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Introduction. In this paper we solve the decision problem of a certain second-

order mathematical theory and apply it to obtain a large number of decidability

results. The method of solution involves the development of a theory of automata

on infinite trees—a chapter in combinatorial mathematics which may be of in-

dependent interest.

Let £ = {0, 1}, and denote by T the set of all words (finite sequences) on 2. Let

r0: T^-T and rx: T—>■ T be, respectively, the successor functions ro(x)=x0 and

r1(x) = xl, xeT. Our main result is that the (monadic) second-order theory of the

structure (T, r0, rxy of two successor functions is decidable. This answers a question

raised by Biichi [1].

It turns out that this result is very powerful and many difficult decidability

results follow from it by simple reductions. The decision procedures obtained by

this method are elementary recursive (in the sense of Kalmar). The applications

include the following. (Whenever we refer, in this paper, to second-order theories,

we mean monadic second-order; weak second-order means quantification restricted

to finite subsets of the domain.)

The second-order theory of countable linearly ordered sets is proved decidable.

As a corollary we get that the weak second-order theory of arbitrary linearly

ordered sets is decidable ; a result due to Läuchli [9] which improves on a result of

Ehrenfeucht [5].

In [4] Ehrenfeucht announced the decidability of the first-order theory of a unary

function. We prove that the second-order theory of a unary function with a count-

able domain is decidable. Also, the weak second-order theory of a unary function

with an arbitrary domain is decidable.

There are also applications to point set topology. Let CD be Cantor's dis-

continuum (i.e., (0, 1}™ with the product topology). Let Fa be the lattice of all sub-

sets of CD which are denumerable unions of closed sets, and let Lc be the sublattice

of all closed subsets of CD. The first-order theory of the lattice Fa, with Lc as a

distinguished sublattice, is decidable. Similar results hold for the real line with the

usual topology. This answers in the affirmative Grzegorczyk's question [8] whether
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the first-order theory of the lattice of all closed subsets of the real line is

decidable.

Through Stone's representation theorm, the results concerning Cantor's dis-

continuum lead to results about boolean algebras. Thus the theory of countable

boolean algebras with quantification over ideals, is decidable. The first-order theory

of arbitrary boolean algebras with a sequence of distinguished ideals is decidable.

This last result is an improvement of Tarski's result [15], and of Ershov's [6,

Theorem 9].

Finally, we give an application to the theory of games. We show that the state-

ment, proved by Wolfe [17], that every Gale-Stewart game (see §2.5 for terminology)

with a set in F0 is determinate, is expressible in the second-order theory of two

successor functions. Thus Wolfe's theorem could be proved by applying the

decision procedure.

Due to the fact that we use reductions to a second-order theory, our decidability

proofs are very direct. Through appropriate interpretations, the set variables allow

us to talk about all structures in a certain class. Thus, for example, for every

sentence F of the second-order theory of linear ordering, we write a sentence F of

the second-order theory of (T, r0, r{) which asserts that F holds in all countable

linearly ordered sets. Since we can decide whether Fis true in <7, r0, /-j), we can also

decide whether Fis in fact true in all countable linearly ordered sets.

It would be interesting to see whether this direct approach, involving some

powerful decidable second-order theory, would yield a similar unified approach to

other classes of solvable decision problems, e.g., in the theory of various fields.

Let us briefly explain the connection with automata theory. The set T can be

viewed as the full binary tree with root A (the empty sequence), and where xO and

xl are the nodes branching out of the node x e T. For a finite set 2, a S-(valued)

tree is a mapping v : T -> X. The set of all 2-trees is denoted by Vs. A S-automaton is

a system 21 = <£, M, S0, F>, where 5 is a finite set, M: S x X -> P(S x S), S0£ S, and

F^P(S). We define the notion of a finite automaton % accepting a S-tree v. The set

of all S-trees accepted by 9Í is denoted by 7\9t). A set A ç Vs is called finite auto-

maton (f.a.) definable if for some 5t, T(Sâ)=A.

For a Sj x 22-tree v the projection on Si is the Si-tree pxv, where px(x, y) = x. The

basic properties of f.a. definable sets are as follows. If AçVz, B^VZ, and C

S^sixsa are f.a. definable, then so are A\J B, V%-A, and px{C). Automata

defining the latter sets can be effectively constructed from automata defining the

sets A, B, and C.

The emptiness problem, whether for a given automaton 91 we have r(9í)= 0, is

effectively solvable.

Now let Sn be {0, 1}". We set up a one-to-one correspondence t between «-tuples

Ä=(Als..., An) eP(T)n of subsets of T, and 5>-trees. Namely, t{Ä) = vx where

vä(x) = (xa1(x), ..., XaXx))> xeT, where xa denotes the characteristic function of A.

For every formula F(Alt..., An) of the second-order theory of two successor
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functions, we can effectively construct a ¿¡"-automaton SIj? so that for Ä e P(T)n,

va e TÇaF) if and only if <r, r0, rxy h F(Ä). This result, coupled with the solvability

of the emptiness problem, leads immediately to the decidability of the second-order

theory of two successor functions.

As indicated above, our method also yields a complete survey of the relations

definable in (T, r0, r-¡y using (monadic) second-order language. Via the interpreta-

tions used in the decidability proofs, we are in a position to get complete informa-

tion about definability in all the other theories proved decidable by our method.

This question, however, is not explored in the present article.

The paper is organized in three parts. Chapter I contains the basic definitions and

the proof, using automata on infinite trees, of the main result concerning the

decidability of the second-order theory of (T, r0, r^y. Chapter II contains the

various applications of the main decidability result. In Chapter III we develop in

detail the theory of automata on infinite trees. We prove the two difficult theorems

used in Chapter I; namely, that the class of f.a. definable sets is closed with respect

to complementations, and that the emptiness problem is effectively solvable. The

treatment of automata theory is self-contained and the relevant results concerning

sequential automata and automata on finite trees, are fully explained. Anyone

looking for further background information may consult, in addition to the original

papers quoted, also the survey article [12].

The reader who is mainly interested in automata, may get a complete picture of

the theory of automata on infinite trees by reading §1.4 and Chapter III.

Chapter I. The theory of two successor functions

1.1. Notations and terminology. We shall use the usual set theoretic notation

throughout this paper. Thus, a function/: A ->- B is a subset fçAxB satisfying

certain conditions. Sometimes we shall describe a mapping by the notation x m>-/(x),

x e A, which indicates that for x e A, x is mapped into/(x). For example, x\-^-x2,

x e [0, 1], denotes the squaring function f(x)-x2. If /: A ->- B then A and f{A)

={/(a) | a e A} are called, respectively, the domain D (/) and the range R (/) of/.

Iff: A->B and C^A, then/|C will denote the restriction/n (CxB) of/to C.

We adopt the convention that every ordinal number a is the set a={/31 ß<a} of

all smaller ordinals. Thus 0=0 (the empty set), «=>{0,1,...,»—1}, and

<d = {0, 1,...}. We shall use [n] to denote the set {1,..., n} = n-{0}. The cardin-

ality of a set A will be denoted by c (A).

The set of all subsets of a set A will be denoted by P(A).

For A a set and a an ordinal, A" is the set of all a-termed sequences of elements

of A; i.e., Aa={<l> | $:<*-> A}.

Let A be a set, n an integer, and 1 úi^n. The projection onto the ith coordinate

is the mapping />,: An -> A such that Pi((xu ..., xn)) = xt. Strictly speaking, pro-

jections such as (x, y)^>y and (x, y, z) h> y are different mappings, but we shall

denote both by p2-
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In writing logical formulas, we shall employ boldface type to denote the predicate

or function constants, and the various variables (these will be either set variables or

individual variables).

Let 2Í = <v4, R) be a structure and F(B, x) be a formula of a language appropriate

for 2Í (here S is a set variable and x is an individual variable). For B^A, x e A, the

notation 21 t= F(B, x) is used to indicate that the formula F(B, x) is satisfied in 21 by

B and x.

