ABSOLUTE GAP-SHEAVES AND EXTENSIONS OF COHERENT ANALYTIC SHEAVES

BY YUM-TONG SIU

Thimm introduced the concept of gap-sheaves for analytic subsheaves of finite direct sums of structure-sheaves on domains of complex number spaces (Definition 9, [13]) and proved that these gap-sheaves are coherent if the subsheaves themselves are coherent (Satz 3, [13]). This concept of gap-sheaves can be readily generalized to analytic subsheaves of arbitrary analytic sheaves on general complex spaces (Definition 1, [12]). All the gap-sheaves of coherent analytic subsheaves of arbitrary coherent analytic sheaves on general complex spaces are coherent (Theorem 3, [12]). The gap-sheaves of a given analytic subsheaf depend not only on the subsheaf itself but also on the analytic sheaf in which the given subsheaf is embedded as a subsheaf.

In this paper we introduce a new notion of gap-sheaves which we call absolute gap-sheaves (Definition 3 below). These gap-sheaves arise naturally from the problem of removing singularities of local sections of a coherent analytic sheaf. They depend only on a given analytic sheaf and neither require nor depend upon an embedding of the given sheaf as a subsheaf in another analytic sheaf. We give here a necessary and sufficient condition for the coherence of absolute gap-sheaves of coherent sheaves (Theorem 1 below). This yields some results concerning removing singularities of local sections of coherent sheaves (see Remark following Corollary 2 to Theorem 1). Then we use absolute gap-sheaves to derive a theorem (Theorem 2 below) which generalizes Serre's Theorem on the extension of torsion-free coherent analytic sheaves (Theorem 1, [11]). Finally a result on extensions of global sections of coherent analytic sheaves is derived (Theorem 4 below).

Unless specified otherwise, complex spaces are in the sense of Grauert (§1, [5]). If $\mathscr S$ is an analytic subsheaf of an analytic sheaf $\mathscr T$ on a complex space $(X,\mathscr H)$, then $\mathscr S:\mathscr T$ denotes the ideal-sheaf $\mathscr I$ defined by $\mathscr I_x=\{s\in\mathscr H_x\mid s\mathscr T_x\subset\mathscr S_x\}$ for $x\in X$. $E(\mathscr S,\mathscr T)$ denotes $\{x\in X\mid \mathscr S_x\neq\mathscr T_x\}$. Supp $\mathscr T$ denotes the support of $\mathscr T$. If $t\in\Gamma(X,\mathscr T)$, then Supp t denotes the support of t. For $t\in X$, $t\in X$ denotes the germ of t at $t\in X$. By the annihilator-ideal-sheaf $\mathscr A$ of $t\in X$ we mean the ideal-sheaf $t\in X$ defined by $\mathscr A_x=\{s\in\mathscr H_t\mid s\mathscr T_x=0\}$ for $t\in X$. If $t\in X$, $t\in X$ is a holomorphic map (i.e. a morphism of ringed spaces) from $t\in X$ to another complex space $t\in X$, then $t\in X$ denotes the zeroth direct image of $t\in X$ under $t\in X$ and $t\in X$, we say that $t\in X$ vanished at $t\in X$ is not a unit in $t\in X$.

I. Absolute gap-sheaves.

DEFINITION 1. Suppose $\mathscr S$ is an analytic subsheaf of an analytic sheaf $\mathscr T$ on a complex space $(X,\mathscr H)$ and ρ is a nonnegative integer. The ρ th gap-sheaf of $\mathscr S$ in $\mathscr T$, denoted by $\mathscr S_{(\rho)\mathscr T}$, is the analytic subsheaf of $\mathscr T$ defined as follows: For $x\in X$, $s\in (\mathscr S_{(\rho)\mathscr T})_x$ if and only if there exist an open neighborhood U of x in X, a subvariety A in U of dimension $\leq \rho$, and $t\in \Gamma(U,\mathscr T)$ such that $t_x=s$ and $t_y\in \mathscr S_y$ for $y\in U-A$.

Denote the set $\{x \in X \mid \mathscr{S}_x \neq (\mathscr{S}_{\{\rho\}\mathscr{F}})_x\}$ by $E^{\rho}(\mathscr{S}, \mathscr{F})$.

REMARK. When $\mathscr S$ and $\mathscr T$ are both coherent, then $x \in E^{\rho}(\mathscr S, \mathscr T)$ if and only if $\mathscr S_x$ as an $\mathscr H_x$ -submodule of $\mathscr T_x$ has an associated prime ideal of dimension $\leq \rho$ (Theorem 4, [12]). $E^{\rho}(\mathscr S, \mathscr T) = \varnothing$ means that for every $x \in X \mathscr S_x$ as an $\mathscr H_x$ -submodule of $\mathscr T_x$ has no associated prime ideal of dimension $\leq \rho$.

DEFINITION 2. Suppose $\mathscr S$ is an analytic subsheaf of an analytic sheaf $\mathscr T$ on a complex space $(X,\mathscr H)$ and A is a subvariety of X. Then the gap-sheaf of $\mathscr S$ in $\mathscr T$ with respect to A, denoted by $\mathscr S[A]_{\mathscr T}$, is defined as follows: For $x\in X$, $s\in (\mathscr S[A]_{\mathscr T})_x$ if and only if there exist an open neighborhood U of x in X and $t\in \Gamma(U,\mathscr T)$ such that $t_x=s$ and $t_y\in \mathscr S_y$ for $y\in U-A$.

PROPOSITION 1. Suppose \mathcal{G} is a coherent analytic subsheaf of a coherent analytic sheaf \mathcal{F} on a complex space (X, \mathcal{H}) and ρ is a nonnegative integer. Then $\mathcal{G}_{\rho 1}\mathcal{F}$ is coherent and $E^{\rho}(\mathcal{S}, \mathcal{F})$ is a subvariety of dimension $\leq \rho$ in X.

Proof. See Theorem 3 [12]. This can also be derived easily from Satz 3 [13]. Q.E.D.

PROPOSITION 2. Suppose $\mathcal G$ is a coherent analytic subsheaf of a coherent analytic sheaf $\mathcal F$ on a complex space $(X,\mathcal H)$ and A is a subvariety of X. Then $\mathcal G[A]_{\mathcal F}$ is coherent.

Proof. See Theorem 1 [12]. This can also be derived easily from [13, Satz 9]. O.E.D.

DEFINITION 3. Suppose \mathscr{F} is an analytic sheaf on a complex space X and ρ is a nonnegative integer. The ρ th absolute gap-sheaf of \mathscr{F} , denoted by $\mathscr{F}^{[\rho]}$, is the analytic sheaf on X defined by the following presheaf: Suppose $U \subseteq V$ are open subsets of X. Then

$$\mathscr{F}^{[\rho]}(U) = \inf_{A \in \mathfrak{A}(U)} \Gamma(U-A, \mathscr{F}),$$

where $\mathfrak{A}(U)$ is the directed set of all analytic subvarieties in U of dimension $\leq \rho$ directed under inclusion. $\mathscr{F}^{[\rho]}(V) \to \mathscr{F}^{[\rho]}(U)$ is induced by restriction.

REMARKS. (i) $\mathscr{F}^{[\rho]} = (\mathscr{F}/0_{[\rho]\mathscr{F}})^{[\rho]}$, where 0 is the zero-subsheaf of \mathscr{F} .

(ii) There is a natural sheaf-homomorphism $\mu: \mathscr{F} \to \mathscr{F}^{[\rho]}$. The kernel of μ is $0_{[\rho]\mathscr{F}}$. When $E^{\rho}(0,\mathscr{F}) = \varnothing$, μ is injective and we can regard \mathscr{F} as a subsheaf of $\mathscr{F}^{[\rho]}$. In this case we denote the set $\{x \in X \mid \mathscr{F}_x \neq (\mathscr{F}^{[\rho]})_x\}$ by $E^{\rho}(\mathscr{F})$.

LEMMA 1. Suppose \mathscr{F} is a coherent analytic sheaf on a reduced complex space (X, \mathcal{O}) of pure dimension n. Suppose $0 \le \rho \le n-2$. If $E^{n-1}(0, \mathscr{F}) = \varnothing$, then $\mathscr{F}^{[\rho]}$ is coherent and $E^{\rho}(\mathscr{F})$ is a subvariety of dimension $\le \rho$.

Proof. Let $\pi: (\tilde{X}, \tilde{\mathcal{O}}) \to (X, \mathcal{O})$ be the normalization of (X, \mathcal{O}) . Let $\tilde{\mathscr{F}}$ be the inverse image of \mathscr{F} under π (Definition 8, [6]). Let \mathscr{F} be the torsion-subsheaf of $\tilde{\mathscr{F}}$ and $\mathscr{G} = \tilde{\mathscr{F}}/\mathscr{T}$. Let $Y = \text{Supp } \mathscr{T}$. \mathscr{T} and \mathscr{G} are both coherent and \mathscr{G} is torsion-free (Proposition 6, [1]). dim $Y \leq n-1$ (Proposition 7, [1]). We claim that

(1)
$$\mathcal{G}^{[\rho]}$$
 is coherent and $E^{\rho}(\mathcal{G})$ is a subvariety of dimension $\leq \rho$ in \tilde{X} .

Take $x \in \tilde{X}$. On some open neighborhood U of x in \tilde{X} \mathscr{G} can be regarded as a coherent subsheaf of $\tilde{\mathscr{O}}^p$ for some p (Proposition 9, [1]). It is clear that $\mathscr{G}^{[\rho]}$ is isomorphic to $\mathscr{G}_{[\rho]\tilde{\mathscr{O}}^p}$ on U and $E^{\rho}(\mathscr{G},\tilde{\mathscr{O}}^p) \cap U = E^{\rho}(\mathscr{G}) \cap U$. (1) follows from Proposition 1.

Let $\mathscr{F}^*=R^0\pi(\tilde{\mathscr{F}})$, $\mathscr{G}^*=R^0\pi(\mathscr{G})$, and $(\mathscr{G}^{[\rho]})^*=R^0\pi(\mathscr{G}^{[\rho]})$. Let $\alpha\colon \mathscr{F}^*\to\mathscr{G}^*$ and $\beta\colon \mathscr{G}^*\to (\mathscr{G}^{[\rho]})^*$ be induced respectively by the quotient map $\tilde{\mathscr{F}}\to\mathscr{G}$ and the inclusion map $\mathscr{G}\to\mathscr{G}^{[\rho]}$. We have a natural sheaf-homomorphism $\lambda\colon\mathscr{F}\to\mathscr{F}^*$ (Satz 7(b), [6]). Let Z be the set of all singular points of X. Let \mathscr{K} be the kernel of $\alpha\lambda$. Then Supp $\mathscr{K}\subset Z\cup\pi(Y)$. Since $E^{n-1}(0,\mathscr{F})=\varnothing$ and dim Supp $\mathscr{K}\subseteq n-1$, $\mathscr{K}=0$. $\gamma=\beta\alpha\lambda\colon\mathscr{F}\to (\mathscr{G}^{[\rho]})^*$ is injective. It is easily seen that $((\mathscr{G}^{[\rho]})^*)^{[\rho]}=(\mathscr{G}^{[\rho]})^*$. γ induces a sheaf-monomorphism $\gamma_1\colon\mathscr{F}^{[\rho]}\to (\mathscr{G}^{[\rho]})^*$. $\mathscr{F}^{[\rho]}\approx\gamma_1(\mathscr{F}^{[\rho]})=\gamma(\mathscr{F})_{[\rho](\mathscr{F}^{[\rho]})^*}$ and $E^\rho(\mathscr{F})=E^\rho(\gamma(\mathscr{F}),(\mathscr{G}^{[\rho]})^*)$. Since by Proposition $1\gamma(\mathscr{F})_{[\rho](\mathscr{F}^{[\rho]})^*}$ is coherent and $E^\rho(\mathscr{F}),(\mathscr{G}^{[\rho]})^*$) is a subvariety of dimension $\leq \rho$ in X, the Lemma follows. Q.E.D.

