences in G preceded by an arbitrary number of

2's and the element 2e2. Then for every ß S «(G) the set Gj consists of the sequences

in Ge preceded by an arbitrary number of 2's and the element 2ez. In particular

Ga~(G) = {2e2} and a(G~) = a(G) +1.

3.9. Lemma. For each sequence of denumerable closed sets Gn^F(0¡X} there

exists a closed, G~ <^F{0iX¡2) such that

a(G~) = (7+1    where   o = sup a(Gn).
n

If the Gn are closed under differentiation then there exists a closed G°cf|01i2) so

that
a(G*) = o + 2,       G;+1 = {2e2}

and G* is closed under differentiation and integration.
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Proof. If o=a{Gm) for some m then the lemma results from Lemma 3.8. If

not, let Gñ consist of the elements of G„ preceded by « digits 2. Then G„ is

obviously homeomorphic to Gn and Gñ nGZ = 0 for «#«z. Let G~ = {JnG¿

u {2ez}. Then G~ is closed, since lim gn=2ez if gn¡ e G¿t and lim «¡=co. Now for

every ß<owe have G£ = \Jn (Gñ)B u {2ez} so that G~ = {2e2} and G^+1=0.

To prove the second part of the lemma associate to each Gn the set Gx<^F{o,x>2>

consisting of 2ez and the elements obtained from the sequences gn e G„ by inserting

« terms 2 between any two consecutive terms of gn and an arbitrary number of

terms 2 before the first term of gn. Then G^ is closed and closed under integration.

Since G„ is closed under differentiation then so is G*. Now

G* = O*} u G;0 uGtiU--

where the second index indicates the number of terms 2 at the beginning of the

sequences. The Gñ¡ are disjoint and homeomorphic to G„. Let an = a{Gn). Then

an is not a limit ordinal and (GJ^-j consists of a finite number of (eventually

periodic) sequences. Thus (G*)a„ _ x consists of 2ez and a finite number of (eventually

periodic) sequences preceded by blocks of 2's of arbitrary length. Hence {Gñ)ttn

= {2e*}anda{Gl) = a{Gn)+l.

Now let G*=U„G;u77 where 77 consists of all sequences of 2's with at

most one digit 0 or 1 in an arbitrary place. It is clear that any convergent sequence

{gn) with «! < «2 < • • •, gni e Gñ, must converge to an element of 77 and that every

element of 77 is such a limit.

Now for each ß < supn a{Gn) = sup„ a(Gñ) we have

G* = U (O* u H
n

since for all sufficiently large « the set {Gn)B is infinite and contains elements whose

initial block consists of an arbitrary number of 2's followed by 0 or 1 followed by

n terms 2. If a = supn a{Gn) we get {G^)a= 0 and G"=H. Now G;+ x = Hx = {2e*}

so that G*+2 = 0 and a{G*) = o+2.

3.10. Lemma. If G is a denumerable compact set then a{G) is not a limit ordinal.

If, in addition, G<^FS and G is closed under differentiation then a{G) is not the successor

of a limit ordinal.

Proof. If A is a limit ordinal and GBj± 0 for ß< X then GA=(~)B<XGB^ 0 since

it is the intersection of a nested family of nonempty compact sets.

If G<=-Fs and a{G) = X+1, where A is a limit ordinal, then GA is finite, consisting

of a finite number of eventually periodic sequences. Let/e GÁ be purely periodic

of period p. For each ß< X the set Gß contains a sequence fgn ->/ and fßn xt GA.

By the periodicity off we have/(£fc + l>-^/<i) for each /=0, 1,.. .,/z-l and k=0, I,

2,.... Pick pN so large that no two elements of GÄ have the same initial segment

of length pN and choose fBn so that it has the same initial segment of length pN

as/ Let the first term mfBn which differs from the corresponding term off be the
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(pN+pk + l)th one. Thenf¡¡pk + t) agrees with/(,) precisely in the first pN terms and

disagrees in (pN+l)st term. In other words, each Gß, ß<X contains an/5 which

agrees with some/a) in the ñrst pN terms but disagrees in the (pN+ l)st term. Since

the /(i) form a finite set there is one / which corresponds to a cofinal sequence of

j8's and hence to all ß < X. Similarly since there are only | S | — 1 choices for the

(pN+ l)st term there is a cofinal sequence of j8's with the same (pN+ l)st digit.

Since Fs is compact, these/, have a convergent subsequence converging to/* e GA

whose initial block of pN+1 digits disagrees with the initial blocks of the elements

of GÁ, a contradiction.

3.11. Theorem. For each denumerable ordinal a which is not a limit ordinal

there exists a closed denumerable G<=F{oa) which is closed under integration such that

a(G) = a. If a is not the successor of a limit ordinal then the set G can be chosen to be

closed under differentiation. The restrictions on a are necessary. For each of these a

we can pick G<^F{0_X_2) so that Ga_! = {2e2}.

Proof. We first construct G^F{0fl¡2). For a=l we can pick G={2e2}. If the

theorem holds for a then it holds for a +1 by Lemma 3.8. If the theorem holds for

all a < A, where A is a limit ordinal, then it holds for A +1 and A + 2 respectively

by Lemma 3.9. Thus the theorem holds for all denumerable ordinals. The necessity

of the restrictions on ce is the result of Lemma 3.10. The fact that all constructions

can be made in F{0,i( was proved in Theorem 3.7.

3.12. Lemma. For every fie Fs the set </>j is closed under differentiation and

integration. If(f) is infinite then so is </>»..