The conjunction of the formulas F{, 1 ̂  i Un, is denoted by Aisisn F; similarly

for disjunction.

1.2. Structures and theories. We shall prove the decidability of some first-order

and monadic second-order theories which are defined semantically as the set

of all sentences true in a certain structure or class of structures. Let JT be a class

of similar structures 501 = (A, Paya<*, where A is an ordinal and Pa is an n(a)-ary

relation or function on A. With Jf we associate a language L appropriate to it.

L may be a first-order or a second-order language. L has the usual logical con-

nectives and quantifiers, equality, a sequence u, v, x, y, z,. ■ ■, of individual

variables, and an n(a)-ary predicate or function constant Pa for each a < A.

In the case that L is the (monadic) second-order language appropriate to cf, it

has, in addition to the above, a sequence of set variables, A, B, C,..., and the

membership symbol e. The atomic formulas of L include formulas of the form

t e V, where t is a term of L, and V is a set variable. Quantification is possible

over both set variables and individual variables. In defining a language L we shall

sometimes impose restrictions on some of its set variables. For example, we may

confine some or all of the variables to range over finite subsets of the domain. Or

else we may confine the variables to range over ideals of an algebra, or over

subsets of the domain closed in a given topology, etc.

With a given structure 9JÎ and an appropriate language L, we associate the theory

r=Th (2JI, L) which is, by definition, the set of all sentences of L true in 3R. The

theory T constructed in this manner will be referred to as the theory of the structure

SDÍ, or, sometimes, as the theory of the relations and functions Pa, a < A. The adjective

second-order, with appropriate qualifications, will be added when the language L

is of that kind. The theory Th (X¡ L) of a class Jf of similar structures is, by

definition, Th (Jf, L) = f]mjr Th Çiïl,L). The first-order theory of Jf will be denoted

by Thx (¿f) ; the (monadic) second-order theory will be denoted by Th2 (Jf).

As usual, a theory T is called decidable if the set T (more precisely, the set of

Gödel numbers of the sentences in T) is recursive. T is called primitive recursive or

elementary recursive if (as a set of integers) it is primitive recursive or elementary

recursive (in the sense of Kalmar). We shall not trace this fact explicitly, but all the

decidability proofs given in this paper will actually show that the theory in question

is elementary recursive.

1.3. Theory of n successor functions. For an arbitrary set A, let A* denote the set

of all finite sequences of elements of A. The elements x e A are also called words
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on A. For x e A*, l(x) denotes the length of the sequence x. The unique word

x e A* for which /(x) = 0 is called the empty word and is denoted by A. If x e A*,

y e A*, then xy will denote the result of concatenating x with y.

On A* we define a partial ordering by x^y (x is an initial oîy) iîy=xz for some

z e A*. If x^y and x+y, then we shall write x<y.

If A is linearly ordered by á A, then we can introduce the ordering =^ which is the

lexicographical ordering of A* induced by áA. Thus x^.y if and only if xSy, or

x=zau and y = zbv, where as A, be A, and a<Ab. Note that </4*, =^> is a totally-

ordered set.

For a e A, define the (immediate) successor function ra: A* -+ A* by ra(x)=xa.

We also define a predecessor function pd: ,4* -> ^4* by pd (x)=y if either x=y=A

or x=ra(.y) for some «el

Definition 1.1. For 0<«^cu, let Tn=n*={i | /<«}*. The structure 9?„ =

<r„, r¡, 5!,=Oi<n, where =<! is the lexicographic ordering induced by the usual

ordering on n, is the structure ofn successor functions. Th2 (9?n) is called the second-

order theory ofn successor functions and will be denoted by S«S.

The structure 9?i = <{0}*, r0, ^, =^> is (up to isomorphism) the set of integers

with the usual successor function xh->x+l and ordering á ; the relation ^ is

the same as ^ in this case. Thus S«S, 1 < n, is a natural generalization of the ord-

inary theory of a single successor function.

For every finite n < w, the relations ^ and =< on Tn are definable (in second-order

language) from r0,..., rn_i. This is not true for T(0 and we, therefore, include these

relations in the definition of 9în, n S <»>■

Our main decidability result is

Theorem 1.1. The (monadic) second-order theory of two successor functions

(S2S) is decidable.

This result, which will be proved later on, has a large number of consequences.

In particular, it trivially implies that S«S for every integer n, as well as SwS, are

decidable (§1.9). For this reason we prove directly only the decidability of S2S,

even though the very same method would apply to every S«S, n < m.

1.4. Trees and automata. As explained in the Introduction, the solution of the

decision problem of S2S will require a theory of automata on infinite trees. In this

section we give the basic definitions and results concerning automata.

The infinite binary tree is the set T—T2 = {0, 1}* of all finite words on {0, 1}. The

elements x e T are the nodes of T. For x e T, the nodes xO, xl are called the im-

mediate successors of x. The empty word A is called the root of T. Our language is

suggested by the following picture. The lowest node of T is the root A. The root

branches up to the (say) left into the node 0 and to the right into the node 1. The

node 0 branches into 00 and 01 ; the node 1 branches into 10 and 11. And so on

ad infinitum.
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For x e T, the subtree Tx with root x is defined by Tx={y \ y e T, x^y}. Thus,

A.path TT of a tree Tx is a set it<= 7^ satisfying: (1) x e tt; (2) for >> e tt, either _K) e n

or y I e 77, but not both; (3) if y e tt and x^y then pd (y) e 7r. It can be verified that

if y, zen, then yaz or zg_y.

For a mapping <f>: A^~ B, define

Info) = {6 I beB,c(<f>-\b)) = a»}.

In the following, £ denotes a finite set called the alphabet.

Definition 1.2. A ^(valued) tree is a pair (v, Tx) such that v. Tx ->S. If (u, T)

is a valued tree, then (r, r*) will denote the induced value subtree {v \ Tx, Tx).

The set of all 2-trees (v, Tx), for a fixed x e T, will be denoted by V^tX. The set

U*er J's.x of all 2-trees, will be denoted by Vs.

Definition 1.3. A table 21' over S-trees is a pair 2t' = <S, M} where S is a finite

set, the set of states, and M is a function M: S xS -> P(S x S), the (nondetermin-

istic) table of moves (P(A) denotes the set of all subsets of A).

A finite automaton (f.a.) over 2-trees (a 2-automaton) is a system 2t = (S, M, S0, F)

where (S, M} is as above, S0^S is the set of in/r/a/ states, FqP(S) is the set of

designated subsets of S.

Definition 1.4. A run of 2t' = <5, A/> on the S-tree i=(r, Tx) is a mapping

r:Tx^S such that for y e T„ (r(yO), r(y\)) e M(r(>>), v(y)). We also talk about a

run of an automaton 21 on a tree, meaning a run of the associated table 21'. The set

of all 2C-runs on t is denoted by Rn (21, t).

Definition 1.5. The automaton 2t = <5, M, S0, F} accepts (v, Tx) if there exists

an 2I-run r on (v, Tx) such that r{x) e 50 and for every path n of Tx, In (r | it) e F.

The set T(2i) of S-trees defined by 21 is

r(21) = {(v, Tx) I x e T, (v, Tx) is accepted by 21}.

A set Az V-z is f.a. definable if for some f.a. 2Í, A = T(1l).

Remark. A set A ç Ks is called invariant if for every S-tree t = (f, T) and every

x e T, te A if and only if the tree t' = (v', Tx) defined by v'(xy) = v(y), y eT, is

in A. The invariant subsets of Vs are a boolean algebra. It is clear from Definition

1.5 that every set F(2t) is invariant. To prove that an invariant set A is f.a. definable,

it suffices to construct an automaton 21 such that (v, T) e T(2i) if and only if

(v,T)eA.

The following results are immediate.

Lemma 1.2. If ieKj is f.a. definable, then there exists an automaton 21=

<S, M, S0, F} such that S0={s0}, s0 e S, and T(SH) = A.

