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Introduction. According to a classical theorem of Post, the arithmetical sets

may be obtained by the following construction :

Step 0: "take" all the r.e. sets.

Step n+1 : "add" all sets which are r.e. in sets "taken" at a previous stage.

Moreover, this construction is intimately related to the Kleene arithmetical

hierarchy, defined in terms of the number and quality of alternating number-

quantifiers needed to define a set (using a matrix which is a recursive predicate of

integers).

In terms of degrees of unsolvability as opposed to sets, what this construction

amounts to is :

Step n («=0, 1, 2,...): "take" all sets recursively enumerable in sets of the

degree /n)(0).

[Here j denotes the ordinary jump operator on degrees, /0)(0)=0, /n+1)(0)

=A/<")(0)).]
If r is a collection of degrees, we write RU(F) for the collection of all sets

recursive in sets whose degrees are in I\ RU(T) is the smallest class of sets containing

all sets whose degrees are in F and closed under "recursive in".

The arithmetical hierarchy is thus represented by the linear sequence of degrees 0,

j(0),jj(Q),.. -,jM(0),... in the sense that the successive collections

RU({0,j(0),...,j™(0)})

(as n = 1, 2,...) are just the successive levels of that hierarchy.

In extending the hierarchy into the transfinite, we seek an increasing function d

from the ordinals in some section of the countable ordinals into degrees, such that :

(1) d(0)=0.
(2) d(a+l)=j(d(*)).

(3) d(X) is in some sense a least (or possibly an "almost least" if no "least"

exists) bound on RU({d(a) | ot<A}). (For all limit numbers A in the appropriate

section.)

The difficulty in this undertaking lies with clause (3). By a theorem of Spector,

the co-sequence of degrees 0,j(0),jj(0),.. .,/n)(0),... has no least upper bound

(indeed no oj-sequence of increasing degrees has a least upper bound). Thus d(X)

cannot literally be a least upper bound on RU({d(a) | a<A}), even when A = co.
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Thus we are led to seek further conditions to impose on the choice of d(X) which will

make that choice reasonably unique.

Let T again be a collection of degrees. We shall say that a degree d is a uniform

upper bound (u.u.b.) on RU(T) if the class RU(T) is an A-r.e. class of ^4-recursive

sets, where A is any member of d. What this means is that the sets of RU(T) are

not just individually recursive in A, but that the whole collection is uniformly

recursive in A, in the sense that the members of RU(T) may be "Gödel numbered"

in at least one way such that questions of the form "does the integer n belong to the

set with the Gödel number w?" may be effectively answered using A as an oracle.

It is clear that if one A in a degree d (recall that a degree is an equivalence class of

sets) has the property just stated, so does any other member of d: thus the property

of being a u.u.b. is a property of the degree, even though we define it in terms of an

arbitrary representative.

The standard extensions of the arithmetical hierarchy due to Davis, Mostowski,

Kleene, etc., all have the property that the degree dK they associate with any limit

ordinal A is not just an upper bound, but a uniform upper bound, on RU({da \ a < A}),

where da is the degree associated with a in the particular hierarchy.

This suggests modifying clause (3) to read :

(3)* d(X) is a least u.u.b. on RU({d(a) \ a<\}).

Unfortunately, this does not quite work. However, it almost "works" in the

following sense: Call a degree dx an n-least u.u.b. on a class S of sets if the following

two conditions are fulfilled :

(a) dx is a u.u.b. on S.

(b) If d2 is any other u.u.b. on S, d1^Td2).

Then modify clause (3) to read :

(3)f d(X) is an n-least u.u.b. on RU({d(a) \ <x< A}), for some n.

[N.B. This does not guarantee a unique choice of d(X), but any two choices dlt d2

at the same A will at least be arithmetical in one another.]

A function d satisfying (1), (2), and (3)f will be called an admissible degree

hierarchy. The question which motivated the present paper is: how far do admissible

degree hierarchies extendí

The answer, surprisingly, depends on the notion of a ramified analytical set. The

ramified analytical sets of integers are just the sets definable m predicative analysis,

provided the cumulative "orders" of predicative analysis are extended into the

transfinite through the classical ordinals (a precise definition occurs later in this

paper). Paul Cohen showed in [C] that there is a countable ordinal, here called ß0,

such that no new sets are obtained in predicative analysis past the "order" ß0.

(In other words, if Aa is the ath "order", every ramified analytical set belongs to

some Aa with a<ß0.)

The ramified analytical sets thus have a certain analogy to the "constructible"

sets of Gödel [G]. However, Aa+1 consists of just the sets of integers definable

over Aa by a formula of 2-N.T. (2nd order number theory), whereas Aia+1 (the
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(a+ l)st "order" in predicative set theory, or the hierarchy of "constructible sets")

consists of all sets (not just the sets of integers) definable over Ma by a formula of

set theory. (The difference is crucial, as there is no ordinal a such that all con-

structible sets belong to Ma, whereas there is an ordinal a—namely ß0—such that

all ramified analytical sets belong to Aa.)

The main result of the present paper is that there is an admissible degree hierarchy

defined on 2(/J0), the section of the ordinals by the ordinal ß0, and no admissible

degree hierarchy defined on 2(j80 + l). Moreover, the ramified analytical sets are

precisely the sets for which we can obtain degrees of unsolvability in an admissible

degree hierarchy.

In future papers we plan to show that this result is "best possible" in the sense

that the "for some n" in clause (3) cannot be replaced by any fixed n without

reducing the ordinal at which there ceases to be a hierarchy. This phenomenon will

be shown to be connected with the existence of ordinals ßM<ß0 at which Ag(n)

is a model for the «-quantifier comprehension axioms of 2-N.T. (for each fixed «).

We also plan to show (in joint work with Joan Lukas) that there are arith-

metically-minimal systems of notations containing notations for all ordinals < ß0,

but no arithmetically-minimal system containing a notation for j80 itself. [The

notion of a minimal system was defined by Enderton in [E]. The definition of

arithmetically-minimal is similar, with "arithmetical in" replacing "recursive in".]

It is striking that two different approaches to the problem of extending the arith-

metical hierarchy—the approach via "arithmetically-minimal systems of notations"

and the approach via "«-least u.u.b."—lead to the same "stopping point" ß0.

Paul Cohen conjectured in [C] that the ramified analytical sets form the minimal

/3-model for analysis. We include a proof of this result (which follows easily from

our main theorems) as a final section of this paper. This result was first obtained

independently by Gandy and by Putnam who plan to publish a joint paper [GP].

Notations not specially explained are standard recursive function theory or

logic. We write |a|0 for the ordinal for which a is a "notation", when aeO.

1. Admissible degree-hierarchies. Kleene and Davis [D] extend the arithmetical

hierarchy by assigning a set Ha to each ordinal notation a from the Church-Kleene

system, S3, by the following induction :

(a) Hx=0.

(b) If 2a e O, then H2° =j(Ha)={x | (3z)F"«(x, x, z)}.

(c) If 3-5eE0, then H3.5' = {x\ (x)0e He(x)i}, where, in general, ey={e}(y0)

where 00 = 1 and (n +1)0 = 2"o.

By the Spector "uniqueness" theorem [S], we know that if a, beO, and \a\0

= \b\0, then Ha=THb; thus the hyperarithmetical hierarchy is an ordinal hierarchy

of degrees of unsolvability. Let £h.a. be the function on 2(0^) = the section of the

ordinals by uix (the first nonrecursive ordinal) such that Dh.aX«) = deg (Ha), where

aeO and a=|a|0.
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Definition 1.1. Let T be a collection of degrees; then

RU(T) = {S | S is recursive in some element of T}.

Definition 1.2. Let A be a set and A be a countable collection of sets. Then A is

a uniform upper-bound (u.u.b.) to A iff A is an ^(-recursively enumerable collection

of ,4-recursive sets, i.e., iff there is an /4-recursive function / such that the class of

partial functions {{f(n)}A}neN is exactly the class of (total) characteristic functions

for the sets in A.

Definition 1.3. If T is a collection of degrees, de T, and n e N, then d is an

n-least member of T iff d is recursive in jM(e) for all eeT, where j represents the

jump operator and we take/0)(e) = e.

The function 7J>H.A. on S(toj) has the following properties :

(0 L>H.A.(O) = deg(0).

(ii) DH.A.(a + \)=j(DH.A.(*)).

(iii) If A is a limit ordinal, then DH.A.(A) is a 2-least u.u.b. to RU {DHA (a) | a<A}.