Proof. Let ge(f}x, then g=limfini\ where nx<n2< ■ ■ ■. Thus g' = lim/(n' + 1)

and the sequence (/'"'"1)) has a convergent subsequence which converges to an

integral of g.

If </>! is finite it can be closed under integration only if all its elements are purely

periodic. If </> is infinite then/is not eventually periodic. Therefore/must contain

infinitely many blocks of consecutive digits of some length, /, which are not initial

blocks of any element of </>2. Since the number of different blocks is finite, there

must be some block of length / which occurs infinitely often in/but does not occur

in any element of </>i. This contradicts the compactness of </>.

3.13. Theorem. A denumerably infinite closed subset of Fs which is closed under

differentiation contains an infinite closed subset of solutions of differential equations

ofthe form f(n + p)=/<n) with fixed p.

Equivalently, a denumerably infinite closed set of sequences with elements in a

finite set which is closed under the shift operation contains an infinite closed subset

of eventually periodic sequences with fixed period p.

Equivalently, a denumerably infinite closed subset of the interval [0, 1], which is

closed under multiplication by an integer b > 1 modulo 1, contains an infinite closed

subset of rational points whose denominators are bounded multiples of powers of b.
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Proof. If we call the set in question G, then according to Theorem 3.10 we have

a(G)=ß+2 where Ge +1 consists of a finite number of eventually periodic sequences.

Let p be the common period of the elements of Ge + X and let all elements of GB + X

be periodic from the Ath term on.

Now Gß + X contains (g}x for every geGß and thus, by Lemma 3.12, the set

<g> is finite for every g e Gß. In other words all elements of Gß are eventually

periodic. If g e Gß does not have period p then there exists an MSA so that

g<M+î»(o)^g(M>(o). Thus the initial block of length N+p of g<M~N) does not agree

with the initial block of any element of GB + X. The number of elements of G¡¡

whose initial block of a fixed length disagrees with the initial blocks of all elements

of Gß +1 must be finite due to the compactness of Gß. Hence there exists a finite

number gx, g2,..., gn of elements of Ge such that every g e Gß of period different

from p has derivative of some order equal to some g¡. Thus, if we let F be the least

common multiple of p and the periods of gx,..., gn, then every element of Gß

has eventual period F. The set Gß satisfies the conditions of the theorem.

It is worth noting that closure and closure under differentiation without the

hypothesis of denumerability do not imply the existence of any periodic elements.

For example, there exist sequences fieF{0Aa} so that no two adjacent blocks of

digits are equal [1]. Thus </> can contain no periodic elements. According to

Theorem 3.13 we can infer that |</>| =28°.

3.14. Theorem. For every denumerable ordinal a which is different from 2, a

limit ordinal, or the successor of a limit ordinal, there exists an fie Fs so that </>

is denumerable and a«/» = a. The restrictions on a are necessary.

Proof. If a = 1 we can choose / periodic so that </> is finite and </>*. = 0.

If a> 1 write a=ß + 2. If ß is finite we can pick, by Theorem 3.11, a denumerable

closed Gc/jo,!) which is closed under differentiation and integration and has

a(G)=ß. If /3 is infinite but not a limit ordinal we can pick by Theorem 3.4 a de-

numerable closed Gcf(0,i) which is closed under differentiation and integration

and has a(G)=ß+l. If ß is a limit ordinal we pick a sequence of denumerable

closed G„cf(01) which are closed under differentiation and satisfy sup a(Gn)=ß.

We then let GcF(0il21 be the set G* constructed in Lemma 3.9.

Now let G={gn | « = 1, 2,...} and let gnm be the initial block of length m of

gn. We define the sequence of blocks Bn by Bx =gxx and if Bn=gtj then

•ß„+i = gi + XJ   if i <j,

■ffn+i = gij+i   if i =/

Thus (Bx, B2, B3,.. .) = (gxx, gX2, g22, gX3, g23, g33,...).

Now define / as the sequence consisting of the blocks Bn in succession with n

digits 2 between Bn and Bn + X. Then </>». consists of the sequences of G preceded

by an arbitrary number of 2's and infinite sequences of 2's preceded by an arbitrary

block gi¡. The latter sequences occur in </>»_ since G is closed under integration
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and thus every gif occurs infinitely often as the terminal block of Bn. Thus </>2

consists of the sequences of Gx preceded by an arbitrary number of 2's, of G and

of 2ez. Hence for each l+y<a{G) the set </>2 + y consists of the sequences of

Gx + y preceded by an arbitrary number of 2's, of Gy and of 2e".

In case ß is finite we therefore have

C/Vi = </>i+i = </>2+(Ä-i, = GB.X u {2ez}

which is finite nonempty so that a«/»=jS+2.

In case ß is infinite but not a limit ordinal we have

</>a + i - </>2+w + 1, = {2ez}

so that again a«/»=j8+2.

If ß is a limit ordinal then

<f>,+i = GB + X = {2ez}

so that «<</>)=)8+2.

4. Open questions and concluding remarks. We have seen that there are functions

in Fs which satisfy particularly simple differential equations of the form/(m)=/<n),

«z 7e«. It is easy to see that every solution in Fs of a linear differential equation with

constant coefficients has eventually periodic derivatives, since the solutions of a

linear recurrence equation with elements in the finite set S form a periodic sequence

[2]. It is easy to show that the result holds for functions of Fs which satisfy linear

differential equations with polynomial coefficients. Probably more is true.

4.1. Conjecture. A solution in Fs of an algebraic differential equation with

constant coefficients satisfies/<m)=/<n) for some m^n.

It is possible to generalize these investigations to functions of several variables.

The conditions for the theorems in §2 become more complicated.
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