
ON THE CONVERGENCE OF POISSON INTEGRALS

BY

E. M. STEIN AND N. J. WEISSO

1. Introduction. The object of this paper is to extend two partial results, one

positive and one negative, concerning the a.e. convergence of Poisson integrals on

generalized half-planes equivalent to bounded symmetric domains. These results

involve the distinction between "restricted" and "unrestricted" convergence,

which already arose in the case of domains which are equivalent to product of

half-planes (for this case see e.g. [Z, Chapter 17]). For these special domains there

is restricted convergence for L", p^l, and unrestricted convergence for IS, p> 1.

The L1 result of restricted convergence for various other tube domains was obtained

more recently in [WJ and [S]. The techniques set forth in [Wx] and [S] provide the

starting point of our treatment here.

Turning to the case of the general bounded symmetric domains, the positive

results of [WJ and [W2] show that the Poisson integral of a function/on one of

the domains in question converges restrictedly to/at a.e. point of the boundary if

fie L",p> 1. It is demonstrated below that the condition/G L1 is also sufficient for

restricted a.e. convergence, and that the Poisson integral of a measure has its

Radon-Nikodym derivative as a restricted a.e. limit.

On the other hand, it was essentially shown in [SWW] that for domains of the

above type, there exists p0> 1 such that every LP class, p<p0, contains a function

whose Poisson integral has oo as an unrestricted supremum at a.e. point of the

boundary.

The more complete result proved here is that pQ can be taken to be oo in every

case, except rank one; and that there exists/gL00 with a Poisson integral which

at a.e. point of the boundary fails to converge unrestrictedly to/.

§2 is devoted to a few propositions of a more general nature which are necessary

for the proof of the positive result in §3. The proof of the negative result is con-

tained in §4.

2. Real variable preliminaries. The results given here are necessary for estimates

of the behavior of maximal averages over classes of sets which arise in §3.

Note that the left Haar measure of a (measurable) subset £ of a locally compact

group is denoted by |£|.

The first auxiliary result, a covering theorem, generalizes results of Wiener [W]

and Zygmund [Z, Chapter 17], and is proved by their method. See also [S].
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Lemma 2.1. Let G be a locally compact group andP a compact subset of G of posi-

tive measure. Suppose that {a,}, z>0, is a multiplicative l-parameter group of

automorphisms of G such that atP<^at,P if t<t'. Suppose further that to every point

x of a measurable subset E of G there is associated t(x) > 0 in such a way that

SUp \ccKx)P\   < 00.
X=E

Then there is a sequence {x,} of points of E such that

(i) the translates x¡ • aHXj)P are disjoint ;

(ii) li \aUxi>P\^(CMP)~1\E\, where C depends only on G, and MP=\PP-1P\/\P\.

Proof. The proof is by induction. We write P¡ = al{x¡)P, Rj = x¡P}. To begin,

choose x0 such that t(x0) = T0 = supxeE t(x). (We assume temporarily, here and

below, that sups are attained.) Set F0 = U {x P0 : x-P0 n F0# <z}.

Now let F! = sup{/(x) : x <j. R0}, choose xx^R0 such that t(xx) = Tx, and set

Fi = U{-x'^>i : x-Px n Fj/0}. Continuing this process, we obtain a sequence

of sets, Rx, R2,..., which are clearly disjoint, and whose measures are nonincreas-

ing in the index. If 1¡ \R¡\ = oo, we are done. If not, then \R¡\ -> 0, i.e., t(xj) -> 0.

It thus follows that if xeE is not contained in any R¡, then i(x) = 0, which is

impossible, and so the R¡ cover E.

Finally, it is easy to see that R¡'^XjPjPj1P¡ for ally. Also,

l/VPr^l/l^l = \pp~1p\/\p\ = mp,
and so

ifi s2\rá = MP2\RÁ-
i i

Dropping the hypothesis that the sups are attained is done in the usual way,

and adds only a constant factor to our estimate.

Corollary 2.2. Suppose that G, {a,} and P are as in 2.1. Let fie L1(G) and define

f*(x) = sup\atP\'1 f    \f(xy)\dy.
(>0 JatP

Then for s>0,

\E.\ = \{x : f(x) > s}\ < CMP\\fi\\i/s.

Proof. If x e E$, we can choose t(x) such that

IWI < s-1 f       \Axy)\ dy S s^Wfl.
Jat<x)P

Thus the full hypothesis of Lemma 2.1 is satisfied. Let xx, x2,... be the sequence

obtained in the conclusion of Lemma 2.1. Then

\ES\SCMP2\R,\ = CMP\\f\\x/s,
i

where we have used the fact that the R, are disjoint.
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We express a result like Corollary 2.2 by saying that the transformation/^/*

is of weak-type 1-1, with bound CMP. Weak-type estimates are not subadditive.

For instance, if \{x : gj(x)>s}\ < l/s, j=l, 2, the most that can be said is that

\{x : gx(x)+g2(x)>s}\ <4/s. There is, however, a positive result which is sufficient

for our needs. A related result is also stated in [S].

Lemma 2.3. Suppose that for /'= 1, 2,..., g¡(x) is a nonnegative function on a

measure space for which \{x : g¡(x)>s}\ < l/s. Let {c,} be a sequence of positive

numbers with ]>,- c¡= L ondset K=~2,¡ c¡ log (I/c;).

Then \{x : Jljcjgi(x)>s}\<2(K+2)/s.

Proof. Define

h(x) = gj(x),   gj(x) < s/2,

= 0, otherwise,

Uj(x) = gj(x),   gj(x) > s/2c„

= 0, otherwise,

m^x) = gfcc)-lj(x)-ufcx).

Then l(x) = ^icjlj(x)<s/2 everywhere, and u(x) = ]^cjuj(x) = 0 except on a set of

measure <2/s.

Setting \j(y)= \{x : g¡(x)>y}\, y>0, and m(x) = ~/¿ c¡m¡(x), we have

rsiic.

j m(x) dx = j 2 Cjmjix) = - 2 c¡ J     ' y d\¡(y)

= 2 c, Hy) dy-yXfyi      \< 2 c, y'1 dy+l
Us/2 s/2    J Us/2 JS/2

= A-+L

And, in particular, \{x : m(x)>s/2}\ <2iK+l)/s.