LEMMA 2. Suppose \mathcal{F} is a coherent analytic sheaf on a complex space (X, \mathcal{H}) . Suppose $x \in X$ and $f \in \mathcal{H}_x$ such that for every nonnegative integer ρ either $x \notin E^{\rho}(0, \mathcal{F})$ or f does not vanish identically on any branch-germ of $E^{\rho}(0, \mathcal{F})$ at x. Then f is not a zero-divisor for \mathcal{F}_x .

Proof. Suppose the contrary. Then there exist $s \in \Gamma(U, \mathscr{F})$ and $g \in \Gamma(U, \mathscr{H})$ for some open neighborhood U of x such that $g_x = f$, gs = 0, and $s_x \neq 0$. Let Z = Supp s and $\dim Z_x = \rho$. By shrinking U, we can assume that $\dim Z = \rho$. Hence $Z \subseteq E^{\rho}(0, \mathscr{F})$. Since $\dim E^{\rho}(0, \mathscr{F}) \leq \rho$, the union Z_0 of all ρ -dimensional branches of Z is equal to the union of some ρ -dimensional branches of $E^{\rho}(0, \mathscr{F}) \cap U$. By assumption g does not vanish identically on Z_0 . For some $g \in Z_0$, $g \in Z_0$ is a unit in \mathscr{H}_y . $g \in Z_0$, contradicting that $g \in Z_0$ of $g \in Z_0$.

LEMMA 3. Suppose \mathscr{F} is a coherent analytic sheaf on a complex space X and ρ is a nonnegative integer. If $E^{\rho}(0,\mathscr{F})=\varnothing$, then for any nonnegative integer σ either $E^{\sigma}(0,\mathscr{F})=\varnothing$ or every branch of $E^{\sigma}(0,\mathscr{F})$ has dimension $>\rho$.

Proof. Suppose Y is a nonempty m-dimensional branch of $E^{\sigma}(0, \mathscr{F})$ for some nonnegative integer σ such that $m \leq \rho$. Take a Stein open subset U of X such that $U \cap E^{\sigma}(0, \mathscr{F}) = U \cap Y \neq \emptyset$. Take $x \in U \cap Y$. Since $(0_{[\sigma]\mathscr{F}})_x \neq 0$, there exists

 $s \in \Gamma(U, 0_{[\sigma]\mathscr{F}})$ such that $s_x \neq 0$. Supp $s \subseteq E^{\sigma}(0, \mathscr{F}) \cap U = U \cap Y$. dim Supp $s \leq \rho$. Hence $s \in \Gamma(U, 0_{[\rho]\mathscr{F}})$. $x \in E^{\rho}(0, \mathscr{F})$, contradicting that $E^{\rho}(0, \mathscr{F}) = \emptyset$. Q.E.D.

LEMMA 4. Suppose \mathscr{F}_i , $1 \le i \le 3$, are coherent analytic sheaves on a complex space (X, \mathscr{H}) and ρ is a nonnegative integer such that $E^{\rho}(0, \mathscr{F}_i) = 0$ for $1 \le i \le 3$. Suppose $0 \to \mathscr{F}_1 \to \mathscr{F}_2 \xrightarrow{n} \mathscr{F}_3 \to 0$ is an exact sequence of sheaf-homomorphisms. If $(\mathscr{F}_i)^{[\rho]}$ is coherent and $E^{\rho}(\mathscr{F}_i)$ is a subvariety of dimension $\le \rho$ for i = 1, 3, then $(\mathscr{F}_2)^{[\rho]}$ is coherent and $E^{\rho}(\mathscr{F}_2)$ is a subvariety of dimension $\le \rho$.

Proof. Let $X_i = E^{\rho}(\mathscr{F}_i)$, i = 1, 3. The problem is local in nature. Take $x_0 \in X$ and take an open Stein neighborhood U of x_0 in X. \mathcal{F}_i is a coherent analytic subsheaf of $(\mathcal{F}_i)^{[\rho]}$, i=1, 3. Let $\mathcal{A}_i = \mathcal{F}_i : (\mathcal{F}_i)^{[\rho]}$, i=1, 3. $E(\mathcal{A}_i, \mathcal{H}) = X_i$, i=1, 3. Let \mathcal{I}_i be the ideal-sheaf for X_i , i=1, 3. By Hilbert Nullstellensatz, after shrinking U, we can find a natural number m such that $\mathscr{I}_i^m \subset \mathscr{A}_i$ on U, i=1, 3. By Lemma 3 for any nonnegative integer σ every nonempty branch of $E^{\sigma}(0, \mathcal{F}_2)$ has dimension $> \rho$. Since dim $X_i \leq \rho$, i=1, 3, we can choose $f \in \Gamma(U, \mathscr{I}_1^m \cap \mathscr{I}_2^m)$ such that f_{x_0} does not vanish identically on any nonempty branch-germ of $E^{\sigma}(0, \mathscr{F}_2)$ at x_0 for any nonnegative integer σ . By Lemma 2 f_{x_0} is not a zero-divisor for $(\mathscr{F}_2)_{x_0}$. Let \mathscr{K} be the kernel of the sheaf-homomorphism $\alpha: \mathscr{F}_2 \to \mathscr{F}_2$ on U defined by multiplication by f. Then $\mathcal{K}_{x_0} = 0$. By shrinking U, we can assume that $\mathcal{K} = 0$ on U. α induces a sheaf-monomorphism $\beta: (\mathscr{F}_2)^{[\rho]} \to (\mathscr{F}_2)^{[\rho]}$. Let $\gamma = \beta \circ \beta$. We claim that $\gamma((\mathscr{F}_2)^{[\rho]}) \subset \mathscr{F}_2$ on U. Take $s \in ((\mathscr{F}_2)^{[\rho]})_x$ for some $x \in U$. s is defined by some $t \in \Gamma(W - A, \mathscr{F}_2)$, where W is an open neighborhood of x in U and A is a subvariety of dimension $\leq \rho$ in W. $\eta(t) \in \Gamma(W-A, \mathscr{F}_3)$ defines an element a of $((\mathscr{F}_3)^{[\rho]})_x$. $f_x a \in (\mathscr{F}_3)_x$. By shrinking Wwe can find $u \in \Gamma(W, \mathcal{F}_3)$ such that u agrees with $f_{\eta}(t)$ on W-A and we can find $v \in \Gamma(W, \mathcal{F}_2)$ such that $\eta(v) = u$. $\eta(v - ft) = 0$ on W - A. v - ft defines an element b of $((\mathscr{F}_1)^{[\rho]})_x$, $f_x b \in (\mathscr{F}_1)_x$. By shrinking W we can find $w \in \Gamma(W, \mathscr{F}_1)$ such that w agrees with f(v-ft) on W-A. $f^2t=fv-w$ on W-A. $\gamma(s)=\beta(v_x)-w_x\in (\mathscr{F}_2)_x$. Hence $\gamma((\mathscr{F}_2)^{[\rho]}) \subset \mathscr{F}_2$. It is easily seen that $\gamma((\mathscr{F}_2)^{[\rho]}) = \gamma(\mathscr{F}_2)_{[\rho]\mathscr{F}_2}$ on U and $E^{\rho}(\mathscr{F}_2) \cap U$ $=E^{\rho}(\gamma(\mathscr{F}_2),\mathscr{F}_2)\cap U$. The Lemma follows from Proposition 1. Q.E.D.

LEMMA 5. Suppose \mathscr{F} is a coherent analytic sheaf on a complex space (X, \mathscr{H}) of pure dimension n and $0 \le \rho \le n-2$. If $E^{n-1}(0, \mathscr{F}) = \varnothing$, then $\mathscr{F}^{[\rho]}$ is coherent and $E^{\rho}(\mathscr{F})$ is a subvariety of dimension $\le \rho$.

Proof. Let \mathscr{K} be the subsheaf of all nilpotent elements of \mathscr{H} and $\mathscr{O}=\mathscr{H}/\mathscr{K}$. Since the lemma is local in nature, we can suppose that for some nonnegative integer $k \mathscr{K}^k = 0$. For $0 \le l \le k$ define $\mathscr{F}^{(l)}$ inductively as follows: $\mathscr{F}^{(0)} = \mathscr{F}$ and, for $1 \le l \le k$, $\mathscr{F}^{(l)} = (\mathscr{K}\mathscr{F}^{(l-1)})_{[n-1]\mathscr{F}^{(l-1)}}$. Let $Y = \bigcup_{l=1}^k E^{n-1}(\mathscr{K}\mathscr{F}^{(l-1)}, \mathscr{F}^{(l-1)})$. Y is a subvariety of dimension $\le n-1$. On $X-Y\mathscr{F}^{(l)} = \mathscr{K}\mathscr{F}^{(l-1)}$ for $1 \le l \le k$. Hence $\mathscr{F}^{(k)} = 0$ on X-Y. Since $\mathscr{F}^{(k)} \subset \mathscr{F}$ and $E^{n-1}(0,\mathscr{F}) = \varnothing$, $\mathscr{F}^{(k)} = 0$. From the definition of $\mathscr{F}^{(l)}$ we see that $E^{n-1}(\mathscr{F}^{(l)},\mathscr{F}^{(l-1)}) = \varnothing$ for $1 \le l \le k$. Hence $E^{n-1}(0,\mathscr{F}^{(l-1)}/\mathscr{F}^{(l)}) = \varnothing$ for $1 \le l \le k$. $E^{n-1}(0,\mathscr{F}) = \varnothing$ implies that $E^{n-1}(0,\mathscr{F}^{(l)}) = \varnothing$, $0 \le l \le k$. Since $\mathscr{K}\mathscr{F}^{(l-1)} \subset \mathscr{F}^{(l)}$, $\mathscr{F}^{(l-1)}/\mathscr{F}^{(l)}$ can be regarded as a coherent analytic sheaf on (X,\mathscr{O}) ,

 $1 \le l \le k$. By Lemma 1 $(\mathcal{F}^{(l-1)}/\mathcal{F}^{(l)})^{[\rho]}$ is coherent and $E^{\rho}(\mathcal{F}^{(\rho-1)}/\mathcal{F}^{(\rho)})$ is a subvariety of dimension $\le \rho$. Since $\mathcal{F}^{(k)} = 0$, from Lemma 4 and the exact sequences $0 \to \mathcal{F}^{(l)} \to \mathcal{F}^{(l-1)} \to \mathcal{F}^{(l-1)}/\mathcal{F}^{(l)} \to 0$, $1 \le l \le k$, we conclude by backward induction on l that $(\mathcal{F}^{(l)})^{[\rho]}$ is coherent and $E^{\rho}(\mathcal{F}^{(l)})$ is a subvariety of dimension $\le \rho$ for $0 \le l \le k$. The Lemma follows from $\mathcal{F} = \mathcal{F}^{(0)}$. Q.E.D.

