ABSOLUTE GAP-SHEAVES AND EXTENSIONS OF
COHERENT ANALYTIC SHEAVES

BY
YUM-TONG SIU

Thimm introduced the concept of gap-sheaves for analytic subsheaves of finite
direct sums of structure-sheaves on domains of complex number spaces (Definition
9, [13]) and proved that these gap-sheaves are coherent if the subsheaves themselves
are coherent (Satz 3, [13]). This concept of gap-sheaves can be readily generalized
to analytic subsheaves of arbitrary analytic sheaves on general complex spaces
(Definition 1, [12]). All the gap-sheaves of coherent analytic subsheaves of arbitrary
coherent analytic sheaves on general complex spaces are coherent (Theorem 3, [12]).
The gap-sheaves of a given analytic subsheaf depend not only on the subsheaf
itself but also on the analytic sheaf in which the given subsheaf is embedded as a
subsheaf.

In this paper we introduce a new notion of gap-sheaves which we call absolute
gap-sheaves (Definition 3 below). These gap-sheaves arise naturally from the
problem of removing singularities of local sections of a coherent analytic sheaf.
They depend only on a given analytic sheaf and neither require nor depend upon an
embedding of the given sheaf as a subsheaf in another analytic sheaf. We give here a
necessary and sufficient condition for the coherence of absolute gap-sheaves of
coherent sheaves (Theorem 1 below). This yields some results concerning removing
singularities of local sections of coherent sheaves (see Remark following Corollary 2
to Theorem 1). Then we use absolute gap-sheaves to derive a theorem (Theorem 2
below) which generalizes Serre’s Theorem on the extension of torsion-free coherent
analytic sheaves (Theorem 1, [11]). Finally a result on extensions of global sections
of coherent analytic sheaves is derived (Theorem 4 below).

Unless specified otherwise, complex spaces are in the sense of Grauert (§1, [5]).
If & is an analytic subsheaf of an analytic sheaf 7~ on a complex space (X, o),
then & : J denotes the ideal-sheaf # defined by S,={se ¥, | s7, <%} for
xe X. E(4,7) denotes {xe X | %,#7,}. SuppZ denotes the support of J. If
te I'(X, ), then Supp ¢ denotes the support of . For x € X, ¢, denotes the germ
of ¢ at x. By the annihilator-ideal-sheaf &/of 7~ we mean the ideal-sheaf «/ defined
by . ={se€ H#, | s7,.=0}for x € X.If 0: (X, #) — (X', ") is a holomorphic map
(i.e. a morphism of ringed spaces) from (X, 5) to another complex space (X', "),
then R°6(J") denotes the zeroth direct image of 7 under 6. If fe I'(X, ) and
x € X, we say that f vanished at x if f, is not a unit in J%,.
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1. Absolute gap-sheaves.

DErINITION 1. Suppose ¥ is an analytic subsheaf of an analytic sheaf J on a
complex space (X, o) and p is a nonnegative integer. The pth gap-sheaf of & in 7,
denoted by 4,7, is the analytic subsheaf of J defined as follows: For x € X,
s € (#,7), if and only if there exist an open neighborhood U of x in X, a sub-
variety 4 in U of dimension <p, and ¢ € I'(U, ) such that t,=s and ¢, € &, for
yeU—-A.

Denote the set {x € X | &, #(H,15)x} by EX(S, T).

REMARK. When % and . are both coherent, then x € E°(¥, ) if and only if
¥, as an H#,-submodule of J, has an associated prime ideal of dimension =Zp
(Theorem 4, [12]). E*(¥, )= @ means that for every x € X <, as an ,-sub-
module of Z, has no associated prime ideal of dimension =<p.

DErFINITION 2. Suppose 7 is an analytic subsheaf of an analytic sheaf J on a
complex space (X, ) and A is a subvariety of X. Then the gap-sheaf of & in T
with respect to A, denoted by #[A4]s, is defined as follows: For x € X, s € (£[4]5)x
if and only if there exist an open neighborhood U of x in X and te I'(U, 9)
such that z,=sand t,€ &, for ye U— 4.

PROPOSITION 1. Suppose & is a coherent analytic subsheaf of a coherent analytic
sheaf T on a complex space (X, #) and p is a nonnegative integer. Then S, is
coherent and E*(¥, J) is a subvariety of dimension <p in X.

Proof. See Theorem 3 [12]. This can also be derived easily from Satz 3 [13].
Q.E.D.

PROPOSITION 2. Suppose & is a coherent analytic subsheaf of a coherent analytic
sheaf I on a complex space (X, ) and A is a subvariety of X. Then L[Als is
coherent.

Proof. See Theorem 1 [12]. This can also be derived easily from [13, Satz 9].
Q.E.D.

DErINITION 3. Suppose & is an analytic sheaf on a complex space X' and p is a
nonnegative integer. The pth absolute gap-sheaf of %, denoted by #1), is the analytic
sheaf on X defined by the following presheaf: Suppose U< V are open subsets of X.
Then

FYU) = ind lim (U—- 4, F),
AeW(U)
where A(U) is the directed set of all analytic subvarieties in U of dimension <p
directed under inclusion. #F¥Y(V) — F¥(U) is induced by restriction.

REMARKS. (i) F1=(F[0,,5)*), where 0 is the zero-subsheaf of &

(ii) There is a natural sheaf-homomorphism p: F — F. The kernel of p is
0i#. When E°(0, #)= g, p is injective and we can regard % as a subsheaf of
F I, In this case we denote the set {x € X | #,#(F),} by E*(F).
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LEMMA 1. Suppose F is a coherent analytic sheaf on a reduced complex space
(X, 0) of pure dimension n. Suppose 0<p=<n—2. If E*~}(0, #)= g, then F“ is
coherent and E*(¥) is a subvariety of dimension < p.

Proof. Let =: (£, &) - (X, 0) be the normalization of (X, 0). Let & be the
inverse image of & under = (Definition 8, [6]). Let J be the torsion-subsheaf of F
and ¥=% /7. Let Y=Supp 7. J and ¥ are both coherent and ¥ is torsion-free
(Proposition 6, [1]). dim Y=n—1 (Proposition 7, [1]). We claim that

@1 js coherent and E°(¥) is a subvariety of
dimension <pin X.