The precise estimate we need is a direct consequence of Lemma 2.3.

Corollary 2.4. Ifgj^0,j= 1,..., N, and \{x : gj(x)>s}\ <A/s, then

N

x ■ N~' 2 Si(x) > s \ 2AC2 + log N)/s.

3. The positive result. The proof of the positive result uses the estimates of

[WJ and [W2] to dominate the Poisson integral of a function/by a certain sum of

maximal averages off. A discrete version of the method of rotations used in [Wx]

and [W2], together with Corollaries 2.2 and 2.4, is then applied to establish the

behavior of these maximal averages. The remainder of the proof is routine.

Finally, the methods of the proof are used to extend the convergence theorem to

Poisson integrals of measures.



3 S E.  M. STEIN AND N. J. WEISS [June

We begin by describing the setting. A generalized half-plane is a space of the

form

D = {(z, w) e Vx x V2 : Im z-«D(iv, w) e ii},

where Vx and F2 are complex Euclidean spaces, ü<=Re Vx is an open convex

cone, and <I>: V2xV2^ Vx is a hermitian bilinear form such that <b(w, w)eil,

w e F2. When D is equivalent to a bounded symmetric domain, the case we

consider here, LÏ is a domain of positivity, i.e., is homogeneous and symmetric,

and <P also has certain homogeneity and symmetry properties. If F2 = {0}, then D

is a tube domain.

The distinguished boundary of D (referred to below as the boundary) is

B = {(z, w) : Im z-<t>(w, w) = 0},

and B is identified with KeVxxV2 by identifying (z, w) = (Re z + i1>(w, w),w)

with the pair [Re z, w]. This identification will be used throughout the paper.

There is a nilpotent Lie group Jf of affine transformations of D, which is also

identifiable with Re Vx x V2. The action of Jf is given by

[x, w]-(z0, H'0) = (z0 + x + 2i<î>(w0, w) + i<t>(w, w), w0 + w),

and the group multiplication by

[x, u']-[x', w'] = [x + x' + 2 Im 0(,v, w'), w + w'].

Jf is transitive on B, and we identify geJf with g-Oe B. The Euclidean measure

on Re Vx x V2 induces a measure on B which is invariant under Jf, and induces

Haar measure on Jf.

There is a Poisson kernel P(u, £) defined onfixD, and the Poisson integral of a

function/on B is

F® = jB P(u, L)fi(u) du.

We are interested in the behavior of F(£) as £ approaches a point ueB. If

u= [x, w} and y e ß, we define

uy = (x + iy+i^>(w, w), w) e D.

If i = uy, £ is said to converge to u restrictedly if y^^O within a subcone of Ü.

More generally, there is a type of convergence which extends the notion of restricted

nontangential convergence. For g=[x, w\eJf, we set |g|=max{|x|, |vy|2}, and

say that £ ->■ u=g' 0 restrictedly and admissibly if £ stays within some

r«(«) = {(g'g-0)y : \g\ <a\y\}

as y -> 0 within a subcone of Q.

Theorem 3.1. Let D be a generalized half-plane equivalent to a bounded symmetric

domain. Suppose that fie V-(B) and that F is the Poisson integral off.
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Then for a.e. ue B, F(Q -*■ f(u) as ^ -*■ zz restrictedly and admissibly.

We assume for now that D is irreducible and that i = uy, where y is restricted

to lie within a subcone Q.' of Ü. This will be shown to involve no loss of generality.

There exist maximal averages of / sums of which dominate F(uy), and we

describe them now. Let t, I, (j), (k) be, respectively, a positive number, a positive

integer, an zz-tuple and an w-tuple of nonnegative integers. There is defined in B

(or Jf) a subset E\mk)l. (The exact definitions are given below.) We set

fmk)i(g) = l^yxwil"1     (       \fi(gg')\ dg,

AmkÁg) = supf,)m(g).
t>o

Lemma 3.2.

sup|£(g-0)a| ÚA22 2-(íií + 2mi2ÁUn(g).
Ken' . r—r   r—1.

Unk) l = 1

Proof. This is Lemma 6.8 of [WJ and Proposition 3.4 of [W2], and only a bare

indication of the proof will be given here.

The idea is to break up the integral

F(gO)y = jrfi(g')P(g'0,(gO),)dg' = [rf(gg')P(g'0,(iy,0))dg'

by breaking up Jf into pieces H\f){k)l which are contained in the E\f){k)l. It is found

that

[sup{P(g' 0,(iy,0)) : g'e H\^k)l}}\E^k)l\ g ¿2-<»'+a"">'2

and this leads to the inequality in Lemma 3.2.

The reason for the exact form of the E[jmh which will be given below, can be

seen in a special case, when D is the tube domain over the cone ü„ of positive

definite zzxzz real symmetric matrices; in this case, Jf and B are realized as the

space of all real symmetric nxn matrices and

P(g'0,(iy,0)) = cn{dety/\detig' + iy)\2Y^^2.

Moreover, if the eigenvalues of g' are rx,...,rn and if>'G Q.'n<^Q.n, we have

\y\n

Pig'O, (z>, 0)) á aPig'O, ii\y\I, 0)) = acn
(\y\*+r?)---(\y\a+r*)

and this naturally leads to a decomposition of Jf according to the size of eigen-

values. In fact, in this case we have

£&x»i = Eli) = {k'^ir,,. ..,rn)k : k e U(n), |r,| Ú 2'd},

where d(rx,..., rn) is the diagonal matrix whose entries are the ru
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The principal result of this section is a weak-type estimate on the f*Kk)i. From

this result and Lemma 3.2, it will be easy to deduce that the transformation

f(u) -> supj,6£2. |F(wy)| is of weak-type 1-1, and then to prove the main theorem.

Lemma 3.3.

\{g ■ f&M) > '}\ < C(l + \j\ + \k\)\\f\\x/s.