LEMMA 6. Suppose \mathscr{F} is a coherent analytic sheaf on a complex space (X, \mathscr{H}) and ρ is a nonnegative integer. Let Y be the union of $(\rho+1)$ -dimensional branches of $E^{\rho+1}(0, \mathscr{F})$. Then for $x \in Y(\mathscr{F}^{[\rho]})_x$ is not finitely generated over \mathscr{H}_x .

Proof. We can assume that $Y \neq \emptyset$. Let $\mathscr{G} = \mathscr{F}/0_{[\rho]\mathscr{F}}$. Since $E^{\rho}(0,\mathscr{G}) = \emptyset$, by Lemma 3 and Proposition 1 every branch of $E^{\rho+1}(0,\mathscr{G})$ is $(\rho+1)$ -dimensional. Since \mathscr{G} agrees with \mathscr{F} on $X - E^{\rho}(0,\mathscr{F})$, $E^{\rho+1}(0,\mathscr{G}) - E^{\rho}(0,\mathscr{F}) = E^{\rho+1}(0,\mathscr{F}) - E^{\rho}(0,\mathscr{F})$, dim $E^{\rho}(0,\mathscr{F}) \leq \rho$ implies that $E^{\rho+1}(0,\mathscr{G}) = Y$.

Fix $x \in Y$. Suppose $(\mathcal{F}^{[\rho]})_x$ is finitely generated over \mathscr{H}_x . Let $\mathscr{G} = 0_{[\rho+1]\mathscr{G}}$. Since $E^{\rho}(0,\mathscr{G}) \subset E^{\rho}(0,\mathscr{G}) = \varnothing$, $\mathscr{G} \subset \mathscr{G}^{[\rho]} \subset \mathscr{G}^{[\rho]} = \mathscr{F}^{[\rho]}$. Since Supp $\mathscr{G} = E^{\rho+1}(0,\mathscr{G}) = Y$, $(\mathscr{G}^{[\rho]})_x$ is a nonzero finitely generated \mathscr{H}_x -module. Let $(\mathscr{G}^{[\rho]})_x$ be generated by $s_1,\ldots,s_m \in (\mathscr{G}^{[\rho]})_x$. For some open neighborhood U of x in X and for some subvariety A of dimension $\leq \rho$ in U s_i is induced by $t_i \in \Gamma(U-A,\mathscr{G})$, $1 \leq i \leq m$. By shrinking U, we can choose $f \in \Gamma(U,\mathscr{H})$ such that $W = Z(f) \cap Y$ is a subvariety of dimension ρ in U and $x \in Z(f)$, where $Z(f) = \{y \in U \mid f_y \text{ is not a unit in } \mathscr{H}_y\}$. There exists a unique $g \in \Gamma(U-Z(f),\mathscr{H})$ such that gf = 1 on U-Z(f). For $1 \leq i \leq m$ define $u_i \in \Gamma(U-(A \cup W),\mathscr{G})$ by $(u_i)_y = 0$ for $y \in U-Y$ and $(u_i)_y = (gt_i)_y$ for $y \in Y \cap (U-(A \cup W))$. u_i induces $v_i \in (\mathscr{G}^{[\rho]})_x$, $1 \leq i \leq m$. $f_x v_i = s_i$, $1 \leq i \leq m$. For some $\alpha_{ij} \in \mathscr{H}_x$, $v_i = \sum_{j=1}^m \alpha_{ij} s_j$, $1 \leq i \leq m$. $s_i = f_x v_i = \sum_{j=1}^m \alpha_{ij} f_x s_j$, $1 \leq i \leq m$. $(\mathscr{G}^{[\rho]})_x = f_x(\mathscr{G}^{[\rho]})_x$. Since f_x is not a unit in \mathscr{H}_x , by [8, (4.1)] we have $(\mathscr{G}^{[\rho]})_x = 0$ (contradiction). Q.E.D.

THEOREM 1. Suppose \mathscr{F} is a coherent analytic sheaf on a complex space (X, \mathscr{H}) and ρ is a nonnegative integer. Then $\mathscr{F}^{[\rho]}$ is coherent if and only if dim $E^{\rho+1}(0, \mathscr{F})$ $< \rho+1$. In that case $E^{\rho}(\mathscr{F}/|0_{[\rho]\mathscr{F}})$ is a subvariety of dimension $\leq \rho$.

Proof. It follows from Lemma 6 that, if $\mathscr{F}^{[\rho]}$ is coherent, then dim $E^{\rho+1}(0,\mathscr{F})$ < $\rho+1$.

Suppose now dim $E^{\rho+1}(0,\mathscr{F}) < \rho+1$. We are going to prove that $\mathscr{F}^{[\rho]}$ is coherent and $E^{\rho}(\mathscr{F}/0_{[\rho]\mathscr{F}})$ is a subvariety of dimension $\leq \rho$ in X. Since \mathscr{F} agrees with $\mathscr{F}/0_{[\rho]\mathscr{F}}$ on $X - E^{\rho}(0,\mathscr{F})$, $E^{\rho+1}(0,\mathscr{F}/0_{[\rho]\mathscr{F}})$ is contained in the subvariety $E^{\rho}(0,\mathscr{F}) \cup E^{\rho+1}(0,\mathscr{F})$ of dimension $\leq \rho$. $E^{\rho}(0,\mathscr{F}/0_{[\rho]\mathscr{F}}) = \varnothing$ implies $E^{\rho+1}(0,\mathscr{F}/0_{[\rho]\mathscr{F}}) = \varnothing$ by Lemma 3. Since $\mathscr{F}^{[\rho]} = (\mathscr{F}/0_{[\rho]\mathscr{F}})^{[\rho]}$, by replacing \mathscr{F} by $\mathscr{F}/0_{[\rho]\mathscr{F}}$, we can assume that $E^{\rho+1}(0,\mathscr{F}) = \varnothing$. Since the problem is local in nature, we can suppose that X is of finite dimension n. If $n < \rho+2$, $E^{\rho+1}(0,\mathscr{F}) = \varnothing$ implies that $\mathscr{F} = 0$. $\mathscr{F}^{[\rho]} = 0$ is coherent and $E^{\rho}(\mathscr{F}) = \varnothing$. So we can assume that $n \geq \rho+2$. For $\rho+1 \leq m \leq n$ let $\mathscr{G}^{(m)} = 0_{(m)\mathscr{F}}$. $\mathscr{G}^{(\rho+1)} = 0$, because $E^{\rho+1}(0,\mathscr{F}) = \varnothing$. For $\rho+2 \leq m \leq n$ let $X_m = \sup \mathscr{G}^{(m)}/\mathscr{G}^{(m-1)}$. X_m is the union of all m-dimensional branches of $E^m(0,\mathscr{F})$,

 $\rho+2 \le m \le n$. $E^{m-1}(0, \mathcal{G}^{(m)}/\mathcal{G}^{(m-1)}) = \emptyset$ for $\rho+2 \le m \le n$. For $\rho+2 \le m \le n$ let $\mathcal{A}^{(m)}$ be the annihilator-ideal-sheaf for $\mathcal{G}^{(m)}/\mathcal{G}^{(m-1)}$. Then $(\mathcal{G}^{(m)}/\mathcal{G}^{(m-1)}) \mid X_m$ can be regarded as a coherent analytic sheaf on the complex space $(X_m, (\mathcal{H}/\mathcal{A}^{(m)}) \mid X_m)$ which is either empty or of pure dimension $m, \rho+2 \le m \le n$. By Lemma 5

$$(\mathcal{G}^{(m)}/\mathcal{G}^{(m-1)})^{[\rho]} \approx ((\mathcal{G}^{(m)}/\mathcal{G}^{(m-1)}) \mid X_m)^{[\rho]}$$

is coherent and $E^{\rho}(\mathcal{G}^{(m)}/\mathcal{G}^{(m-1)}) = E^{\rho}((\mathcal{G}^{(m)}/\mathcal{G}^{(m-1)}) \mid X_m)$ is a subvariety of dimension $\leq \rho$, $\rho + 2 \leq m \leq n$. Since $\mathcal{G}^{(\rho+2)} = \mathcal{G}^{(\rho+2)}/\mathcal{G}^{(\rho+1)}$, from Lemma 4 and the exact sequences $0 \to \mathcal{G}^{(m-1)} \to \mathcal{G}^{(m)} \to \mathcal{G}^{(m)}/\mathcal{G}^{(m-1)} \to 0$, $\rho + 3 \leq m \leq n$, we conclude by induction on m that $(\mathcal{G}^{(m)})^{[\rho]}$ is coherent and $E^{\rho}(\mathcal{G}^{(m)})$ is a subvariety of dimension $\leq \rho$, $\rho + 2 \leq m \leq n$. The Theorem follows from $\mathcal{F} = \mathcal{G}^{(n)}$. Q.E.D.

COROLLARY 1. Suppose \mathscr{F} is a coherent analytic sheaf on a complex space X, ρ is a nonnegative integer, and $x \in X$. $\mathscr{F}^{\{\rho\}}$ is coherent at x if and only if x does not belong to a $(\rho+1)$ -dimensional branch of $E^{\rho+1}(0,\mathscr{F})$. Hence the set of points where $\mathscr{F}^{\{\rho\}}$ is not coherent is either empty or it is a subvariety of pure dimension $\rho+1$.

REMARK. Under the assumption of Corollary 1 to Theorem 2 x does not belong to a $(\rho+1)$ -dimensional branch of $E^{\rho+1}(0, \mathscr{F})$ if and only if the zero submodule of \mathscr{F}_x has no associated prime ideal of dimension $\rho+1$ [12, Theorem 4]. This gives us an algebraic criterion for the coherence of $\mathscr{F}^{[\rho]}$ at x.

COROLLARY 2. Suppose \mathcal{F} is a coherent analytic sheaf on a complex space X and ρ is a nonnegative integer. Let $\mu \colon \mathcal{F} \to \mathcal{F}^{[\rho]}$ be the natural sheaf-homomorphism. Then $Z = \{x \in X \mid \mu_x \text{ is not surjective}\}$ is a subvariety of dimension $\leq \rho + 1$.

