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Thimm introduced the concept of gap-sheaves for analytic subsheaves of finite

direct sums of structure-sheaves on domains of complex number spaces (Definition

9, [13]) and proved that these gap-sheaves are coherent if the subsheaves themselves

are coherent (Satz 3, [13]). This concept of gap-sheaves can be readily generalized

to analytic subsheaves of arbitrary analytic sheaves on general complex spaces

(Definition 1, [12]). All the gap-sheaves of coherent analytic subsheaves of arbitrary

coherent analytic sheaves on general complex spaces are coherent (Theorem 3, [12]).

The gap-sheaves of a given analytic subsheaf depend not only on the subsheaf

itself but also on the analytic sheaf in which the given subsheaf is embedded as a

subsheaf.

In this paper we introduce a new notion of gap-sheaves which we call absolute

gap-sheaves (Definition 3 below). These gap-sheaves arise naturally from the

problem of removing singularities of local sections of a coherent analytic sheaf.

They depend only on a given analytic sheaf and neither require nor depend upon an

embedding of the given sheaf as a subsheaf in another analytic sheaf. We give here a

necessary and sufficient condition for the coherence of absolute gap-sheaves of

coherent sheaves (Theorem 1 below). This yields some results concerning removing

singularities of local sections of coherent sheaves (see Remark following Corollary 2

to Theorem 1). Then we use absolute gap-sheaves to derive a theorem (Theorem 2

below) which generalizes Serre's Theorem on the extension of torsion-free coherent

analytic sheaves (Theorem 1, [11]). Finally a result on extensions of global sections

of coherent analytic sheaves is derived (Theorem 4 below).

Unless specified otherwise, complex spaces are in the sense of Grauert (§1, [5]).

If Sf is an analytic subsheaf of an analytic sheaf Jona complex space {X, ¿f),

then ¿f : 2T denotes the ideal-sheaf J defined by Jx = {s e3fx \ s^x^£Q for

xeX. E(ïf, 3T) denotes {xeX\ Sfx^yx}. Supp ST denotes the support of ST. If

t e F{X, !7~), then Supp t denotes the support of t. For x e X, tx denotes the germ

of t at x. By the annihilator-ideal-sheaf ¿/of J~ we mean the ideal-sheaf sé defined

by K = {s e -K | s9~x = 0} for xeX.\f0: {X, 3f) -* {X', Jf') is a holomorphic map

(i.e. a morphism of ringed spaces) from {X, ¿f) to another complex space (A", 30"),

then R°0(y) denotes the zeroth direct image of 3~ under 0. life T(X, ¿f) and

xel.we say that/vanished at x iffx is not a unit in ¿fx.
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I. Absolute gap-sheaves.

Definition 1. Suppose y is an analytic subsheaf of an analytic sheaf 5"ona

complex space (X, 3^) and p is a nonnegative integer. The pth gap-sheaf of Sr° in 9~,

denoted by £r°Mr, is the analytic subsheaf of 9~ defined as follows : For xeX,

s e (Sr\D]r)x if and only if there exist an open neighborhood U of x in X, a sub-

variety A in U of dimension g/», and t e F(U, &~) such that tx=s and tye S^y for

yeU-A.

Denote the set {x e X | ^x^(^l0^)x} by E\Sf, S").

Remark. When St° and 9~ are both coherent, then x e Ep(£f 9~) if and only if

SPX as an ^-submodule of yx has an associated prime ideal of dimension = p

(Theorem 4, [12]). Ep(Sf,3~)=0 means that for every xel^asan ^-sub-

module of <^¡. has no associated prime ideal of dimension ^ p.

Definition 2. Suppose y is an analytic subsheaf of an analytic sheaf Jona

complex space (X, 3tf) and A is a subvariety of X. Then the gap-sheaf of Sf in 3~

with respect to A, denoted by ¡f[A]y, is defined as follows: For xeX,se (£f[A]j-)x

if and only if there exist an open neighborhood U of x in X and teF(U,&~)

such that tx=s and ty e Sfy for y e U-A.

Proposition 1. Suppose if is a coherent analytic subsheaf of a coherent analytic

sheaf 3~ on a complex space (X, 2?) and p is a nonnegative integer. Then St°lB^- is

coherent and Ep(Sr°, if) is a subvariety of dimension ^ p in X.

Proof. See Theorem 3 [12]. This can also be derived easily from Satz 3 [13].

Q.E.D.

Proposition 2. Suppose Sf is a coherent analytic subsheaf of a coherent analytic

sheaf 3~ on a complex space (X, 3V) and A is a subvariety of X. Then £f[A]&- is

coherent.

Proof. See Theorem 1 [12]. This can also be derived easily from [13, Satz 9].

Q.E.D.
Definition 3. Suppose & is an analytic sheaf on a complex space X and p is a

nonnegative integer. The pth absolute gap-sheaf of &, denoted by J5™, is the analytic

sheaf on X defined by the following presheaf : Suppose í/c y are open subsets of X.

Then

&™>\U) = ind lim F(U-A, &),
/I69l(¡7)

where 9t(C/) is the directed set of all analytic subvarieties in U of dimension ^p

directed under inclusion. ^lp}(V) -> ^lP\U) is induced by restriction.

Remarks, (i) ar[il=(ir/0[1)^)M, where 0 is the zero-subsheaf of &.

(ii) There is a natural sheaf-homomorphism p.: 3F -^>- J*™. The kernel of /x is

0[pl&. When F"(0, Jr)= 0, p. is injective and we can regard J*" as a subsheaf of

J5™. In this case we denote the set {xeX\ ^x^(^ip\} by E"(&).



1969] EXTENSIONS OF COHERENT ANALYTIC SHEAVES 363

Lemma 1. Suppose F is a coherent analytic sheaf on a reduced complex space

(X, <9) of pure dimension n. Suppose O^p^n-2. If En~1{0,.F)= 0, then J™ is

coherent and Ep(áF) is a subvariety of dimension ^ p.

Proof. Let tt: (X, 6)-*(X, 0) be the normalization of {X, 0). Let # be the

inverse image of ¡F under tt (Definition 8, [6]). EttF be the torsion-subsheaf of SF

and cS=Fj!F. Let 7= Supp F. F and S are both coherent and 'S is torsion-free

(Proposition 6, [1]). dim Y^n—l (Proposition 7, [1]). We claim that

Slpl is coherent and E"{f8) is a subvariety of

dimension g p in 3f.