[In an unpublished paper, Enderton and Putnam show that if |e|0 = A, then He is

recursive in the jump-jump of every set in which all sets in RU{DH.A.(a) \ <x< A} are

recursive. That is, if d is the degree of any upper-bound (not necessarily uniform) of

FÍ/{Dh.a.(«) | «<A} then DH.A.(X)gd". Thus for A<tol5 DH.A.(A) is a 2-least

upper bound on RU{DH.A.(a) | a<X}. That 7J>H.A.(A) is a 2-least uniform upper

bound follows from the fact that77e is a u.u.b. on RU{DKA(a) | « < A} if |e|0 = A.

This also follows from [HP], where Hensel and Putnam showed that DH.A.(A) is a

least nice bound on FC/{Dh.a.(°0 | «<A}. Here it is enough to notice that, since

the predicates {{x}A is the jump of {y}A} and {{x}A is the cartesian product of {y}A

and {z}A} are both expressible in 2 number quantifier form in A, if A is a u.u.b. on

any family of sets, then j(j(A)) is a nice bound on the same family (cf. [HP],

Definition 3 and Theorems 2 and 3, pp. 72-75).]

We generalize these properties of the hyperarithmetical hierarchy to obtain the

following more general notion :

Definition 1.4. Let ß be a nonzero ordinal and D a function from S(j8) into the

family of degrees of unsolvability. Then D is an admissible degree-hierarchy

(a.d.h.) on 2(jS) iff:

(i) Z)(O) = deg(0).

(ii) D(a+l)=j(D(cc)).

(iii) If A is a limit ordinal, then there exists an integer ne N such that D(X) is an

n-least u.u.b. to RU{D(a) \a<X}.

Definition 1.5. Let D be a function from2(j3) (ß>0) into the family of degrees

of unsolvability, and let S be any set of integers. Then D is an ¿'-admissible degree-

hierarchy iff: D satisfies the conditions of Definition 1.4, with  condition  (i)

replaced by condition (i)' :

(i)' 7)(0) = deg(S).

We now establish some facts about a.d.h.'s.
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Lemma 1.6. Suppose the following are true:

(i) A is a limit ordinal.

(ii) D is an S-a.d.h. on 2(A).

(iii) deg (S') is an n-least u.u.b. to RU{D(a) | a< A},

(iv) D' is an S'-a.d.h. on I,(ß)for some ß>0.

Then D* is an S-a.d.h. on 2(A+/3), where

(a) IfOía<Á, D*(a) = D(a).

(b) If 0^a<ß, D*(X + a) = D'(a).

Proof. Obvious from Definition 1.5.

Lemma 1.7. Let S be any set of integers, and let Dx and D2 be S-a.d.h.''s on 2(/?).

Then for all limit ordinals X^ß,

RU{Dx(a) | a < A} = RU{D2(a) \ a < A}.

Proof. We proceed by induction on A. The first case to consider is X = w, but

Dx\oi = D2\o>, and the result is immediate.

Now suppose that A is a limit ordinal, A <; ß, and the result holds for all smaller

ordinals. One of two cases obtains :

(i) There is a largest limit ordinal A* < A. If this is the case then, by the induction

hypothesis we have

RU{Dx(a) | a < A*} = RU{D2(cc) | a < A*}.

Let dx = Dx(X*), d2 = D2(X*). Then dx and d2 are respectively nrleast and n2-least

u.u.b.'s to the same set, so dx ̂  Tfni)(d2) and d2 fk Tfn2Xdx). But since

RU{Dt(a) | a < A} = RU{fn\dt) \neN}       i = 1,2,

it is immediate that RU{Dx(a) | a<X} = RU{D2(a) | a< A}, as required,

(ii) A is a limit of limit ordinals. If this is the case then, of course

RU{Dt(a) | a < A} =      (J     RU{Dt(a) \ a < ß}       i = 1, 2;
Utnß.ßOi

but by the induction hypothesis RU{Dx(a) \ a<ß} = RU{D2(a) | a<ß} for all limit

ß< A, so again we have RU{Dx(a) \ a<X} = RU{D2(a) | a< A}.

Lemma 1.8. Let D be an a.d.h. on 2(0^); then RU{D(a) \ a<œx} = H.A. = the

family of hyperarithmetical sets.

Proof. We already know that the a.d.h. DH A has the property that

RU{Dh.a.{<x) I ce < cuj} = H.A.

If D is any other a.d.h. on 2(0^) then we know from Lemma 1.7 and the fact that

wx is a limit ordinal that

RU{D(cc) I a < «J = RU{DH.A.(a) I a < wj = H.A.
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The following relativized form of Lemma 1.8 is also useful:

Lemma 1.9. Let D be an S-a.d.h. on £(tof) (tof — the least ordinal not recursive

in S). Then RU{D(a) \ a <wf} = H.A.s = the family of S-hyperarithmetical sets.

2. The ramified analytical hierarchy. In [K] Kleene considers a family of

subsets Aa of the power set of the integers defined as follows:

Definition 2.1. A0={S<=N \ S is arithmetical}.

Aa+1={S<=N | S is definable over Aa in 2nd-order number theory (2-N.T.) with

set constants representing sets in Aa}.

If A is a limit ordinal then AÁ = (Je<!l. Aß.

Kleene carries this construction only as far as constructive ^ (by induction on

S3), but the construction obviously generalizes to all the classical ordinals. It is

obvious by a cardinality argument that there must be some ordinal ß such that

AS+1=AB. Let ß0 be the first such ordinal. In [C] P. J. Cohen showed that ß0 is

countable (essentially by carrying out the construction of the sets Aa in a countable,

transitive e-model of ZF set theory and showing that Definition 2.1 is " absolute "

in the sense of Gödel [G]).

Definition 2.2. S<= N is ramified analytical just in case S e Aa for some a. We

will also use "R.A." to denote the family of all ramified analytical sets.

The condition ABo+1=ABo means that R.A.=Aßo is an to-model for analysis

(i.e., R.A. satisfies all the 2nd-order comprehension schemata). An to-model 9JI is

called a /S-model just in case the predicate "(«)[<* is not an infinite descending path

in R]" holds of a linear ordering R in 90Í only when R is actually a well-ordering.

Cohen conjectured in [C] that R.A. was the minimum jS-model for analysis. This

result has subsequently been proved independently by Gandy and Putnam [GP].

We need to establish a large number of facts about the sets Aa and about the

a.d.h.'s. Some of these facts are very obvious, and we shall simply note them,

omitting altogether the proofs. Other facts are rather deep and demand, for a

rigorous proof, a certain amount of tedious and obscuring detail. For these latter

facts we shall attempt to supply enough of a sketch so that the interested reader

may see what sort of detail could be filled in to give a complete proof. Our intent

here is very much like that of other authors in the field of recursive function theory

who use "Church's Thesis" throughout their proofs, in order that the reader may

follow the main ideas of the proofs more easily.

Lemma 2.3. For all a, ß:

(i) If S g Aa and T is arithmetical in S, then T e Aa.

(ii) Ifa<ß then Aa<=Ae.

Definition 2.4. Suppose A<=N is such that

(3«)(x)[x g A => seq (x) A lh(x) = «];
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then we say that A is an n-ary relation-set. The w-ary relation on integers corre-

sponding to an n-ary relation-set A is

{(xx,..., xn) | <x1(..., xn> = />gi+1 ■ ■ -p^1 e A}

(where pt = the ith odd prime;/>0=2).

If A is an (n + l)-ary relation-set such that

(x1(..., xn)(3!xn+1)[<x1;..., x„, xn+1> e A]

then we call A an «-place function-set.

If A is a 2-ary relation-set whose corresponding 2-ary relation is a well-ordering,

then we say that A is a well-ordering, and by ¡|^|| we mean the ordinal which is the

order-type of the well-ordering corresponding to A. Similarly, we say x e Fid (A)

if x is in the field of the relation corresponding to A, and if A corresponds to a

well-ordering and x e Fid (A), then by \x\A we mean the ordinal which is the order

type of the segment determined by x in the well-ordering corresponding to A.

We will sometimes say that a relation-set (function-set) represents the corre-

sponding relation (function).

Definition 2.5. Suppose A is a 2-place function-set, representing a function/

f: NxN^{0, 1}; then SA = {x \f(i, x) = l}. Thus a 2-place function-set A can be

used to represent in a unique way a countable collection of sets {Sí4}^.

Suppose A is a 2-ary relation-set which represents a linear ordering, and F is a

3-place function-set representing a function

f:F\d(A)xNxN^{0, 1};

then for a e Fid (A) B5f = {x \f(a, i, x) = 1}. Such a set B "represents" in a natural

way a linearly ordered collection (indexed by elements of Fid (.4)) of countable

families {BSi}i£N of sets.