Proof. Let Y be the union of all $(\rho+1)$ -dimensional branches of $E^{\rho+1}(0, \mathscr{F})$. By Lemma 6 $Y \subseteq Z$. Since $\mathscr{F}^{[\rho]}$ agrees with $(\mathscr{F}/0_{[\rho+1]\mathscr{F}})^{[\rho]}$ on X-Y, $Z-Y=E^{\rho}(\mathscr{F}/0_{[\rho+1]\mathscr{F}})-Y$. $Z=Y\cup E^{\rho}(\mathscr{F}/0_{[\rho+1]\mathscr{F}})$ is a subvariety of dimension $\leq \rho+1$. Q.E.D.

REMARK. Corollary 2 to Theorem 1 can be stated alternatively in the following way: The set of points where we cannot always remove closed singularities contained in subvarieties of dimension ρ for local sections of a coherent analytic sheaf \mathscr{F} satisfying $E^{\rho}(0, \mathscr{F}) = \varnothing$ is a subvariety of dimension $\leq \rho + 1$.

The weaker statement that this set of points is contained in a subvariety of dimension $\leq \rho + 1$ is an easy consequence of Satz III, [9] and Satz 5, [10].

II. Extension of coherent sheaves. Suppose S is a subvariety of a complex space X and \mathcal{F} is a coherent analytic sheaf on X-S. \mathcal{F} is said to satisfy $(*)_{X,S}$ if for every $x \in S$ there exists some open neighborhood U of x in X such that $\Gamma(U-S,\mathcal{F})$ generates \mathcal{F} on U-S.

LEMMA 7. Suppose S is a subvariety of codimension ≥ 2 in a reduced complex space (X, \mathcal{O}) of pure dimension n. Let $\theta \colon X - S \to X$ be the inclusion map. Suppose \mathscr{F}

is a coherent analytic sheaf on X-S such that $E^{n-1}(0, \mathcal{F}) = \emptyset$. If \mathcal{F} satisfies $(*)_{X,S}$, then $R^0\theta(\mathcal{F})$ is coherent.

Proof. Let $\pi: (\tilde{X}, \tilde{\mathcal{O}}) \to (X, \mathcal{O})$ be the normalization of (X, \mathcal{O}) . Let $\tilde{S} = \pi^{-1}(S)$ and $\pi' = \pi | (\tilde{X} - \tilde{S})$. Let $\tilde{\theta}: \tilde{X} - \tilde{S} \to \tilde{X}$ be the inclusion map. Let $\tilde{\mathcal{F}}$ be the inverse image of \mathcal{F} under π' . Let \mathcal{F} be the torsion-subsheaf of $\tilde{\mathcal{F}}$, $\mathcal{G} = \tilde{\mathcal{F}}/\mathcal{F}$, and $Y = \text{Supp } \mathcal{F}$. Since \mathcal{F} satisfies $(*)_{X,\tilde{S}}$, $\tilde{\mathcal{F}}$ satisfies $(*)_{X,\tilde{S}}$. This implies that \mathcal{G} satisfies $(*)_{X,\tilde{S}}$. By Theorem 1, [11] $R^0\tilde{\theta}(\mathcal{G})$ is coherent on \tilde{X} . Let $\mathcal{F}^* = R^0\pi'(\tilde{\mathcal{F}})$ and $\mathcal{G}^* = R^0\pi(R^0\tilde{\theta}(\mathcal{G}))$. \mathcal{G}^* is coherent on X. Let the sheaf-homomorphism $\alpha: \mathcal{F}^* \to \mathcal{G}^*$ on X - S be induced by the quotient map $\tilde{\mathcal{F}} \to \mathcal{G}$. We have a natural sheaf-homomorphism $\lambda: \mathcal{F} \to \mathcal{F}^*$. Let Z be the set of all singular points on X. Let \mathcal{K} be the kernel of $\alpha\lambda$. Then Supp $\mathcal{K} \subset Z \cup \pi(Y)$. Since $E^{n-1}(0, \mathcal{F}) = \emptyset$ and dimSupp $\mathcal{K} \subseteq n-1$, $\mathcal{K} = 0$. $\alpha\lambda$ is injective. Since $R^0\theta(\mathcal{G}^* \mid X - S) = \mathcal{G}^*$, $\alpha\lambda$ induces a sheaf-monomorphism $\beta: R^0\theta(\mathcal{F}) \to \mathcal{G}^*$. Take $x \in S$. There exists an open neighborhood U of x in X such that $\Gamma(U - S, \mathcal{F})$ generates \mathcal{F} on U - S. For $s \in \Gamma(U - S, \mathcal{F})$ let $s \in \Gamma(U, \mathcal{G}^*)$ be the unique extension of $\alpha\lambda(s)$. $\{s \mid s \in \Gamma(U - S, \mathcal{F})\}$ generates a coherent analytic subsheaf \mathcal{F} of \mathcal{G}^* on U. On U $\beta(R^0\theta(\mathcal{F})) = \mathcal{F}[S]_{\mathcal{F}^*}$. By Proposition $2 \mathcal{F}[S]_{\mathcal{F}^*}$ is coherent. Hence $R^0\theta(\mathcal{F})$ is coherent. Q.E.D.

LEMMA 8. Suppose S is a subvariety in a complex space (X, \mathcal{H}) . Let $\theta: X - S \to X$ be the inclusion map. Suppose \mathcal{F}_1 , $1 \le i \le 3$, are coherent analytic sheaves on X - S such that $R^0\theta(\mathcal{F}_3)$ is coherent. Suppose $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \xrightarrow{\eta} \mathcal{F}_3 \to 0$ is an exact sequence of sheaf-homomorphisms on X - S. If \mathcal{F}_2 satisfies $(*)_{X,S}$, then \mathcal{F}_1 satisfies $(*)_{X,S}$.

Proof. Take $x \in S$. There is an open neighborhood U of x in X such that $\Gamma(U-S,\mathscr{F}_2)$ generates \mathscr{F}_2 on U-S. Let W be a Stein open neighborhood of x in U. We claim that $\Gamma(W-S,\mathscr{F}_1)$ generates \mathscr{F}_1 on W-S. Take $y \in W-S$. There exist $s_i \in \Gamma(U-S,\mathscr{F}_2)$, $1 \le i \le m$, generating $(\mathscr{F}_2)_y$. Define a sheaf-homomorphism $\varphi \colon \mathscr{H}^m \to \mathscr{F}_2$ on U-S by $\varphi(\alpha_1,\ldots,\alpha_m) = \sum_{i=1}^m \alpha_i(s_i)_z$ for $\alpha_1,\ldots,\alpha_m \in \mathscr{H}_z$ and $z \in U-S$. $\eta(s_i)$ can be extended uniquely to an element of $\Gamma(U,R^0\theta(\mathscr{F}_3))$, $1 \le i \le m$. There is a unique sheaf-homomorphism $\psi \colon \mathscr{H}^m \to R^0\theta(\mathscr{F}_3)$ on U which agrees with $\eta \varphi$ on U-S. Let \mathscr{H} be the kernel of ψ . \mathscr{H} is coherent. There exist $u_i \in \Gamma(W,\mathscr{H})$, $1 \le i \le n$, generating \mathscr{H}_y . Let $v_i = \varphi(u_i \mid (W-S))$, $1 \le i \le n$. Then $v_i \in \Gamma(W-S,\mathscr{F}_3)$, $1 \le i \le n$, and $(\mathscr{F}_3)_y$ is generated by v_1,\ldots,v_n . Q.E.D.

LEMMA 9. Suppose S is a subvariety of dimension ρ in a complex space X. Let $\theta: X-S \to X$ be the inclusion map. Suppose \mathscr{F}_i , $1 \le i \le 3$, are coherent analytic sheaves on X-S such that $R^0\theta(\mathscr{F}_j)$ is coherent for j=1,3. Suppose $0 \to \mathscr{F}_1 \to \mathscr{F}_2$ $\xrightarrow{n} \mathscr{F}_3 \to 0$ is an exact sequence of sheaf-homomorphisms on X-S. If \mathscr{F}_2 satisfies $(*)_{X,S}$ and $E^{\rho+1}(0,\mathscr{F}_2) = \varnothing$, then $R^0\theta(\mathscr{F}_2)$ is coherent.

Proof. Take $x \in S$. We need only prove that $R^0\theta(\mathscr{F}_2)$ is coherent at x. There is a Stein open neighborhood U of x in X such that $\Gamma(U-S, \mathscr{F}_2)$ generates \mathscr{F}_2 on U-S.

The exact sequence $0 \to \mathscr{F}_1 \to \mathscr{F}_2 \xrightarrow{\eta} \mathscr{F}_3 \to 0$ induces the exact sequence $0 \to R^0\theta(\mathscr{F}_1) \to R^0\theta(\mathscr{F}_2) \xrightarrow{r'} R^0\theta(\mathscr{F}_3)$. For $s \in \Gamma(U - S, \mathscr{F}_2)$ let $\tilde{s} \in \Gamma(U, R^0\theta(\mathscr{F}_2))$ be the unique extension of s and let $\hat{s} = \eta'(\tilde{s})$. Let \mathscr{S} be the subsheaf of $R^0\theta(\mathscr{F}_2)$ on U generated by $\{\tilde{s} \mid s \in \Gamma(U - S, \mathscr{F}_2)\}$ and \mathscr{T} be the subsheaf of $R^0\theta(\mathscr{F}_3)$ on U generated by

$$\{\hat{s} \mid s \in \Gamma(U-S, \mathscr{F}_2)\}.$$

 $\eta'(\mathscr{S}) = \mathscr{T}$. Since $R^0\theta(\mathscr{F}_3)$ is coherent, \mathscr{T} being generated by global sections is coherent. Since $R^0\theta(\mathscr{F}_1)$ is coherent and U is Stein, on U $R^0\theta(\mathscr{F}_1)$ is generated by $\Gamma(U, R^0\theta(\mathscr{F}_1)) \approx \Gamma(U-S, \mathscr{F}_1) \subset \Gamma(U-S, \mathscr{F}_2)$. $R^0\theta(\mathscr{F}_1) \subset \mathscr{S}$. We have an exact sequence $0 \to R^0\theta(\mathscr{F}_1) \overset{\epsilon}{\hookrightarrow} \mathscr{S} \overset{\eta''}{\longrightarrow} \mathscr{T} \to 0$, where η'' is induced by η' and ξ is the inclusion map. Since $R^0\theta(\mathscr{F}_1)$ and \mathscr{T} are both coherent, \mathscr{S} is coherent. $E^{\rho+1}(0,\mathscr{S}) \subset E^{\rho+1}(0,\mathscr{F}_2) = \varnothing$. By Theorem 1 $\mathscr{S}^{[\rho]}$ is coherent. Since dim $S = \rho$, $R^0\theta(\mathscr{S}^{[\rho]}) = \mathscr{S}^{[\rho]}$. The inclusion map $\mathscr{F}_2 \to \mathscr{S}$ on U-S induces on U a sheaf-monomorphism $\beta \colon R^0\theta(\mathscr{F}_2) \to \mathscr{S}^{[\rho]}$. $\beta(R^0\theta(\mathscr{F}_2)) = \mathscr{S}[S]_{\mathscr{S}^{[\rho]}}$. Since $\mathscr{S}[S]_{\mathscr{S}^{[\rho]}}$ is coherent by Proposition 2, $R^0\theta(\mathscr{F}_2)$ is coherent on U. Q.E.D.