Take xel. On some open neighborhood U of x in 2 'S can be regarded as a

coherent subsheaf of S" for some p (Proposition 9, [1]). It is clear that Slp: is iso-

morphic to Sm& on U and E"(S, Sv) n U=EP(&) n C/. (1) follows from Prop-

osition 1.

Let &r* = R°TT{&), <S* = R°TrCS), and (fM)* = ü°Ir(^). Let a:^*^<S* and

|3: ^*->(^M)* be induced respectively by the quotient map #^-^ and the

inclusion map â?->^[fl]. We have a natural sheaf-homomorphism \: &-*■&*

(Satz 7(b), [6]). Let Z be the set of all singular points of X. Let X be the kernel of

a\. Then Supp X<=-Z u tt(T). Since Fn-1(O,^')=0 and dim Supp Jf^«-1,

¿f=0. y=j3aA: &^{>SW)* is injective. It is easily seen that {{W*)*)™ = {&™)*.

y induces a sheaf-monomorphism yi: ^™ -* (<Sm)*. Fip^yi(F^)=y(ßr\D-i(^h-

and Fi,(Jr) = F"(y(Jr), (0[iI)*). Since by Proposition 1 y^reR»1»1»* is coherent and

F°(y(Jr), {Sl0])*) is a subvariety of dimension ^ /» in X, the Lemma follows. Q.E.D.

Lemma 2. Suppose !F is a coherent analytic sheaf on a complex space {X, ¿¥).

Suppose x e Xandfe ¿?x such that for every nonnegative integer p either x £ E"{0, &)

or f does not vanish identically on any branch-germ of E"{0,F) at x. Then fis not a

zero-divisor for Fx.

Proof. Suppose the contrary. Then there exist s e T{U, F) and g e T{U, 2?)

for some open neighborhood U of x such that gx=f, gs=0, and sx^0. Let Z

= Supp s and dimZx = p. By shrinking U, we can assume that dimZ = p. Hence

Zc F"(0, F). Since dim F"(0, F) g p, the union Z0 of all /»-dimensional branches of

Z is equal to the union of some p-dimensional branches of F"(0, ÍF) n U. By

assumption g does not vanish identically on Z0. For some y e Z0, gy is a unit in

Jffy. sy=0, contradicting that Z=Supp s.   Q.E.D.

Lemma 3. Suppose F is a coherent analytic sheaf on a complex space X and p is a

nonnegative integer. 1/ E"{0, ¡F) = 0, then far any nonnegative integer a either

F"(0, F)= 0 or every branch o/F"(0, !F) has dimension > p.

Proof. Suppose F is a nonempty m-dimensional branch of F"(0, ¡F) for some

nonnegative integer o such that m^p. Take a Stein open subset U of Zsuch that

Ur\E"{0,F)=Un Y+0.   Take xeUnY.  Since   ((WO^O,   there   exists
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seF(U,OlaV?) such that sx#0. Supp scEa(0, &) n U=U n Y. dim Supp s£p.

Hence s e F(U, 0!pVr). x e Ep(0, &), contradicting that F"(0, &)= 0.    Q.E.D.

Lemma 4. Suppose &\, 1 =i / =i 3, are coherent analytic sheaves on a complex space

(X, J?) and p is a nonnegative integer such that Ep(0, &\) = 0for 1 ̂ z'=3. Suppose

O^^-^^^^-^Omi» exact sequence of sheaf-homomorphisms. If(&\)m is

coherent and F"(^) is a subvariety of dimension ¿p for z'=l, 3, then (^2)lp] is

coherent and Ep(^2) is a subvariety of dimension ^ p.

Proof. Let Xi = Epffi), z'= 1, 3. The problem is local in nature. Take x0 e Xand

take an open Stein neighborhood U of x0 in X. &\ is a coherent analytic subsheaf of

(J^)t'), /=l, 3. Let ^=J^ : (J*;)1"1, z'=l, 3. Efá, ^f) = Xh z'=l, 3. Let Jt be the

ideal-sheaf for Xh i= 1, 3. By Hubert Nullstellensatz, after shrinking U, we can find

a natural number «z such that Jf<^s^ on U, i=l, 3. By Lemma 3 for any non-

negative integer o every nonempty branch of F"(0, ^2) has dimension > p. Since

dim Xi^p, z'=l, 3, we can choose/e F(U, J™ n J^) such that/.0 does not vanish

identically on any nonempty branch-germ of E"(Q, J^) at x0 for any nonnegative

integer <j. By Lemma 2 fXo is not a zero-divisor for (^2)Xo. Let Jf be the kernel of

the sheaf-homomorphism a: 3P2-> iF2 on £/ defined by multiplication by/ Then

JfXo = 0. By shrinking £/, we can assume that ¿f = 0 on U. a induces a sheaf-mono-

morphism ß: (J^V1 -» (&a)lP\ Let y=ß°ß. We claim that y((^)[fl])c-^ on ¡7.

Take s e ((^2)[p])^ f°r some x e U. s is defined by some z e F(W-A, !F2), where IF

is an open neighborhood of x in U and A is a subvariety of dimension = p in IF.

t?(0 e F(W-A, &,) defines an element a of ((J^)1"3)*- /«a e (^)x. By shrinking IF

we can find u e F(W, ^¡¡) such that u agrees withfy(t) on W— A and we can find

v e F(W, J^) such that r¡(v) = u. r¡(v—ft) = 0 on W—A. v—ft defines an element b of

({^i)w)xJxb e (&x)x- By shrinking IF we can find w e F(W, &x) such that w agrees

v/ith f(v-fi) on W-A. f2t=fv-w on W-A. y(s)=ß(vx)-wxe(&2)x. Hence

y((J^)[i,])c:J^. fr is easily seen that y((^2)M) = y(&a\Bvra on t/ and F"(^) n £/

=Fi(y(J*2), J^) n i/. The Lemma follows from Proposition 1.   Q.E.D.

Lemma 5. Suppose !F is a coherent analytic sheaf on a complex space (X, Jf) of

pure dimension « and 0^p^n — 2. If Fn_1(0, !F)= 0, then «^"["1 is coherent and

Ep(^) is a subvariety of dimension = p.

Proof. Let ct be the subsheaf of all nilpotent elements of Jf and 6=3t¡Jf.