)

Take x € £. On some open neighborhood U of x in X ¢ can be regarded as a
coherent subsheaf of @ for some p (Proposition 9, [1]). It is clear that %! is iso-
morphic to %, on U and E*(¥%, 67) n U=E*(%) N U. (1) follows from Prop-
osition 1.

Let #*=Rn(%), ¥*=Rn(%), and (¥¥)*=R°n(¥)). Let a: F* - ¥* and
B: ¥* — (9"))* be induced respectively by the quotient map & — & and the
inclusion map ¥ — %! We have a natural sheaf-homomorphism A: F — F*
(Satz 7(b), [6]). Let Z be the set of all singular points of X. Let 2" be the kernel of
oA, Then Supp #'<Z U =(Y). Since E" (0, #)=2 and dim Supp # <n-—1,
A =0. y=PBa): F — (9N)* is injective. It is easily seen that ((Z¥N)*)lF)=(Z)*,
y induces a sheaf-monomorphism y; : F! — (F19)* Flxy (F)=p(F )1y
and E°(F)=E*(y(F), (9)*). Since by Proposition 1 y(F )@, is coherent and
E*(/(F), (9")*) is a subvariety of dimension = pin X, the Lemma follows. Q.E.D.

LEMMA 2. Suppose F is a coherent analytic sheaf on a complex space (X, ).
Suppose x € X andf € 5, such that for every nonnegative integer p either x ¢ E*(0, ¥)
or f does not vanish identically on any branch-germ of E*(0, #) at x. Then f is not a
zero-divisor for Z,.

Proof. Suppose the contrary. Then there exist s e I'(U, #) and g e I'(U, o)
for some open neighborhood U of x such that g,.=f, gs=0, and s5,7#0. Let Z
=Supp s and dim Z,=p. By shrinking U, we can assume that dim Z=p. Hence
Z< E*(0, #). Since dim E*(0, ) < p, the union Z, of all p-dimensional branches of
Z is equal to the union of some p-dimensional branches of E°(0, %) N U. By
assumption g does not vanish identically on Z,. For some y € Z,, g, is a unit in
#,. s,=0, contradicting that Z=Supp s. Q.E.D.

LEMMA 3. Suppose F is a coherent analytic sheaf on a complex space X and p is a
nonnegative integer. If E°(0, #)= @, then for any nonnegative integer o either
E°(0, #)= @ or every branch of E°(0, #) has dimension > p.

Proof. Suppose Y is a nonempty m-dimensional branch of E°(0, #) for some
nonnegative integer o such that m < p. Take a Stein open subset U of X such that
UNE@QOF)=UNY+#z. Take xeUN Y. Since (0y;#),#0, there exists
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s € I'(U, Opp3#) such that s,#0. Supp s E°(0, F) N U=UN Y. dim Supp s=<p.
Hence s e I'(U, Oy,1%). x € E?(0, %), contradicting that E°(0, #)=2. Q.E.D.

LEMMA 4. Suppose Z, 1 <i<3, are coherent analytic sheaves on a complex space
(X, 5¥) and p is a nonnegative integer such that E°(0, #)=0 for 1 £i<3. Suppose
0> F - F 1, % —0is an exact sequence of sheaf-homomorphisms. If (F)*! is
coherent and E°(%,) is a subvariety of dimension Zp for i=1,3, then (%) is
coherent and E*(%,) is a subvariety of dimension <p.

Proof. Let X;=E*(%,), i=1, 3. The problem is local in nature. Take x, € X and
take an open Stein neighborhood U of x,in X. & is a coherent analytic subsheaf of
(), i=1,3. Let H=%: (FH), i=1,3. E(H, #)=1X,, i=1, 3. Let F; be the
ideal-sheaf for X;, i=1, 3. By Hilbert Nullstellensatz, after shrinking U, we can find
a natural number m such that #T"<f on U, i=1, 3. By Lemma 3 for any non-
negative integer o every nonempty branch of E°(0, %) has dimension > p. Since
dim X;=<p, i=1, 3, we can choose f € ['(U, #T N #3) such that f, does not vanish
identically on any nonempty branch-germ of E°(0, %) at x, for any nonnegative
integer . By Lemma 2 f is not a zero-divisor for (%,),,. Let & be the kernel of
the sheaf-homomorphism «: % — &%, on U defined by multiplication by f. Then
A, =0. By shrinking U, we can assume that # =0 on U. « induces a sheaf-mono-
morphism B: (%) — (%)) Let y=8oB. We claim that y((%)*)<% on U.
Take s € (%)), for some x € U. s is defined by some 1 € I'(W— A4, %), where W
is an open neighborhood of x in U and A is a subvariety of dimension <p in W.
7(t) e (W — A, %;) defines an element a of ((%)"),. fxa € (%;),. By shrinking W
we can find u € I'(W, &) such that u agrees with fn(¢) on W— A4 and we can find
v e I'(W, %) such that n(v) =u. n(v—ft)=0 on W— A. v—ft defines an element b of
((F)YY),.. fib € (#).. By shrinking W we can find w € I'(W, &) such that w agrees
with f(v—ft) on W—A. f2t=fo—w on W—A. y(s)=B(,)—w, € (%).. Hence
y(FH)N)=F,. 1t is easily seen that y((F)*)=y(F)yu#, on U and EX(FH) N U
=E*(y(%), %) N U. The Lemma follows from Proposition 1. Q.E.D.

LEMMA 5. Suppose & is a coherent analytic sheaf on a complex space (X, ) of
pure dimension n and 0<p=<n—2. If E* Y0, #)= o, then FY is coherent and
E*(F) is a subvariety of dimension <p.