Lemma 2.6. There is a relation R(X, Y) hyperarithmetical in the sets X and Y,

such that for any 2-place function-set A, there is a unique 2-place function-set B

such that R(A, B), and such that ifR(A, B) then the family of sets {Sf}ieN is exactly

the family of all those sets which can be defined over the family {Sf}ieN in 2-N.T.

with set constants from {Sf}l£N. In particular, for any 2-place function-set A, the

set B such that R(A, B), and each of the sets S?, i e N, are hyperarithmetical in A.

Proof. Set quantifiers and set constants over {Sf}leN can be expressed as number

quantifiers and number constants before a matrix arithmetical in A. The method is

illustrated by the following example : The formula

(cc)F(3ß)F(y)F(3x)   (xeav xeßv (yey-+xe S^)),

where "F" denotes the family {S;4}^, defines the same set of y as the ^-arithmetical

formula

(i)(3j)(k)(3x)(f(i, x) = 1 V /(/ x) = 1 V (f(k, y) = 1 ̂ /(17, x) = 1)),
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where f(x, v)=z = df2* + 13!/ + 152+1 e A. Thus the sets definable by formulas of

2-N.T. over F={Sf}ieN (possibly using the constants "Si", "Si",... for members

of F) are uniformly recursive in the set of (Gödel numbers of) arithmetical truths

about A. The lemma follows from the fact that the relation Tr (X,y) = {y is the

Gödel number of a true sentence arithmetical in X} is hyperarithmetical in X.

Lemma 2.7. There is a hyperarithmetical relation CONSTR (X, Y) such that if

A is a 2-ary relation-set representing a well-ordering, then there is a unique B such that

CONSTR (A, B) and B represents a function /: Fid (A) x N x N -» {0, 1} such that

if a e Fid (A) then Aa = {BSi}ieN, where a=\a\A. In particular B and each of the sets

BSf, a g Fid (A), i e N, are hyperarithmetical in A.

Proof. Let R be the relation introduced in Lemma 2.6. We define CONSTR (X, Y)

as follows:

CONSTR (X, Y) iff:

(i) I is a 2-ary relation-set which represents a linear ordering with least

element and

(ii)  Y represents a function/: Fid (X) xNxN-+{0, 1} and

(iii) if x0 is the A'-least element of Fid (A'), then R(0, {YSxo}ieN), where <j>

denotes the constant 0 2-place function-set, and

(iv) if x' g Fid (X) is the .^-successor of x g Fid (X) then

R({ySf}leN, {yS?}ieN) and

(v) if x g Fid (X) is not the Z-least element of Fid (A'), nor a successor in the

relation < x corresponding to X, then

(a) YSX= 0 if z'tK«, a) for all n e N, a e Fid (X), a<xx or

(b) YSxn¡a> = YS%ifneN,ae Fid (X) and a < xx.

It is easy to see from the fact that 7? is hyperarithmetical, that CONSTR (X, Y)

is also hyperarithmetical. Existence and uniqueness of Y follow by induction on

M.
We close this section with a result of Kleene [K].

Lemma 2.8. SeAaioSe H.A.

Proof. => : Suppose S e Aav then S e Aß for some ß < wv Let A be a recursive

2-ary relation-set such that 1¡A\\ =ß+1. Then by Lemma 2.7 S is hyperarithmetical

in A, but, since A is recursive, S is hyperarithmetical.

<=: One can show by induction on \a\0 that if ae O, |a|0 = a, then 7/a e Aa+1. In

fact, if "to(a)" is a notation in O for to(l + a), then HmW eAa+1, and so does

77m(a)+0n0, for all n. Namely, suppose this holds for /S<o:<to1, and consider Aa+1.

By the induction hypothesis, and the fact that As+1^Att, the sets Hb for b<0w(a)

all belong to Aa. Let to(a) = 3-5u. Then Ha{a3 = H3.^ can be defined over Aa thus:

xeH3.5-o(x)0eHUMi

o(3ß)Aa((x)0eß&A(u(x)l,ß)),
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where A(e, ß) is the arithmetical predicate which (for e e 0) is satisfied only by the

set He. Thus Haia) e Aa+X. Since the Aa are closed under "arithmetical in", it

follows that Aaia)+ono e Aa+X, for all «. [One can also show that Aa+X = the family

of all sets arithmetical in HaM for any a e 0 such that |a|0 = a, but we do not need

this here.]

3. The main theorem and main lemma. By Lemmas 1.8 and 2.8 we see that if D

is an a.d.h. on 2(j8), ß^(ox, then RU{D(a) \ a < ujx} = Aai = H. A. Thus the admissible

degree-hierarchies and the ramified analytical hierarchy "pace" each other out to

(ox. We shall show that they pace each other "all the way out."

Definition 3.1. Let D be an a.d.h. on 2(j8), then D is complete if D cannot be

extended to an a.d.h. on 2(a) for any a>ß.

Theorem 3.2 (The Main Theorem), (i) Let D be an a.d.h. on 2(/J), then D is

complete iffß = ßo-

(ii) There exists an a.d.h. on 2(/?0), and for any such a.d.h. D, RU{D(a) | a<ß0}

= R.A.

The rest of this paper will be devoted to proving Theorem 3.2. The proof falls

into two distinct halves. First we show that for various ordinals ß the equation

RU{D(a) | a<ß} = Aß holds, and in particular that it holds for ß=ß0. Second we

show that any a.d.h. on 2(j80) must be complete ; in fact, we show that if 50c is any

countable to-model (in particular if 931=^ u {D(a) \ a < ß0} = R.A.), then not only

is there no n-least u.u.b. to 501, but there is not even a u.u.b. to 501 which is arith-

metical in every such u.u.b. In the rest of this section we prove some preliminary

results and state the Main Lemma essential to the proof of the first half of Theorem

3.2.

Definition 3.3. Let S be any set of integers. We define 0(i),s, (o(xl),s as follows:

Om-s = 0s, cox°>-s = tuf,

0(n + l).S _  QO<n).s^     w(n + l),S = a^»Wi

Thus toi"-s=l.u.b. {|a|o"'-s \aeOm's}. Let coi°-s=l.u.b. {cof-s \ ie N}. For S

e deg ( 0), we write (o[0, Oa\ tof for (o(xhS, Oins, oox-s respectively. By convention we

set 0<-«'8=S.

Theorem 3.4. Let S be any set. Then there is an S-a.d.h. on 2(<o5°,s) and for any

such S-a.d.h. D onZ((o?-s):
(i) RU{D(ß) 118<<o(1n)-s}=H.A.0("-1>-s

(ii) 0M-S is a 2-least u.u.b. to RU{D(ß) \ ß<(oxn)-s}.

Proof. By Spector's hyperarithmetical quantifier theorem 0(n),s is definable in

the form

X E 0<">-s = (3a)^A,0in-iy.s(z)R(a, z, x)

with R recursive in Oln~1),s. But this means that 0<n),s is definable with two number
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quantifiers over any u.u.b. to H.A.0<n"1),s. Thus it is recursive in the second jump

of any such u.u.b. Since 0<n),s is certainly a u.u.b. to H.A.0'""1''5, it is a 2-least

u.u.b. to H.A.0'""1''5. By Lemma 1.9 we have that

RU{D(a) | a < to«»-8} = H.A.0'"1'-3,

and the theorem now follows by induction on n, using Lemma 1.6 and the fact that

if D0 <= L\ <= ... <= A <= ... is a nested sequence of S-a.d.h.'s on S(co(1i),s), respectively,

then D* = (JieN A is an 5-a.d.h. on Z(w?-S).

Theorem 3.5. (i) For all n, /*4"> = H.A.°(n"1)

(ii) Aa? is closed under the hyper jump operator S -> 0s, and tof is the smallest

ordinal a such that Aa is closed under hyperjump.

Proof, (ii) is immediate from (i). We prove (i) by induction on n :

(a) If n=0, this is exactly Lemma 2.8.

(b) Suppose the result holds for all m<n; then ^£1)<1"-1> = H.A.0(""2'. By the

hyperarithmetical quantifier theorem we see that O*""1' g Aaf-»+1. By induction

on |a|0o» we can see that for all a e 0Cn),

"a e Aa\     '+|o|o(n) + l

and since wi"-1)+|a|0w+l<a><i) for all aeOM, we have H°in'u eAa[n) for all

aeOin\ Thus, since Aaf is closed under "recursive in", we have H.A.0"1"1'

c A <")

Conversely, for each a < to'j"', there is a relation-set A recursive in Oin ~1} such that

A represents a well-ordering of order-type a, and by Lemma 2.7 each element of Aa

is hyperarithmetical in A, and hence in O"1"1'. Thus for all a<to(1n), ̂ „.cH.A.0"1"1'

so
AA">=    U   Aa c H.A.0'""1'.