Theorem 1.3. If A, i?£ F£ are f.a. definable, then so are A u B and A r\ B.
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Proof. Let A = 7/(91), B=7(93) where 51 = (S, M, s0, F), 93 = <5', M', s'0, #">. We

assume that S n S'=0. Construct the automaton

91 u 33 = <S U S', M u M', {s0, jó}, F u F").

Clearly, 7/(91 U 93) = ,4 u B.

With the above notations, define 91 x 93 = <S x 5', M, (s0, s'0), F) as follows.

((*i, íí), fe, 4)) e ^((i, J')> CT) if and only if (su s2) g M(s, a) and fe, j2) e •^'(•s', CT)-

Let />! and p2 be the projection functions (x, y) h> x and (x, y) i-> j>. Define F

={G I G £ 5 x 5', />!(G) g F, /?2(G) e F'}. We have 7/(91 x 93)=A n 5.

Definition 1.6. Let t = (v, T) be a Sj. xE2-tree and let/»! again be the projection

(x, y) h-> x. The projection Pi(t), by definition, is the Sj-tree (piV, T).

The projection Pi(A) of a set AzVXlxXi,, is />i04)={pi(0 | íg/Í}. The £2-

cylindrification of a set 7? £ KSl is the largest set A £ KEl x Sa such that ^i(^) = 5.

Theorem 1.4. If A^V^lXZ2 is a fa. definable set, then />i04) £ KSl « a /a.

definable set. IfBzV^ is fa. definable, so is its Z2-cylindrification A £ VZl xS2.

Proof. Let 91 = <5, M, s0, F} be a Sj x S2-automaton with 7/(91)=v4. Define a

^-automaton by 9I1 = <S, Mu s0, F), where M^(s, oi)=\J0&2 M(s, (au a2)),

ctj e S1( j g S. One can check that 7/(91 i) =px(A).

The proof concerning cylindrification is left to the reader.

Theorem 1.5. The complement Ka —7/(91) of a fa. definable set is a fa. definable

set.

Theorem 1.6. There exists an effective (even elementary-recursive) procedure for

deciding for every automaton 9t whether 7/(91) = 0.

For a proof of these two difficult theorems, see Chapter III.

1.5. Definability in 922. The basic facts concerning automata on infinite trees

lead, in a natural way, to a proof of Theorem 1.1. The proof proceeds by setting

up a correspondence between «-tuples (Au ..., An) of subsets of 7/= T2 and valued

trees.

Definition 1.7. For a set A £7/, let xa- T-> {0, 1} be the characteristic function

of A. Denote {0, 1}" by 2", n<u>. With Ä=(AU..., An), associate the S"-tree

(vÄ, T) defined by vx(x) = (xjx), • • -, Xau(x)), xeT. The mapping t: Jh» fo, T)

sets up a one-to-one correspondence between P(T)n and f/ïn,A = {(i;, T) \ v : 7/->-En}.

Theorem 1.7. There exists an (elementary-recursive) effective procedure for

assigning to every formula F(AU ..., An) o/S2S a ^-automaton %F so that

(1.1) T(%F) n FS»,A = T({(AU ...,An)\m2¥ F(AU ..., An)}).

If (I.I) holds for an automaton 91, then we shall say that 9Í represents the formula

F(A1,...,An).
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Proof. Call two formulas F(AX,..., An) and G(AX, ..., An) equivalent (in 9c2)

if for all Ax, ...,An, 9Î2 h F(AX,..., An) if and only if 9i2 ¥ G(AX, . ..,An). We

start by showing how to assign (effectively) to every formula. F an equivalent

formula G which is in a special normal form.

We introduce the following abbreviation for terms of S2S. A variable x will be

abbreviated by x. Inductively, if t is abbreviated by xw, where weT, then rd(t),

8 e {0, 1}, will be abbreviated by xw8.

A formula P(AX,..., Am) of S2S is called principal if it has the form

(1.2) Ixlxw^A^ A ■ • • A xwkr¡kAik],

where each i¡ satisfies 1 á i¡ ̂  m and each r;; is either e or <£. Note that it is not

required that every Au lúiem, actually appear in (1.2).

Every formula F(AX, ..., An) is equivalent to a formula G of the normal form

ßn + i- • ■ QmM(Ax,..., Am), where M is a boolean combination of some principal

formulas Px,..., Pr, and each quantifier g¡ is either 3At or V^(.

The formula G is obtained from F by a sequence of simple steps as follows. In F,

replace every occurrence of tx=^t2, where tx and t2 are terms, by

txút2v 3z[r0(z) S *i A ^(z) ^ ia].

In the resulting formula, replace every occurrence of tx = t2 by VA[tx e A -> t2 e A],

and every occurrence of tx ¿ t2 by

V/i[Vx[x eA^ r0(x) e A A ^(x) e A] A txeA^t2eA].

We obtain a formula F' equivalent with F, in which the only atomic subformulas

are of the form teV where t is a term and K is a set variable. By a well-known

procedure of second-order logic, F' is transformed into an equivalent formula Fx

of the form Qn+X■ ■ ■ QmMx{Ax,..., Am) where each g¡ is V^¡ or 3At, and Mx is in

prenex form with quantification only over individual variables. By pushing the

quantifiers of Mx one by one into Mx, Mx is transformed into an equivalent boolean

combination M(AX,..., Am) of principal formulas. Thus, F is equivalent to the

formula Qn + x • ■ ■ QmM of the desired normal form.

Returning to the proof of the assertion in our theorem, we may now assume that

F itself is in the normal form Qn + X- ■ ■ QmM(Ax,..., /*m)(2). That the assertion is

true for a principal formula P(AX,..., Am) of the form (1.2), can be seen by an

explicit construction of an automaton 2lP so that (1.1) holds. Alternatively, this

will be obtained as Corollary 3.13. The existence of an automaton 2iM representing

the boolean combination M of principal formulas now follows from Theorems 1.3

and 1.5.

(2) M. Megidor has suggested that a slight modification of the argument which follows will

establish our result directly by induction on formulas, without having to pass to normal form

In this approach individual variables are treated as special set variables ranging over singleton

sets.
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The proof of our theorem will be completed if we can establish the following

proposition. If G(AX,..., Ak) is a formula represented by the £k-automaton 21, and

Qk is 3Ak or V/4fc) then QkG(Ax,..., Ak) is representable by a Sfc"^automaton S3.

Since VAkG is equivalent with ~3Ak~G and the class of f.a. definable sets is closed

under complementation (this is the crucial application of Theorem 1.5!), it suffices

to consider the case 3AkG.

Let p be the projection p: (xx,..., xk)\-> (xx,..., xk-.x). Since Sfc=2k_1 xS1

(where 21 = {0, 1}), p induces a projection from S^-trees to S^^-trees (Definition

1.6). This projection commutes with the mapping t. Ä\-+ (va, T), i.e., r{p{Ä))

=p(r(Ä)) for ÄeP{Tf. Now

H = {(Ax,. ..,Ak.x) | 5c2 N 3AkG(Ax,..., Ak.x, Ak)}

= p({(Ax,...,Ak)\W2¥G(Ax,...,Ak)}).

Applying t to both sides and interchanging t and p, we get

t{H) = p(r({(Ax, ...,Ak)\m2¥ G(AX,..., AM = P(m)) n Fs,-i,A,

the last equation being our assumption about G and 21. By Theorem 1.4, there

exists a E*"^automaton 23 such that F(23)=/?(F(2I)). This 23 represents 3AkG.

1.6. Proof of Theorem 1.1. Let G be a sentence of S2S. We wish to determine

effectively whether üft2 N G. Without loss of generality, assume that G is of the form

3AXF(AX). Construct the automaton 21^.. Now 9Î2 1= 3AXF(AX) if and only if F(2(F)

^ 0. The question whether F(2tF)# 0 can be effectively decided by Theorem 1.6.

1.7. Addition of finite-set variables. Theorem 1.1 can be strengthened to show

that S2S remains decidable upon adding to the language set variables a, b,...

ranging over finite subsets of T2. This will be done by proving that the finiteness

of a set A ç T is a property definable in S2S.