LEMMA 10. Suppose S is a subvariety of codimension ≥ 2 in a complex space (X, \mathcal{H}) of pure dimension n. Let $\theta \colon X - S \to X$ be the inclusion map. Suppose \mathcal{F} is a coherent analytic sheaf on X - S. If \mathcal{F} satisfies $(*)_{X,S}$ and $E^{n-1}(0, \mathcal{F}) = \varnothing$, then $R^0\theta(\mathcal{F})$ is coherent on X.

Proof. Let \mathscr{K} be the subsheaf of all nilpotent elements of \mathscr{H} and $\mathscr{O} = \mathscr{H} / \mathscr{K}$. Since the Lemma is local in nature, we can suppose that for some nonnegative integer k $\mathscr{K}^k = 0$. For $0 \le l \le k$ define coherent analytic sheaves $\mathscr{F}^{(l)}$ on X - S inductively as follows: $\mathscr{F}^{(0)} = \mathscr{F}$ and, for $1 \le l \le k$, $\mathscr{F}^{(l)} = (\mathscr{K}\mathscr{F}^{(l-1)})_{(n-1)\mathscr{F}^{(l-1)}}$. Let

$$Y = \bigcup_{l=1}^{k} E^{n-1}(\mathcal{KF}^{(l-1)}, \mathcal{F}^{(l-1)}).$$

Y is a subvariety in X-S of dimension $\leq n-1$. On $X-(S \cup Y)$, $\mathcal{F}^{(l)} = \mathcal{K}\mathcal{F}^{(l-1)}$ for $1 \leq l \leq k$. Hence $\mathcal{F}^{(k)} = 0$ on $X-(S \cup Y)$. Since $\mathcal{F}^{(k)} \subset \mathcal{F}$ and $E^{n-1}(0, \mathcal{F}) = \varnothing$, $\mathcal{F}^{(k)} = 0$ on X-S. From the definition of $\mathcal{F}^{(l)}$ we see that $E^{n-1}(\mathcal{F}^{(l)}, \mathcal{F}^{(l-1)}) = \varnothing$ for $1 \leq l \leq k$. Hence $E^{n-1}(0, \mathcal{F}^{(l-1)} | \mathcal{F}^{(l)}) = 0$ for $1 \leq l \leq k$. Since $\mathcal{K}\mathcal{F}^{(l-1)} \subset \mathcal{F}^{(l)}$, $\mathcal{F}^{(l-1)} | \mathcal{F}^{(l)}$ can be regarded as a coherent analytic sheaf on $(X-S, \mathcal{O} \mid (X-S))$, $1 \leq l \leq k$.

Set $\mathscr{F}^{(k+1)}=0$. We are going to prove (2), for $0 \le l \le k$ by induction on l:

(2)_l $\mathscr{F}^{(l)}$ satisfies $(*)_{x,s}$ and $R^0\theta(\mathscr{F}^{(l)}|\mathscr{F}^{(l+1)})$ is coherent.

Since $\mathcal{F}^{(0)} = \mathcal{F}$, $\mathcal{F}^{(0)}$ satisfies $(*)_{X,S}$. $\mathcal{F}^{(0)}/\mathcal{F}^{(1)}$ satisfies $(*)_{X,S}$. By Lemma 7

$$R^0\theta(\mathcal{F}^{(0)}/\mathcal{F}^{(1)})$$

is coherent. (2)₀ is true. Suppose for some $0 \le m < k$ (2)_m is true. By Lemma 8 and

the exact sequence $0 \to \mathscr{F}^{(m+1)} \to \mathscr{F}^{(m)} \to \mathscr{F}^{(m)}/\mathscr{F}^{(m+1)} \to 0$, we conclude that $\mathscr{F}^{(m+1)}$ satisfies $(*)_{X,S}$. Hence $\mathscr{F}^{(m+1)}/\mathscr{F}^{(m+2)}$ satisfies $(*)_{X,S}$. By Lemma 7

$$R^0\theta(\mathcal{F}^{(m+1)}/\mathcal{F}^{(m+2)})$$

is coherent. (2)_{m+1} is true. Hence (2)_l holds for $0 \le l \le k$.

Now we are going to prove (3), for $0 \le l \le k$ by backward induction on l:

$$(3)_l$$
 $R^0\theta(\mathcal{F}^{(l)})$ is coherent.

Since $\mathscr{F}^{(k)} = 0$, $(3)_k$ is true. Suppose $(3)_m$ is true for some $0 < m \le k$. From $(2)_{m-1}$, $(3)_m$, Lemma 10 and the exact sequence $0 \to \mathscr{F}^{(m)} \to \mathscr{F}^{(m-1)} \to \mathscr{F}^{(m-1)} / \mathscr{F}^{(m)} \to 0$, we conclude that $(3)_{m-1}$ is true. Hence $(3)_l$ holds for $0 \le l \le k$. The Lemma follows from $(3)_0$. Q.E.D.

LEMMA 11. Suppose S is a subvariety of dimension ρ in a complex space (X, \mathcal{H}) . Suppose \mathcal{F} is a coherent analytic sheaf on X-S such that Supp \mathcal{F} is a subvariety of pure dimension $n > \rho$ and $E^{n-1}(0, \mathcal{F}) = \emptyset$. Then there exists a complex subspace (Y, \mathcal{H}) of pure dimension n in (X, \mathcal{H}) such that Y-S=Supp \mathcal{F} and $\mathcal{F}|(Y-S)$ can be regarded as a coherent analytic sheaf on $(Y-S, \mathcal{H}|(Y-S))$.

Proof. By [7, V.D.5] the topological closure Y of Supp \mathscr{F} in X is a subvariety of pure dimension n. Let $Y = \bigcup_{\alpha \in A} Y_{\alpha}$ be the decomposition into irreducible branches. Let \mathscr{I}_{α} be the ideal-sheaf for Y_{α} , $\alpha \in A$. Choose $x_{\alpha} \in Y_{\alpha} - (S \cup (\bigcup_{\beta \in A, \beta \neq \alpha} Y_{\beta}))$. Let \mathscr{A} be the annihilator-ideal-sheaf for \mathscr{F} . Then $E(\mathscr{A}, \mathscr{H}|(X-S)) = Y-S$. By Hilbert Nullstellensatz, there exists a natural number m_{α} such that $(\mathscr{I}_{\alpha}^{m_{\alpha}})_{x_{\alpha}} \subset \mathscr{A}_{x_{\alpha}}$, $\alpha \in A$. Let $\mathscr{I} = \prod_{\alpha \in A} \mathscr{I}_{\alpha}^{m_{\alpha}}$. Then \mathscr{I} is coherent and $(\mathscr{I}\mathscr{F})_{x_{\alpha}} = 0$ for $\alpha \in A$. Supp $\mathscr{I}\mathscr{F}$ is a subvariety of dimension < n in X-S. $E^{n-1}(0,\mathscr{F}) = \varnothing$ implies that $\mathscr{I}\mathscr{F} = 0$. Set $\mathscr{K} = (\mathscr{H}/\mathscr{I}) | Y$. Then (Y, \mathscr{K}) satisfies the requirements. Q.E.D.

THEOREM 2. Suppose S is a subvariety of dimension ρ in a complex space (X, \mathcal{H}) . Let $\theta: X - S \to X$ be the inclusion map. Suppose \mathcal{F} is a coherent analytic sheaf on X - S such that $E^{\rho+1}(0, \mathcal{F}) = \emptyset$ or equivalently for every $x \in X - S$ the zero \mathcal{H}_x -submodule of \mathcal{F}_x has no associated prime ideal of dimension $\leq \rho + 1$. Then the following conditions are equivalent:

- (i) $R^0\theta(\mathcal{F})$ is coherent.
- (ii) There exists a coherent analytic sheaf on X which extends F.
- (iii) \mathscr{F} satisfies $(*)_{X,S}$.

Proof. It is clear that (i) implies (ii) and (ii) implies (iii). We need only prove that (iii) implies (i). Suppose \mathscr{F} satisfies $(*)_{X,S}$. We are going to prove that $R^0\theta(\mathscr{F})$ is coherent. Since the problem is local in nature, we can suppose that X is of finite dimension n. If $n < \rho + 2$, then $E^{\rho+1}(0,\mathscr{F}) = \varnothing$ implies that $\mathscr{F} = 0$. $R^0\theta(\mathscr{F}) = 0$ is coherent. So we can assume that $n \ge \rho + 2$. For $\rho + 1 \le m \le n$ let $\mathscr{G}^{(m)} = 0_{[m]\mathscr{F}}$. $\mathscr{G}^{(\rho+1)} = 0$, because $E^{\rho+1}(0,\mathscr{F}) = \varnothing$. For $\rho + 2 \le m \le n$ let $X_m = \sup \mathscr{G}^{(m)}/\mathscr{G}^{(m-1)}$. Then X_m is the union of all m-dimensional branches of $E^m(0,\mathscr{F})$, $\rho + 2 \le m \le n$.

 $E^{m-1}(0, \mathcal{G}^{(m)}/\mathcal{G}^{(m-1)}) = \emptyset$ for $\rho + 2 \le m \le n$. By Lemma 11 there exists a complex subspace (Y_m, \mathcal{K}_m) of pure dimension m in (X, \mathcal{H}) such that $Y_m - S = X_m$ and $(\mathcal{G}^{(m)}/\mathcal{G}^{(m-1)})|(Y_m - S)$ can be regarded as a coherent analytic sheaf on

$$(Y_m-S, \mathcal{K}_m|(Y_m-S)), \rho+2 \leq m \leq n.$$

Let $\theta_m: Y_m - S \to Y_m$ be the inclusion map $\rho + 2 \le m \le n$. $E^{\rho+1}(0, \mathscr{F}) = \varnothing$ implies that $E^{\rho+1}(0, \mathscr{G}^{(m)}) = 0$ for $\rho + 2 \le m \le n$.

We are going to prove $(4)_m$ for $\rho + 2 \le m \le n$ by backward induction on m:

(4)_m
$$\mathscr{G}^{(m)}$$
 satisfies $(*)_{X,S}$ and $R^0\theta(\mathscr{G}^{(m)}/\mathscr{G}^{(m-1)})$ is coherent.