Since the lemma is local in nature, we can suppose that for some nonnegative integer

k yfk = 0. For 0 á / á k define J™ inductively as follows : &m=& and, for 1 g /^ k,

J^» = (jrj5-«-i))[n_1]^(1-i>. Let 7=U?=i£""1P^5'<i"1),^'(i~1)). F is a sub-

variety of dimension gn-l.OnZ- FJ*r(i) = t#"Jro-1>fbr l^/gjfc. Hence J™> = 0

on X- Y. Since /«»c/ and F""1^, ^)= 0, ^«"=0. From the definition of

J™ we see that £*-1(^'<o,#'<,-1>)=0 for l=/=/c. Hence f»-1^,^'-»/^0)

= 0 for lá/S£/V. F"-1^, ^)=0 implies that En~1(0,ßra))= 0, 0^/^/c. Since

jfjnz-Hc^«), j^c-D/jr«) can be regarded as a coherent analytic sheaf on (A', G),
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lá/áfc. By Lemma 1 {F(1 " ̂ jFm)M is coherent and E^F1"-»^») is a sub-

variety of dimension ^p. Since F(k) = 0, from Lemma 4 and the exact sequences

0^ ^'<')->^'«-i)_> J^'-n/J^'^O, 1^/^A, we conclude by backward in-

duction on / that {Fm)m is coherent and Ep{Frm) is a subvariety of dimension á p

for 0^/^A-. The Lemma follows from F=Fm.   Q.E.D.

Lemma 6. Suppose F is a coherent analytic shea/on a complex space (X, 3f) and p

is a nonnegative integer. Let Y be the union o/ (p + l)-dimensional branches o/

Ep + 1(0, F). Then far xeY (■FlPl)x is not finitely generated over ¿fx.

Proof. We can assume that Y+0. Let <&=FjQl0VF. Since F"(0, <S) = 0, by

Lemma 3 and Proposition 1 every branch of F" + 1(0, S) is (p+l)-dimensional.

Since S agrees with F on X-E»(0,F), Ep + 1(0,'S)-Ep(0,F) = Ep + 1(0,F)

-Ep{0, F). dim F"(0, F) £p implies that Ep+1{0, S)= Y.

Fix xeY. Suppose {Flp])x is finitely generated over^.. Let ^=0[fl+1]^. Since

F"(0, £r°)^Ep{0, <S)=0, y^£f™^'S™=Fíí'\ Since Supp ^ = F"+1(0, <S)= Y,

{£r°lpY)x is a nonzero finitely generated ^-module. Let {S^ip])x be generated by

su ..., sme {!FlpV)x. For some open neighborhood U of x in X and for some sub-

variety A of dimension ^p in U st is induced by tt e T{U-A, £f), 1 £i£m. By

shrinking U, we can choose/e T{U, Jf) such that W=Z(/) n Fis a subvariety of

dimension p in U and x e Z{f), where Z(f) = {y e U | /, is not a unit in .#5,}. There

exists a unique ge r(i/-Z(/), ¿f) such that g/=l on U-Z{f). For l^i'^m

define «¡er(í/-(^u W), ¿0 by («,^=0 for yeU-Y and («j)v = {gQy for

ve Fn(t/-(,4u IF)). ut induces i», e (^[fl%, láté«./»e^, lgi^m. For

some otwe^, r¡ = 2f=i«,A, lúiúm. Sj =/*t;t = 2™= i «w/a, l^igw. (^Cp])*

=/xi&'l''\- Since/, is not a unit in ^, by [8, (4.1)] we have {FlP\=0 (contra-

diction).   Q.E.D.

Theorem 1. Suppose F is a coherent analytic shea/ on a complex space {X, ¿¥)

and p is a nonnegative integer. Then Fw is coherent if and only if dim Ffl + 1(0, ¡F)

< p +1. 7« that case EP{¡FI0ío]$r) is a subvariety o/dimension ^ p.

Proof. It follows from Lemma 6 that, if .F1"1 is coherent, then dim Ep + 1(0, F)

<P+l.

Suppose now dim Ep + 1{0,F)<p+l. We are going to prove that Flp} is co-

herent and E"{FjOl0i^) is a subvariety of dimension ^ p in X. Since F agrees with

FjOi0^ on JSf-F^O, F), F" + 1(0, ̂ W) is contained in the subvariety F"(0, F)

u F" + 1(0, F) of dimension áp. F'(0, FjOloVF)=0 implies F" + 1(0, ̂ 7<W-)= 0

by Lemma 3. Since Fm = {F IOl0Xfr)lB\ by replacing J5" by FjOlp:&r, we can assume

that Ep+1{0, F)= 0. Since the problem is local in nature, we can suppose that X

is of finite dimension «. If «<p + 2, Ep + 1{O,ßr)=0 implies that F=0. FM = 0

is coherent and EP{F)= 0. So we can assume that n^p+2. For />+1 ^m^n let

0<m)=o[m]jjr. g?o> + i>=o, because Fp+1(O,ir)=0. For />+2ám£« let Zm

= Supp ^"0/s?<»>-". A"m is the union of all «i-dimensional branches of Fm(0, J27),
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p+2<:m^n. Em-1(O,&im)l&im-1))=0 for p+2 = mg«. For p + 2 = m = « let si<m)

be the annihilator-ideal-sheaf for ^eo/afo»-». Then (g^/afC"-») | Xm can be

regarded as a coherent analytic sheaf on the complex space (Xm, (JÍ?ls/(m)) | Xm)

which is either empty or of pure dimension m, p+2 ^ «z ̂  n. By Lemma 5

y^(m)/i^(m-l)\[fl] Ä ((^C")/^"1-1)) I X )[pl

is coherent and Fí(^(m)/^(m-1)) = F:fl((^<m)/aí(m"1)) | JTJ is a subvariety of dimension

^p,p+2gm = n. Since ^<p+2) = <$ip + 2)/^(p+1}, from Lemma 4 and the exact sequen-

ces 0 -»■ S?(m - " -> ^<m) -* &™¡&<-m - » -> 0, p + 3 á m = «, we conclude by induction

on «z that (^<m))[í,í is coherent and F"(^<m)) is a subvariety of dimension ^ p, p+2

^m^n. The Theorem follows from &r = $in\    Q.E.D.

Corollary 1. Suppose F is a coherent analytic sheaf on a complex space X,

pis a nonnegative integer, and xe X. Fm is coherent at x if and only if x does not

belong to a (p+l)-dimensional branch of Ep + 1(0, F). Hence the set of points where

!FlP] is not coherent is either empty or it is a subvariety of pure dimension p+l.

Remark. Under the assumption of Corollary 1 to Theorem 2 x does not belong

to a (p+ l)-dimensional branch of F" + 1(0, F) if and only if the zero submodule of

Fx has no associated prime ideal of dimension p+l [12, Theorem 4]. This gives us

an algebraic criterion for the coherence of Fm at x.