To do this, and also for later applications, let us briefly recall the notion of a

relation R being definable in a structure 9JÎ==<^, P«)>a<x, using a language L

(less precisely, R being definable in Th (Wl, L)). Thus, for example, R £ A2 x P(A)

is definable in Th2 (9JÍ) if there exists a formula F(x, y, B) of L such that for x, ye A,

BqA,vjc have <x, y, B} e R if and only if 50t 1= F(x, y, B). Our proofs that a given

relation is definable in a given structure will often be informal. We shall give a

verbal description of the relation, leaving it to the reader to check that this verbal

description is expressible by a formula of the language in question.

Lemma 1.8. The predicate Fn (A), true for A^T2 if and only if A is finite, is

definable in S2S.

Proof. We recall that A s T is totally-ordered by ^. Thus A is finite if and only

if every B^A has both a largest and a smallest element with respect to ^.

The same definition of finiteness applies to every SnS, n 5j cd.

Corollary 1.9. Let L' be the second-order language L appropriate to SSt2,

augmented by the addition of variables a, b,..., ranging over finite subsets of T2.

Th (m2, L') is decidable.
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1.8. Definability of 7/(91) in S2S. Theorem 1.7 asserts that if R^P(T)n is definable

in S2S, then t(R) is finite-automaton definable. The converse of this statement is

also true.

Theorem 1.10. Let R^P(T)n be an n-ary relation between subsets of T and let 91

be a ^-automaton such that 7/(91) n Ks*>a = t(7?). There exists a formula

F%(A1} ...,An) 0/S2S so that <Alt ...,An}eR if and only ifSSl2 1= F^(AU ..., An).

Proof. We shall use the following notational abbreviation. If A = (AU ..., An)

and (Sj,..., 8n) = oe'Zn (={0, l}n), then vä(x) = o will abbreviate the formula

x-tj-lAx a • • • A X7]nAn where rjt is g if S¡= 1 and r¡t is $ if S¡=0, 1 Ú i^n. This notation

captures the intention of Definition 1.7. If //££", then vâ(x) g H will abbreviate

VatHVÂ(x) = 0.

Let 9I = <S, M, s0, F). We may assume that S£Sm for an appropriate m. Thus

to each ^-valuation r:T-+S there corresponds a B=(BU..., Bm) such that

vè(x) = r(x) holds for S and for every x g T.

With /• and S as above, C£ 7/ a path, and s g 5, j g In (r | C) holds if and only if

Vx3j>[xe C^-ye CAx<yArg(y)=s] is true in 9?2 for Cand .6. This implies that

for F^P(S) the statement ln(r \ C)e F is expressible by an appropriate formula

In*. (B, C) of S2S. Finally, there exists a formula Path (C) of S2S which is true if

and only if C£7/is indeed a path. Note that all the above mentioned formulas can

be constructed so as to contain no set quantifiers.

Putting the previous remarks together, we see that for Ä=(AU ..., An) e P(T)n,

Ä=(Alt..., An) and B=(B1,..., Bm) (where the latter two are sequences of set

variables), (vj, T) g 7(91) if and only if Ä satisfies the formula F^(AU ..., An)

which reads

3Ä!- • -35mVCfVx A   A \v¿(x) = o A vs(x) = s
L       oes»   ses 1

(1.3) -> V      vs(x0) - Si. A i>j(jc1) = i2l
(si.S2)eM(s,o) J

A vs(A) = s0 A [Path (C) -+ lnF(B,Q]\.

This formula F% is the desired one.

Corollary 1.11. Every formula F(AX,..., An) of S2S is equivalent to a formula

G of the form 3BVCM(Ä, B, C) where M is a formula with no set-quantifiers.

Proof. This follows at once by combining Theorems 1.7 and 1.10 and noting that

formula (1.3) has the required form.

The dual form of the previous corollary is, of course, also true.

1.9. Decidability of SojS. The binary tree T2 = T, in a certain sense, contains as

subtrees all trees with countable branching. For this reason, the decidability of

S2S implies decidability of second-order theory of more complicated particular

trees and classes of trees with countable branching. Here we shall treat only the

case Ta.
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Theorem 1.12. The second-order theory ScuS=Th2 (3?ra) of m successor functions

is decidable.

Proof. Let A £ T be a set with a unique element AAe A smallest with respect to

=. Define a relation S(A) £ A2 by (x, y) e S(A) if and only if

xeAAyeAAx<yr\ Vz[z e A^ ~[x < z < y]].

If (x, y) e S(A), then we shall say that y is an (immediate) successor of x in A. Thus

T(A) = (A, S(A)} is a tree with root AA.

Note that for x, y e A, x^y (where = is the partial ordering of T) if and only if x

precedes y in the tree T{A).

Let ^ = {A}u{lni01M)---lM) | 1 ¿,k<œ, 0<«¡, lala*}. In T{A), the set of

immediate successors of an x e A is well-ordered in an cu-sequence by =<[ (the

lexicographic ordering of T). Thus we can define r$(x)=y by (x, y) e S(A) A

Vz[(x, z) e S(A) -+ y^.z] and, inductively on n<w, rA+1(x)=y by (x, y)eS(A)A

f\i<nrt{x)^y/\Vz[Xx, z)eS{A)/\ f\l<nrf(x)^z-*y=4.z]. With this definition of

the successor functions rA, n<w, the structure (A, rA, Ú \A, ^.\A}n<m is isomorphic

toft«.

Now the set A and the relations r£(x)=y, n<u>, are definable in S2S. Combined

with the previous remark, this implies decidability of ScuS.

Chapter II. Applications of the decidability of S2S

2.1. Linearly ordered sets. Let Jf| be the class of all linearly ordered sets

<I, g > such that c (J) < tu.

Theorem 2.1. Th2 (¿f |), the second-order theory of countable linearly ordered

sets, is decidable.

Proof. This is an almost trivial consequence of the decidability of S2S.

Let B^T be the set of all sequences xlOl such that xlOl has no (consecutive)

subsequence 101 except the one at the end. Thus if x, y e B and xá_y, then x=y.

It can be easily verified that (B, =4-\B} has the order type r¡ of the set of rationals.

This implies that for every (A, ^ > e X% there exists a set A <= T so that <Z, ¿ >

Let Fbe any sentence of the second-order theory of linear ordering. Let FA be the

sentence obtained by replacing in F all occurrences of á by =^!, relativizing in-

dividual quantifiers to A and relativizing set quantifiers to subsets of A. By the

above, Fe Th2 (Jf%) if and only if VAFA e S2S.

It has been observed (Corollary 1.9) that S2S remains decidable upon inclusion

of set variables ranging over finite sets. The previous theorem may be strengthened

in the same way. Combining this with the fact that the downward Skolem-Lowen-

heim theorem is valid for weak second-order logic, we get as a corollary the follow-

ing result of Läuchli [9], which strengthens Ehrenfeucht's result [5].
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Corollary 2.2. The weak second-order theory of linearly ordered sets is de-

cidable.

In contrast with the treatment in [5], [9], we get here elementary recursive

decision procedures.

Since the notion of well-ordering is obviously definable in Th2 (Jf S), we have

the following result which is related to Büchi's Theorem 1' of [2].

Corollary 2.3. 77ze second-order theory of countable well-ordered sets is

decidable.

It is not known whether the second-order theory of arbitrary well-ordered sets

is decidable. By the same token, it is not known whether Th2 0#k), where JTS

is the class of all linearly ordered sets, is decidable. It may be that some sentence of

second-order theory of linear ordering is independent of set theory. In this case,

it will be impossible to produce a decision procedure for Th2 (JTg) by means of

arguments formulated within set theory.

Closely related to this is the following question. Does there exist a sentence F

of second-order theory of linear ordering so that {A, ^ > N F if and only if c (A) ̂  w ?

The existence of such a sentence would imply that Souslin's Hypothesis is express-

ible in this theory. Souslin's Hypothesis is known to be independent of set theory.