Since $\mathscr{G}^{(n)} = \mathscr{F}$, $\mathscr{G}^{(n)}$ satisfies $(*)_{X,S}$. $(\mathscr{G}^{(n)}/\mathscr{G}^{(n-1)})|(Y_n-S)$ satisfies $(*)_{Y_n,Y_n\cap S}$. By Lemma 10 $R^0\theta(\mathscr{G}^{(n)}/\mathscr{G}^{(n-1)})\approx R^0\theta_n((\mathscr{G}^{(n)}/\mathscr{G}^{(n-1)})|(Y_n-S))$ is coherent. (4)_n is true. Suppose for some $\rho+2 < q \le n$, (4)_q is true. From Lemma 8, (4)_q, and the exact sequence $0 \to \mathscr{G}^{(q-1)} \to \mathscr{G}^{(q)} \to \mathscr{G}^{(q)}/\mathscr{G}^{(q-1)} \to 0$ we conclude that $\mathscr{G}^{(q-1)}$ satisfies $(*)_{X,S}$. $(\mathscr{G}^{(q-1)}/\mathscr{G}^{(q-2)})|(Y_{q-1}-S)$ satisfies $(*)_{Y_{q-1},Y_{q-1}\cap S}$. By Lemma 10 $R^0\theta(\mathscr{G}^{(q-1)}/\mathscr{G}^{(q-2)})\approx R^0\theta_{q-1}$ $((\mathscr{G}^{(q-1)}/\mathscr{G}^{(q-2)})|(Y_{q-1}-S))$ is coherent. (4)_{q-1} is true. Hence (4)_m holds for $\rho+2\le m\le n$.

Now we are going to prove $(5)_m$ for $\rho+1 \le m \le n$ by induction on m:

$$(5)_m$$
 $R^0\theta(\mathscr{G}^{(m)})$ is coherent.

Since $\mathcal{G}^{(\rho+1)}=0$, $(5)_{\rho+1}$ is true. Suppose $(5)_q$ is true for some $\rho+1 \leq q < n$. From $(4)_{q+1}$, $(5)_q$, Lemma 9, and the exact sequence $0 \to \mathcal{G}^{(q)} \to \mathcal{G}^{(q+1)} \to \mathcal{G}^{(q+1)}/\mathcal{G}^{(q)} \to 0$ we conclude that $R^0\theta(\mathcal{G}^{(q+1)})$ is coherent. $(5)_{q+1}$ is true. Hence $(5)_m$ holds for $\rho+1 \leq m \leq n$. Since $\mathcal{G}^{(n)}=\mathcal{F}$, $(5)_n$ implies that $R^0\theta(\mathcal{F})$ is coherent. Q.E.D.

COROLLARY. Suppose S is a subvariety of dimension ρ in a complex space (X, \mathcal{H}) and $\theta \colon X - S \to X$ is the inclusion map. Suppose \mathcal{F} is a coherent analytic sheaf on X - S such that the homological codimension (p. 358, [9]) of the \mathcal{H}_x -module $\mathcal{F}_x \ge \rho + 2$ for $x \in X$. Then the following conditions are equivalent:

- (i) $R^0\theta(\mathcal{F})$ is coherent.
- (ii) There exists a coherent analytic sheaf on X which extends F.
- (iii) \mathscr{F} satisfies $(*)_{X,S}$.

Proof. Follows from Theorem 2 and Satz I [9]. Q.E.D.

REMARK. [14, (4.1)] is a special case of the Corollary to Theorem 2.

III. Extensions of global sections of coherent sheaves.

DEFINITION 4. Suppose ρ is a natural number. A real-valued function v on a complex space X is said to be *-strongly ρ -convex at $x \in X$ if there exist a nowhere degenerate holomorphic map φ from some open neighborhood U of x in X to an open subset D of C^n and a real-valued C^2 function \tilde{v} on D such that $v = \tilde{v}\varphi$ on U and at every point in D the Hermitian matrix $(\partial^2 \tilde{v}/\partial z_i \partial \bar{z}_j)_{1 \le i,j \le n}$ has at least $n - \rho + 1$ positive eigenvalues.

DEFINITION 5. Suppose ρ is a natural number. An open subset D of a complex space X is said to be *-strongly ρ -concave at $x \in X$ if there is a *-strongly ρ -convex

function v on some open neighborhood U of x in X such that $D \cap U = \{y \in U \mid v(y) > v(x)\}.$

LEMMA 12. Suppose \mathscr{F} is a coherent analytic sheaf on a reduced complex space (X, \mathcal{O}) of pure dimension n such that $E^{n-1}(0, \mathscr{F}) = \varnothing$. Suppose $1 \le \rho < n$, $x \in X$, and D is an open subset of X which is *-strongly ρ -concave at x. Then there exist an open neighborhood U of x in X, a subvariety V of dimension $< \rho$ in U, and a natural number m satisfying the following: If for some open neighborhood W of x in U $f \in \Gamma(W, \mathcal{O})$ vanishes identically on $V \cap W$ and $s \in \Gamma(W \cap D, \mathscr{F})$, then $f^m s \mid W' \cap D$ can be extended to an element of $\Gamma(W', \mathscr{F})$ for some open neighborhood W' of x in W.

Proof. Let $\pi: (\tilde{X}, \tilde{\mathcal{O}}) \to (X, \mathcal{O})$ be the normalization of (X, \mathcal{O}) . Let $\tilde{\mathscr{F}}$ be the inverse image of \mathscr{F} under π , \mathscr{F} be the torsion subsheaf of \mathscr{F} , and $\mathscr{G} = \mathscr{F}/\mathscr{F}$. Let $\pi^{-1}(x) = (y_1, \ldots, y_k)$. For every $1 \le i \le k$ there exists a sheaf-monomorphism $\alpha_i : \mathscr{G} \to \widetilde{\mathcal{O}}^{p_i}$ on some open neighborhood U_i of y_i in X. By shrinking U_i , $1 \le i \le k$, we can suppose that $U_i \cap U_j = \emptyset$ for $i \neq j$. There is an open neighborhood U^* of x in X such that $\pi^{-1}(U^*) \subset \bigcup_{i=1}^k U_i$. Define a coherent analytic sheaf $\mathscr S$ on $\pi^{-1}(U^*)$ by setting $\mathscr{S} = \tilde{\mathscr{O}}^{p_i}$ on $\pi^{-1}(U^*) \cap U_i$ for $1 \le i \le k$. Define $\alpha : \mathscr{G} \to \mathscr{S}$ on $\pi^{-1}(U^*)$ by setting $\alpha = \alpha_i$ on $\pi^{-1}(U^*) \cap U_i$ for $1 \le i \le k$. Let $\beta : R^0 \pi(\tilde{\mathscr{F}}) \to R^0 \pi(\mathscr{G})$ and $\gamma : R^0 \pi(\mathscr{F}) \to R^0 \pi(\mathscr{G})$ $R^0\pi(\mathscr{G})\to R^0\pi(\mathscr{S})$ on U^* be induced respectively by the quotient map $\tilde{\mathscr{F}}\to\mathscr{G}$ and α . Let $\lambda: \mathscr{F} \to R^0\pi(\tilde{\mathscr{F}})$ be the natural map. $E^{n-1}(0,\mathscr{F}) = \emptyset$ implies that $\xi = \gamma \beta \lambda$: $\mathscr{F} \to R^0 \pi(\mathscr{S})$ on U^* is injective. Let $V^* = E^{\rho-1}(\xi(\mathscr{F}), R^0 \pi(\mathscr{S}))$ and let \mathscr{I} be the ideal-sheaf on U^* for V^* . By Proposition 1 dim $V^* < \rho$. Let $\mathscr{A} = \xi(\mathscr{F})$: $\xi(\mathscr{F})_{[\varrho-1]R^0\pi(\mathscr{S})}$. Then $E(\mathscr{A},\mathscr{O}|U^*)=V^*$. Let U be a relatively compact open neighborhood of x in U^* . By Hilbert Nullstellensatz there is a natural number msuch that $\mathscr{I}^m \subset \mathscr{A}$ on U. Let $V = V^* \cap U$. We claim that U, V and m satisfy the requirements.

Suppose for some open neighborhood W of x in U we have $f \in \Gamma(W, \mathcal{O})$ vanishing identically on $V \cap W$ and $s \in \Gamma(W \cap D, \mathcal{F})$. By Proposition 6.1, [3], for some open neighborhood W' of x in $W \notin (s)|W' \cap D$ can be extended to $t \in \Gamma(W', R^0\pi(\mathscr{S}))$. Let $Z = \{y \in W' \mid t_y \notin \xi(\mathscr{F})_y\}$. $Z = E((\xi(\mathscr{F}) : \mathcal{O}t), \mathcal{O}|W')$ is a subvariety in W'. Since D is *-strongly ρ -concave at x, every subvariety-germ of dimension $\geq \rho$ at x intersects D (4° of Definition 2.8 and Proposition 2.9, [3]). Hence $Z \cap D = \emptyset$ implies that dim $Z_x < \rho$. By shrinking W', we can assume that dim $Z < \rho$.

$$t \in \Gamma(W', \xi(\mathscr{F})_{[\rho-1]R^0\pi(\mathscr{S})}).$$

 $f^m t \in \Gamma(W', \xi(\mathscr{F})). \xi^{-1}(f^m t) \in \Gamma(W', \mathscr{F}) \text{ extends } f^m s | W' \cap D. \quad Q.E.D.$

LEMMA 13. Suppose \mathscr{F} is a coherent analytic sheaf on a complex space (X, \mathscr{H}) of pure dimension n such that $E^{n-1}(0, \mathscr{F}) = \varnothing$. Suppose $1 \le \rho < n$, $x \in X$, and D is an open subset of X which is *-strongly ρ -concave at x. Then there exist an open neighborhood U of x in X, a subvariety V of dimension $< \rho$ in U, and a natural number m satisfying the following: If for some open neighborhood W of x in U $f \in \Gamma(W, \mathscr{H})$

vanishes identically on $V \cap W$ and $s \in \Gamma(W \cap D, \mathcal{F})$, then $f^m s | W' \cap D$ can be extended to an element of $\Gamma(W', \mathcal{F})$ for some open neighborhood W' of x in W.

Proof. Let \mathscr{K} be the subsheaf of all nilpotent elements of \mathscr{H} and $\mathscr{O} = \mathscr{H} / \mathscr{K}$. Since the Lemma is local in nature, we can suppose that $\mathscr{K}^k = 0$ for some natural number k. For $0 \le l \le k$ define $\mathscr{F}^{(l)}$ inductively as follows:

$$\mathscr{F}^{(0)} = \mathscr{F}$$
, and, for $1 \le l \le k$, $\mathscr{F}^{(l)} = (\mathscr{KF}^{(l-1)})_{(n-1)\mathscr{F}^{(l-1)}}$.