Proof. Let " be the subsheaf of all nilpotent elements of # and O0=s¢/X.
Since the lemma is local in nature, we can suppose that for some nonnegative integer
k A*=0. For 0 << k define @ inductively as follows: @ =% and, for 1 £/<k,
FO=(AHFC V), _pwe-v. Let Y=, EM"Y A FCD, FAU-D) Y is a sub-
variety of dimension <n—1.0n X— Y FP=AHF -V for 1<I<k. Hence F¥=0
on X—Y. Since F®<ZF and E" (0, F)=2, F®=0. From the definition of
F D we see that E""Y(F O, FU-V)=g for 1 <I/<k. Hence E"~}0, F4-1|F W)
=g for 12Igk. Er*0, #)= @ implies that E*~1(0, FV)= g, 0</<k. Since
HF-VcFO F-D|FO can be regarded as a coherent analytic sheaf on (X, 0),
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12Ik. By Lemma 1 (F¢ Y/F D) js coherent and E/(F©-V[F®) is a sub-
variety of dimension <p. Since #® =0, from Lemma 4 and the exact sequences
0> FD > FO-D_, FU-D/F0 _5 (0 1<I<k, we conclude by backward in-
duction on / that (F®)!! is coherent and E*(F®) is a subvariety of dimension <p
for 0</<k. The Lemma follows from # =%©. Q.E.D.

LEMMA 6. Suppose F is a coherent analytic sheaf on a complex space (X, ) and p
is a nonnegative integer. Let Y be the union of (p+ 1)-dimensional branches of
E**Y0, Z). Then for x € Y (¥, is not finitely generated over H#,.

Proof. We can assume that Y+ @. Let ¥=%/0,,#. Since E*(0, 9)=0, by
Lemma 3 and Proposition 1 every branch of E**1(0, %) is (p+ 1)-dimensional.
Since ¥ agrees with & on X—E°(0, %), E**}(0, 9)—E*(0, #)=E**(0, %)
—E*(0, ). dim E*(0, #) < p implies that E**1(0, ¥)=7Y.

Fix x € Y. Suppose (¥, is finitely generated over 5#,. Let ¥ =0, ;9. Since
E*0, #)<E0,9)=02, S<SPcgP=F] Since Supp S=E°*1(0, %))=Y,
(L)), is a nonzero finitely generated 5#,-module. Let (&', be generated by
Sty - - 5 Sm € (FL),.. For some open neighborhood U of x in X and for some sub-
variety A of dimension <p in U s is induced by t,e I'(U—4, &), 1 Si<m. By
shrinking U, we can choose f'€ I'(U, 5£) such that W=Z(f) N Y is a subvariety of
dimension p in U and x € Z(f), where Z(f)={y € U | f, is not a unit in 5£,}. There
exists a unique g e I(U—Z(f), #) such that gf=1 on U—Z(f). For 1Zism
define u, e N(U-(AuU W), &) by (4),=0 for ye U-Y and (u),=(gt;), for
ye YN (U—(4 U W)). u induces v, € (), 1Zism. fo,=s, 1<i<m. For
some oy €, v;=27-1 8, 1Sism. s;=fo,=201 oyf.s;, 1Sism. (F1),
=f(F¥)),. Since f, is not a unit in 5%, by [8, (4.1)] we haye (¥!),=0 (contra-
diction). Q.E.D.

THEOREM 1. Suppose F is a coherent analytic sheaf on a complex space (X, )
and p is a nonnegative integer. Then F'“! is coherent if and only if dim E***(0, #)
< p+1. In that case E°(F [0,,#) is a subvariety of dimension =< p.

Proof. It follows from Lemma 6 that, if #1 is coherent, then dim E**(0, #)
<p+1.

Suppose now dim E**1(0, #)<p+1. We are going to prove that F! is co-
herent and E°(# [0,,#) is a subvariety of dimension <p in X. Since & agrees with
F [0, on X—E*(0, F), E*+1(0, & [0y,,#) is contained in the subvariety E°(0, #)
U E*+Y(0, #) of dimension =p. E®(0, #/0,,,#)= @ implies E**1(0, #[0,,5)= &
by Lemma 3. Since F!=(F[0,,#)"), by replacing # by F/0,,#, we can assume
that E**1(0, #)= @. Since the problem is local in nature, we can suppose that X
is of finite dimension n. If n<p+2, E**}(0, #)= o implies that F =0. FW¥'=0
is coherent and E°(#)= . So we can assume that n=p+2. For p+1<m=n let
GM =0pye. G°+*P=0, because E°*1(0,F)=g. For p+2<m=n let X,
=Supp ¥™/¥™-D_ X, is the union of all m-dimensional branches of E™(0, %),
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p+2=m=n. E""Y0, 4™|4™-V)y=g for p+2<m=n. For p+2<mz=n let /™
be the annihilator-ideal-sheaf for ¥™/¥™-V. Then (¥™/9™-V)| X, can be
regarded as a coherent analytic sheaf on the complex space (X, (/™) | X,,)
which is either empty or of pure dimension m, p+2<m=<n. By Lemma 5

(g(m)/g(m - 1))[0] ~ ((g(m)/g(m - 1)) | Xm)[ﬂl

is coherent and E(9™ 4™~ V)= E*((9™|9™~V) | X,,) is a subvariety of dimension
<p,p+22Sm=Zn.Since PP =g*+2[gw+D from Lemma 4 and the exact sequen-
ces 0 > gm-D . gm _, gmjgm-1 _, 0 p+3<m=<n, we conclude by induction
on m that (¥™)!! js coherent and E°(¥9™) is a subvariety of dimension <p, p+2
<mZ=n. The Theorem follows from #=%™, Q.E.D.

COROLLARY 1. Suppose F is a coherent analytic sheaf on a complex space X,
p is a nonnegative integer, and x € X. #'“1 is coherent at x if and only if x does not
belong to a (p+ 1)-dimensional branch of E°**(0, #). Hence the set of points where
F 1 s not coherent is either empty or it is a subvariety of pure dimension p+1.

REeMARK. Under the assumption of Corollary 1 to Theorem 2 x does not belong
to a (p+ 1)-dimensional branch of E**+(0, %) if and only if the zero submodule of
Z, has no associated prime ideal of dimension p+1 [12, Theorem 4]. This gives us
an algebraic criterion for the coherence of F! at x.

COROLLARY 2. Suppose F is a coherent analytic sheaf on a complex space X and
p is a nonnegative integer. Let u: F — F! be the natural sheaf-homomorphism.
Then Z={x € X | p is not surjective} is a subvariety of dimension <p+1.