2.2. Second-order theory of a unary function. Let ■%} be the class of all structures

9l = <04,/> where /: A -> A is a (unary) function from A to A. By Jff we shall

denote the class of all structures (A,f} g X¡ with c (A) g m. The structures in Jt}a

will be referred to, throughout this section, as algebras. Thus, the term "algebra"

always implies countability. We shall list without proofs some simple observations

about the structure of algebras.

Two elements x, y g A of an algebra SH = (A,f} are called connected (x ~y) if for

some n<w, m < to, f(x) =fm(y). The relation ~ is an equivalence relation. For

x g A, the equivalence class {y | y~ x, y e A) is a subalgebra of 91. An algebra 91 is

called connected if every two x,ye A are connected. Every algebra 91 = <^4,/> is the

cardinal sum of a countable collection of connected algebras; i.e., A = Un<ms« -^n,

where each (An,f\An)> is a connected subalgebra of 91, and AnnAk=0 for

n<k<m.

An algebra is called aprime algebra if it is one of the following:

9tn = <{fli | 0 ¿ i < «},/>,

láw^tü, where, for n<u>, /(a¡)=oi + 1, 0áz'<n-l, f(an-1) = a0; and for n=u>,

f(at) = ai + 1. Every algebra contains at least one prime algebra. A connected algebra

9Í is said to be of type n, 1 ¿ n ̂  to, if 9Í contains an algebra 9in. The type of a con-

nected algebra 91 is uniquely determined by 91.

Let 9l = </4,/> be a prime algebra. The enveloping algebra 93 = (B, g} => 91 of 91 is

defined as follows. Let N=co-{0} be the set of positive integers. Set B=AN* and

define g(ai± ■■■ik+1) = ah ■ ■ ■ ik, g(a) =f(a), for a e A, h ■ ■ ■ ik+± g N*.
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The following basic property of the enveloping algebra is easily verifiable. Let

9ln be a prime algebra of type n, and 93 => 9In be its enveloping algebra. If S 2 9L, is a

connected algebra of type n, where 9\ is a prime algebra, then any isomorphism

<f>: 9l„ -> 9in can be extended to a monomorphism $: (£ -> 93 of S into 93. Thus,

every connected algebra is a subalgebra of an enveloping algebra. This implies that

every algebra is embeddable in a (countable) cardinal sum of enveloping algebras.

Theorem 2.4. Th2 (JTfa), the second-order theory of a unary function with a

countable domain, is decidable.

Proof. We shall interpret Th2 (Jf?) in SwS = Th2 (91J, which is decidable

(Theorem 1.12). This will be done by constructing a relation F(x, y, C) definable

in Sta, so that for a fixed C<= Ta, the set of pairs <x, y} for which F(x, y, C) holds

is a unary function/, and the algebra 9lc=<!)(/),/> is the cardinal sum of de-

numerably many enveloping algebras. Conversely, for every cardinal sum 9Í of

denumerably xnany enveloping algebras, there will exist a C so that 9i~9Ic.

Assume for the moment the existence of such a relation and let F(x, y, C) be the

formula of StuS defining it. The formula Al(A, C) which is

\/x3y[x g A -> F(x, y, Q A y g A],

is true for A^Ta, C<=Tm if and only if (A,f\A} is a subalgebra of 9tc=<£»(/),/>.

By the remarks concerning algebras, for every 91 eJff0 there are sets A, C£7/ffl so

that Al(A, C) holds, and %~(A,f\A). If S is a sentence of second-order theory

of a unary function, let S be the formula of Sa>S obtained from S by replacing

f(x)=y by F(x, y, C), relativizing all individual quantifiers to A and relativizing

all set quantifiers to subsets of A. We have S g Th2 (Jf/0) if and only if

VAVC[Al(A, Q^S]e SoS.

Thus, all that remains is to construct F(x, y, C). We shall do this informally,

leaving verification that the relation in question is definable in 9ÎM, to the reader.

Let C<= Ta be a set so that C<= {0n10m | n < w, m < co}, and for every n<w,C contains

at most one word of the form 0n10m. For n<u>, let ^n={0n10' | i£m} if 0n10m g C,

and AHOMO' | i<œ} if no 0n10m is in C. Let Bn=AnN* where N=w-{0}, and let

-S=Un<ta Bn.

The idea is to define F(x, y, C) so that under the corresponding unary / each

subset Bn<=B will be an enveloping algebra. / will be the predecessor function for

x^0n10', and for x=0n10' the definition will be different. The detailed definition

follows.

Let pd (x) be the usual predecessor function on Ta (see §1.3). Note that pd (x)=y

is definable in 5Rm by x=y=Avy<x AVz~[y<z<x]. Let F(x, y, C) hold if and

only if C has the above mentioned property, x g Bn for some «, and y satisfies the

following. If x=0n10'z, A/zeN* then .y=pd (x); if x=0n10' i C, then y=r0(x)

=0n10f+1; if x=0n10m g C then v=Onl. Let/: B-> B be the mapping such that

f(x)=y if and only if F(x, y, C).
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For a fixed «< tu, if 0"10m e C, then (An,f\A„) is the prime algebra of type/u + 1,

and if no 0n10m is in C then (An,f\Any is the prime algebra of type cu. In either case,

23„ = <5n,/|5n> is the enveloping algebra of (An,f\An}. Thus <jB,/> is the cardinal

sum of the enveloping algebras 23n, n< m, and every denumerable cardinal sum is

obtained in this way by an appropriate choice of C<^Ta. This concludes the

proof(3).

We may again strengthen our result by including in the language set variables

a, b,..., ranging over finite sets and still retaining decidability (see Corollary 1.9).

As in the case of linearly ordered sets, we get

Corollary 2.5. The weak second-order theory of a unary function is decidable.

This is a strengthened version of Ehrenfeucht's result [4] where he announced the

decidability of the first-order theory of a unary function (Thj (Jff) in our notation).

We again get, both for Theorem 2.4 and Corollary 2.5, that the theories in question

are elementary recursive.

2.3. Subsets of {0, l}m. Let CD={0, l}ffl, and introduce on CD the usual product

topology. As is well known, CD is essentially the same as Cantor's discontinuum

(ternary set).

There is a natural one-to-one correspondence between CD and the set of paths

7T<= T of the binary tree T= T2. Namely, each path tt is simply the set of all (finite)

initials of a unique element <f>: o> -> {0, 1} of CD. Thus, we shall view the paths

77-c: T as elements of CD, and sets of paths as subsets of CD.

We wish to define in S2S subsets of CD. This is not directly possible because the

paths 7r<=F are already sets and, therefore, sets of paths are third-order objects

(sets of subsets of T). An indirect way for defining subsets of CD is to consider a

formula F(B, A) of S2S of the form G(B, A) A Path (B), where 9?2 N Path (B) if and

only if 5<=Fis a path. Such a formula gives a mapping/: P(T) -* P(CD) defined by

f(A)={TT | 7T<=r, SR2 N F(tt, A)}. When A ranges over subsets of T,f{A) ranges over

a class of subsets of CD. Appropriate choices of F will produce interesting classes

{f(A)\A^T}^P(CD).

Theorem 2.6. Let Cl (B, A) be [fis A] A Path (B) and F„(B, A) be Fn (A n B)

A Path (B) (see Lemma 1.8). cl (A) ranges over all closed subsets of CD, and fa(Ä)

ranges over all Fa (countable unions of closed sets) subsets of CD. Here cl andfa are

the mappings corresponding to Cl and F„ in the above explained manner.

Proof. That for every A sT the set cl (A) = {rr | tt<^T, ttçA} is a closed subset of

CD is trivial. Conversely, let S s CD be a closed set. Let A = {JneSTr. We have

cl (A) = S. Note that for this last A, if wd: A, then c (tt n A) < a>.

(3) The interpretation of the second-order theory of unary functions with a countable

domain in S2S, was noted independently by J. J. Le Tourneau in his thesis.
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Let AçT; we have fa(A)={rr | c (n n A)<(ü}=\Jn<(a Sn, where

Sn = {tt I c (tt n A) ú n}.

Each set Sn is closed ; hence, fa(A) g F„.