Corollary 2. Suppose !F is a coherent analytic sheaf on a complex space X and

p is a nonnegative integer. Let p.: !F -^-Flp] be the natural sheaf-homomorphism.

Then Z={x e X | px is not surjective} is a subvariety of dimension = p+1.

Proof. Let Y be the union of all (p+ l)-dimensional branches of F"+1(0, F~).

By Lemma 6 Y^Z. Since FM agrees with (-FI0[p+x^)lP} on X-Y, Z-Y=

F%F/0[í)+1]jO- Y.Z=Y \j Ep(^IOlp+11y) is a subvariety of dimension =p + l.

Q.E.D.
Remark. Corollary 2 to Theorem 1 can be stated alternatively in the following

way : The set of points where we cannot always remove closed singularities contained

in subvarieties of dimension p for local sections of a coherent analytic sheaf F

satisfying Ep(0, ¡F) =0 is a subvariety of dimension = p +1.

The weaker statement that this set of points is contained in a subvariety of

dimension g p +1 is an easy consequence of Satz III, [9] and Satz 5, [10].

II. Extension of coherent sheaves. Suppose S is a subvariety of a complex

space X and !F is a coherent analytic sheaf on X— S. F is said to satisfy (*)x.s if

for every xe S there exists some open neighborhood U ofx in Xsuch that F(U—S, !F)

generates F on U—S.

Lemma 7. Suppose S is a subvariety of codimension = 2 in a reduced complex

space (X, (9) of pure dimension n. Let 9: X- S -> Xbe the inclusion map. Suppose F
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is a coherent analytic shea/ on X-S such that En~1(O,F)=0. 1/ IF satisfies

i*)x.s, then R°0{F) is coherent.

Proof. Let tt: {X, 0) -* {X, <S) be the normalization of (X, 0). Let S=tt-1(S)

and Tr'=Tr\{X— §). Let 0~: £—5-* % be the inclusion map. Let F be the inverse

image of F under tt'. Let y be the torsion-subsheaf of F, <S=Fj!F, and Y

= Supp IF. Since F satisfies {*)x,s> & satisfies (*)x.s- This implies that S satisfies

i*)s.S- By Theorem 1, [11] R°0{S) is coherent on X. Let F* = R°tt'{F) and 'S*

= F°7r(F°0(^)). 'S* is coherent on X. Let the sheaf-homomorphism a: &* -> 0*

on X- S be induced by the quotient map F -> S. We have a natural sheaf-

homomorphism A: F-+F*. Let Z be the set of all singular points on X. Let X be

the kernel of «A. Then Supp X^Z u tt{Y). Since £""'(0, F)= 0 and dimSupp X

SlJ-1, Jf=0. <xA is injective. Since F°0(SP | Z-5) = ^*, aA induces a sheaf-

monomorphism ß: R°0{F) -+ 'S*. Take xeS. There exists an open neighborhood

U of jc in X such that r^-S, J^) generates F on {/-S. For s e V{U-S, F) let

s e Y(U, 'S*) be the unique extension of aX(s). {s \ s e T{U—S, .F)} generates a

coherent analytic subsheaf F of 'S* on U. On U ß(Rc,0(3?)) = F[S\r. By Prop-

osition 2 ¿^[SV is coherent. Hence R°0(&) is coherent.   Q.E.D.

Lemma 8. Suppose S is a subvariety in a complex space {X, X). Let 0: X— S —> X

be the inclusion map. Suppose Fu 1 ̂ /^3, are coherent analytic sheaves on X—S

such that R°0{F3) is coherent. Suppose O^-^-^^-V^-^-O is an exact se-

quence of sheaf-homomorphisms on X— S. If F2 satisfies (*)x 9, then Fx satisfies

i*)x.s-

Proof. Take x e S. There is an open neighborhood U of x in X such that

T{U-S, F2) generates F2 on U-S. Let IF be a Stein open neighborhood of x in U.

We claim that T{W-S, Fx) generates Fx on W-S. Take yeW-S. There exist

Si e Y{U-S, F2), láí'áffi, generating {F2\. Define a sheaf-homomorphism

<p:Xm->F2 on U-S by <p{ai,.. -, «m) = 2"=i «Ä for «1;...,ame^ and

z e {/— 51. í7(5¡) can be extended uniquely to an element of r({7, R°0{F3)), l^i^m.

There is a unique sheaf-homomorphism tp: Xm -> R°0{F3) on [/ which agrees with

7795 on C/-51. Let X be the kernel of </<. JT is coherent. There exist ut e T{W, X),

lUSn, generating Xy. Let v, = <p{ut \ {W-S)), l$i<¡,n. Then e, e F{W-S, F3),

1 ikifkn, and {F3)y is generated by vu ..., vn.   Q.E.D.

Lemma 9. Suppose S is a subvariety of dimension p in a complex space X. Let

0: X-S-> X be the inclusion map. Suppose F¡, l^z'^3, are coherent analytic

sheaves on X—S such that R°0{Fj) is coherent for j=l,3. Suppose 0^Fx^F2

JL> ̂  -> 0 is an exact sequence of sheaf-homomorphisms on X— S. 1/ F2 satisfies

(*)x,s and Ee+1{0, F2)=0, then R°0(F2) is coherent.

Proof. Take x e S. We need only prove that F°Ö(J^) is coherent at x. There is a

Stein open neighborhood U of x in Zsuch that T(U-S, &2) generates F2 on U-S.
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The exact sequence O-^-^-^J^yy-^^-^O induces the exact sequence 0-*■

R°9(^x) -> R°9(F2)aL> R°9(F3). For s e F(U-S, F2) let s e F(U, R°9(F2)) be the

unique extension of s and let s=t¡'(s). Let £f be the subsheaf of R°9(F2) on U gener-

ated by {s | s e F(U-S, F^)} and F be the subsheaf of R°9(F3) on U generated by

{s\seF(U-S,F-2)}.

r¡'(F) = F. Since R°9(F3) is coherent, F being generated by global sections is

coherent. Since R°9(FX) is coherent and U is Stein, on U R°9(Fx) is generated by

F(U, R°9(Fx))xF(U-S,Fx)c:F(U-S,F2). RP9(Fx)^F'. We have an exact

sequence 0 -+ R°9(Fx) _£* £f !l> F -> 0, where r¡" is induced by r¡' and | is the in-

clusion map. Since R°9(FX) and F are both coherent, F is coherent. Ep + 1(0, F)

cp+1(O,Jr2)=0. By Theorem 1 FM is coherent. Since dim5'=p, R°9(Fipi)

= y[il. The inclusion map F2 ->• y on £/— 5 induces on £/ a sheaf-monomorphism

j8: R°9(F-2) ̂  Ftp\ ß(Ra9(F2)) = y[S]<ri*>i. Since y[S>[il is coherent by Proposi-

tion 2, F0^^) is coherent on U.   Q.E.D.