The proof is involved, especially in the case of non-tube-type domains. In [Wj]

and [W2], it was shown that the/* can be dominated by the integral over a compact

group of maximal averages on rectangular sets in a Euclidean space. Known

results about these, together with the integral Minkowski inequality, led to norm

inequalities of the type ||/*||B^C|/||P, p> 1.

There is no similar integral inequality for weak-type norms, so we dominate the

/* by sums of maximal averages on rectangular sets in Jf. If Jf, as a group, is

Euclidean (the tube domain case), the behavior of these maximal functions is

known; in the more general case, we appeal to Corollary 2.2. An application of

Corollary 2.4 then yields the desired inequality.

Proof of Lemma 3.3 for tube domains. D is a tube domain if F2={0}. We use the

fact that D can be imbedded in the complexification of a simple compact real

Jordan algebra 91. There is a decomposition e = ex+ ■ ■ ■ +en of the identity of 91

into orthogonal idempotents and a compact group Kofä automorphisms of 91 such

that for a.e. x e 31, there exists ke K such that k(x) = ^ z-te¡, where the rt are real.

(This corresponds to the usual diagonalization in the case of matrix domains.)

For details about 2(, here and below, refer to [Wl5 §5].

In this case, Jf is merely the algebra 21, which is a Euclidean space. If we write

dir) = d(rx,... rn) = 2 ?&,

and define

R[i} = {r : |r,| S 2'<t},

then the F(íí)(fc)¡ reduce to

E\i) = {x = k(d(r)):reR\n}

and

/(f)(x) = sup|F('3,|-1 f    \f(x+x')\dx'.

We wish to express/*, as a sum of maximal averages whose behavior is known.

This is done by covering the group K with N pieces, Kit ..., KN, each having

measure y/N, y^l, and setting

vE\n = {x = k(d(r)) : r e R\ñ, keKp},      p = 1,..., N,

„fi% = sup IpF^I"1 |/(x+x')| dx'.
oo Jj„



1969] CONVERGENCE OF POISSON INTEGRALS 41

It is then clear that

(1) A%(x) úyN~xZ pfi%(x).
p=i

We show that such a covering of K exists which satisfies:

(i) \{x:pf*ix)>s}\<A\\f\\x/s,
(ii) NS2lil"a,

where, here as below, unidentified letters refer to constants which depend at most

on the domain D and which may take on different values in different appearances.

The properties (i) and (ii), taken together with (1) and Corollary 2.4, give the proof

of the lemma in the tube domain case.

An inequality like (i) is known to hold if the averaging takes place over rec-

tangular sets in Euclidean space which are the dilation of a fixed rectangle, with the

constant A independent of this fixed rectangle. (This is also a trivial consequence

of Corollary 2.2.) Therefore it is enough to find a covering which satisfies (ii) and

(i') Every vE¡ñ can be covered by a rectangular set pP¡fí in such a way that

\pP!„\/\pE!„\ < b.

The covering Kx,..., KN is obtained as follows. Let M be the subgroup of K

acting trivially on diagonal elements, and Ï and m be the Lie algebras of K and M.

Then Kx = exp (J?W) + tn), where BU) is a ball in f — m whose radius p depends on (j),

and K2,..., KN are sufficiently many translates of Kx.(2)

By homogeneity, it is enough to show that (i') is satisfied for p= 1 when p is

sufficiently small (p = a2~,il), and then to show that (ii) holds for this value of p.

(For a special case, see [Wb Theorem 4.2].)

The proof requires explicit knowledge of the structure of simple compact

Jordan algebras. It is known that 91 has an orthogonal basis of the form {e¡, s¡k},

i<k, i, k=l,..., n, X=\,..., x- (For details here and below, see [Wl5 §5]. In the

case of the matrix domains, the basis is the obvious one, and y=l, 2, 4 or 8,

respectively, in the case of real, complex, quaternionic and Cayley number matrices.)

Notice that z71 = dim 2( = zz[l + x(zz-1)/2].

Also, ï-m has a basis of the form {Tik}, where T/k = [L(ei-ek), L(sik)], L is left

multiplication in 9Í, and [T,T'] = TT' — T'T. In particular, dim í — m = nx - n.

Computation reveals that if T= 2 o&T^., then

(2)    t{2 ™) = 2 «¿c(^)4,

+2*(^)(2^)}
where the Av are structural constants.

(2) f — m denotes the orthogonal complement of m in f with respect to the Killing form.
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Now the volume of all of Ela) = {k(d(r)) : r e R\fí, Ar e AT} is obtained by integrating

the Jacobian &(r) = cY\i<k \r¡ — rk\'- over Rla). It turns out [Wl5 Lemma 6.7] (but

is not clear a priori) that |£(y)|can be estimated by merely multiplying together

the largest possible values of the r¡ and the greatest possible contribution of F to

the sfk coordinates in (2) as the a*fc range in absolute value from 0 to 1. Specifically,

assuming that j1 St • • ■ >:y'n, we have

(4) |F¿)| ~ (2j1+--+^)(2*["i-1wi + -'-+/'.-ii)î''\

(5) |iF¿,| = |£S,||^|~ |£á>|pB*-B.

(Fi(-)~F2(-) means that aFx()SF2()SbFx(-), where a and b are independent of

the arguments.)

We find the rectangle xP{n which will cover xE/ñ by determining the greatest

possible values of the coordinates of the points in 1£y). Now xE/n consists of all

expT(d(r)) such that \rt\^2jit and TeBUh i.e., T=%aîkT/k with I(i4)2<p2.

Referring to (2) and (3), we find that the greatest possible values of the e¡ and

Siic (i<k) coordinates in

{(l+T+T2/2)(d(r)): \r,\ è 2%TeBw)

are, respectively, multiples of

a, = (2', + p22'i)/,

and

aik = (2>i + p2'"i)p/.