As in the Proof of Lemma 5, we have the following:

$$\mathscr{F}^{(k)}=0$$
; $E^{n-1}(0,\mathscr{F}^{(l-1)}/\mathscr{F}^{(l)})=\varnothing$ for $1\leq l\leq k$;

and $\mathscr{G}^{(l)} = \mathscr{F}^{(l)}/\mathscr{F}^{(l+1)}$, $0 \le l \le k-1$, can be regarded as a coherent analytic sheaf on the reduced complex space (X, \mathcal{O}) . By Lemma 12 for $0 \le l \le k-1$ we have a subvariety V_l of dimension $<\rho$ in some open neighborhood U_l of x in X and a natural number p_l satisfying the following: If for some open neighborhood W of x in U_l $f \in \Gamma(W, \mathcal{O})$ vanishes identically on $V_l \cap W$ and $s \in \Gamma(W \cap D, \mathscr{G}^{(l)})$, then $f^{p_l}s|W' \cap D$ can be extended to an element of $\Gamma(W', \mathscr{G}^{(l)})$ for some open neighborhood W' of x in W.

Let $U = \bigcap_{l=0}^{k-1} U_l$ and $V = \bigcup_{l=0}^{k-1} (V_l \cap U)$. Let $m_l = \sum_{i=1}^{k-1} p_i$, $0 \le l \le k-1$. By considering the exact sequences $0 \to \mathscr{F}^{(l+1)} \to \mathscr{F}^{(l)} \to \mathscr{G}^{(l)} \to 0$, $0 \le l \le k-1$, and by backward induction on l, we conclude the following for $0 \le l \le k-1$: If $f \in \Gamma(W, \mathscr{H})$ vanishes identically on $W \cap V$ and $s \in \Gamma(W \cap D, \mathscr{F}^{(l)})$ for some open neighborhood W of x in U, then $f^{m_{l}s}|W' \cap D$ can be extended to an element of $\Gamma(W', \mathscr{F}^{(l)})$ for some open neighborhood W' of x in W. Hence U, V, and $m = m_0$ satisfy the requirements. Q.E.D.

LEMMA 14. Suppose \mathscr{F} is a coherent analytic sheaf on a complex space (X,\mathscr{H}) and ρ is a natural number such that $E^{\rho}(0,\mathscr{F})=\varnothing$. Suppose $x\in X$ and D is an open subset of X which is *-strongly ρ -concave at x. Then there exist an open neighborhood U of x in X, a subvariety V of dimension $<\rho$ in U, and a natural number m satisfying the following: If for some open neighborhood W of x in U $f\in \Gamma(W,\mathscr{H})$ vanishes identically on $W\cap V$ and $s\in \Gamma(W\cap D,\mathscr{F})$, then $f^ms|W'\cap D$ can be extended to an element of $\Gamma(W',\mathscr{F})$ for some neighborhood W' of x in W.

Proof. Since the problem is local in nature, we can suppose that X is of finite dimension n. If $n \le \rho$, $E^{\rho}(0, \mathscr{F}) = \varnothing$ implies that $\mathscr{F} = 0$ and what is to be proved is trivial. So we can suppose that $n > \rho$. Define $\mathscr{G}^{(k)} = 0_{\{k\}}\mathscr{F}$ for $\rho \le k \le n$. $\mathscr{G}^{(\rho)} = 0$. For $\rho < k \le n$ let $X_k = \text{Supp } \mathscr{G}^{(k)}/\mathscr{G}^{(k-1)}$ and let $\mathscr{A}^{(k)}$ be the annihilator-ideal-sheaf for $\mathscr{G}^{(k)}/\mathscr{G}^{(k-1)}$. For $\rho < k \le n$ X_k is empty or of pure dimension k, $E^{k-1}(0, \mathscr{G}^{(k)}/\mathscr{G}^{(k-1)}) = \varnothing$, and $(\mathscr{G}^{(k)}/\mathscr{G}^{(k-1)})|X_k$ can be regarded as a coherent analytic sheaf on the complex space $(X_k, (\mathscr{H}/\mathscr{A}^{(k)})|X_k)$. By Lemma 13, for $\rho < k \le n$, if $x \in X_k$, there exist a subvariety V_k of dimension $< \rho$ in some open neighborhood U_k of x in x and a

natural number p_k satisfying the following: If for some open neighborhood W of x in U_k $f \in \Gamma(W, (\mathcal{X}/\mathcal{A}^{(k)})|X_k)$ vanishes identically on $W \cap V_k$ and

$$s \in \Gamma(W \cap D, \mathcal{G}^{(k)}/\mathcal{G}^{(k-1)}),$$

then $f^{p_k s}|W'\cap D$ can be extended to an element of $\Gamma(W',\mathcal{G}^{(k)}|\mathcal{G}^{(k-1)})$ for some open neighborhood W' of x in W. For $\rho < k \leq n$, if $x \in X_k$, choose an open neighborhood \widetilde{U}_k of x in X such that $\widetilde{U}_k \cap X_k = U_k$; and, if $x \notin X_k$, let $\widetilde{U}_k = X$, $V_k = \varnothing$, and $p_k = 1$.

Let $U = \bigcap_{k=\rho+1}^n \widetilde{U}_k$ and $V = \bigcup_{k=\rho+1}^n (U \cap V_k)$. Set $m_k = \sum_{i=\rho+1}^k p_i$. By considering the exact sequences $0 \to \mathcal{G}^{(k)} \to \mathcal{G}^{(k+1)} \to \mathcal{G}^{(k+1)} / \mathcal{G}^{(k)} \to 0$, $\rho \le k \le n-1$, and by induction on k, we conclude the following for $\rho < k \le n$: If for some open neighborhood W of x in $Uf \in \Gamma(W, \mathcal{H})$ vanishes on $V \cap W$ and $s \in \Gamma(W \cap D, \mathcal{G}^{(k)})$, then $f^{m_k s} | W' \cap D$ can be extended to an element of $\Gamma(W', \mathcal{G}^{(k)})$ for some open neighborhood W' of x in W. The Lemma follows from $\mathcal{F} = \mathcal{G}^{(n)}$ and $m = m_n$. Q.E.D.

THEOREM 3 (LOCAL EXTENSION). Suppose \mathscr{F} is a coherent analytic sheaf on a complex space (X, \mathscr{H}) and ρ is a natural number such that $\mathscr{F} = \mathscr{F}^{[\rho-1]}$. Suppose $x \in X$ and D is an open subset of X which is *-strongly ρ -concave at x. Then the following is satisfied: If $s \in \Gamma(W \cap D, \mathscr{F})$ for some open neighborhood W of x in X, then $s|W' \cap D$ can be extended to an element t of $\Gamma(W', \mathscr{F})$ for some open neighborhood W' of x in W and t_x is uniquely determined.

Proof. Since $\mathscr{F} = \mathscr{F}^{[\rho-1]}$, by Theorem 1, and the definition of $\mathscr{F}^{[\rho-1]}$, $E^{\rho}(0,\mathscr{F}) = \varnothing$. There exist an open neighborhood U of x in X, a subvariety V of dimension $< \rho$ in U, and a natural number m satisfying the requirements of Lemma 14. By Lemma 3 every branch of $E^{\sigma}(0,\mathscr{F})$ has dimension $> \rho$ for every nonnegative integer σ . By shrinking U we can assume that there is $f \in \Gamma(U,\mathscr{H})$ such that f vanishes identically on V and f does not vanish identically on any branch of $E^{\sigma}(0,\mathscr{F}) \cap U$ for any nonnegative integer σ . By Lemma 2 the sheaf-homomorphism $\alpha \colon \mathscr{F} \to \mathscr{F}$ on U defined by multiplication by f^m is injective.

Suppose $s \in \Gamma(W \cap D, \mathcal{F})$. For some open neighborhood W' of x in $W \alpha(s)|W' \cap D = f^m s|W' \cap D$ can be extended to an element $\tilde{t} \in \Gamma(W', \mathcal{F})$. $Z = \{y \in W' \mid \tilde{t}_y \notin \alpha(\mathcal{F})_y\}$ is a subvariety in W'. Since D is *-strongly ρ -concave at x and $Z \cap D = \emptyset$, either $x \notin Z$ or dim $Z_x < \rho$. By shrinking W', we can assume that either $Z \cap W' = \emptyset$ or dim $Z < \rho$. $\tilde{t} \in \Gamma(W', \alpha(\mathcal{F})_{[\rho-1]\mathcal{F}})$. $\mathcal{F} = \mathcal{F}^{[\rho-1]}$ implies that $\alpha(\mathcal{F})_{[\rho-1]\mathcal{F}} = \alpha(\mathcal{F})$. Hence $\tilde{t} \in \Gamma(W', \alpha(\mathcal{F}))$. $t = \alpha^{-1}(\tilde{t}) \in \Gamma(W', \mathcal{F})$ extends $s \mid W' \cap D$.

Suppose for some other open neighborhood W'' of x in W there is $t' \in \Gamma(W'', \mathscr{F})$ extending $s|W'' \cap D$. We are going to prove that $t'_x = t_x$. By shrinking both W' and W'', we can assume that W' = W''. $Y = \{y \in W' \mid t'_y \neq t_y\}$ is a subvariety in W'. Since D is *-strongly ρ -concave at x and $Y \cap D = \emptyset$, either $x \notin Y$ or $t'_x - t_x \in (0_{[\rho-1]\mathscr{F}})_x = 0$. Q.E.D.

Theorem 4 (Global Extension). Suppose ρ is a natural number and v is a *-strongly ρ -convex function on a complex space X such that $\{x \in X \mid \lambda < v(x) < \mu\}$ is relatively compact in X for any two real numbers $\lambda < \mu$. Suppose \mathcal{F} is a coherent analytic sheaf on X satisfying $\mathcal{F} = \mathcal{F}^{[\rho-1]}$. Then for $\lambda \in \mathbb{R}$ every section of \mathcal{F} on $X_{\lambda} = \{x \in X \mid v(x) > \lambda\}$ is uniquely extendible to a section of \mathcal{F} on X.

Proof. We can assume that X as a topological space is connected. Since $E^{\rho}(0, \mathscr{F}) = \varnothing$, we can assume that every branch of X has dimension $> \rho$. Fix $\lambda_0 \in \mathbb{R}$ and $s \in \Gamma(X_{\lambda_0}, \mathscr{F})$. We can assume that $X_{\lambda_0} \neq \varnothing$. Let $\Lambda = \{\lambda \in \mathbb{R} \mid \lambda \leq \lambda_0 \text{ and } s \text{ can be extended to } s_{\lambda} \in \Gamma(X_{\lambda}, \mathscr{F})\}$. Clearly, if $\lambda \in \Lambda$ and $\lambda < \mu$, then $\mu \in \Lambda$. We are going to prove:

(6) If
$$\lambda \in \Lambda$$
 and $s_{\lambda}, s'_{\lambda} \in \Gamma(X_{\lambda}, \mathscr{F})$ both extend s , then $s_{\lambda} = s'_{\lambda}$.