Lemma 10. Suppose S is a subvariety of codimension =2 in a complex space

(X, Jiff) of pure dimension n. Let 9: X— S -*■ X be the inclusion map. Suppose F is a

coherent analytic sheaf on X—S. If F satisfies (*)x,s ond En~1(0,F)= 0, then

R°9(F) is coherent on X.

Proof. Let Jf be the subsheaf of all nilpotent elements of Jf and <3=Ff\Ff.

Since the Lemma is local in nature, we can suppose that for some nonnegative

integer k Jt"k=0. For 0^/^/c define coherent analytic sheaves ■FU) on X—S

inductively as follows: Fm=F and, for l = /=/c, Fm = (JfF<-'-1'>)in_x^>-^.

Let

Y = U En'1(X~F^-1\ F«-").
! = 1

Fis a subvariety in X-S of dimension Sn-1.0nI-(Su Y), ¿F<!> = XJF« - "

for l£l£k. Hence F™ = 0 on X-(Su Y). Since ^""cj^ and F""1^, &)= 0,

F™=0 on X-S. From the definition of J2™ we see that En~1(Fm, F«-»)=0

for láiáfc. Hence En'1(0,Fu-^¡Fm) = 0 for lg/=/c. F""1^, F)=0 implies

that F"-1(O,Jr<i))=0 for l^l^k. Since ^^«-»cj«), ^d-D/jr«) can be

regarded as a coherent analytic sheaf on (Z— 5, <S \ (X—S)), 1 =/=/c.

Set <^<fc + 1)=0. We are going to prove (2), for 0^/^k by induction on /:

(2), J™ satisfies (*)x,s and R°9(FmIF(> + ») is coherent.

Since Fm=F,Fm satisfies (*)x>s. Fm¡F™ satisfies (*)x>s. By Lemma 7

#>0(^-<o>/jni>)

is coherent. (2)0 is true. Suppose for some 0 = «t</c (2)m is true. By Lemma 8 and
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the exact sequence 0^-F(m + 1~>-+Fim) ̂ >-F(-m'>IF(-m+1'>-+0, we conclude that

jr(m + i) satisfies (*)xs. Hence jr<m+ 1)^^ + 2) satisfies (*)XiS. By Lemma 7

F° 0{F(m + uiFlm + 2))

is coherent. (2)m+1 is true. Hence (2)¡ holds for 0^/^ A.

Now we are going to prove (3), for 0^/^A by backward induction on /:

(3), R°9{FV) is coherent.

Since Fm=0, (3)k is true. Suppose (3)m is true for some 0<m^A. From {2)m_u

(3)m, Lemma 10 and the exact sequence 0 -» F™ -> F"*-» -> Flm-»IFin) -+ 0,

we conclude that (3)m_j is true. Hence (3), holds for O^l^k. The Lemma follows

from (3)0.   Q.E.D.

Lemma 11. Suppose S is a subvariety of dimension p in a complex space (X, X).

Suppose F is a coherent analytic sheaf on X— S such that Supp F is a subvariety

of pure dimension n> p and En~1(0, Jr)= 0. Then there exists a complex subspace

(Y, X) of pure dimension « in (X, X) such that Y-S= Supp F andSF\(Y-S) can

be regarded as a coherent analytic sheaf on (Y—S, X\(Y— S)).

Proof. By [7, V.D.5] the topological closure Y of Supp F in X is a subvariety of

pure dimension n. Let F= (J^a Ya be the decomposition into irreducible branches.

Let Ja be the ideal-sheaf for Ya, aeA. Choose xa e Ya-(S v (\JßeAJ±a Yß)).

Let sí be the ánnihilator-ideal-sheaf for F. Then E(si,X\(X-S))=Y-S. By

Hubert Nullstellensatz, there exists a natural number ma such that (F%a)Xa<=siXa,

aeA. Let F = \~[ae A Fm". Then F is coherent and {FF)x<z = 0 for a e A. Supp FF

is a subvariety of dimension <« in X-S. En~1(O,.F)=0 implies that FF=0.

Set X = {X\J)\Y. Then (Y, X) satisfies the requirements.   Q.E.D.

Theorem 2. Suppose S is a subvariety of dimension p in a complex space (X, X).

Let 9: X—S^- X be the inclusion map. Suppose F is a coherent analytic sheaf on

X— S such that Ep +1(0, F) = 0 or equivalently for every x e X— S the zero Xx-

submodule of Fx has no associated prime ideal of dimension úp + l- Then the

following conditions are equivalent:

(i) R°9{F) is coherent.

(ii) There exists a coherent analytic sheaf on X which extends F.

(iii) IF satisfies (*)x,s-

Proof. It is clear that (i) implies (ii) and (ii) implies (iii). We need only prove

that (iii) implies (i). Suppose F satisfies (*)x¡s- We are going to prove that R°0(F)

is coherent. Since the problem is local in nature, we can suppose that X is of finite

dimension n. If «</>+2, then EP + 1{O,F)=0 implies that F=0. R°0(F)=O

is coherent. So we can assume that «^p+2. For p + l^m^n let S<-m)=0im]&.

^" + 1> = 0, because E" + x(0, &) = 0. For P+2^m<,n let Xm = Supp <S™j&m - ».

Then Xm is the union of all m-dimensional branches of Fm(0, F), p+2^m^n.
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Fm_1(0, 0<m)/^(m-1))=0 for p+2-^m^n. By Lemma 11 there exists a complex

subspace (Ym,Jfm) of pure dimension «z in (X, 3V) such that Ym—S=Xm and

(^<m)/^<m-1))|(Fm — S) can be regarded as a coherent analytic sheaf on

(Ym-S,Jfm\(Ym-S)),p + 2 èmïn.

Let 9m: Ym-S-> Ym be the inclusion map p+2 = «zg«. Ep + \0, F) = 0 implies

that F"+ ^0, á?(m))=0 for p+2 = «i = «.

We are going to prove (4)m for p+2 = m ̂  « by backward induction on »i :

(4)m áí<m> satisfies (*)x>s and F°ö(^(m)/^(m " ") is coherent.