Moreover, higher powers of F only add terms of higher order in p and can be

ignored, so the rectangular set xP¡fí can be taken to have sides whose lengths are

multiples of <7; and oik. In particular,

(6) m ~ n », n (*.*y ~ n (V'+pWi) n (Vi+p^r-^pH-^.
i=l        i<k i=l i=l

Comparing (4), (5) and (6), we see that (i') holds if pS<f2~h, and certainly if

p = a2'uK

Finally, we show that (ii) holds, i.e., that K can be covered by 2m"a=p~"a'

translates of Kx, where q = dim (Í — nt) = nx — n. We do this by appealing to a simple

fact about compact Lie groups. (The application of this fact to a quotient space

presents no problems.)

Lemma 3.4. Let K be a compact Lie group of dimension I with Lie algebra f.

Let Bp be the ball about the origin in I with radius p and let Kp = e\p B„.

Then there is a constant M, independent of p, such that K can be covered by fewer

than Mp~l translates of K0.

Proof. Let B be the ball of radius 1 about the origin in f, and let K=e\p B.

It is clearly enough to prove the lemma for K instead of K. Let A/' be a number to
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be determined, and M = (M'y/l)1; we can cover B with Mp~' balls, {B¡}, of radius

p/M'. Denote by Y¡ the center of B¡, and let x¡ = exp Y¡. We show that for M'

(and thus M) sufficiently large, exp B1<^Knxj; this will complete the proof, since

the Bj cover B.

What we must show is that if \X\ <p/M', then

exp(F, + A') = exp X' exp Y„       X' e B„,

i.e.,

\\og[exp(Yi + X)exp(-Yi)]\ < P.

But the function F(Y, X, t) = \og [exp (Y+tX) exp (- Y)] is analytic in F, X, t,

and £(Y, X, 0) = 0, while the analytic function dFiY,X,t)/8t is bounded for

Ye B, 1^1 = 1 and 0 á t S 1, and so the lemma is proved.

In summary, we have established (i') and (ii) with p = a2~lil. Clearly \KX\ <y'2~1<l

Úy/N, and so we have proved 3.3 in the case of tube domains.

Proof of Lemma 3.3 for type I domains. The nontube domains in which we are

interested fall into two large classes, with the exception of an exceptional domain of

dimension 16. There is a domain of type I for every pair of integers zz, m, with

z?>0, zzz^O; in the realization we consider, Vx is the complexification of the (real)

vector space of zz x zz complex hermitian symmetric matrices, Q is the cone of

positive definite matrices, K2 is the space of zz x w complex matrices, and <I>(h', ai)

= Ww*.

If x e Re Vi, then x = k'1dir)k, k e U(n), where dir) = dirx,..., rn) is the diagonal

matrix whose entries are the r¡. And if we V2, w = ud(s)v, ue U(n), ve Uim),

where dis) is the diagonal-type nxm matrix whose entries are sx,..., sm (resp.

sx,..., sn) if m^n (resp. nfím). We assume for convenience that m Un, the case n

Sm is dealt with similarly.

For every n- and w-tuple, (j), (k), there is defined a decreasing family of

neighborhoods of the identity in U(n),

U(n) = Nmm =>•••=> Nmk)L.

These neighborhoods are defined as exponential images of balls about the origin

in t/(«), and Nimm may be empty for L' ^l^L. Also, the measure of the smallest

nonempty N has measure greater than 2'Q<lil + "c|)a'. (See [W2, §3].)

Recalling the definition of Rt{j)(^En, and defining S{k)<^Em similarly, we define

Euxw = {[x, w] = [k~1dir)k, ud~is)v] : r e R\n, s e Slikl2, ku e NU)(k)l}.

The reason for this complicated definition may be seen by considering the formula

for the Poisson kernel in this case; specifically,

P([x, w], (/>, 0)) = Cnm{det y/\det ix + i[y + ww*])\2}
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And,  for example,  if x = k~1d(2i\y\, 0,..., 0)k,  w = ud(2k\y\ll2,0,

value of P([x, w], (iy, 0)) ranges from

CBm[(22i+(22te+l)2)|y|B]-(B+""

to

Cnm[(22i+l)(22k+l)2\y\n]-'n + m\

depending on ku. We repeat for emphasis the definition

fi*Kk)i(g) = sup lF.V-,,1-1 \fi(gg')\ dg'.
i>0 J^xwi

The idea of the proof of Lemma 3.3 here is the same as in the tube domain case,

that is, we express each/*(Wi as a sum of maximal averages over rectangular sets.

The first step of the proof consists of verifying the analogs of (i') and (ii) for a

covering of K= U(n) x U(n) x U(m). In this case, however, we must prove more,

since the behavior of maximal averages over rectangular sets in Jf is not known,

but must be determined with the aid of Corollary 2.2. (Jf is not a Euclidean

space as a group, but we have for it Euclidean coordinates, so the notion of

"rectangular set" is well defined.)

Fixing (j), (k) and /, a covering Kx,..., KN of K will be obtained by taking

products of coverings of the factors of K. Defining PE'¡mi,p= 1,..., A, as in the

tube domain case, by restricting (k, u, v) to Kv, we find a covering which satisfies:

(F) Every VE/Mk)l can be covered by a rectangular set PP\fíWi in such a way that

Ip°oxfc)i|/\pE(j)(k)iI <b.
(II) NSa2^» + M).

We consider first the case 1=1, deferring consideration of the complications

caused when /> 1 by the restriction ku e NUKkn in the definition of E/Mk)l. Specifi-

cally, our covering of K will be a product of coverings {K,}, {K'fs, {K'¡} of U(n), U(n)

and U(m), respectively. By homogeneity, it is enough to establish (F) for R.x

= Kx x Kx x Kx, a sufficiently small neighborhood of the identity in K, and to

show that K can be covered by A translates of Kx, where A satisfies (II).

Suppressing the indices (j), (k), I, t, we write

jF = {k~1d(r)k e Re Vx : r e R\ñ, k e Kx},

XG = {ud(s)v eV2:se 5^, (zz, v) e K'x x AT}.

Notice that

lEñmi = \E = xFx XG.

We must choose Kx, A|, Kx so that XE can be covered by a rectangular set

xP=xQx XR in such a way that the inequality in (V) is satisfied.