Proof. Let Y be the union of all (p+ 1)-dimensional branches of E°*+1(0, %).
By Lemma 6 Y<Z. Since #'! agrees with (¥#/0,,1,%)*' on X—Y, Z— Y=
EX(F[0p41#)— Y. Z=Y U E*(F[0y,,1,#) is a subvariety of dimension <p+1.
Q.E.D.

ReMARK. Corollary 2 to Theorem 1 can be stated alternatively in the following
way: The set of points where we cannot always remove closed singularities contained
in subvarieties of dimension p for local sections of a coherent analytic sheaf F
satisfying E°(0, )= & is a subvariety of dimension <p+1.

The weaker statement that this set of points is contained in a subvariety of
dimension =p+1 is an easy consequence of Satz III, [9] and Satz 5, [10].

II. Extension of coherent sheaves. Suppose S is a subvariety of a complex
space X and Z is a coherent analytic sheaf on X—S. & is said to satisfy (*)x,s if
JSor every x € S there exists some open neighborhood U of x in X such that T(U—- S, 3")
generates ¥ on U—S.

LeMMA 7. Suppose S is a subvariety of codimension 22 in a reduced complex
space (X, 0) of pure dimension n. Let 0: X—S — X be the inclusion map. Suppose F
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is a coherent analytic sheaf on X—S such that E" Y0, F)=@. If F satisfies
(M)x.s, then R°O(F) is coherent.

Proof. Let : (£, &) — (X, 0) be the normalization of (X, 0). Let S=="Y49)
and =’ ==|(X—S5). Let §: £—§ — X be the inclusion map. Let £ be the inverse
image of & under »'. Let J be the torsion-subsheaf of £, ¥=% |7, and Y
=Supp 7. Since & satisfies (¥)y,5, & satisfies (*)g 5. This implies that ¢ satisfies
(¥)2.5. By Theorem 1, [11] R°6(%) is coherent on X. Let F*=R%'(¥) and ¥*
= R°n(R°6(¥)). * is coherent on X. Let the sheaf-homomorphism «: F* —» ¥*
on X—S be induced by the quotient map & — 4. We have a natural sheaf-
homomorphism A: #F — F*. Let Z be the set of all singular points on X. Let " be
the kernel of A. Then Supp X' <Z U #(Y). Since E"~}(0, #)= @ and dimSupp X"
Sn—1, A =0. «A is injective. Since R°O(Z* | X—S)=%*, ) induces a sheaf-
monomorphism B: R°0(F) — ¥*. Take x € S. There exists an open neighborhood
U of x in X such that T'(U— S, #) generates # on U—S. For s '(U-S, %) let
§e (U, ¥*) be the unique extension of «A(s). {§ | se€ I'(U—S8, )} generates a
coherent analytic subsheaf & of ¥* on U. On U B(R°0(¥#))=<[S]e-. By Prop-
osition 2 #[S]e- is coherent. Hence R°0(F) is coherent. Q.E.D.

LemMA 8. Suppose S is a subvariety in a complex space (X, ). Let 0: X—S — X
be the inclusion map. Suppose %, 1 Li<3, are coherent analytic sheaves on X—S
such that R°0(%;) is coherent. Suppose 0 — F — F, 1, F — 0 is an exact se-
quence of sheaf-homomorphisms on X—S. If %, satisfies (*)x,s, then &, satisfies

(Mz.s-

Proof. Take x € S. There is an open neighborhood U of x in X such that
L(U-S, #,) generates % on U—S. Let W be a Stein open neighborhood of x in U.
We claim that I'(W—S, #) generates # on W—S. Take y e W—S. There exist
;€ (U-S, %), 1=i<m, generating (%),. Define a sheaf-homomorphism
@:H"—>F on U-S by @(oy,...,en)=>"1 as), for ay...,a, €, and
z€ U—S. n(s,) can be extended uniquely to an element of I'(U, R°6(%,)), 1 <i<m.
There is a unique sheaf-homomorphism ¢: S#™ — R°0(%) on U which agrees with
np on U—S. Let A" be the kernel of . " is coherent. There exist u, € ['(W, X)),
1 <isn, generating X,. Let v,=¢(4; | (W—S)), 1<i<n. Then v,e (W—-S, %),
1=isn, and (%), is generated by v,,...,v,. Q.E.D.

LEMMA 9. Suppose S is a subvariety of dimension p in a complex space X. Let
0: X—S — X be the inclusion map. Suppose %, 15i<3, are coherent analytic
sheaves on X—S such that R°0(%)) is coherent for j=1, 3. Suppose 0 - F — %,
25 #— 0 is an exact sequence of sheaf-homomorphisms on X—S. If %, satisfies
(Mx,s and E* 10, #,)= @, then R°O(%,) is coherent.

Proof. Take x € S. We need only prove that R0(%,) is coherent at x. There is a
Stein open neighborhood U of x in X such that ['(U— S, &%) generates % on U—S.
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The exact sequence 0 — &% — % 1y % — 0 induces the exact sequence 0 —
R°0(F) — R°O(#,) s R°O(F;). For se I(U-S, %) let §€ I'(U, R°0(%,)) be the
unique extension of s and let §=17'(§). Let & be the subsheaf of R°8(%;) on U gener-
ated by {§ | se (U-S, %)} and J be the subsheaf of R°0(%) on U generated by

{§|seT(U-S, #H)}.

7' (#)=7. Since R°0(%,) is coherent, J being generated by global sections is
coherent. Since R°6(%,) is coherent and U is Stein, on U R°0(%#) is generated by
(U, RO(A)xT(U-S, #H)<T(U-S, %). RU(F)=S We have an exact
sequence 0 — R°0(#) £, & s T — 0, where 7" is induced by n’ and £ is the in-
clusion map. Since R°8(%;) and J are both coherent, & is coherent. E**+1(0, &)
CE**Y0, %)= @. By Theorem 1 &% is coherent. Since dim S=p, R°O(F"")
= &1, The inclusion map % — < on U— S induces on U a sheaf-monomorphism
B: R°O(F,) — L. B(R°O(F,)) = L[St Since L[S]ew is coherent by Proposi-
tion 2, R°0(%,) is coherent on U. Q.E.D.