Since a?<">=J^ Sr™ satisfies (*)x,s. (^/^"-^(Fn-S) satisfies (*)y„r„ns. By

Lemma 10 R09(^wl^n-^)xR09n((^wl^n-^)\(Yn-S)) is coherent. "(4)n is

true. Suppose for some p + 2<q-¿n, (A)q is true. From Lemma 8, (4)„ and the exact

sequence 0-* á^-"-* âi(9>-> ä?<a)/a?«'-1>->0 we conclude that S^9"1' satisfies

(*W (ST<«-1V^,-a))|(lr,-i-S') satisfies (%.a,y,.inS. By Lemma lOF0^«""/

l"-2))xJicti ((^«-»/^«-"OK^-i-S)) is coherent. (4)9_x is true. Hence (4)m

holds for p+2 = «i:£m.

Now we are going to prove (5)m for p +1 ¿ m ^ « by induction on «z :

(5)m F°t?(ä?(m)) is coherent.

Since ^<fl + 1)=0, (5)fl+1 is true. Suppose (5), is true for some p+l^<7<«. From

(4),+i, (5)„ Lemma 9, and the exact sequence 0 -* áí<5) -* ^<9 + 1) -* â?<« + 1>/â?<«> -* 0

we conclude that F°0(^(5+1)) is coherent. (5)a+i is true. Hence (5)m holds for p+1

= m^«. Since <$W=F, (5)n implies that R°9(F) is coherent.   Q.E.D.

Corollary. Suppose S is a subvariety of dimension p in a complex space (X, J(f)

and 9 : X— S ^* X is the inclusion map. Suppose F is a coherent analytic sheaf on

X— S such that the homological codimension (p. 358, [9]) of the ^-module Fx7ip + 2

for xe X. Then the following conditions are equivalent:

(i) R°9(F) is coherent.

(ii) There exists a coherent analytic sheaf on X which extends F.

(iii) F satisfies (*)x,s-

Proof. Follows from Theorem 2 and Satz I [9].   Q.E.D.

Remark. [14, (4.1)] is a special case of the Corollary to Theorem 2.

III. Extensions of global sections of coherent sheaves.

Definition 4. Suppose p is a natural number. A real-valued function »ona

complex space X is said to be *-strongly p-convex at x e X if there exist a nowhere

degenerate holomorphic map <p from some open neighborhood U of x in X to an

open subset D of C and a real-valued C2 function von D such that v = v<p on U and

at every point in D the Hermitian matrix (d2v¡dzt 8z,)liitj¿n has at least «-p + 1

positive eigenvalues.

Definition 5. Suppose p is a natural number. An open subset F of a complex

space X is said to be *-strongly p-concave at x e X if there is a *-strongly p-convex
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function v on some open neighborhood U of x in A'such that D n U={y e U \ v(y)

>v(x)}.

Lemma 12. Suppose F is a coherent analytic sheaf on a reduced complex space

(X, &) of pure dimension « such that Fn_1(0, F)= 0. Suppose 1 ¿p<n, x e X, and

D is an open subset of X which is *-strongly p-concave at x. Then there exist an open

neighborhood U of x in X, a subvariety V of dimension < p in U, and a natural

number m satisfying the following: If for some open neighborhood W of x in U

fe Y(W, (9) vanishes identically on V n W and s e T(W n D, F), thenfms \ W' n D

can be extended to an element ofY(W, F)for some open neighborhood W' o/x in W.

Proof. Let tt: (X, &) -*■ (X, 0) be the normalization of (X, 6). Let F be the in-

verse image of F under tr, F be the torsion subsheaf of F, and S=FjF. Let

TT~1{x) = {yi, ...,yk). For every l^i'^A there exists a sheafrmonomorphism

a¡ : 'S -> ¿7¡>i on some open neighborhood U¡ of yt in X. By shrinking £/¡, 1 á / ̂  A,

we can suppose that Ut n c/ = 0 for iftj. There is an open neighborhood U* of x

in A'such that rr_1(í/*)c:ljf=1 Ut. Define a coherent analytic sheaf F on tt~\U*)

by setting F=6'i on n-^U^n Ut for l£i£k. Define a: <S^ F on v'^Ù*)

by setting «=«, on Tr-\U*) n Ut for \£i£k. Let ß: R°tt(F)-> R°tt(<S) and y:

F°7r(^) -> F°7r(y) on U* be induced respectively by the quotient map F ^<S

and a. Let A : ̂  ^ F°7r(#) be the natural map. En~1(O,F)=0 implies that

i=yß\: F-► F°77(^) on t/* is injective. Let V* = E°-\Ç{F), R°tt(F)) and let ./

be the ideal-sheaf on U* for V*. By Proposition 1 dim V*<p. Let si = £(F) :

^-iiAií-). Then FTX 0|C/*)=F*. Let f/ be a relatively compact open

neighborhood of x in Î7*. By Hubert Nullstellensatz there is a natural number m

such that Jm^si on Í7. Let F= V* n U. We claim that U, V and m satisfy the

requirements.

Suppose for some open neighborhood IF of x in F we have/e T(IF, 0) vanishing

identically on V n W and í e T( IF n 7), #"). By Proposition 6.1, [3], for some open

neighborhood IF' of x in IF ${s)\ W n D can be extended to teY(W',R?tt(F)).

LetZ={y eW'\ty$ $(F)y}. Z=E((i(F) : Gt), G\ W') is a subvariety in IF'. Since

D is *-strongly p-concave at x, every subvariety-germ of dimension ä p at x inter-

sects F (4° of Definition 2.8 and Proposition 2.9, [3]). Hence Z n D= 0 implies

that dimZx<p. By shrinking IF', we can assume that dimZ<p.

teY(W',î(F\p_lwo^y).

/mt e Y(W', Ç(F)). t^ift) e Y(W', F) extends /ms\ W' n D.   Q.E.D.

Lemma 13. Suppose F is a coherent analytic shea/ on a complex space (X, X)

o/pure dimension « such that En~ ^0, F) = 0. Suppose 1 ̂  p < «, x e X, and D is an

open subset o/ X which is *-strongly p-concave at x. Then there exist an open neigh-

borhood U o/x in X, a subvariety V o/dimension < p in U, and a natural number m

satisfying the following: If for some open neighborhood W of x in Ufe Y(W, X)
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vanishes identically on V nW and seF(Wn D,F), then fms\W' n D can be

extended to an element ofF(W', F)for some open neighborhood W' of x in W.

Proof. Let FT be the subsheaf of all nilpotent elements of Ff and G=Jf\Ff.

Since the Lemma is local in nature, we can suppose that F~k = 0 for some natural

number k. For 0 = /^/c define F(X) inductively as follows:

F(m = F,   and, for 1 ^ / = k,   J™ = (yf^'-^m-i]^'-».