The desired Kx, i.e., one for which döl/li^l <*%> has been found in the proof of

Lemma 3.3 for tube domains, and U(n) can be covered by fewer than a12*i|il

translates of this Kx.

[June

.., 0)r,  the
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The desired K'x (resp. Kx) is constructed by taking the exponential image of a

ball plus a subspace in u(zz) (resp. u(m)). The situation is like that in the tube case.

A lower bound on the volume of XG can be obtained by multiplying together the

greatest possible sizes of the st coordinates in S¡k)2 and the greatest possible sizes

of all the other coordinates in {Xd(s) Y}, where í e S¡k) and X and F lie in balls in

u(n) and u(m), ([W2, §3]). And the volume of XR, the rectangular set which covers

XG, can be bounded above by taking the product of the greatest possible sizes of

all the coordinates in {(1 + X + X2 ¡2)d(s)(l + Y+ Y2/2)}.

The detailed estimates for \XG\ and \XR\ are straightforward but unappealing;

the answer is that for (F) to hold, the radii of the balls in u(zz) and u(m) can each

be taken to be a2~2"c|.

By Lemma 3.4, U(n) and U(m) can be covered by fewer than a22q^m translates

of K[ and Kx, respectively, and so K can be covered by fewer than 2qQií + íkí)a

translates of Kx, and we have established (F) and (II) in the case 1=1.

The situation when />1, in which we must take into account the restriction

ku e NUXk)l, is not much more difficult. We start by restricting the covering of K

by translates of Kx which was found in the case /= 1 to a covering of

{ik, u, v) e K : ku e Numi}.

Problems arise only with Kp = KiXK¡>xK"- for which K¡■ K'v is not completely

contained in NMkn. (In this case, \pPaxk)¡\ = |PPo'xk>i|> while |p£yKk)i| may be smaller

than |p£o)(k>il-) It is, however, enough that

(7) |P, u)eK,xK'v : ku e AWI/I^I W\ > h

Since the smallest NUKkn is of measure greater than 2~9'(ííí + íküa', a covering of the

Kt and K'v by smaller sets of the same form can be constructed which gives us (7)

without violating (II), except for a possible change in the constants a and q.

With (F) and (II) established, we are faced with the final problem of showing

that the transformation

fig)-> pfuKkÁg) = sup \pPtnw\-1 \fi(gg')\ dg'
t>0 VUb.

is of weak-type 1-1 with a bound independent of p, (j), (k) and /.

The automorphisms at(x, w) = (tx, tll2w) and the subset pPuxm of ¿V are

certainly of the form prescribed in the hypotheses of Lemma 2.2. And so to verify

that the weak-type bound is uniform, it is enough to establish

(III) Let P=xPlmm; then \PP-*P\\\P\<C.
Recall the formula for group multiplication on Jr:

[x, w] ■ [£, co] = [x+x' + 2Imww*, w+œ].

In the absence of the Im wco* term, we would have |£P"1£|/P=3V, where v = n2

+2nm = dimJf. Since P=QxR, where Q and R are rectangular sets in Re Vx
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and V2, respectively, we can establish (III) by showing that if w, a> e R, then

|Im ww*\ is no greater than the size of the smallest side of Q. And we saw in the

proof of Lemma 3.3 for tube domains that the smallest side of Q = PQl» is at least

a fixed multiple of 1.

Moreover, Im wa>* = (ww* — cow*)/2i, so

|Im (uwv)(utov)*\ = |Im (zz[hoj*]w_1)| = |Im(vv<«z*)|,

and it is thus sufficient to prove (III) in the case p=l, i.e., at the origin of K.

If (wi}), (coij) are the representations of w and w as zz x m complex matrices, then

Im (wco*) = (t¡íj)/2í, where

m

(8) Vii =   Z   (Wtk&ik-f>ilcWik).
te= 1

Let Wi^w'u + iw'lj, coij = w'ij + iw'"ij, and notice in particular that the sum in (8)

contains no terms of the form w'nco'^ or w'iftx>i{. If p = a2'2W is the radius of the

balls in u(zz) and u(zzz) which determine K[ and K'x, then except for w'}j, w'it, u>'jh w'iU

whose sizes are bounded by multiples of 2M, all of the w', w", to', u>" have sizes

bounded by multiples of 2Mp = a2~w. Therefore |ry(J-| SC, and we have established

(III) and so completed the proof of Lemma 3.3 for type I domains.

Proof of Lemma 3.3 for type III b domains. Domains of type III b, of which

there is one for each positive integer n, can be realized by letting Vx be the com-

plexification of the space of quaternionic hermitian symmetric matrices, O the cone

of positive definite matrices, F2 the space of «-long quaternionic column vectors,

and <S>(w, co) = wco*.

The proof follows the exact lines of the pi oof in the type I case, and all details

are omitted.

Proof of Lemma 3.3 for the exceptional domain. The exceptional domain D can

be realized by taking Vx and V2 to be the ordinary 8-dimensional Euclidean space

over the complex numbers and Q. to be the forward light cone in real 8-space. If

we write £=(x2,..., x8), then 0={(x!, f) : xx> \$\}.

The sets Efm>i depend only on (j) = (jx,j2) and (k) = k, and are given by:

EU = {[(xi, I), w] : |*x| + |f| S 2ht, | |^|-HI | S 2>ar, \w\ S 2«t112}.

The argument used in the type I case can be repeated once more. The properties

(F) and (II) are immediate. In V2 we need only cover the sphere of radius 2kt112

by the obvious cube, while in Re Vx, we can appeal to the proof of Lemma 3.3 for

tube domains to find a covering of K= 50(8) which leads to (F) such that NSa2q]il.

There remains only the verification of (III). For this we use the fact (communicated

to us by A. Koranyi) that the place of <7(zz) x U(m) in the type I case is taken in the

exceptional case by the group F = 50(7) x 50(2). In particular, there is a subspace
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F'<= V2 of real dimension 4 whose image under the action of L is all of V2. L acts

also on Vx, and if u e L,

\$>(uw, uw)\ = \u<ï>(w, co)\ = |3>(h>, cu)|,

and so it is again sufficient to consider the situation at the identity in L.