LeEMMA 10. Suppose S is a subvariety of codimension 22 in a complex space
(X, %) of pure dimension n. Let 8: X—S — X be the inclusion map. Suppose F is a
coherent analytic sheaf on X—S. If ¥ satisfies (*)x,s and E*~*(0, F)= &, then
R°0(F) is coherent on X.

Proof. Let X" be the subsheaf of all nilpotent elements of 5 and O0=3¢|X.
Since the Lemma is local in nature, we can suppose that for some nonnegative
integer k X *=0. For 0</<k define coherent analytic sheaves F® on X—S§
inductively as follows: F@=% and, for 12/<k, FO=(AHF V), _pga-b.
Let

k
- n-1( o FU-1 ZA-1)
Y = | Er oA FOD, F0D)

Y is a subvariety in X—S of dimension <n—1.On X—(SV Y), FO=HF D
for 1<I<k. Hence F®=0 on X—(S U Y). Since F®<F and E*"" (0, F)=g,
F®=0 on X—S. From the definition of #® we see that E"~}(F®, F¢-V)=g
for 1<i<k. Hence E*~Y(0, F¢-V[F®) =0 for 1ZI<k. E*"}0, #)= o implies
that E*-1(0, #P)=g for 1=5I<k. Since H#FI " VcFO FU-DIFD can be
regarded as a coherent analytic sheaf on (X—S, @ | (X—S5)), 1 =I/<k.

Set F*+1=(), We are going to prove (2), for 0</<k by induction on /:

2), FO satisfies (*)x,s and R°O(FP[F*D) is coherent.
Since F O =F FO satisfies (*)y 5. FO[F D satisfies (*)x,s. By Lemma 7
ROY(F O |F W)

is coherent. (2), is true. Suppose for some 0<m<k (2),, is true. By Lemma 8 and
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the exact sequence 0 — F™+D o Fm _, Fm|Fm+D _, () we conclude that
F ™+ D satisfies (*)x,5. Hence F™+D|Fm+d gatisfies (*)y 5. By Lemma 7

Roe(gr(m + 1)/g7(m + 2))

is coherent. (2),,, ; is true. Hence (2), holds for 0< /< k.
Now we are going to prove (3), for 0</<k by backward induction on /:

3) R°O(F©) is coherent.

Since F® =0, (3), is true. Suppose (3),, is true for some 0<m<k. From (2),,_;,
(3)m, Lemma 10 and the exact sequence 0 — F™ — Fm-D _, Fm-DZm _, ()
we conclude that (3),,_, is true. Hence (3), holds for 0</=< k. The Lemma follows
from (3),. Q.E.D.

LeMMA 11. Suppose S is a subvariety of dimension p in a complex space (X, ).
Suppose F is a coherent analytic sheaf on X — S such that Supp & is a subvariety
of pure dimension n>p and E*~%(0, #)= & . Then there exists a complex subspace
(Y, XX) of pure dimension n in (X, ) such that Y— S=Supp F and F|(Y—S) can
be regarded as a coherent analytic sheaf on (Y— S, X'|(Y—S)).

Proof. By [7, V.D.5] the topological closure Y of Supp & in X is a subvariety of
pure dimension n. Let ¥=|J,., Y, be the decomposition into irreducible branches.
Let 4, be the ideal-sheaf for Y,, a € A. Choose x, € Y,—(S U (Useas#a Y3))-
Let &/ be the dnnihilator-ideal-sheaf for & Then E(s, #|(X—S))=Y-S. By
Hilbert Nullstellensatz, there exists a natural number m, such that (B 40) K-8
a€A. Let F=]]seq ™. Then £ is coherent and (FF),, =0 for « € 4. Supp FF
is a subvariety of dimension <n in X—S§. E*~%(0, #)= o implies that FF =0.
Set A" =(o#|F)|Y. Then (Y, X') satisfies the requirements. Q.E.D.

THEOREM 2. Suppose S is a subvariety of dimension p in a complex space (X, ).
Let 0: X—S — X be the inclusion map. Suppose F is a coherent analytic sheaf on
X—S such that E°*Y(0, #)= o or equivalently for every xe X—S the zero #,-
submodule of &, has no associated prime ideal of dimension <p+1. Then the
Sollowing conditions are equivalent:

(1) R°O(F) is coherent.
(ii) There exists a coherent analytic sheaf on X which extends Z.

(iii) F satisfies (*)x,s.

Proof. It is clear that (i) implies (ii) and (ii) implies (iii). We need only prove
that (iii) implies (i). Suppose # satisfies (*)x,s. We are going to prove that R°0(%)
is coherent. Since the problem is local in nature, we can suppose that X is of finite
dimension n. If n<p+2, then E**}(0, #)=g implies that F=0. R°6(F)=0
is coherent. So we can assume that n2p+2. For p+1<m=n let ¥™=0,,5.
g@*D=(, because E**1(0, #)=o. For p+2<m=n let X,,=Supp ¥™/gm-D,
Then X, is the union of all m-dimensional branches of E™0, %), p+2<mZ<n.
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Em-1(0, 9m™|gm-D)= g for p+2<m=n. By Lemma 11 there exists a complex
subspace (Y, *,) of pure dimension m in (X, ) such that Y,—S=X, and
(g™|gm-1)|(Y,,—S) can be regarded as a coherent analytic sheaf on

(Yn—S, Hp|(Yn—S)), p+2 S m < n.

Let 0,,: Y,,—S — Y, be the inclusion map p+2<m=n. E**}0, )= 2 implies
that E**1(0, 9™)=0 for p+2<m=n.
We are going to prove (4),, for p+2 < m=n by backward induction on m:

D @™ satisfies (*)x,s and R°6(¥™[4™~D) is coherent.

Since 9™ =%, 9™ satisfies (*)xs. (¥™/9"V)|(Y,—S) satisfies (*)y,,v,ns. By
Lemma 10 R°H(9™/%*"-Y)x R°0,(9™/9"V)|(Y,—S)) is coherent. (4), is
true. Suppose for some p+2<q=n, (4), is true. From Lemma 8, (4),, and the exact
sequence 0 - ¥4~V . Y@, ¥@/g@-D _5 0 we conclude that ¥“~? satisfies
(*)x.s- (9-V[99-D)|(Y,-,—S) satisfies (*)y,_,,v,_,ns- By Lemma 10 R°6(%“~ Y/
Ga-D)yx R%0,_, (992|949 D)|(Y,-1—S)) is coherent. (4),-, is true. Hence (4),,
holds for p+2=<m=n.
Now we are going to prove (5),, for p+1=m=n by induction on m:

O)n R°0(%™) is coherent.