As in the Proof of Lemma 5, we have the following:

#rm = 0;       En-\0, F«-»IFm) = 0    for 1 á / g, k;

and <gw=Fm/Fu + 1\ O^l^k — l, can be regarded as a coherent analytic sheaf

on the reduced complex space (X, 0). By Lemma 12 for 0^/^/c— 1 we have a

subvariety V¡ of dimension < p in some open neighborhood £/*, of x in X and a

natural number p¡ satisfying the following : If for some open neighborhood W of x

in Ufe F(W, <S) vanishes identically on V, n W and s e F(W n D, &U)), then

fpis\ W' n D can be extended to an element of F(W', <Sm) for some open neighbor-

hood W' of x in W.

Let C/=n!c=o1^and F=Ulc=o1(F,n i/). Let mt = 2f= i1 Pi, 0£l£k-l. By

considering the exact sequences 0 -» F(l + " ->- Fm -*■ &m -> 0, 0 ^ / S k -1, and by

backward induction on /, we conclude the following for 0 ^ /^ k— 1 : If/e T(IF, ^)

vanishes identically on IF n Fand i e T(PF n D, FU)) for some open neighborhood

IF of x in U, then fmis\W' n D can be extended to an element of F(W', J5"*0) for

some open neighborhood W' of x in W. Hence U, V, and m-=m0 satisfy the

requirements.   Q.E.D.

Lemma 14. Suppose F is a coherent analytic sheaf on a complex space (X, 3^)

and p is a natural number such that Ep(0, F) = 0. Suppose xe X and D is an open

subset of X which is *-strongly p-concave at x. Then there exist an open neighborhood

U ofx in X, a subvariety V of dimension < p in U, and a natural number m satisfying

the following: If for some open neighborhood W of x in Ufe F(W, FC) vanishes

identically on W n V and se F(W n D, F), thenfms\ W' n D can be extended to an

element ofF(W', F)for some neighborhood W' ofx in W.

Proof. Since the problem is local in nature, we can suppose that X is of finite

dimension «. If « = p, Fe(0, F)=0 implies that ^=0 and what is to be proved is

trivial. So we can suppose that «>p. Define &m=0m& for p = /cg«. ^(fl)=0. For

p<k^n let Zte = Supp 0<«/S?<*-i» and let si™ be the annihilator-ideal-sheaf for

gro/gw-i>_ For p<k<,n Xkis empty or of pure dimension k, Ek-\0, &™ !&<"-»)

= 0, and (<gml'£ik~1))\Xk can be regarded as a coherent analytic sheaf on the

complex space (Xk, (Ff ¡siik))\Xk). By Lemma 13, for p<k^n, if x e Xk, there exist

a subvariety Vk of dimension < p in some open neighborhood Uk of x in Xk and a
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natural number pk satisfying the following : If for some open neighborhood W of x

in Ukfe Y(W, (Xjsi™)\Xk) vanishes identically on Wc\Vk and

seY{WnD, â^'/â^-»),

then fks | W' n D can be extended to an element of Y(W', <Smj<Sik-X)) for some

open neighborhood IF' of x in W. For p<k^n,ifxe Xk, choose an open neighbor-

hood 0k of x in Xsuch that 0kr\ Xk=Uk; and, if x i Xk, let 0k = X, Vk = 0, and

7>k=l-

Let £/=nîU„ + i & and K=U2-* + i (C^ **)• Set mfc = 2f=i + ljPi. By con-
sidering the exact sequences 0 -> Sm -> á?(,c + » -* 3?«+»/^ -► 0, p g & a»-1,

and by induction on k, we conclude the following for p<k¿n: If for some open

neighborhood IF of x in C//e Y(W, X) vanishes on V n IF and j e r(IFn D, Sik)),

then/"Vs | IF' n F can be extended to an element of Y{W', Sm) for some open

neighborhood IF' of x in W. The Lemma follows from F=SW) and m=mn.

Q.E.D.

Theorem 3 (Local Extension). Suppose F is a coherent analytic shea/ on a

complex space {X, X) and p is a natural number such that F = FlP~1\ Suppose

x e X and D is an open subset o/ X which is *-strongly p-concave at x. Then the

fallowing is satisfied: If s e Y(W n D, F)for some open neighborhood W ofx in X,

then s\ W' n D can be extended to an element t ofY(W', F)for some open neighbor-

hood W' of x in W and tx is uniquely determined.

Proof. Since F=Flp~'i\ by Theorem 1, and the definition of F1"-", Ep(0,F)

= 0. There exist an open neighborhood U of x in X, a subvariety V of dimension

<p in U, and a natural number m satisfying the requirements of Lemma 14. By

Lemma 3 every branch of E°(0, F) has dimension > p for every nonnegative integer

a. By shrinking U we can assume that there is/e Y(U, X) such that / vanishes

identically on V and / does not vanish identically on any branch of F"(0, F) C\ U

for any nonnegative integer o. By Lemma 2 the sheaf-homomorphism a: F ->F

on F defined by multiplication by/m is injective.

Suppose s e Y(W n D, F). For some open neighborhood IF' ofx in IFa(i)| IF'

n D=fms\W' r\ D can be extended to an element f e Y(W',F). Z={ye W' \ ïy

$ a(F)y} is a subvariety in IF'. Since D is ""-strongly p-concave at x and Z <~\ D=0,

either x $ Z or dim Zx < p. By shrinking W', we can assume that either Z c\ W'=0

or dimZ<p. leY{W', a(F\p_^\ F=Fip-" implies that a{F\p_i^=a{F).

Hence ïe Y(W', a(F)\ t=a~\ï) e Y{W',F) extends s\ W' n D.

Suppose for some other open neighborhood IF" of x in IF there ist' e Y(W", F)

extending i| IF" n D. We are going to prove that t'x = tx. By shrinking both IF' and

W", we can assume that W'=W". Y={ye W' \ ty^ty} is a subvariety in W'.

Since D is *-strongly p-concave at x and Yn D=0, either x$ Y or t'x — txe

(Ou,-nr)*=0.   Q.E.D.
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Theorem 4 (Global Extension). Suppose p is a natural number and v is a

*-strongly p-convex function on a complex space X such that {x e X | A < v(x) < p.}

is relatively compact in X for any two real numbers \<p. Suppose F is a coherent

analytic sheaf on X satisfying F=F[P~1]. Then for Xe R every section of F on

XK = {x e X | v(x)> A} is uniquely extendible to a section of F on X.