We have a rectangular set öcRe Vx, whose smallest side is at least a multiple

of 1. We take a neighborhood Lx of the origin in L, determined by a ball of radius

P in the Lie algebra of L, a rectangular set S in V, none of whose sides exceed a

multiple of 2k, and let G be the set obtained by the action of Lx on S. Then G can be

covered by a rectangular set R such that the sides of R are of length less than a

multiple of 2kp, except for the sides corresponding to V, which are of length less

than a multiple of 2k. Since Im 0(w', tu')=0, w', of e V, it follows as in the matrix

case that if w, w e R, then |®(w, cu)| < C22kp. Choosing p = 2~2ka, and covering L

by translates of Lx, we have (III) and still have (II). A final application of Corollaries

2.2 and 2.4 completes the proof of Lemma 3.3 for the exceptional domain, and

thus for all irreducible domains equivalent to bounded symmetric domains.

Corollary 3.5. Let

f**(g) = sup \F(g-0)y\.
seil'

Then

\{g : fi**(g) > s}\ < BWfWi/s,

where B depends only on £2'.

Proof. Define

A(g)= sup 2-^ + 2^f*(kn(g).
axk)i

Then

\{g : fiÁg) >s}\ú   2  \{g ■ /cfcwifc) > 2"" + 2'*»'M|
0)(k)l

¿ c 2 [i+iji+i^nii/ik/^1^2"""4^ cil/11^,
0)(fc)¡

where we have applied Lemma 3.3.

On the other hand, it follows from Lemma 3.2 that

/** g A   2  2-<»'+2»<»'2/jU S A  2  2~<"'+2'™% = A%,
(;')(k)i oxk)j

where A depends only on ii'. This proves Corollary 3.5.

Proof of Theorem 3.1. First of all, the restriction that £ = «,, can be lifted, since

[W2, §3] P(-, t)-¿CaP(-, Uy) if 1 = u'y e ra(u). And the case when D is a product of

irreducible domains can be handled in a standard way, ([Z, Chapter 17], [Wx, §7]).

In each case, the conclusion of Corollary 3.5 still holds.
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Finally, we write / as the sum of a continuous function of compact support

(whose Poisson integral converges everywhere) and a function whose F1 norm is

small. We then apply Corollary 3.5 to show that the set where F does not converge

to/has arbitrarily small measure.

Theorem 3.6. Suppose that p is a finite Borel measure on B whose Radon-Nikodym

derivative with respect to Euclidean (Lebesgue) measure on B isf(u). Let

FU) = jB P(u, l)dp(u).

Then for a.e. ue B, F(t) ->/(«) as £ -> u restrictedly and admissibly.

Proof. By 3.1, it is enough to assume that p is singular with respect to Lebesgue

measure and to show that F(£) —> 0 a.e. on B. We write p = X + v, where ||A|| <e

and v is supported in a closed subset A of B. It follows as in the proof of Theorem

3.1 (Corollary 3.5) that if Fx is the Poisson integral of A, then

\fu : sup |FA(Wj,)| > s\\ < Ae/s.

Letting £ be arbitrarily small, we are reduced to showing that for a.e. ue B,

Fv(0 ^Oasi-^u.

Assume once more that t, = uy = (g-0)y. It follows as in Lemma 3.2 that

\FAg-0)y\ = A 2\     2       l-m+2W),2v\Ui(g)

(9)
1 = 1    V.|/| + 2|fc|<M

+   2   2-<'''+2'*'>'2wWíí)
|3Ï+2|Jc|>M

where

vU)(k)¡(g) - \mw\-1 ¡,   \w(gg"),
""•OWcV

"<V>z(<?) = sup v\mk)l(g).
í>0

Again appealing to Corollary 3.5, we see that the measure of the set on which

the second term in (9) exceeds a given positive number is arbitrarily small if M is

sufficiently large. On the other hand, since the support N of v is closed, it is clear

that each v[%k)¡(g) ->- 0 as y -> 0 whenever g ■ 0 $ N. Since | N \ = 0, the proof is

complete.

4. The negative result. In this section, as before, D is a generalized half-plane

equivalent to a bounded symmetric domain, B is the distinguished boundary of D,

and the Poisson integral of a function / on B is denoted by F.

It was shown in [JMZ] that if D is the Cartesian product of ordinary half-planes

andfe L"(B), p> 1, then F(uy) ->/(«) a.e. on B as y -> 0 unrestrictedly. (This was
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proved in [JMZ] as a corollary to the strong a.e. differentiability of the indefinite

integral of an L" function, p > 1.)

On the other hand, it was shown in [SWW] that if D is the tube domain over the

forward light cone in zz-space (and, implicitly, if D is any irreducible domain of the

type we are considering), then there exists p0>l such that if p<p0, there is a

function/G V(B) such that for a.e. ue B, lim sup F(uy) = oo as y -»■ 0 unrestrictedly.

The more complete negative result is

Theorem 4.1. Suppose that D is irreducible, and D is not equivalent to a hyper-

sphere. (That is, D is not equivalent to a type I domain with n— 1.) Then

(a) There exists fie LX(B) such that for a.e. ueB, F(uy) -f> /(zz) as y^-0 un-

restrictedly.

(b) For every p< oo, there exists f e LP(B) such that for a.e. ue B, lim sup F(uy)

= oo as y -> 0 unrestrictedly.

Remark. If D is equivalent to a hypersphere, then its Q is merely a half-line,

and unrestricted convergence is the same as restricted convergence. Therefore the

positive result holds in that case.

The proof of (a) consists in essence of showing that for characteristic functions

of sets, the convergence problem is equivalent to a differentiation problem, and

then using a construction of Nikodym to provide a negative answer to the

differentiation problem.

The proof of (b) follows from (a) and some general arguments.

Proof of Theorem 4.1(a). We consider first the tube domain case, in which the

Poisson integral of a function is its convolution with the Poisson kernel Py. D

will again be considered as imbedded in the complexification of a Jordan algebra 21.