Since ¥°+V=0, (5),,, is true. Suppose (5), is true for some p+1=g<n. From
(4)g+1, (5),, Lemma 9, and the exact sequence 0 — %@ — F@+D _ FU+D|G@ _; (
we conclude that R°6(%“+"Y) is coherent. (5),,, is true. Hence (5),, holds for p+1
<mZn. Since 9™ =%, (5), implies that R°0(%) is coherent. Q.E.D.

COROLLARY. Suppose S is a subvariety of dimension p in a complex space (X, )
and 0: X—S — X is the inclusion map. Suppose & is a coherent analytic sheaf on
X — S such that the homological codimension (p. 358, [9]) of the #,-module #, Z p+2
for x € X. Then the following conditions are equivalent:

(i) R°0(F) is coherent.

(ii) There exists a coherent analytic sheaf on X which extends Z.

(iii) F satisfies (*)x,s.

Proof. Follows from Theorem 2 and Satz I [9]. Q.E.D.

REMARK. [14, (4.1)] is a special case of the Corollary to Theorem 2.

III. Extensions of global sections of coherent sheaves.

DEFINITION 4. Suppose p is a natural number. A real-valued function v on a
complex space X is said to be *-strongly p-convex at x € X if there exist a nowhere
degenerate holomorphic map ¢ from some open neighborhood U of x in X to an
open subset D of C" and a real-valued C? function # on D such that v=op on U and
at every point in D the Hermitian matrix (92/0z, 0Z;), <1, has at least n—p+1
positive eigenvalues.

DEFINITION 5. Suppose p is a natural number. An open subset D of a complex
space X is said to be *-strongly p-concave at x € X if there is a *-strongly p-convex
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function v on some open neighborhood U of x in X such that D N U={y e U | v(y)
> v(x)}.

LEMMA 12. Suppose F is a coherent analytic sheaf on a reduced complex space
(X, 0) of pure dimension n such that E*~%0, #)=@. Suppose 1 <p<n, x € X, and
D is an open subset of X which is *-strongly p-concave at x. Then there exist an open
neighborhood U of x in X, a subvariety V of dimension <p in U, and a natural
number m satisfying the following: If for some open neighborhood W of x in U
f€ L(W, 0) vanishes identically on VN W and s € (W N D, F), then f"s|W' N D
can be extended to an element of T(W', %) for some open neighborhood W' of x in W.

Proof. Let : (£, &) - (X, 0) be the normalization of (X, ). Let £ be the in-
verse image of & under =, J be the torsion subsheaf of £ and ¥=% /7. Let
7 Y (x)=(y1, ..., yx). For every 1<i<k there exists a sheaf-monomorphism
«: % — 07 on some open neighborhood U, of ¥ in X. By shrinking U,, 1 i<k,
we can suppose that U; N U;= & for i#j. There is an open neighborhood U* of x
in X such that #=}(U*)=Jf-, U;. Define a coherent analytic sheaf & on =~ }(U*)
by setting & =0 on »~Y(U*) N U, for 12i<k. Define «: ¢ — & on 7 Y (U*)
by setting a=o, on =~ }(U*) N U, for 1 <i<k. Let B: R°n(¥) — R°n(%) and y:
R°m(%) — R°n(&) on U* be induced respectively by the quotient map % — %
and o« Let A\: & — R°n(%) be the natural map. E"-1(0, #)= @ implies that
§=yBA: F — R°n(&) on U* is injective. Let V*=E*~Y(§F), R°n(¥)) and let 5
be the ideal-sheaf on U* for V*. By Proposition 1 dim V*<p. Let &/ =¢(F) :
E(F ) -1r0»). Then E(L, O|U¥)=V*. Let U be a relatively compact open
neighborhood of x in U*. By Hilbert Nullstellensatz there is a natural number m
such that #™<.«/ on U. Let ¥=V* N U. We claim that U, ¥ and m satisfy the
requirements.

Suppose for some open neighborhood W of x in U we have f € I'(W, 0) vanishing
identically on ¥ n Wand s e I'(W N D, %). By Proposition 6.1, [3], for some open
neighborhood W’ of x in W £(s)| W’ N D can be extended to te (W', R°n(&)).
LetZ={ye W' | t,¢ &F),}. Z=E(&F) : Ot), O|W’) is a subvariety in W"'. Since
D is *-strongly p-concave at x, every subvariety-germ of dimension = p at x inter-
sects D (4° of Definition 2.8 and Proposition 2.9, [3]). Hence Z N D= & implies
that dim Z, < p. By shrinking W’, we can assume that dim Z < p.

te D(W', E(F ) - 180())-
Srte D(W', §(F)). £-1(f™) e (W', F) extends f™s|W' N D. Q.E.D.

LeMMA 13. Suppose F is a coherent analytic sheaf on a complex space (X, #)
of pure dimension n such that E*~(0, #)= & . Suppose 1 Sp<n, x € X, and D is an
open subset of X which is *-strongly p-concave at x. Then there exist an open neigh-
borhood U of x in X, a subvariety V of dimension < p in U, and a natural number m
satisfying the following: If for some open neighborhood W of x in U fe T(W, )
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vanishes identically on VN W and se€ (W N D, %), then f™s|W' N D can be
extended to an element of T(W', &) for some open neighborhood W’ of x in W.

Proof. Let 2" be the subsheaf of all nilpotent elements of # and O=5¢X.
Since the Lemma is local in nature, we can suppose that 2 *=0 for some natural
number k. For 0</=<k define @ inductively as follows:

FO =% and,forl 212k, FO=AHFD),_pysa-o.
As in the Proof of Lemma 5, we have the following:
F® = 0; EY0, FO-VIFV)y =g forl £1 £ k;

and ¥P=FO|F+D 0<]<k—1, can be regarded as a coherent analytic sheaf
on the reduced complex space (X, ¢). By Lemma 12 for 0</<k—1 we have a
subvariety ¥; of dimension <p in some open neighborhood U, of x in X and a
natural number p, satisfying the following: If for some open neighborhood W of x
in U, fe I'(W, 0) vanishes identically on ¥, N W and se I'(W N D, 4®), then
Sf7is|W’ N D can be extended to an element of ['(W’, 4®) for some open neighbor-
hood W' of x in W.