Thus y4(0<1n, = H.A.0<""1', and the induction step is completed, and the lemma is

proved.

From Theorems 3.4 and 3.5 we obtain the following important corollary:

Corollary 3.6. Let D be any a.d.h. on S(to"), then RU{D(a) | a<a>±}=A0>™.

From the proof of Theorem 3.5 we obtain the following generalization (by rela-

tivizing to S) :

Corollary 3.7. Suppose that X<ß0 and there is a set Se AK+1 such that tof > A,

then:

(i) For all n, Aa^=H.A.°'n-"-s

(ii) wi,s is the first ordinal <x>X such that Aa is closed under hyperjump.

Remark. We see from Corollary 3.7 that what Theorems 3.4 and 3.5 depend on

is the fact that there is a set Sn e A¿»+1 such that:

(i) Sn is an w-least u.u.b. to Aaf> for some m.

(ii) tof-W^.
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Suppose a similar thing happened at Aai°, i.e., suppose there were a set SeAai° + x

such that S were an n-least u.u.b. to Aai» and tof xox ; then by Corollary 3.7 we

would have for all n, y40)<1">s = H.A.°(""1>'s, and by Theorem 3.4 and Lemma 1.6

we could construct an a.d.h. D on 2(toj°"s) such that

RU{D(a) | a < cor-5} = Aa^:

Thus we would have extended Theorems 3.4 and 3.5 to the ordinal tof's. Again

suppose that there were a set 5' e Aa^s+X, such that S' were an n-least u.u.b. to

Aa™'s and tof >tof,s; it would then be possible to extend the result to tof's'. What

we wish to show is that such continuation is always possible.

Definition 3.8. HYP (a) ("a is HYP") iff Aa is closed under hyperjump.

Definition 3.9. If a < ß0, then a is attainable iff there is a set A e Aa+x such that

A represents a well-ordering of order-type a.

[In several abstracts, one of the authors defined "a is attainable" to mean:

There is a set Ae Aa+X such that A represents a well-ordering of order-type a

all of whose'initial segments are in Aa. We have deleted the italicized clause as being

unnecessary for the proof. However all theorems in the present paper are easily

proved with the stronger definition of "attainable".]

Lemma 3.10. Suppose that X<ß0 is an attainable ordinal and that S e AK+1 such

that ||S|| =A; then all ordinals a such that Aaa<toJ°,s are attainable.

Proof. Assume that the conditions of the lemma are satisfied, then tof > A, so

for all «, Aaf>-* - H.A.°(" "1>,s; let to(r X)'s = A, then it is easy to see that for all n ̂  0, if

tu(n-i),s^ot<£u(n).s) tnen {here ¡s a relation-set of order-type a in Aj«-v-s+x. But

this clearly means that all ordinals a, A^a<tof,s, are attainable.

Remark. Clearly all ordinals a < tof are attainable.

[It is necessary to recall that there is a well-ordering of order-type mx (in fact a

path through O) which is recursive in O. By relativization, there is a well-ordering

of order-type to(1n + 1> which is recursive in 0<n) for all «.]

We now state the main lemma upon which the first half of the Main Theorem

depends.

Lemma 3.11 (The Main Lemma). Suppose HYP (a), a<ß0, and all ordinals

y<a are attainable. Then there is a set Se Aa+X such that:

(i) S is a u.u.b. for Aa.

(ii) tof>a.

We will postpone a proof of the Main Lemma until we indicate how it is used to

prove the first half of the Main Theorem.

4. Proof of the first half of the Main Theorem assuming the Main Lemma.   In

this section we will assume Lemma 3.11 and use it to prove half of our Main

Theorem:
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Theorem 4.1. There is an a.d.h. on S(j30) and if D is any such a.d.h. then

RU{D(a) | a < ßo) = R.A.

In order to prove Theorem 4.1 we first need a number of preliminary lemmas.

Lemma 4.2. Let cof fiagß0, then either

(a) HYP (a) or

(b) There is a greatest HYP ordinal ß such that ß<a.

Proof. If <x = toJ° then (a) holds. Otherwise let Ta={ß | HYP (ß) Aj8<a}. Let

y=l.u.b. Ta. Then obviously Ay = \JßeTa AB. But, since a union of sets closed under

hyperjump is also closed under hyperjump, we have HYP (y). Since y g a, the lemma

follows.

Lemma 4.3. Every ordinal a<ß0 is attainable, and all HYP ordinals are limit

ordinals.

Proof. We will show by induction on a that

a < ß0 -+ (a attainable A (HYP (a) ->• Lim a)).

If a < wi then we know that the lemma holds. Now suppose that wi^ß<ß0 and

the result holds for all ordinals a < ß. One of the two following cases obtains :

Case One. Suppose ß is HYP. Then by the Main Lemma there isasetSe Aß+1

such that tof>/3. Hence some relation-set in Aß+1 must represent a relation of

order-type ß. Therefore ß is attainable. Also by Lemma 4.2 either ß is the limit of an

increasing sequence of HYP ordinals in which case Lim (jS), or there is a greatest

HYP ordinal, say y, less than ß. In this latter case we can select a set SeA7+1

such that tof>y. Hence by Corollary 3.7, to",s is the least HYP ordinal greater

than y. Therefore jS = to",s and again Lim (ß).

Case Two. Suppose ß is not HYP and let a0 be the largest HYP ordinal less than

ß. Let SeAao+1 such that ||5j|=a0; then cof>ct0, and by Corollary 3.7 w?-s is the

least HYP ordinal greater than a0; so a0</S<iof,s. But then by Lemma 3.10 ß

must be attainable.

This completes the inductive proof.

Lemma 4.4. 7/HYP (A) then there is an a.d.h. D on S(A) and RU{D(a) \a<X}

=AK.

Proof. By induction on A. The first ordinal to consider is u>™, and the result for

A = to™ is exactly Corollary 3.6.

Suppose now that A > tof and that the result holds for all ordinals a < X. If A is

not HYP then we are done. Suppose A is HYP, then there are two cases to consider :

Case One. Suppose there exists a largest HYP ordinal a0 < X. In this case there

is an a.d.h. D on £(a0), and RU{D(y) | y<a0} = ^a0- ^ tne Main Lemma together

with Lemma 4.3 there is a set S0 e Aao+1 such that

(i)  tofo > o:0

(ii) S0 is a u.u.b. to Aao.
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We first observe that the fact that S0 has a definition in 2-N.T. over A„0 (perhaps

with constant terms) means that for some «, S0 is an n-least u.u.b. to Aao. The

argument for this is essentially the one indicated in the proof of Theorem 3.4 for

the fact that 0(n> is a 2-least u.u.b. to H.A.0'""1'. By Corollary 3.7 we know that

A=toS°-so. By Theorem 3.4, there is an S„-a.d.h. D' on 2(tof -so). Let D* be defined

as follows:

if a < a0, D*(a) = D(a),

if ,8 < tof-so, D*(a0+ß) = D'(ß).

Then by Lemma 1.6, D* is an a.d.h. on 2(a0 +A). But since a0<coi0>,,s°, we have

a0 + A=A; so D* is an a.d.h. on 2(A). By Theorem 3.4,

RU{D'(a) | a < toí^o} = H.A.0"1-1''*«,

but, since for all «, ao + wín)'So=tü(in),s°, we have

RU{D*(a) | a < to?»-5»} = H.A.0<n-1),s°.

By Corollary 3.7 we also have ^£1)<1").so = H.A.0<""1,,s°. Thus

Ax = Aa?*o =  (J ¿„«wo = RU{D*(a) | a < A};
nelV

so D* has the required properties.

Case Two. Suppose there is no largest HYP ordinal less than A. Then A is the

limit of an increasing sequence {an} of HYP ordinals. Now, using the inductive

hypothesis applied to the a„'s and Lemma 1.7, we can string together a.d.h.'s on

the an's to get an a.d.h. on A with the desired property.

Lemma 4.5. HYP (jS0).

Proof. Suppose ßQ were not HYP, and let y0 be the largest HYP ordinal less than

ßo- Let S £ Ayo+! be such that tof > y0 (Lemma 3.11). Then by Corollary 3.7 we have

for all «,
Aaf>s = H.A.0<n-1,,s * ¿4»«w = H.A.°(n>,s;

so ajx-s^ß0, and wx-s is HYP, so tof 's<ß0; but this contradicts the choice of y0

as the largest HYP ordinal less than ß0. Thus ß0 must be HYP.