Suppose the contrary. Then $Z = \{x \in X_{\lambda} \mid (s_{\lambda})_x \neq (s'_{\lambda})_x\}$ is a nonempty subvariety in X_{λ} . Let Z_0 be a branch of Z. Take $x^* \in Z_0$ and let $\lambda^* = v(x^*)$. Let $\xi = \sup\{v(x) \mid x \in Z_0\}$. Since $Z \cap X_{\lambda_0} = \emptyset$, ξ is the supremum of v on the compact set $Z_0 \cap \{x \in X \mid \lambda^* \leq v(x) \leq \lambda_0\}$. $\xi = v(y)$ for some $y \in Z_0$. Since X_{ξ} is *-strongly ρ -concave at y and $Z_0 \cap X_{\xi} = \emptyset$, we have dim $(Z_0)_y < \rho$. Since Z_0 is irreducible, dim $Z_0 < \rho$. Hence dim $Z < \rho$. $s_{\lambda} - s'_{\lambda} \in \Gamma(X_{\lambda}, 0_{[\rho-1]\mathscr{F}})$. (6) follows from $0_{[\rho-1]\mathscr{F}} = 0$.

For $\lambda \in \Lambda$ denote the unique element of $\Gamma(X_{\lambda}, \mathscr{F})$ which extends s by s_{λ} . To finish the proof, we need only prove that Λ has no lower bound, because in that case $\Lambda = \{\lambda \in R \mid \lambda \leq \lambda_0\}$ and by (6) $s^* \in \Gamma(X, \mathscr{F})$ defined by $s^* \mid X_{\lambda} = s_{\lambda}$ for $\lambda \in \Lambda$ extends s. Suppose the contrary. Then $\eta = \inf \Lambda$ exists and is finite. Since X is connected, this implies that X_{η} is not closed in X. By Theorem 3 for every x in the boundary ∂X_{η} of X_{η} there exists an open neighborhood U_x of x in X such that s_{η} can be extended to $t_{(x)} \in \Gamma(U_x \cup X_{\eta}, \mathscr{F})$. For $x, x' \in \partial X_{\eta}$ let $Y_{(x,x')} = \{z \in U_x \cap U_{x'} \mid (t_{(x)})_z \neq (t_{(x')})_z\}$. Since $0_{(\rho-1)\mathscr{F}} = \varnothing$, $Y_{(x,x')}$ is either empty or every branch of $Y_{(x,x')}$ has dimension $\geq \rho$. Since X_{η} is *-strongly ρ -concave at every one of its boundary points,

(7)
$$Y_{(x,x')} \cap \partial X_n = \emptyset \quad \text{for } x, x' \in \partial X_n.$$

Since ∂X_{η} is compact we can choose $x_1,\ldots,x_k\in\partial X_{\eta}$ such that $\partial X_{\eta}\subset\bigcup_{i=1}^k U_{x_i}$. For $1\leq i\leq k$ choose a relatively compact open neighborhood W_i of x_i in U_{x_i} such that $\partial X_{\eta}\subset\bigcup_{i=1}^k W_i$. Let W_i^- be the closure of W_i in $X,\ 1\leq i\leq k$. (7) implies that we can choose an open neighborhood W of ∂X_{η} in $\bigcup_{i=1}^k W_i$ such that W does not intersect the closed set $\bigcup_{1\leq i,j\leq k,i\neq j} Y_{(x_i,x_j)}\cap W_i^-\cap W_j^-$. For some $\lambda<\eta,\ X_{\lambda}\subset W\cup X_{\eta}$ because of Proposition 2.7 of [3]. Define $t\in\Gamma(X_{\lambda},\mathscr{F})$ by setting $t=s_{(x_i)}$ on $(U_{x_i}\cup X_{\eta})\cap X_{\lambda}$. t extends s, contradicting $\lambda\notin\Lambda$.

Uniqueness follows from (6). Q.E.D.

REMARKS. (i) Theorem 3 generalizes the Theorem on p. 279 of [4] and Theorem 4 generalizes Corollary 5.2 of [4] because of Theorem 4.3 of [4]. Theorems 3 and 4

here have the advantage that, if \mathscr{F} does not satisfy $\mathscr{F} = \mathscr{F}^{[\rho-1]}$, we can always construct the coherent analytic sheaf $\mathscr{G} = (\mathscr{F}/0_{[\rho]\mathscr{F}})^{[\rho-1]}$ which satisfies $\mathscr{G} = \mathscr{G}^{[\rho-1]}$.

(ii) Suppose \mathscr{F} is a coherent analytic sheaf on a complex space (X,\mathscr{H}) and $x \in X$. The condition $\mathscr{F}_x = (\mathscr{F}^{[0]})_x$ is equivalent to the condition $\operatorname{codh} \mathscr{F}_x \ge 2$. It can be proved in the following way: If $\mathscr{F}_x = (\mathscr{F}^{[0]})_x$, then $E^0(0,\mathscr{F}) = \varnothing$ and by Lemmas 2 and 3 we can find $f \in \Gamma(U,\mathscr{H})$ for some open neighborhood U of x in X such that f_x is not a unit of \mathscr{H}_x and f_x is not a zero-divisor for \mathscr{F}_x . By shrinking U, we can assume that f_y is not a zero-divisor for \mathscr{F}_y for $y \in U$. Suppose $x \in E^0(f\mathscr{F},\mathscr{F}|U)$. By shrinking U, we can find $g \in \Gamma(U,\mathscr{F})$ such that $g_y \in (f\mathscr{F})_y$ for $y \in U - \{x\}$ and $g_x \notin (f\mathscr{F})_x$. Then $h \in \Gamma(U,\mathscr{F}^{[0]})$ defined by $g_y = f_y h_y$ for $y \in U - \{x\}$ does not satisfy $h_x \in \mathscr{F}_x$. This is a contradiction. Hence $x \notin E^0(f\mathscr{F},\mathscr{F}|U)$. By Lemmas 2 and 3 we can find $g \in \mathscr{H}_x$ which vanishes at $g \in \mathscr{F}_x$ and is not a zero-divisor for $g \in \mathscr{F}_x$. codh $g \in \mathscr{F}_x$ by Korollar zu Satz III, [9].

The equivalence of $\mathscr{F}_x = (\mathscr{F}^{[0]})_x$ and $\operatorname{codh} \mathscr{F}_x \ge 2$ is also a consequence of [14, (1.1)]. However, the proof presented here is more conceptual than the proof in [14].

(iii) In the case of Stein spaces we have the following stronger version of Theorem 4 which generalizes Theorem 5.4 of [4]:

Suppose \mathscr{F} is a coherent analytic sheaf on a Stein space X such that $\mathscr{F} = \mathscr{F}^{[0]}$. Suppose K is a compact subset of X such that, if A is a branch of $E^{\sigma}(0,\mathscr{F})$ for any $\sigma \geq 2$, then A-K is irreducible. Then for every open neighborhood U of K in X every element of $\Gamma(U-K,\mathscr{F})$ can be extended uniquely to an element of $\Gamma(U,\mathscr{F})$.

It can be proved in the following way: Suppose $s \in \Gamma(U-K, \mathscr{F})$. Since $H^1(X, \mathscr{F}) = 0$, from the Mayer-Vietoris sequence of \mathscr{F} on $X = (X - K) \cup U$ (p. 236, [2]) we conclude that for some $f \in \Gamma(X - K, \mathscr{F})$ and $g \in \Gamma(U, \mathscr{F})$ f - g = s on U - K. From Theorem 4 we can find $\tilde{f} \in (X, \mathscr{F})$ which agrees with f outside some compact subset of X. Since $E^{\sigma}(0, \mathscr{F}) = \varnothing$ for $\sigma \leq 1$ and A - K is irreducible for any branch A of $E^{\sigma}(0, \mathscr{F})$ with $\sigma \geq 2$, f agrees with \tilde{f} on X - K. $(\tilde{f} | U) - g$ extends s. The extension is clearly unique, because $E^{0}(0, \mathscr{F}) = \varnothing$.

In view of the equivalence of $\mathscr{F}_x = (\mathscr{F}^{[0]})_x$ and codh $\mathscr{F}_x \ge 2$, in the above proof we can use Theorem 15 of [2] instead of Theorem 4. So (8) can be proved also by the finiteness theorems of pseudoconvex spaces in [2].

(8) generalizes Theorem 5.4 of [4] because of the following:

Suppose K is a closed subset of an irreducible complex space X and U is an open neighborhood of K in X such that for every branch A of UA-K is irreducible. Then X-K is irreducible.

Let R be the set of all regular points of X. To prove (9), we need only show that R-K is connected. Suppose $R \cap U = \bigcup_{i \in I} R_i$ is the decomposition into topological components. Then $R_i - K$ is connected for $i \in I$. The restriction map $\Gamma(R \cap U, C) \to \Gamma(R \cap (U-K), C)$ is an isomorphism. From the following portion of the Mayer-Vietoris sequence of the constant sheaf C on $R = (R \cap U) \cup (R-K)$: $0 \to \Gamma(R, C) \to \Gamma(R-K, C) \oplus \Gamma(R \cap U, C) \to \Gamma(R \cap (U-K), C)$, we conclude that the restriction map $\Gamma(R, C) \to \Gamma(R-K, C)$ is an isomorphism. R-K is connected.

REFERENCES

- 1. A. Andreotti, Théorèmes de dépendance algébrique sur les espaces complexes pseudoconcaves, Bull. Soc. Math. France 91 (1963), 1-38.
- 2. A. Andreotti and H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259.
 - 3. H. Fujimoto, On the continuation of analytic sets, J. Math. Soc. Japan 18 (1966), 51-85.
- 4. ——, The continuation of sections of torsion-free coherent analytic sheaves, Nagoya Math. J. 31 (1968), 279–294.
- 5. H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen, Inst. Hautes Études Sci. Publ. Math. No. 5, 1960.
- 6. H. Grauert and R. Remmert, Bilder und Urbilder analytischer Garben, Ann. of Math. 68 (1958), 393-443.
- 7. R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Englewood Cliffs, N. J., 1965.
 - 8. M. Nagata, Local rings, Interscience, New York, 1962.
- 9. G. Scheja, Riemannsche Hebbarkeitssätze für Cohomologie Klassen, Math. Ann. 144 (1961), 345-360.
- 10. ——, Fortsetzungssätze der komplex-analytischen Cohomologie und ihre algebraische Charakterisierung, Math. Ann. 157 (1964), 75-94.
- 11. J.-P. Serre, Prolongement de faisceaux analytiques cohérents, Ann. Inst. Fourier (Grenoble) 16 (1966), 363-374.
- 12. Y.-T. Siu, Noether-Lasker decomposition of coherent analytic subsheaves, Trans. Amer. Math. Soc. 135 (1969), 375-384.
- 13. W. Thimm, Lückengarben von kohärenten analytischen Modulgarben, Math. Ann. 148 (1962), 372-394.
- 14. G. Trautmann, Ein Kontinuitätssatz für die Fortsetzung kohärenter analytischen Garben, Arch. Math. (Basel) 18 (1967), 188-196.

University of Notre Dame, Notre Dame, Indiana