Let U=N¥z¢ Uy and V=Uiz¢ (Vi N U). Let m=3%p, 0<I<k—1. By
considering the exact sequences 0 — F ¢+ - FO » b 5 0,0=/<k—1, and by
backward induction on /, we conclude the following for 0= /<k—1:If fe T'(W, )
vanishes identically on W N Vand s € (W N D, #®) for some open neighborhood
W of x in U, then f™s|W’ N D can be extended to an element of (W', #©) for
some open neighborhood W’ of x in W. Hence U, V, and m=m, satisfy the
requirements. Q.E.D.

LeMMA 14. Suppose F is a coherent analytic sheaf on a complex space (X, )
and p is a natural number such that E°(0, )= . Suppose x € X and D is an open
subset of X which is *-strongly p-concave at x. Then there exist an open neighborhood
U of x in X, a subvariety V of dimension < p in U, and a natural number m satisfying
the following: If for some open neighborhood-W of x in U fe I'(W, 3) vanishes
identically on W N\ V and s e (W N D, ¥), then f™s|W’ N\ D can be extended to an
element of T(W', &) for some neighborhood W’ of x in W.

Proof. Since the problem is local in nature, we can suppose that X is of finite
dimension n. If n< p, E*(0, #)= @ implies that # =0 and what is to be proved is
trivial. So we ¢an suppose that n> p. Define ¥® =0y,# for p<k<n. ¥”=0. For
p<k=nlet X,=Supp ¥®/%%-D and let &/*® be the annihilator-ideal-sheaf for
g®|g%-D_For p<k=n X, is empty or of pure dimension k, E*~1(0, ¥%/%%-D)
=g, and (¥®/%%*-V)| X, can be regarded as a coherent analytic sheaf on the
complex space (X, (/2 ®)| X;). By Lemma 13, for p <k =n, if x € X, there exist
a subvariety ¥, of dimension < p in some open neighborhood Uy of x in X), and a
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natural number p, satisfying the following: If for some open.neighborhood W of x
in Uy fe I(W, (¢/4®)| X,) vanishes identically on W N ¥, and

se (W N D, 9% [g%-1),

then f7xs|W' N D can be extended to an element of ['(W’, ¥%|%%-1) for some
open neighborhood W’ of x in W. For p <k <n, if x € X,,, choose an open neighbor-
hood U, of x in X such that U, N X,,.=U,; and, if x ¢ X,, let U,=X, V.= &, and
=1

Let U=p+1 Up and V=U}-,+1 (UN Vy). Set m=3%,.,p;.. By con-
sidering the exact sequences 0 — ¥® — F&k+D _, gk+Ljgk _, (0 o<k<n-1,
and by induction on k, we conclude the following for p <k <n: If for some open
neighborhood W of x in U fe I'(W, ) vanishes on ¥ N Wand s e (W N D, 9®),
then f™s|W’ N D can be extended to an element of I'(W’, ¥*) for some open
neighborhood W’ of x in W. The Lemma follows from & =%™ and m=m,.
Q.E.D.

THEOREM 3 (LocAL EXTENSION). Suppose & is a coherent analytic sheaf on a
complex space (X, ) and p is a natural number such that F =F"-1, Suppose
x € X and D is an open subset of X which is *-strongly p-concave at x. Then the
Sollowing is satisfied: If s e T(W N D, &) for some open neighborhood W of x in X,
then s|W' 0\ D can be extended to an element t of T(W’, F) for some open neighbor-
hood W' of x in W and t,. is uniquely determined.

Proof. Since # =% -1, by Theorem 1, and the definition of -1, E*(0, F)
= . There exist an open neighborhood U of x in X, a subvariety V of dimension
<p in U, and a natural number m satisfying the requirements of Lemma 14. By
Lemma 3 every branch of E°(0, #) has dimension > p for every nonnegative integer
o. By shrinking U we can assume that there is '€ I'(U, #) such that f vanishes
identically on ¥ and f does not vanish identically on any branch of E°(0, #) N U
for any nonnegative integer o. By Lemma 2 the sheaf-homomorphism a: F — &
on U defined by multiplication by f™ is injective.

Suppose s € (W N D, #). For some open neighborhood W’ of x in W a(s)| W’
N D=f"s|W' N D can be extended to an element fe (W', %#). Z={ye W'| i,
¢ o(F),} is a subvariety in W’. Since D is *-strongly p-concave at xand Z N D= g,
either x ¢ Z or dim Z, < p. By shrinking W', we can assume that either Z N\ W'=
or dimZ<p. ie (W', F),-1y5). F=F¥ "1 implies that o(F),-115 =a(F).
Hence 7 e T(W', «(F)). t=a"1(f) e (W', F) extends s| W’ N D.

Suppose for some other open neighborhood W of x in W there is t' € T(W”, ¥)
extending s|W” N D. We are going to prove that z, =t,. By shrinking both W’ and
W”, we can assume that W'=W". Y={ye W' | t,%#t,} is a subvariety in W’.
Since D is *-strongly p-concave at x and Y N D= g, either x¢ ¥ or t,—t, €
(O - 13#)x=0. QE.D.
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THEOREM 4 (GLOBAL EXTENSION). Suppose p is a natural number and v is a
*.strongly p-convex function on a complex space X such that {x€ X|A<uv(x)<pu}
is relatively compact in X for any two real numbers A< p. Suppose & is a coherent
analytic sheaf on X satisfying & =%"-1. Then for X € R every section of ¥ on
X,={x € X | v(x)> A} is uniquely extendible to a section of # on X.

Proof. We can assume that X as a topological space is connected. Since E*(0, %)
= @, we can assume that every branch of X has dimension >p. Fix A, € R and
s € I'(X,,, #). We can assume that X, # @. Let A={Ae R| A=), and s can be
extended to s, € I'(X,, #)}. Clearly, if Ae A and A<y, then p e A. We are going
to prove:

6) If Ae A and s,, s, € I'(X,, &) both extend

s, then s, = s;.