Theorem 4.1 now follows immediately from Lemmas 4.4 and 4.5.

We now turn our attention to proving the Main Lemma.

5. Proof of the Main Lemma.

Definition 5.1. We will abbreviate by W.O. (X) the formula of 2-N.T. with one

free set variable as follows :

W.O. (X) = [[X is a 2-ary relation-set] A [A' represents a linear ordering] A (S)

[[S is a 1-place function set representing a function/such that Range (/)<= Fid (X)

A(«) [</(«+!),/(«)> g X]] =>(3w)(z)[z S m =>/(z) =/(m)]]], where the English

expressions between braces ([ , ]) are understood to be written as arithmetical

expressions in the appropriate variables.
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If the set quantifier in W.O. (X) is understood to range over 2" then W.O. (X)

simply says that A1 is a well-ordering. We need to know that this is true under

certain other conditions.

Notational Remark 5.2. If ®<=2N, (p(Xu ..., Xn)\sa formula of 2-N.T. with

free set variables Xu X2,..., Xn, and Ait ..., An e ®, we will write "Ä(SAT)

<p(Ax,..., An)" when we mean that <p holds in Ä with respect to the sequence

Ai,..., An._

Lemma 5.3. Suppose (Xu ..., Xn, xu ..., xm) is a relation Yl\ in Xu ..., Xn.

If®<=2N has the following properties :

(i) ifX, Yen, then Xx Y={(i,j} \ieX&jeY}e R,

(ii) R is closed under hyperjump and "recursive in": then, for all Au ..., An

eS,!!.¡'„eiV,

R(AU ...,An,ilt..., im) = R(SAT)R(AU ..., An, ilt..., im).

Proof. Let A1,...,AneR and let A=A1xA2x--xAn. It is obvious that

R(Ai,..., An, Xi,..., xm) is expressible in the form S(A, x1;..., xm) where S is

U\ in A. But by (i), ^ef and by (ii), 0A e ®. Again, by (ii) and the well-known

fact that 0A is a complete nj-in-/l predicate, it follows that the extension of

S(A, Xi,..., xm) and hence of R(A^ ..., An,xu..., xm) is a member of ®. Hence

by Kleene [K', p. 324, §5.5, Remark 5], it follows that

R(Ai,..., A„ h,..., im) = St(SAT)R(Alt..., An,iu..., im).

Remark 5.4. In order to apply Remark 5.2 to an analytic relation R(Xi,..., Xn,

Xi,..., xm) we certainly must think of the relation as written in some definite way

as a formula of 2-N.T. In Lemma 5.3, for example, R(XU ..., Xn, xu ..., xm)

is thought of as being a U\ formula of 2-N.T. Also in reference to Lemma 5.3 it

is easy to see that if HYP (a) then R = Aa does satisfy properties (i) and (ii) of the

lemma.

Definition 5.5. Let <r be the following sentence of 2-N.T. :

(X)(3Y)(3Z)[W.O.(Y) A CONSTR(Y,Z) A (3a)(3i)[ae Fid (Y) A X = zSf]]

A (X)(Y)(3Z)[Z = XxY] A (<?)(Z)(3y)(x)[xG Y o (3z)Tx(e, x, z)]

where Tx(e, x, z) is the Kleene F-predicate relativized to X.

Lemma 5.6. (i) 7/HYP (a) and(ß)[ß<a-+ß is attainable], then v4a(SAT)a.

(ii) If®c2N is closed under hyperjump and Ä(SAT)o-, then (3ß)[® = Aß].

Proof, (i) Suppose HYP (a) and all ordinals ß < a are attainable. The second and

third clauses of a simply assert closure under "cross-product" and "recursively

enumerable in" and it is immediate that Aa satisfies these clauses.

In order to see that Aa satisfies the first clause, suppose that Se Aa; since all

HYP ordinals are limit ordinals, S e Aß for some ß < a. Since all ordinals y < a are
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attainable there must be a relation-set Ae Ae+1 such that ||.4|| =ß. Let B be the

unique set such that CONSTR (A, B), then B is hyperarithmetical (hence, FL{) in

A, so Be Aa. By 5.3 and 5.4 we see that

Aa(SAT)[W.O. (A) A CONSTR (A, B) A (3a)(3i)[a e Fid (A) A S = BSf]].

But since S was an arbitrary set in Aa we see that Aa must satisfy the first clause of

a, thus /4a(SAT)<r.

(ii) Suppose ®(SAT)(7 and £ is closed under hyperjump. Then the second and

third clauses of a require that £ be closed under "cross-product" and "recursively

enumerable in" so that Ä meets the conditions of Lemma 5.3. Let ß be the least

ordinal such that if A e Ä represents a well-ordering, then ||/4|^j8. Then it is

easy to check that ® = Aß.

We now wish to show that a form of the axiom of choice holds in Aa whenever

HYP (a) and all ordinals ß < a are attainable.

Theorem 5.7. There is a formula BEFORE (X, Y), of 2-N.T. such that whenever

HYP (a) and all ordinals ß<a are attainable, then the relation on sets XRYs

Aa(SAF)BEFORE(X, Y) is a well-ordering of Aa.

Our proof of Theorem 5.7 will be more complicated than might at first seem

necessary. The natural first move in proving the theorem would be to try to define

BEFORE directly from the relations W.O. and CONSTR as follows:

BEFORE(X, Y) iff (3Z)(3W) such that

(i) W.O. (Z) A CONSTR (Z, W) and

(ii) (3a)(3b)(3i)(3j)[X=wS? A Y-wSft and
(iii) if R is the relation

<*!, x2}R(yx, y2) = xx, yx e Fid (Z) A [<x1; yx}eZ V ((xx = yx) A (x2 < y2))]

then the F-least number <a, f> such that X=WS" F-precedes the F-least number

<&,;> such that Y= WS$.

Where this definition fails is that the relation depends on the choice of the set Z

in the following way: We know from Lemma 2.7 that if Zx and Z2 represent well-

orderings and ConstrfZj, Wx), Constr(Z2, W2), then {WlSf}ieu={vßi}ieN when-

ever |a|Zl = \b\z2. But we have no guarantee that under these conditions we have the

identity WlSf = Wc¡S¡ for all i e N. But the relation defined above depends on the

particular order of the sequence {wS?}ieN. Thus we are forced to find a relation

which does not depend on the order of the sets wSf but only on membership in the

family of sets {WS?}.

Lemma 5.8. For any ordinal a and any set Be Aa,B can be defined by some w.f.f.

of 2-N.T. without constant symbols, but with each of its set quantifiers restricted to

some Aß, ß<a.

Proof. This follows easily by induction on a.
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Definition 5.9. Let A be a relation-set which represents a linear ordering. By

2,4 we will mean the formal language which is just the language of 2-N.T. except

that the set quantifiers all have the following special form: (Xi)a or (3Xt)a where

a g Fid (^4). By &'A we mean the subset of 2A consisting of all those formulas which

are in prenex normal form and have exactly one free number variable, and no free

set variables.

Definition 5.10. Let A and B represent well-orderings and <p g 2¿, <p'e2'B.

Then we say <p^<p' (<p is equivalent to <?') iff <p and <p' are exactly alike except that

wherever the quantifier (3Xt)a or (Xj)b occurs in <p, the quantifier (3Z¡)0- or (Xj)v

respectively occurs in <p' where |a|A = |a'|B, |6|A=|6'|B.

If we chose any natural Gödel numbering on the formulas of 2-N.T. which have

integer subscripts on their set quantifiers, then it is obvious that the linear order

represented by A induces a natural linear order on (Gödel numbers of ) ä'A which

depends only on the order-type of A, in the sense of the following lemma whose

proof we leave to the reader:

Lemma 5.11. There is an arithmetical formula SHORTER (X, x, y) such that if A

represents a well-ordering, then SHORTER (A, x, y) defines a well-ordering on

Gödel numbers of formulas in S,'A, and such that if Ax and A2 both represent well-

orderings <f! e S'Al, <p2 g 2'A¡¡ with Gödel numbers qu q2 respectively and <pi = y2 then

the ordinal associated with q^ in the relation SHORTER (Aux, y) is the same as the

ordinal associated with q2 in the relation SHORTER (A2, x, y).

Definition 5.12. Let A represent a linear ordering and let B represent a function

/: Fid (A) xNxN-+{0, 1}. We define a satisfaction relation (SAT)' as follows:

5(SAT)'z iff z=<n1; w2> where nx is the Gödel number of a formula <p(x) in 2'A and

q>(n2) holds when the quantifier (Xt)a or (3Zt)0 in 95 is understood to range over the

family of sets {BSf }¡éN.