Conversely, let S£CD be an F„ set. We may assume S=(Jn<(a Sn, where Sn is

closed and 5n£Sn + 1, for n<oj. Let ^4„=Ujtes„ ^i then Sn=cl(An) and ,4„£j4n+1,

for n<(u.

If 77 <£ S, then for every n < to, c (77 n /4„) < to. This enables us to define a sequence

xn(ir), n<(», as follows. x0(-rT) = mmxejl_Aox (i.e., XoOO is the smallest node, with

respect to á, in 77 but not in A0). Inductively, xn+i(TT) = m.mXnill)<xe„-An x. Note that

if n', tt" $ S and xn(7r') g tt", then xn(7r')=xn(7r"); this is proved by induction on n.

Let A={xn(Tr) I tt $ S, n < to}. We claim that/,04) = S. If tt £ 5 then xn(,7r) g 77 n ,1

for « < to, so that c (tt n A) = to and 7r if „(A). Hence, /ff(^4) £ S. Assume tt g S; then

tt£v4„ for some «<to and hence 77 £ >4n+k, k < to. This implies that if xm(w') g 77 for

a tt' <£ S, then 0 á m < n. We claim c (77 n ,4) < n +1 and hence 77 ef„(A), which will

establish S^fa(A). Otherwise, there exist xmo(770),..., xmn(77n), which are pairwise

different and elements of 77. From /«,<«, 0^/gn, it follows that for some 0¿i

<jèn, mi=m¡=m. Now xm(77f) g 77 and xm(77í) g 77. Therefore, they are comparable

and, say, xm(77()<xm(-n¡). Hence, xm(77,) btt¡; but this contradicts xm(77{)^xm(77,).

Theorem 2.7. Leí© = <CD, á> be Cantor''s discontinuum with the usual ordering;

i.e., 77 < 77' if for some z g T, zO g 77 and z\ g 77'. Let L be a language appropriate to ©

which has (besides the individual variables) set variables C1; C2,... ranging over

closed subsets of CD, and set variables Du D2,... ranging over Fa subsets of CD.

Th (S, L) is decidable.

Proof. Let 5 be a sentence of L. Let S be the sentence of S2S obtained from S by

replacing x¡ g x} with B¡=B¡ v 3x[x0 e Bt A xl e B¡], replacing x( g C¡ with Cl(Bt,C¡),

replacing xt g D¡ with F,(5(, Z)3), and replacing all quantifiers 3xt or Vx( by 3B{ or

V5, relativized to Path (B¡). We have that S e Th (©, L) if and only if S e S2S.

Theorem 2.8. Let 93 = <Fff, u, n, Lc> 6e r«e /am'ce 0/ Fa-subsets of CD, vW/A

íAe lattice of all closed subsets of CD as a distinguished sublattice (i.e., x e Lc if and

only if x is a closed subset of CD). Thx (93) is decidable.

This is a trivial consequence of Theorem 2.7.

The above results carry over from CD to the segment [0, 1] with the usual to-

pology and order. For irlf 772 g CD, define an equivalence ~ by tt-^ ~tt2 if and only if

77i=772, or for some xeT, xlO" e.irlt n<t», and x01n g t72, n < to, or vice versa with

77X and 772 interchanged. The quotient space CD/~ is homeomorphic with [0, 1].

Theorem 2.9. Let 7=<[0, 1], á> be the unit interval with the usual ordering, and

let the language L be the same as in Theorem 2.7. Th (/, L) is decidable.

Proof. The relation ~ between paths of Fis definable in S2S. Let S be a sentence

of L and let S be as in the proof of Theorem 2.7. Replace in S all subformulas



16 M. O. RABIN [July

fij = fiy by Bt~Bj (recall that the variables B¡ in S are all relativized to Path (B¡)),

Cl (B^Cj) by 3fij + 1[fi(~fii + 1ACl(fii + 1, C;)], and similarly for Fff(fi, D}). The

resulting sentence S' is true in 9Î2 if and only if S e Th (I, L).

This last result answers in the affirmative Grzegorczyk's question [8] whether the

first-order theory of the lattice of all closed subsets of the real line is decidable.

2.4. Boolean algebras. Denote the class of all boolean algebras by JfB, and the

class of countable boolean algebras by JfBa. Let L, be the language appropriate for

JfB, which has set variables /,/,..., ranging over ideals of the boolean algebras.

Theorem 2.10. Th (iïB, L,), the theory of countable boolean algebras with

quantification over ideals, is decidable.

Proof. Let 93(0 = <fi, u, n,'> be the free boolean algebra on a denumerable

number of generators. By Stone's representation theorm (see [14, Sections 8, 14]),

23 m is isomorphic by a mapping </> : 23ffl -»■ F(CD) with the algebra of all closed-open

(clopen) subsets of CD(4). The ideals /£ 23a, stand on a one-to-one correspondence

with the open subsets of CD by the mapping U(I) — \JbEl <£(£)£ CD. Thus, we have

b 6 /if and only if <¿(¿>)£ U(T). The notions of open subset of CD, closed-open, and

the boolean operations on clopen sets, are all definable in Th ((£, L). Thus the

decidability of Th (93a, L,) follows from Theorem 2.7.

Now, the arbitrary algebra 23 e JT^ is isomorphic with 9ÖJI for an appropriate

ideal /£ 23w, and the ideals J' £ 23 stand in a one-to-one correspondence with the

ideals /, /£/£ 23m. This implies the decidability of Th (¿fBm, L,).

As a corollary we get the following improvement of Tarski's result [15] to the

effect that the first-order theory of boolean algebras is decidable.

Theorem 2.11. The first-order theory of boolean algebras with a sequence of

distinguished ideals is decidable.

Proof. The class, call it JfBI, of structures in question consists of all boolean

algebras 23 = {B, u, n, ', In)n<a, where /„ is an ideal of 23 for n<u>. Let F be a

sentence of the first-order language of JfB, and let the list I0,..., Im include all the

ideal-constants appearing in F It follows from the Skolem-Lowenheim theorem

that F e Thi (JTBI) if and only if V/0 • • • V/mF e Th (Xg, L,).

Theorem 2.11 also implies a result of Ershov [6, Theorem 9] to the effect that the

first-order theory of Boolean algebras with a distinguished maximal ideal, is

decidable.

2.5. Games on {0, 1}". Let ¿)£CD = {0, \}a. With D we associate the Gale-

Stewart [7] game, which is played by two players 1 and 2. Player 1 picks an exe{0,1},

player 2 then picks an e2 e {0, 1}, and so they alternate ad infinitum. If the result

7r=e1e2e3- • • of the play satisfies tt e D, then player 1 won that play; if tt $ D, then

player 2 won the play.

(4) This connection was pointed out to me by D. Scott.
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A strategy is a mapping /: {0, 1}* -*■ {0, 1}. A sequence Tr = exe2- ■ ■ has been

played by player 1 according to the strategy/, if/(A) = £X and e2n+x—f(ex- • -e2n),

l¿n<o). The strategy/is winning for player 1 if every tt played by 1 according to/

satisfies tt e D. The notion of a winning strategy for player 2 is similar.

The set D £ CD is called determinate if one of the two players has a winning

strategy. With the aid of the axiom of choice, it can be shown that not every

D £ CD is determinate. Gale and Stewart [7] have shown that if D is open or closed,

then it is determinate. Wolfe [17] proved that if D e Fa, then it is determinate. The

best result thus far is due to M. Davis who has proved that D e Fo6 implies de-

terminacy.

We shall show that the statement that every D e F„ is determinate, is expressible

in the second-order language of 3?2. Thus, Wolfe's theorem is among those decided

by the decision procedure for S2S.

A strategy /: {0, 1}* -> {0, 1} of the Gale-Stewart game can be viewed as the

characteristic function of a set A^T; namely, A = {x |/(x) = l}. Note that the sets

Ex={x | l(x) = 2n, n<oj}, E2={x \ l(x)=2n + l, n<w}, are definable in S2S by

appropriate formulas Ex(x) and E2(x).