Proof. We can assume that X as a topological space is connected. Since F"(0, F)

= 0, we can assume that every branch of X has dimension > p. Fix A0 e R and

s e F(XÁa, ¡F). We can assume that XXa + 0. Let A = {A e R | A <; A0 and s can be

extended to jA e F(XA, <F)}. Clearly, if A e A and A < p., then p. e A. We are going

to prove:

(6) If A e A and sh, iA e F(X„, F) both extend

s, then sA = sA.

Suppose the contrary. Then Z={xeXK \ (sA)x ̂  (s'h)x} is a nonempty subvariety in

XK. Let Z0 be a branch of Z. Take x* eZ0 and let A* = v(x*). Let |=sup{v(x) | x e Z0}.

Since Z n X^ = 0, f is the supremum of v on the compact set Z0 n {x e X | A*

= zy(x) = A0}. è=v(y) for some yeZ0. Since X¡ is *-strongly p-concave at y and

Z0 n X(= 0, we have dim(Z0)j,<p. Since Z0 is irreducible, dimZ0<p. Hence

dimZ<p. sx-s'he F(X¿, 0[p-Xip). (6) follows from 0lp-xVr=0.

For A e A denote the unique element of F(XK, F) which extends s by sA. To

finish the proof, we need only prove that A has no lower bound, because in that

case A = {A e R | A^ A0} and by (6) s* e F(X, F) defined by í*|Za=ía for A e A

extends s. Suppose the contrary. Then r¡ = inf A exists and is finite. Since X is

connected, this implies that X„ is not closed in X. By Theorem 3 for every x in the

boundary 8X„ of X„ there exists an open neighborhood Ux of x in X such that s„

can be extended to tix) e F(UX u X„, F). For x, x' e 8X„ let YiXiX-, = {z e Ux

n Ux. | (tMY=£(tixl)z}. Since O[p-Xiy=0, Yix<xl is either empty or every branch

of Yix¡x.) has dimension g; p. Since X„ is *-strongly p-concave at every one of its

boundary points,

(7) rtoiJn ndXn= 0    for x, x' e S^.

Since SJSf„ is compact we can choose xx,...,xke dXn such that dX^(Jk=1 UXi.

For 1 i£ z ̂  k choose a relatively compact open neighborhood Wt of x¡ in UXl such

that 8Jir„c (Jf=1 wt. Let IFr be the closure of IF, in X, 1 =z'=/c. (7) implies that

we can choose an open neighborhood W of dXn in (Jf=i Wt such that IF does not

intersect the closed set Uiíms*.»#í ^cw,*!) n ^~ n Wj'. For some A<tj, Xx

^W\J Xn because of Proposition 2.7 of [3]. Define t e F(XM F) by setting t=s{xù

on (UXi u X„) n Xx. t extends s, contradicting A £ A.

Uniqueness follows from (6).    Q.E.D.

Remarks, (i) Theorem 3 generalizes the Theorem on p. 279 of [4] and Theorem 4

generalizes Corollary 5.2 of [4] because of Theorem 4.3 of [4]. Theorems 3 and 4
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here have the advantage that, if F does not satisfy F=FÍP~ÍZ, we can always

construct the coherent analytic sheaf 'S = (FjOlp]^yp "1! which satisfies S=Slp~11.

(ii) Suppose F is a coherent analytic sheaf on a complex space (X, X) and

xe X. The condition Fx = (Fl0T)x is equivalent to the condition codh Fx ^ 2. It can

be proved in the following way: If Fx = (Fm)x, then F°(0, F)=0 and by Lemmas

2 and 3 we can find/e Y(U, X) for some open neighborhood U of x in A'such that

fx is not a unit of ^ and fx is not a zero-divisor for Fx. By shrinking U, we can

assume that fy is not a zero-divisor for Fy for v e Í/. Suppose x e E°(JF, F\ U).

By shrinking Í7, we can find g e Y{U, F) such that gy e (fF)y for y e U—{x} and

gx i (/F)x. Then heY(U, Fm) defined by gy =fyhy for v e U-{x} does not satisfy

hx e Fx. This is a contradiction. Hence x ^ E°(/F,F\ U). By Lemmas 2 and 3 we

can find s eXx which vanishes at x and is not a zero-divisor for {FjfF)x. codh Fx

^2. On the other hand codhFx^2 implies J5; = (J™1)* by Korollar zu Satz III,

[9].
The equivalence of Fx = (Fm)x and codh Fx ;> 2 is also a consequence of

[14, (1.1)]. However, the proof presented here is more conceptual than the proof

in [14].

(iii) In the case of Stein spaces we have the following stronger version of Theorem

4 which generalizes Theorem 5.4 of [4] :

Suppose F isa coherent analytic sheaf on a Stein

space X such that F = Fm. Suppose F is a

compact subset of X such that, if A is a branch of

(8) F^O, F) for any o ^ 2, then A-K is irreducible.

Then for every open neighborhood F of F in X

every element of Y(U—K, F) can be extended

uniquely to an element of Y(U, F).

It can be proved in the following way : Suppose s e Y(U- K, F). Since H\X, F)

= 0, from the Mayer-Vietoris sequence of F on X=(X-K) u U (p. 236, [2]) we

conclude that for some/e Y{X-K, F) and g e Y(U, F)f-g=s on U-K. From

Theorem 4 we can find/e (X, F) which agrees with/outside some compact subset

of X. Since F"(0, F) =0 for a ̂  1 and A — K is irreducible for any branch A of

F"(0, F) with a ^2,/agrees with/on X—K. (f\ U)—g extends s. The extension is

clearly unique, because F°(0, F) = 0.

In view of the equivalence of Fx = (Fm)x and codh Fx¡í2, in the above proof

we can use Theorem 15 of [2] instead of Theorem 4. So (8) can be proved also by the

finiteness theorems of pseudoconvex spaces in [2].

(8) generalizes Theorem 5.4 of [4] because of the following:

Suppose F is a closed subset of an irreducible

complex space X and U is an open neighborhood

of F in X such that for every branch A of U A—K

is irreducible. Then X- K is irreducible.
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Let F be the set of all regular points of X. To prove (9), we need only show that

F—K is connected. Suppose F n U= {Jie, F¡ is the decomposition into topological

components. Then F¡ — K is connected for i e I. The restriction map T(Fri U, C) -*

F(Rn(U-K),C) is an isomorphism. From the following portion of the

Mayer-Vietoris sequence of the constant sheaf C on R = (R n U) u (F — K):

0 -* T(F, C) -> T(F-F, C) © T(F n U, C) -> T(F n (C/-F), C), we conclude

that the restriction map F(R, C)-+F(R-K, C) is an isomorphism. F—K is

connected.
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