The quadratic representation [W1( §5] takes an element a e 91 into the linear

transformation Q(a) : x -> 2a(ax) — a2x, and satisfies :

Py(Q(ym)x) = [det Q(j1'2)] - ^(x),       yeCl.

We make use of this in writing

(1)

F(u + iy)-f(u)=  f [f(u-x)-f(u)]Py(x)dx
J ¿X

= ílf(u-Q(yll2)x)-fi(u)]Pe(x)dx= f  + f   ,
J3l Jqn     J^Qn

where QN is the cube of side N about the origin. The second integral is dominated

by 2|/||oo jVo„ Pe(x) dx, which is arbitrarily small for sufficiently large N, and

therefore F(u+iy) -> f(u) as y -> 0 if

f    l/("- Q(yll2)x) -fi(u)\Pe(x) dxeC¡    \f(u- Q(yil2)x) -ftu)\ dx-^O
JQn JQn

as y -> 0.



50 E. M. STEIN AND N. J. WEISS [June

Setting F# = {x : Q(yll2Y1x e On}, the last integral is

C|ß*| IF^I"1 f    \f(u-x)-f(u)\dx,

and we see that for any fie Lm, a.e. convergence of F(uy) to f(u) follows from a.e.

differentiation of the indefinite integral of/with respect to sets of the form Ey = Ey.

(This is an adaptation of the argument used by Koranyi and Stein in [KS].)

On the other hand, iff is the characteristic function of a set, then the integrands

in (1) are always of a single sign; also, Pe(x) is bounded below if |x| e Qx. We

therefore have

\F(u+iy)-f(u)\ = C f   \f(u-Q(yll2)x)-fi(u)\dx
JQi

= C"\Ey\~1 f    \f(u-x)-fi(u)\dx.
Je"

In particular, if a.e. differentiation fails for a characteristic function/ convergence

of the Poisson integral fails for/.

As we shall see, the case of the (unique) irreducible tube domain D in 3-space is

typical. This domain can be realized by letting B = % be the Jordan algebra of 2 x 2

real symmetric matrices and Q the cone of positive definite matrices. The multi-

plication in 91 is given by x ° x' = ^(xx' + x'x), and so Q(yll2)x=yll2xy112, and

Ey = {yll2xy112 : x e Qx}. Suppose that y is of the form

**»*>-$    °y}

Then a simple computation shows that

(2) E' = 11*1   *3) : \xx\ S yu \x2\ S v2, |x3| S (yxy2Yj''
l\x3   xj

Moreover, Ek~'yk = k~1Eyk, and so the most general set Ey is a rotation of a set

of the above form.

Bringing together everything that has been said so far, we see that for /= xh

to fail to be the a.e. limit of its Poisson integral, it is sufficient that the indefinite

integral of/does not have/as its derivative a.e. with respect to sets of the form Ey.

Define the //-density of a point x with respect to the sets Ey to be

\(x+e:) n //|
!/-»0

Then another sufficient condition for the failure of a.e. convergence of the Poisson

integral of xh is that no a.e. point of H has //-density 1 with respect to {Ey}.

Notice now that by (2) and the sentence after it, we can make the statement

S: {Ey} contains a class of rectangular parallelepipeds having one side arbitrarily

larger than the other two and their long axes on the boundary of the cone £2.
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The existence of a set H, no point of which has //-density 1 with respect to the

class of sets mentioned in S, will follow as a corollary to the next result, due to

Nikodym [N].

Theorem 4.2. There exists a plane set H0 which is contained in the unit square

such that \HQ\ = 1 and every point x e HQ lies on an (infinitely long) line lx whose

intersection with H0 is {x}.

The consequence we want is

Corollary 4.3. There exists a set H contained in a unit cube in 3-space such that

| H | = 1 and every point xe H lies on a line Lx which is parallel to some ray on the

boundary of D, and which has {x} as its intersection with H.

Proof. The boundary of the cone Í2 is {(xx, x2, x3) : x% = xxx2, xx^0, x2^0}.

It is a cone whose central axis is the ray p0, xx = x2^0, x3 = 0. Under the linear

change of coordinates x3=x3, xx = x'x + x'2, x2 = x'x — x'2 it becomes a circular cone

in the (x'x, x'2, x3) space. Now let 0* be the plane passing through the origin and

perpendicular to the central axis p0. Notice that every line in that plane, passing

through the origin is the projection on 0 of a line lying in the boundary of Í2.

Consider the plane set, given by Theorem 4.2 as lying in 0, and let H he the

Cartesian product of H0 with the segment of unit length of the ray p0 given by

1 2ï*! = x23:0, x3 = 0. Because of Theorem 4.2, given any xe H there is a line lx

lying in the plane 0*, which meets H0 only at that point which is the projection of

x on 0>. Now let Lx be the line passing through x which is parallel to a line in the

boundary of Í2, and so that the projection of Lx on 0 is lx. Since every plane

section of H, parallel with the plane 0, is identical with H0 it is clear that Lx n ft

= {x}, and the corollary is proved.

Zygmund noted [N, p. 168] that the existence of the set H0 above provides a

negative answer to the question of the differentiability of the indefinite integral with

respect to the class of all rectangles whose center is the origin. We make the same

observation here, calling it

Corollary 4.4. There is a subset H of 3-space such that \ H \ > \ and no point of

H has H-density 1 with respect to the class named in statement S, and in particular,

with respect to the class {Ey}.

Proof. It is enough to let H be a closed subset of H such that | //1 > ^ | //1. Given

xe H, let Lx be the line through x as in Corollary 4.3. Then for any e, it is possible

to find a rectangular parallelepiped Rx (of the class {Ey}) whose center is at x and

whose long axis lies on Lx and has length e, such that \Rxr\ H\/\RX\<%. In fact,

the set A of points on Lx whose distance from x is between e/4 and e/2 lies at a

positive distance from H, and so can be covered by a parallelepiped Rx of the

prescribed form whose cross-sections across A do not meet H; clearly,

\Rxr\H\l\Rx\ <i.
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To summarize, if fi0 = xh, then for every ue H, F0(uy) -(> f0(u) as y -» 0 un-

restrictedly. It is easy now to find/e F°°(F) such that for a.e. ue B, F(uy) -\> fi(u).