Lemma 5.13. The relation A"(SAT)'x is hyperarithmetical in X, and hence is

univariant, in the sense of Lemma 5.3, over any &<=2N which satisfies the conditions

of Lemma 5.3.

Proof. This follows as in Lemma 2.6 from the fact that arithmetical truth in X is

hyperarithmetical in X.

The satisfaction relation (SAT)' was so defined as to make the following lemma

trivial:

Lemma 5.14. Suppose Ax and A2 represent well-orderings, CONSTR (Au Bx),

CONSTR (A2, B2), <pi g 2^ andq>2 e 2¿2 with Gödel numbers qi andq2 respectively;

and <PiS<p2, then for all n,

AtSAT)'^, «> o B2(SAT)\q2, «>.

Proof. This is immediate from the fact that if IßiU^IßaUa, then {BlS,t°i} =

{B25fa} and from the definition of S and (SAT)'.
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We are now in a position to define the relation BEFORE.

Definition 5.15. Let BEFORE(X, Y) be the following formula of 2-N.T.:

(3Z)(3W)[W.O. (Z) A CONSTR (Z, W) A (3x,y, u, v)(X = WSX A Y = WS*)

A (y)((u)(ue Y o W(SAT)\y,u})

-+ (3x)(SHORTER (Z, x, y) A (z)(z eXo W(SAT)'(x, z»))].

It is obvious from Lemmas 5.3, 5.4 and the lemmas following Theorem 5.7 that

BEFORE has the properties required by Theorem 5.7, and thus that Theorem 5.7

is proved.

We are now in a position to make use of the definable well-ordering BEFORE to

define Skolem-functions for sentences over Aa.

Lemma 5.16. Suppose HYP (a) and all ordinals ß<a are attainable. Let <p(x)

be any formula of 2-N.T. (perhaps with set constants from Aa) which is in prenex

normal form. Then Skolem-functions for the sentences <p(«) over Aa are definable

over Aa uniformly in ne N, in the sense of the following example:

Suppose ^(x)^(Xx)(3X2)(X3)(3Xi)A(Xx,..., Xi, x) where A is arithmetical in

Xx,..., Xit x and perhaps some set constants Ax,..., An from Aa. Then what the

lemma requires is that there be formulas <px(x, Xx, X2), <jp2(x, Xx, X3, XA of 2-N.T.

perhaps involving the constants from Aa such that:

(i) Aa(SAT)(x)(Xx)(3lX2)Vx(x, Xx, X2),

^a(SAT)(x)(Jr1)(Z3)(3!JSr4)cp2(x, Xx, X3, X,),

i.e. over Aa, (px and <p2 define functions / and f2 respectively, / : NxAa^- Aa,

f2:NxAaxAa^Aa.

(ii) for all neN,

(a) // ^a(SAT)cp(«) then XXx[fx(n, Xx)] and XXxX3[f2(n, Xx, X3)] are Skolem-

functions for (p(n) over Aa.

(b) if Aa(S AT) ̂ 9(n) then for all Xx, X3 e Aa,fx(n, Xx)=f2(n, Xx, X3)= 0.

Proof. The construction, e.g., of cpx and <p2 is immediate from the fact that we can

use the predicate BEFORE to define a choice function over Aa. We leave the details

to the reader.

Lemma 5.17. Suppose HYP (a) and all ordinals ß<a are attainable, and suppose

that functions fx, ...,/„, /: NxAâ' -*■ Aa or /: A%> ->- Aa, for some mt e N, are

definable over Aa in 2-N.T. (perhaps with set constants from Aa). Let Ax,..., Am

be any finite number of sets in Aa. Then there is a 2-place function-set A e Aa+1 such

that the family of sets {Sf}leN is exactly the closure of {Ax,..., Am, 0} and N under

the functions /, ...,/„.

Proof. Consider the process of taking the sets Ax,..., Am, 0 and N and closing

them under the functions/, ...,/„, which mimics the proof that the closure of a

countable set under countably many functions is again countable. It is straight-

forward but intricate to show that this process is describable over Aa in 2-N.T. with
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constants for sets in Aa, in such a way that the relation R(i, x, y) = [either x is in the

ith set generated in this way and y= 1 or x is not in the ¿th set generated in this way

and y=0] is definable over Aa. We leave the details to the reader. The set A e Aa+1

corresponding to the definition of R over Aa is the desired element of Aa+i.

We are now prepared to prove :

Lemma 3.11 (Main Lemma). Suppose HYP (a) and all ordinals ß<a are

attainable and a < ß0. Then there is a set S e Aa+ t such that (i) S is a u.u.b. for Aa,

(ii) tof > a.

Proof. Suppose the conditions of the lemma obtain, then since a<ß0, Aa+1—Aa

^ 0. Let B be any element of Aa+1—Aa, and let <p(X) be a formula of 2-N.T.

(perhaps with set constants from Aa) which is in prenex normal form and defines B

over Aa.

Consider the following formulas of 2-N.T. :

<Pi(x) = 9>(X) A a A (X)(3Y)[Y = Ox],

<p2(x) =  -n<p(x) A a A (X)(3Y)[Y = Ox],

where " Y=Ox" is written as in Lemma 5.3, and a is the sentence defined in

Definition 5.5. Let Au...,Am be the sets in Aa mentioned by set constants in <p.

By Lemmas 5.16 and 5.17, there must be a set S e Aa+1 such that S is a 2-place

characteristic function-set and the family of sets {Sf}ieN is exactly the closure of

{Alt..., Am, 0} and N under Skolem-functions over Aa for the sentences <pt(n),

i= 1, 2 (in the sense of Lemma 5.16). Let ®={Sf}leN. We first observe that, since

Aa(SAT)a, it must be the case that Ä(SAT)tr. Since Aa is closed under hyper-

jump, the Skolem-functions for the third clauses of <px and <p2 actually define the

hyperjump operator, thus R must be closed under hyperjump. Hence by Lemma

5.6, ® = Ah for some A. Since RcAa, it is clear that X^a. But Ä is closed under the

Skolem-functions for all the sentences <p(n) and —i<p(n), and Au ..., Am e $£. Thus

<p(x) defines B over R = A¡,; but Be Aa+i—Aa, so it must be that A = a, i.e., the

family {Sf}ieN is exactly Aa. Thus S is surely a u.u.b. to Aa.

It remains to show that tof > a. Consider the following relation R(x, y) :

R(x,y)iñ

(i) x=<(x)1( (x)2> Ay = ((y)1} (y)2y and

(ii) (x)2 g Sfx)l A (y)2 e Sfvh and

(iii) Sfxh and Sfy)i represent well-orderings and

(iv) either (x)i<(y)1, or (x)1 = (j)1 and (x)2 precedes (y)2 in the well-ordering

corresponding to 5fx)l = S^.

Clearly R represents a well-ordering, and since all ordinals ß < a are represented

by some Sf, the order-type of R is at least a. By 5.3 and 5.4 we see that Sf rep-

resents a well-ordering just in case it represents a linear ordering in which none of

the sets Sf represents an infinite descending chain ; thus clause (iii) is arithmetical
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in S, as are all the other clauses. Hence there are certainly well-orderings arith-

metical in S which have order-type greater than a. But any ordinal which is arith-

metical, or even 2J in S is recursive in S, thus tof > a and the lemma is proved.

6. Proof of the second half of the Main Theorem. The purpose of this section

is to establish the second half of the Main Theorem :

Theorem 6.1. Any a.d.h. on 2(j80) is complete.

This result will be obtained as an immediate corollary to the following theorem :

Theorem 6.2. Let 50Î be a countable w-modelfor analysis, then there is no u.u.b.

for 501 which is arithmetical in every u.u.b. to 50c. [N.B. Let 91 be the universe of sets

for 50c.]

The idea of the proof is to define forcing suitably so that for any such 501 we can

get two generic uniform upper-bounds for 9t. It will turn out that forcing is defined

so that any set which is arithmetical in both u.u.b.'s will have to be first-order

definable over 50Í, and hence will be a member of 91. Since no u.u.b. for 91 can be

itself a member of 91, we obtain the desired result.

In order to carry out the proof, we shall concern ourselves with 2nd-order

relational structures of the form:

5« = <7V; 9Í; + ; x ; Bx; B2;...,«,...;..., a,.. .>

where

(i) N={0, 1,2,...},

(ii) 9I<=2N,

(iii) + and x are the three place relations over N which represent addition and

multiplication respectively,

(iv) ...,«,... is the sequence 0, 1, 2, 3,...;..., a,... is an enumeration of the

elements of 9t,

(v) Bx, B2<=N, but need not be elements of 91.