Let W¿A, D), /= 1, 2, be the formula

Vfi[Path (B) A Vx[F,(x) A x e B -> [x e A <-> xl e B]] -> F}(B, D)]

where F} is just Fa, and F2 is ~Fa. SSl2 V Wt(A, D) if and only if \a is a winning

strategy for player i in the game associated with/,(/)).

The sentence of S2S asserting that every set in F„ is determinate reads

VD3A[WX(A, D) V W2(A, D)}.

Chapter III. Automata on infinite trees

The basic definitions and some preliminary results concerning f.a. on infinite

trees were given in §1.4. This chapter will be devoted to the proofs of Theorems 1.5

and 1.6 which were stated in that section. This will involve a number of auxiliary

concepts and results.

3.1. Sequential automata. We shall briefly recall some notions and results

concerning automata on infinite sequences.

Let 2 be a finite set; Sa is the set of all tu-sequences on S.

A (sequential) S-table is a system 2I' = <5, M> where 5 is a finite set and M:

S x S -> P(S). If c (M(s, a)) = 1 for all s e S, a e S, then 21' is called deterministic.

An 2i'-run on v eS8 is a mapping r: a>^ S such that r(n+1) e M(r(n), v(n)),

n<ca.

A (nondeterministic) finite automaton (see [13]) is a system 2Í = <S, M, S0, F>,

where (S, M> is as above, S0^S, F£5. Following Biichi [1], we say that 21

accepts v e S™ if for some 2i-run r on v, r(0) e S0 and In (r) n F=£ 0. The set of all

veZ® which are accepted by 21 is denoted by Fffl(2í). A set AçXa is called f.a.

definable (in Biichi's sense), if for some f.a. 2t, A = FW(2Í).
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D. Muller [11] formulated a different notion of acceptance of a sequence by an

automaton. Let 9t = <S, M, s0, F>, where <5, M} is a deterministic table, s0 g S,

and F^P(S). Following Muller, we say that 91 accepts ve'L'0 if for the (unique)

9t-run r on v which satisfies r(0) = s0, In (r) g F holds. Again, we denote by 7^(91)

the set of all v g E<° accepted by the (Müller) automaton 91.

McNaughton [10] proved the following fundamental result. Every set AçfLa

fa. definable in Biichi's sense is fa. definable in Muller's sense, and vice versa.

We may further generalize the notion of automaton by combining the ap-

proaches of Biichi and Müller. Thus in Muller's definition, allow <S, M> to be

nondeterministic and say that 91 accepts v eS" if for some 9I-run r on v, r(0)=sQ

and In (r) g F. Again we do not obtain any new definable sets. This can be seen, for

example, by showing that every generalized Müller automaton is equivalent with

an appropriate Biichi automaton.

The class of f.a. definable sets A^L03 is a boolean algebra (Biichi [1]).

3.2. Generalization of acceptance by automata. Let (r, T) be an 5-tree

(r: F-> S), and 77<=F be a path. With r|77 we associate an to-sequence (r\ir)a of

elements of S as follows. Let 77={xn | n<to} where x0<x1< • • •. Define (r|77)ra(«)

=r(xn). This makes (r\Tr)a a mapping from the set to into S; i.e., (r\Tr)m g Sa.

The definition (1.5) of the notion of an automaton 9Í accepting a tree t=(v, Tx)

involves the condition In(r|77)GF, i.e., In((r|7r)ffl)GF This condition on the

to-sequence (r|77)M g S°> is recognizable by a sequential 5-automaton. The following

theorem states that using any (sequential) automaton-definable condition on the

sequences (r\Tr)a, we still get just f.a. definable sets of S-trees.

Theorem 3.1. Let%=(S, M} be a table over S, and B<^Sabe a f.a. definable set

of w-sequences on S. Define C£ Vz to be the set ofL-trees t=(v, Tx) such that for

some run r e Rn (91, t), and every path tt<^Tx, we have (r\Tr)m e B. The set C is f.a.

definable.

Proof. Let 93 = < U, K, u0, H) be a (sequential) deterministic automaton over S

such that T(Ù(ÏÏ)=B. Note that H^P(U). Define a S-automaton (£=<[/xS,M,

{u0} x S, F> as follows.

For (u, s) g Ux S, a g S, define

M((u, s), a) = {((K(u, s), ii), (K(u, s), j2)> | fe, s2) g M(s, a)}.

Let px : (x, y) h->- x, p2 : (x, y) M* y be the projection functions. For every run r of

(UxS, My on a S-tree t=(v, T), p2r: F->- S is an 9l-run on t, and every 9l-run

is obtained in this way. Also, along any path tt<=T, (j^r^a, is a 93-run on the

sequence (p2r\TT)a.

Define now F= {A | A £ U x S, p¿A) g H}. We have 7/(G) = C.

Note that in the previous proof, we assumed that 5£5ffl is defined by a de-

terministic (Müller) automaton. In applying Theorem 3.1, we shall usually prove

the f.a. definability of the B^Sa in question by exhibiting a nondeterministic 93
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such that fi=Fw(23) (in the generalized Müller sense). McNaughton's theorem (see

§3.1) assures us of the equivalence of the two notions of f.a. definability.

3.3. Marked S-trees.

Definition 3.1. Let Q be a finite set, H^Txx Q, and (v, Tx) = t be aS-tree. The

tree t marked at H, is the SxF(g)-tree i=(v, Tx) such that for yeT„ v(y) =

(v(y),{q\(y,q)eH)).

Let Q be a finite set and let CQ, for q e Q, be a f.a. definable set of S x F(0-trees.

In the sequel we shall consider sets A of S-trees (v, T) satisfying an iterative

condition which is, roughly, as follows, (v, T) e A if and only if there exist a.q0e Q

and a set ifJi,uÇ(r-{A})xô so that the tree (v, T) marked at HA-qo is in C,0.

Furthermore, for every (x, q) e HA,qo, there exists a set Hx-"s(Tx —{x}) x Q so that

(v, Tx) marked at Hx,q is in Cq. And so on. We shall need the fact that such an

A £ Vs is f.a. definable. This situation is made precise in the following

Lemma 3.2. Let Q be a finite set, q0 e Q, and let 2i„ q e Q, be a 2 x P(Q)-auto-

maton. Define an invariant (see §1.4) set A^V^by the condition: (v, T)e A if and

only if there exist a set // £ F x Q and a mapping (x, q) h> Hx- ", (x, q) e H, such that

(1) (A, q0) e H; (2) Hx-q £ (Tx - {x}) x Q, and Hx-qzH; (3) for (x, q) e H, the tree

(v, Tx) marked at Hx,q is accepted by 2Í„.

The set is f.a. definable.

The proof of this lemma will be given in §3.6.

3.4. Well-founded mappings. We shall also require a version of Lemma 3.2 with

the additional assumption on (x, q) h» Hx,q that it is well-founded.

Definition 3.2. Let H+ 0 be a set and let x i-> Hx, x e H, Hx£ H, be a mapping.

We shall say that this mapping is well-founded if every sequence xx, x2,... e H

such that xfc + 1 e Hxk, k= 1, 2,..., is finite.

Lemma 3.3. The mapping xi->- Hx, xe H, HXl^H, is well-founded if and only if

there exists a decomposition H= U«<« H« (ß & on ordinal) such that a<ß implies

HaC\ He= 0, and for every x e Ha, <x<n, Hxç IJA <ttH\-

Proof. That from the existence of such a decomposition follows the well-

foundedness of x i-> Hx is clear.

Assume now that the mapping is well-founded. Define H0={x \ x e H, Hx= 0}.

Note that H0 =¿ 0. Define by transfinite induction

Ha = Sx\xeH,xi U HX,H*<=   U HA.

The sets Ha are mutually disjoint. Let n be the smallest ordinal such that Hu=0.

Assume that D = H— \Ja<llHa^0. For every xe D there exists ayeH" such that

ye D. This entails the existence of an cu-sequence (xk)k<01 such that xfc+1 eHx*,

k < w, a contradiction.