Let {rj} be an enumeration of the points in B (identified with 3-space) whose

coordinates are rational. If we denote by H} the translate H+r¡, the desired

function is/=2; 2~íyííí. To see this it is enough to show that the //, cover a.e.

point of B.

We show that every point of F is a point of (ordinary) //-density 1, where

// = U Hj, which is impossible if VH has positive measure. Let h be a point of

density of H; then for all £>0, there exists 8>0 such that if g is a cube about h

with \Q\ < 8, then \Q n H\/\Q\>1— e. Now suppose b e B and let Q' be a cube

about b with | Q'\ < 8. Clearly there is an r¡ such that h + rf is the center of a cube

Q" satisfying Q'<=Q', \Q"\/\Q'\ > 1 -». Finally,

IÔ'n//|/|Ô'| >(lö"n//|/|ö"|)-(|0"|/|ß'|)> l-2£,

and this completes the proof.

We conclude the proof of Theorem 4.1(a) by showing that the case of the

irreducible domain in 3-space is typical. Any other irreducible tube domain (save

the upper half-plane) has dimension greater than 3, and the argument above can

be repeated. The failure of a.e. unrestricted convergence reduces to the existence

of a set H, no point of which has //-density 1 with respect to a class of rectangular

sets which have one side arbitrarily longer than all the others and their long axes

on the boundary of a cone O. And the existence of such a set again follows from

the theorem of Nikodym.

Finally, we turn to the nontube case. The quadratic representation Q(y), y e Q.,

can be extended from Re Ft(=9í) to all of B( =Jf) and still satisfies

P(Q()'ll2)u, (iy, 0)) = [det Q(y1>2)]~1P(u, (ie, 0)).

Suppose now that/= yh., H*^B. Then, with the usual identification of B with

Jf understood, we have

^m = |F([x0, w0]y)-f([x0, ir0])|

=  f   F([x, uz], (iy, 0))|/([x0, w0] ■ [x, w])-f([x0, w0])\ dx dw
Jjf

(3)     =  I*   F([x, w], (ie, 0))|/([x0, h'0] • [Q(j1;2)x, Q(yil2)w]) -f([x0, w0))\ dx dw
JjT

=  f   F([x-2 Im Q(y-112) <D(,v0, Q(yll2)w), w], (ie, 0))

x |/([*o+Q(y1,2)x, H-0+Q(ym)w])-f([x0, woDI dx dw,

where we have used the formula for group multiplication and changed variables

in Re Vx.
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Assume now that the set H* is of the form HxK2, where K2 is the cube about

the origin in V2 of side two. Notice that if w, w0 e Kx, the unit cube in V2, and if

\y\ -iß>0, then w0+ Q(yl!2)w e K2. Moreover, if w, w0 e Kx, then

P([x-2 Im Q(y~112) d>(w0, Q(yll2)w), w],    (ie, 0))

is bounded below for x e Qx, the unit cube in Re Vx, as y -> 0. Therefore, if

w0 g Ki, we can bound Ay from below by integrating in (3) only over Qx x Ku

obtaining:

A, â C f    \xu(Xo+Q(ym)x)-XÁXo)\ dx,
Joi

and we are reduced to the tube domain case. In particular, if //<= Re Vx is the set

which provides the counterexample for the tube domain corresponding to D, and if

H = {(x, w) : x e H, w e Kx},

then for all ue H, F(uy)-f> f(u) as y-»0 unrestrictedly. This completes the proof

of Theorem 4.1(a).

Remark. Since Fiuy) ->/(zz) a.e. as y -> 0 restrictedly, it is clear that Fiuy) can

have no limit as y -*■ 0 unrestrictedly.

Proof of Theorem 4.1(b). Let p<cc. We show first that given any S>0, there

exists an f=f6e LviB), so that supyen¿ F(uy) = <x>, for a.e. ueB, where Q6 =

Q n {\y\<8}. Assume in the contrary direction that sup Vn | £(«„„) | <oo a.e. in u

whenever/ g V, where {yn} is a fixed sequence dense in ü¿. However, iff is con-

tinuous and has compact support, limy. _0 E(uyn) exists for every tz, as long as {y'n}

is a sequence that tends to zero. Thus by a well-known argument (see [DS, p. 333]),

whenever / g V, limyn^0 F(uy.^) exists almost everywhere, no matter what sub-

sequence {y'n} of {yn} we pick, as long as y'n -*■ 0. This is a contradiction with

Theorem 4.1(a), -whenf=xH-

Therefore there exists an fi0 e LpiB) so that supyeQiS |£0("y)| =oo for a set zz of

positive measure. We assume, as we may, that fiQ ä0; and let/= 2 2'%, with/ the

translate of/o byr;. Then as in the proof of Theorem 4. l(a),/GLp(ß) and supyenä Fiuy)

= oo almost everywhere. Denote this/by/, and assume that ||/||p^l. Finally

take/=2"=i 2~jfi6¡, where 8;= l/j. Then for this/we have clearly lim supy_0 F(uy)

= oo, for almost every u.

Concluding Remarks. The following observation may help to put the result

in better perspective. The analog of the Jessen-Marcinkiewicz-Zygmund result

holds for any product of irreducible domains of the type we have considered.

Specifically, if D = Di x ■ ■ ■ x Dk and if y = (yx,..., yk) ~> 0 in such a way that

each y i stays within a subcone Q'j^Qj, then F(uy)->f(u) a.e. on B if fie LP(B),

p>l. This follows from repeated application of the norm estimates in [WJ and

[W2].
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On the other hand, in order for a.e. convergence to hold when / is merely

integrable, it is necessary that the |^| be comparable as they tend to 0, i.e.,

a< \yi\/\y¡\ <a'. That is, y must stay within a subcone of Q.x x ■ ■ ■ x Q.k.
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