The point of (iv) is that we want the language suitable for the structure 5Jc to have an

individual constant for each nonnegative integer, and a predicate constant for each

element of 9Í.

Definition 6.3. For any countable set 91<=21V, we define a language 2« suitable

for such a structure as follows :

(1) The predicate constants in % are:

(a) +( , , ) and X( , , ), both 3-ary.

(b) A 1-ary predicate constant a(   ) for each element a of 9Í.

(c) Two distinguished 1-ary predicates Bx(   ) and B2(   ).

(2) The individual constants are 1, 2, 3, 4,...,«,....

(3) The individual variables are xx, x2,..., xt,.... The predicate (set) variables

are Xx, X2,..., Xit....
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(4) The well-formed formulas of 2su are defined as follows :

(a) If a and ß are individual constants or variables then a=ß is a wff.

(b) If </>(   ) is an n-place predicate constant or predicate variable, and

«!,...,«„ are individual variables or constants, then ^(o^- • ■<*„) is a wff.

(c) If ip and 93 are wff's then so are 1/1A 93 and —¡ifi.

(d) If Xj is free in the wff 93, then (x¡)<p is a wff; if X^ is free in the wff 93, then

(Xt)<p is a wff.

(e) Nothing is a wff except by virtue of (a)-(d).

Definition 6.4. Suppose we have some %^2il and two sets Bu B2<=N, then for

3t = (N; 2Í ; + ; x; Bi; B2;.. .,n,...;..., a,...} we define the satisfaction

relation 9î(SAT)<p between 9Î and sentences <p of 2a, where the individual constants

0,1, 2,... stand for the appropriate integer, the predicate constants + and x are

given their standard interpretation, the constant a( ), for a e 21, holds of exactly

the members of a, Bx( ), and B2( ) hold of exactly the members of Fx and B2

respectively. The quantifiers are interpreted so that x%, x2,... range over N and

Xi, X2,..., range over the sets in 2Í. [Note: This means that if Bu for example, is

not an element of 2Í, then it is not in the range of the quantifiers Xt.] We leave it to

the reader to formalize the definition of (SAT).

Definition 6.5. In the rest of this section we are interested in countable 9tc2N

with the following property $ : (n e N)(3a, b e 2i)[n g a A n $ b].

Suppose now that 91 is some countable subset of 2N satisfying property Sß.

Definition 6.6. A condition F is a pair (sP, tP} of finite sequences of elements of

91. We write

sP = \S0, Si,..., Snp)       tP = (T0, Ti,..., Tmp)

and we write F<=/>' just in case sP> extends sP, and tP, extends tP.

Definition 6.7. Let

be any standard recursive coding function, 771(t(x, y)) = x, tt2(t(x, y))=y. We

define a relation P(FOR)ç> (forcing) between conditions F and sentences 93 of 2?i

as follows :

(i) If 95 is + (m, n, #■), x (m, n, r), or m = n, then F(FOR)9> just in case 95 is true

in arithmetic.

(ii) If 95 is a(n) for some a e 21, then F(SAT)9> just in case ne a.

(iii) If 93 is fii(n), let x=TT1(n),y = TT2(n), then F(FOR)9> iff nP ̂ y and x g Sy.

(iv) If 93 is B2(n), let x=tt1(«), y = Tr2(n), then F(FOR)9> iff mP^y and x g Ty.

(v) If 93 is -A A x, then F(FOR)9> iff F(FOR)«£ and P(FOR)x.

(vi) If 93 is -,0, then F(FOR)«p iff (F'=F)[~F'(FOR)0].

(vii) If 9» is (x()<A, then F(FOR)9» iff (n e N)[P(FOR)>p(n)].

(viii) If 93 is (XM, then F(FOR)9> iff (a e 9t)[F-(FOR)0(a)].

Most of the following lemmas are standard in any development of forcing, and

follow easily by induction on the length of the relevant formulas. In many cases we
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abbreviate the proof or omit it entirely. Lemmas peculiar to this notion of forcing,

or to our particular application are marked with an asterisk (*).

Lemma 6.8. "(FOR)" is well defined by (i)-(viii).

Lemma 6.9. It never happens that F(FOR)<p and F(FOR) -,<p.

Lemma 6.10. IfP(FOR)q>andP'^P,thenP'(FOR)9.

The proof is by induction on the length of ¡p.

Lemma 6.11. (a) IfP(FOR)q>andP'^>P, then ~P'(FOR)-,cp.

(b) IfP(FOR)^<p andP'^P, then ~F'(FOR)cp.

This is immediate from Lemmas 6.9 and 6.10.

*Lemma 6.12. For all P,<p, if ~P(FOR)<p then(3P'^P)[P'(FOR)-1<p\.

The proof is easy by induction on the length of <p, but we need the property 5J5 of

91 to prove the result for atomic sentences.

Lemma 6.13. F(FOR)<p iffP(FOR)-i^<p.

This is immediate from Lemma 6.12 and clause (vi) of the definition of (FOR).

Lemma 6.14. (a) Suppose P(FOR)^(x¡)(p, then (3P'^P)(3n)[P'(FOR)-l(p(n)].

(b) Suppose P(FOR)-i(Xt)<p, then (3P'=>P)(3a e 9l)[F'(FORH<p(a)].

Proof, (a) Suppose F(FOR) -, (x¡)<p, then no extension of F forces (x()<p; in

particular, ~P(FOR)(xt)(p. But then for some «0, ~F(FOR)<p(n0), so by Lemma 6.12

there is some P'=>P such that F'(FOR)-,<p(«0).

(b) Completely analogous.

*Lemma 6.15. (a) Suppose <pe 2a does not involve B2, then for all conditions

is, t), <i, i>(FOR)cp iff for all t', (s, 0(FOR)cp.

(b) Suppose 93 6 2a does not involve Bx, then for all conditions <s, r>, <j, f>(FOR)<p

iff for alls', O', f>(FOR)çp.

The result is obvious ; it follows by induction on the length of <p.

Definition 6.16. A sequence {Pi}ieN of conditions is complete iff:

(i) for all /', F¡<=Fi+1, and

(ii) for all sentences q>e 2% there exists some i such that F¡(FOR)<p orF¡(FOR) -i 99,

and

(iii) (a) if for some i, Pi(FOR)—i(xj)(p(xj), then there are k, « such that Fk(FOR)

-199(H), and

(b) if for some i, Pi(FOR)^(Xt)(p(Xi), then there are k e N and a e 91 such

that Ffc(FOR)-n 9(a).

Lemma 6.17. Let P be any condition, then there is a complete sequence {Pi}, with

Po=P.



58 RICHARD BOYD, GUSTAV HENSEL AND HILARY PUTNAM [July

This follows from the countability of 2a together with Lemmas 6.12 and 6.14.

Definition 6.18. If F is a condition then we define two sets B{ and B2 as follows :

t(x, y) e B{ o y ^ nP    and   x g Sy,

t(x, y) e B2 o y ^ mP   and   x g Ty.

Definition 6.19. If {F¡} is a complete sequence, we say that A and B2 are the

generic sets associated with F( just in case

Bi =  (J BÎ',       B2 =  U Bp2k
i<=N ieN

The model 9Î associated with {F,} is

ft = <7V; «t; + , x ; Bu B2;..., n,... ;..., a,.. .>

where Bx and 732 are the generic sets defined above.

*Lemma 6.20. Let {F,} be a complete sequence of conditions and let Bx and B2

be the associated generic sets. Then

(a) (x)[xeB1^(3i)Pi(FOR)B1(x)],

(b) (x)[x g B2 o (3i)Pi(FOR)B2(x)].

Proof. This is immediate via the definitions of Bu B2 and forcing on atomic

sentences.

Lemma 6.21. Let {FJ be a complete sequence of conditions, and let St be the associ-

ated model. Then for all sentences 93 g 2a, 9í(SAT)9> o (3i')F¡(SAT)9>.

Proof. The lemma follows easily by induction on the length of 93, provided the

following novel definition of length is used :

(i) If 93 is atomic then lh((p) = 1 ;

(ii) /¿fr A ¥-) = /%>)+ ##) + !;
(iii) lh(^<p) = lh(<p)+l;

(iv) (a) lh((xi)9) = lh(9) + 2;

(b) lh((Xi)<p) = lh(<p) + 2.

The effect of this definition is to make (XMXi) and (X¡)<p(X¡) longer than -^(Xj)

and -1 (p(X¡) respectively. This is exactly the trick needed to make the proof trivial.