Suppose the contrary. Then Z={x € X, | (5)).#(s2).} is @ nonempty subvariety in
X,. Let Z, be a branch of Z. Take x* € Z, and let A* =v(x*). Let £=sup {v(x) | x € Z,}.
Since Z N X,,= @, ¢ is the supremum of v on the compact set Z, N {x e X | A*
Sv(x) S Ao} €=0v(y) for some y € Z,. Since -X; is *-strongly p-concave at y and
Zy, N X,=@, we have dim (Z,), <p. Since Z, is irreducible, dim Z, < p. Hence
dim Z < p. s, — 55 € I'(X), O, - 13%). (6) follows from O, _;;#=0.

For A e A denote the unique element of I'(X,, #) which extends s by s,. To
finish the proof, we need only prove that A has no lower bound, because in that
case A={Ae R | A<),} and by (6) s* € I'(X, %) defined by s*| X,=s, for Ae A
extends s. Suppose the contrary. Then n=inf A exists and is finite. Since X is
connected, this implies that X, is not closed in X. By Theorem 3 for every x in the
boundary 8X, of X, there exists an open neighborhood U, of x in X such that s,
can be extended to #,,eI'(U,V X,, #). For x,x €0X, let Y, .,={ze U,
N Uy | (te)s # (Ex)s}. Since Oy _ 135 = @, Yy x is either empty or every branch
of Y., has dimension Zp. Since X, is *-strongly p-concave at every one of its
boundary points,

(7) Yoy NOX, = o forx x'€dX,

Since 0X, is compact we can choose Xy, . .., X, € 9X, such that X, < ¥, U,,.
For 1£i<k choose a relatively compact open neighborhood W, of x; in U,, such
that 0X,<\Jf-, W, Let W; be the closure of W, in X, 1<i<k. (7) implies that
we can choose an open neighborhood W of X, in J¥-; W, such that W does not
intersect the closed set U;si,jskizs Yexixp N Wi N Wi . For some A<, X,
< W U X, because of Proposition 2.7 of [3]. Define ¢ € I'(X,, &F) by setting t =5,
on (U, VU X,) N X,. t extends s, contradicting A ¢ A.

Uniqueness follows from (6). Q.E.D.

REMARKS. (i) Theorem 3 generalizes the Theorem on p. 279 of [4] and Theorem 4
generalizes Corollary 5.2 of [4] because of Theorem 4.3 of [4]. Theorems 3 and 4
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here have the advantage that, if &# does not satisfy F=%1-1 we can always
construct the coherent analytic sheaf ¥ =(%/0,,,#)” 1 which satisfies ¥= % -1,

(ii) Suppose & is a coherent analytic sheaf on a complex space (X, ) and
x € X. The condition &, =(#""),, is equivalent to the condition codh &, 2 2. It can
be proved in the following way: If &, =(F),, then E°(0, #)= o and by Lemmas
2 and 3 we can find f € I'(U, 5£) for some open neighborhood U of x in X such that
[+ is not a unit of 5, and f, is not a zero-divisor for #,. By shrinking U, we can
assume that f, is not a zero-divisor for &, for y € U. Suppose x € E%(f &, #|U).
By shrinking U, we can find g € I'(U, &) such that g, € (f %), for y e U—{x} and
g2x ¢ (fF),. Then h e I'(U, %) defined by g, =f,h, for y e U—{x} does not satisfy
h. € #,. This is a contradiction. Hence x ¢ E°(f%, &% |U). By Lemmas 2 and 3 we
can find s € 5, which vanishes at x and is not a zero-divisor for (¥ [f¥),. codh Z,
22. On the other hand codh £, 22 implies &, =(#"), by Korollar zu Satz III,
[9].

The equivalence of #,=(#1), and codh #,=2 is also a consequence of
[14, (1.1)]. However, the proof presented here is more conceptual than the proof
in [14].

(iii) In the case of Stein spaces we have the following stronger version of Theorem
4 which generalizes Theorem 5.4 of [4]:

Suppose & is a coherent analytic sheaf on a Stein
space X such that & = F1. Suppose K is a
compact subset of X such that, if 4 is a branch of

®) E°(0, #) for any ¢ = 2, then A— K is irreducible.
Then for every open neighborhood U of K in X
every element of I'(U—K, #) can be extended
uniquely to an element of I'(U, ).

It can be proved in the following way: Suppose s € '(U— K, #). Since HY(X, %)
=0, from the Mayer-Vietoris sequence of & on X=(X—K) U U (p. 236, [2]) we
conclude that for some fe I'(X—K, &) and ge I'(U, #) f—g=s on U—~K. From
Theorem 4 we can find f'e (X, &) which agrees with f outside some compact subset
of X. Since E°(0, #)= o for <1 and 4—K is irreducible for any branch 4 of
E°(0, ) with 022, fagrees with fon X— K. (f|U)—g extends s. The extension is
clearly unique, because E°(0, #)=o.

In view of the equivalence of #, =(#'"), and codh #, 22, in the above proof
we can use Theorem 15 of [2] instead of Theorem 4. So (8) can be proved also by the
finiteness theorems of pseudoconvex spaces in [2].

(8) generalizes Theorem 5.4 of [4] because of the following:

Suppose K is a closed subset of an irreducible

o) complex space X and U is an open neighborhood
of K in X such that for every branch 4 of U 4A—K
is irreducible. Then X—K is irreducible.
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Let R be the set of all regular points of X. To prove (9), we need only show that
R—K is connected. Suppose R N U=|;; R; is the decomposition into topological
components. Then R,— K is connected for i € I. The restriction map '(RN U, C) —
I'(RN (U-K),C) is an isomorphism. From the following portion of the
Mayer-Vietoris sequence of the constant sheaf C on R=(RnN U) U (R—K):
0->T(RC)—->T(R-K,O)T(RNU,C)—-»T (RN (U-K),C), we conclude
that the restriction map I'(R, C) —>I'(R—K, C) is an isomorphism. R—K is
connected.
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