*Lemma 6.22. Let {Ff} be a complete sequence of conditions, and 9Î the associated

model. Suppose (pi(x) and 9>2(x) are formulas with one free variable (a number

variable) such that 9^ does not involve B2, and <p2 does not involve Bx ; and suppose

further that

Pío = <*o, i0>(FOR)(x)[9>1(x) s 932(x)].

Let A={x I ̂ (SATViix)}, then (x)[x eAo (3i'=>s0)[O', 0}(FOR)(p1(x)]] where 0

is the null sequence from St.
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Proof. => : Suppose ne A, then by Lemma 6.21 there is some Pj=>Pia such that

Pj(FOR)(px(n) ; let Fy = <¿', r'>. By Lemma 6.15, since <px does not involve B2,

<j', 0 y(FOR)(px(n), so s' is the desired extension of s0.

<= : Suppose the implication fails in this direction. Then there must be some

s', n such that s'=>s0 and <j', 0 >(FOR)991(n) and « £ A. Since n £ ,4 and 5U(FOR)

(x)[(px(x) = (p2(x)] there must be some Fy = <j", r"> such that P¡(FOR)-\(p2(n) and

Pi^Pj. By Lemma 6.15 <s', t">(FOR)^<p2(n); but Plo^(,s', i"> and Fio(FOR)

(x)[99!(x) = 992(x)]. Thus we have it that

<*', i">(FOR) (i) (x)[<px(x) = ,pa(x)]

(ii) 991(n)

(iii) -192(H),

which is impossible. Thus the implication also holds from right to left.

*Lemma 6.23. Let {P¡} be any complete sequence of conditions; then both of the

associated generic sets Bx and B2 are uniform upper-bounds for 91.

Proof. It is easy to check that the following sentence (suitably rewritten in 2a) is

forced eventually by every complete sequence of conditions :

(X)(3y)(z)[X(z) = F((t(z, y))]       i = 1,2.

We are now prepared to obtain the desired theorem. We now assume that the

countable set 9t c 2N is such that 50<c = <JV, 91, +, x > is an to-model for analysis.

Lemma 6.24: 91 satisfies property 5ß. [Hence 6.6-6.23 apply to 9Í.]

Proof. Obvious.

Lemma 6.25. Suppose (p(x) is arithmetical in x and Bx, and s0 is some finite

sequence of sets in 91. Then the set

W={x\ (3s' = í0)O', 0>(FOR)<p(x)}

is first-order definable over 501.

It is easy to show that quantification over finite sequences of elements of 91

is expressible within 501. The result then follows by induction on the length of 99. It

is helpful to take 99 in prenex normal form.

*Lemma 6.26. Suppose {F¡} is a complete sequence and Bx, B2 are the associated

generic sets. If a set W is arithmetical in each of Bx and B2, then W e 91.

Proof. Suppose the hypothesis of the lemma obtains; then there are two formulas

99j(x) and 9>2(x), which define W arithmetically in Bx, and B2 respectively. Let 5JÎ be

the model associated with {FJ, then 5lc(FOR)(x)[991(x) = 992(x)], so some F;(FOR)

(x)[<px(x) = (p2(x)] and the lemma follows from Lemmas 6.22 and 6.25, together with

the fact that 50c = {A^, 9Í, +, x > is an to-model, and is thus closed under first-order

definability.
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Theorem 6.2. Suppose W is a countable m-modelfor analysis, and A is a uniform

upper-bound for 91. Then it cannot be the case that A is arithmetical in every uniform

upper-bound for 91.

Proof. Suppose the contrary, and let A be a u.u.b. for 9Í which is arithmetical in

every u.u.b. for 91. Let {F¡} be any complete sequence (for 2a) and let F1; B2 be the

associated generic sets. Then by Lemma 6.23 Bi and B2 are both u.u.b.'s for 91 ; thus

A must be arithmetical in each of them. Then by Lemma 6.26, A e 91; but this is

impossible, because the jump of A would then be a member of 91 (since 9JÍ is an

to-model) and we would h.a\QJ(A)^TA.

Theorem 6.1 (second half of Main Theorem) is an immediate corollary of

Theorem 6.2.

7. The R. A. sets are the minimal ß-model for analysis. That the R. A. sets form

a countable to-model for 2-N.T. was proved by Cohen in [C]. Since these sets are

just the members of ABo, it is an immediate corollary of 4.5, 5.3, and 5.4 that this

model is a ß-model. [It is immaterial that the formula W.O. (X) in 5.1 is not the

usual expression for the property "Xis a well-ordering". For the equivalence of

W.O. (X) to the usual expression(s) is a theorem of 2-N.T., and hence holds in all

to-models. Since ABo is an to-model, we have, for X in ABo, that X is a well-ordering

= W.O. (X) holds in ABo = ii Xis a well-ordering" (i.e., the standard expression for

this property) holds in Aßo. But this is just what it means to say that ABo is a ß-

model.]

In this section, we shall show that this model is minimal in the sense of being the

intersection of all /S-models of 2-N.T.

First we need some facts about j8-models of 2-N.T.

To facilitate the statement of these facts, we introduce some notations.

If B is a 2-ary relation-set whose corresponding relation is a well-ordering of

integers, we write simply "F is a well-ordering".

If M is a /J-model for analysis, let On (M) be the least ordinal a such that there

is no well-ordering of order-type a in M, and if F is a well-ordering, let \B\ be its

order-type.

Henceforth, let M be a special variable for jS-models.

Our first lemma is left to the reader to verify.

Lemma 7.1. On (Af ) is a limit number.

The need for the next lemma will become obvious shortly.

Lemma 7.2. If S is a set in M, then there are well-orderings in M of all the follow-

ing order-types: a>f-s for n=0, 1,2,-

The proof is left to the reader. It is necessary to use the fact that nj-in-iS notions

are "absolute" in /3-models containing S.

Lemma 7.3. On (M) is HYP.
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Proof. By Lemma 7.2 (taking 5=0), tof^On(M). By Lemma 4.2, either

On (M) is HYP, or there is a greatest ordinal ¿3<On (M) such that ß is HYP. In

the latter case, there are two subcases.

Subcase 1. ß0uß. Then A0riiM) = Aß = Aßo (since Ay = Aßo for all y>ß0).

But Aßo is closed under hyperjump. So A0aW) is closed under hyperjump—i.e.

On (M) is HYP.

Subcase 2. ß<ß0. Then, by Lemmas 3.11 and 4.3, there is a set S in Aß+X such

that tof >j8. By Corollary 3.7, tof-s is the least HYP ordinal greater than ß. Let A be

a well-ordering in M of order type ß+ 1 (such must exist, since ß, and hence ß+ 1, is

less than On (AT)). All sets in Aß+X are hyperarithmetical in A, by Lemma 2.7.

Since all /2-models are closed under " hyperarithmetical in ", it follows that S is in M.

Thus by 7.2 ío?^ is a HYP ordinal áOn (M), and, since ß is the largest HYP

ordinal <On (M), it follows that to1a,'s=On (M), i.e., On (M) is HYP.

Let RA(X) be the formula

(3Z)(3W)[W.O.(Z) A CONSTR (Z, W) A (3x,y)(X= WSX)].

Lemma 7.4. For all X in M, M(SAT)RA(X) if and only XeA0aW<=M.

This is straightforward to verify by examining the formula RA(X) and using

the facts that (1) M contains well-orderings of all (and only) lengths < On (M) ; and

(2) M is a /?-model.

The next lemma is the crucial one.

Lemma 7.5. On(M)^ß0.

Proof. Suppose the contrary. Then, since On (M) is HYP by Lemma 7.3, and

assumed to be <|80, it follows from Lemma 4.3 that there is a well-ordering of

order-type On (M) definable over A0a(M) by a formula (say 99(x, y)) of 2-N.T. Let

9>*(x, y) be the formula that results if each 2nd order quantifier in 99(x, y) is rela-

tivized to RA(X).

By Lemma 7.4, M(SAT)99*(«, m) if and only if ^0n(M)(SAT)99(«, m) (for all n,

m e to).

But this says that the formula 9>*(x, y) defines over M just the relation that

99(x, y) defines over A0a{M), and this relation is a well-ordering of order-type On (M).

Thus there is a well-ordering of order-type On (M) in M (since all sets definable

over M are also in M, by the property of being a model of 2-N.T.), contrary to the

property of On (M). Contradiction.

Theorem 7.6. The R.A. sets are the minimal ß-model for 2-N.T.

Proof. We have already observed that Aßo (i.e., the R.A. sets) is a /J-model

for 2-N.T. That Aßo is a subset of M, where M is an arbitrary ß-model, is an im-

mediate consequence of Lemmas 7.4 and 7.5.
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