Lemma 3.4. With the same notations as in Lemma 3.2, define an invariant subset

WÇ V-z by the condition: (v, T)eW if and only if there exist a set JÏ£Fx Q and
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a mapping (x, q) \~> Hxq, (x, q) g H, such that conditions 1-3 of Lemma 3.2 hold, and

in addition : (4) the mapping (x, q) h* HX,Q is well-founded. The set W is f.a. definable.

The proof of this lemma will be given in §3.7.

3.5. Simultaneous runs. Trying to recognize whether a S-tree t=(v, T) is in the

set A of Lemma 3.2, we may proceed as follows. For each q e Q we construct a

2-automaton 93, which can move on a S-tree t=(v, T) and accept it only if for some

HA-qç(T-{A})x Q, the tree t marked at HA-q is accepted by 9Í,. The construction

of 93, is essentially the one used in the proof of Theorem 1.4. Intuitively speaking,

what 93, does is to "guess" at each xeT how v(x) can be supplemented by a

Ô'gF(0 so that on the pair (v(x), Q')eT,xP(Q), 91, will make the "correct"

transition. Now, if at x g T the set Q' was used, and q' g Q', then the tree (v, Tx)

should be accepted by 93,- ; to check this, we must run a copy of 93,- on (v, Tx). In

this way, more and more copies of the automata 93„ q g Q are activated, and this

process cannot be directly described by a finite automaton.

The crucial observation is that for any y e T, even though many copies of a 93,

may have been activated at various x< y, at y the number of different states of 93,

which appear is still bounded by the cardinality of the set of all states of 93,. Thus,

all the copies of 93, reaching y in the same state s can be replaced by just one of

these copies. In this way, we have, at any node y, just a bounded number of copies

of each 93,, and this can be described by a finite S-table. In addition to having

copies of 93, move on (v, T), we will also need to record which copies merged when

reaching the same state. The above considerations motivate the following formal

definition of a 2-table 93.

In order to simplify notations, we shall formulate Definition 3.3 and prove

Lemmas 3.2 and 3.4 for the case c(g)=l. The treatment of the general case,

however, will be essentially the same.

Let Q = {q} and let 9t, = 9i = <5', M, s0, F> be a Ex{0, {?}}-automaton. Assume

c(S)=n, and denote [n + l] = {l,..., n + l}.

Definition 3.3. For 91 as above, define the S-table 93 = <S*, A/s> as follows:

Set U={u:E->S\ u is 1-1, F£[n + 1]}; D={d=(d1, d2, d3) \ ¿sfc+.l]; dxi 0

implies d2 = {m} £ [n +1 ] ; dx = 0 implies d2 = 0 ; d3 : E -> F£ [n +1 ]}. Define now

S8 and Ms by SS8 = {(«, d) | u g U, deD, d^D (u), d2=¿ 0 implies d2$D (u),

R (d3) = D (u)}, where R (<f>) and D (<f>) denote the range and domain of </> ;

((«', d'), («", d")) g M*((u, d), c)

if and only if D (d3) = D (d3) = D (u) u d2 and

(u'(d3(m)), u"(d3(m))) e M(s0, (a, 0 )), for m e d2,

g M(u(m), (a, {q})), for m e d±,

g M(u(m), (a, 0)),    for m g D (u) — d-¡..

For later use, we also introduce an initial state sf e Ss defined by

J? = ({<!, *>>},(0,0,{<1, !>}))•
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The interpretation is that if (u, d) e S93, D («)={»!!,..., mk), and d=(dx, d2, d3),

then the "copies" mu ..., mk, of 91 are active and in the states u(m¡),..., u(mk);

the copies m' g dy £ D (u) behave as if they see (a, {q}) ; the new copy me d2 is

activated in the state s0; and, finally, the copies mu ..., mk, are the replacements, by

the mapping d3, of the copies raeD (d3) of 91 active at the predecessor node.

Definition 3.4. Let r e Rn (93, (v, T)) and r(A)=s0B. Denote r(x) = (ux, dx),

dx=(dx, d2, d3). We shall say that m e [n+1] is active at x e T if m e D (ux) u d2.

Also, m g [n +1 ] is activated at x g T if m = 1 and x = A, or m e d2.

Let m be active at x and let y = xO or y=xl. We say that mat x is replaced by mY

at y ((m, x) -> (mu y)) if m1 = dt(m). The notion of replacement is extended by

passing to the transitive closure. Thus, assume x<y, x=x0, xí + 1 = Xí£í, £¡g{0, 1},

O^i^k-l, and y = xk. We shall say that m at x is replaced by m' at y ((m, x)

-> (m',y)), if for a sequence mte [n+1], O^iék, m0 = m, mk=m', and (m¡, x¡)

->(mí+i,x,+i), 0¿iáfc-l.

Lemma 3.5. Leí r g Rn (93, (y, T)), (v, T) e Vs, and r(A)=Sg. Denote again r(x)

by (ux, dx). Define H=({A} u {x | dx^ 0}) x {q}.

For (x, q) e H, let m be activated at x ; define

Fo/- (x, q)e H and m as above, define rxq: Tx-^- S by rx¡q(x) = s0; rxq(y) = uy(m'),

if x<yeTx and (m, x) -> (m', y).

For (x, q) e H, rx¡q is an %-run on the tree (v, Tx) marked at Hx,q.

The proof is clear from the definitions.

3.6. Proof of Lemma 3.2. We still restrict ourselves to the case Q={q}, and

retain the notations of §3.5. Let A £ Vs be as in Lemma 3.2. We claim that (v, T)eA

if and only if there exists a 93-run r: F-> S8 on (v, T) with r(A)=s0B, such that for

every path »7^7;, and every XG77, at which some me[n+l] is activated,

In (rxjTT) g F.

Assume the existence of such an r. Define H, and a mapping (x, q)\-> Hxq,

(x,q)eH, as in Lemma 3.5. Now rxq:Tx->S is an 9I-run on the tree (v,Tx)

marked at Hx'q. Our condition implies that this tree is accepted by 91. Thus, 1-3 of

Lemma 3.2 hold and (v, T)e A.

Assume (v, T)e A and let H and (x, q)h+ Hx'q satisfy 1-3 of Lemma 3.2. Thus

for every (x, q) e H there exists an 9t-run rx on the tree (v, Tx) marked at Hx-q with

rx(x)=s0, such that for every path x g tt^T, In (rx\tr) e F.

We shall define a 93-run r-.T-^S® and show that it satisfies the above condition.

The run r will have some additional properties. If m e D (ux) u d2, y=xO or y=xl,

and m e D (uy), then dl(m) = m will hold. Thus we shall have a well-defined function

Px: D (ux) u d2 -+ {y \ y ¿ x}, such that px(m)=y if m was last activated at y. In

particular, if m e d2, then px(m) = x. We shall use this function in the sequel,

writing p(x, m) instead of px(m).
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Also, if m e D (ux), then (p(x, m), q) e H, ux(m) = rolxM(x) ; and medx only if

(x, q) e Hp(-x-m)-q. Thus, if the copy m of 21 was activated at y, then (y, q) e H, and m

goes through the run ry until replaced.

The values r(x) will be defined by induction on l(x). Set r(A)=sf ; thus />(A, 1) = A

(recall that 1 is activated at A). Assume that r:{x\ l(x)¿n} -> 5s is defined, is the

restriction of a 23-run, and has the special properties mentioned above. For x with

l(x)=n, we shall define r(xO); the definition of r(xl) is completely analogous. For

ffieD (ux) U d2, where l(x)=n, denote rp(xm)(xO) by s(m).

The idea is that in going from x to xO, all the m'eD (ux) u d2 for which s(m')=s

are replaced by that m for which s(m)=s and p(x, m) is minimal. This leads to the

following formal definitions.

Put D (ux0)={m | m e D (ux) u d2, p(x, m)^p(x, m') for all m' such that s(m)

=s(m')}; ux0(m)=s(m), for m e D (ux0). Note that ux0 is 1-1. dx0 = {m \meD (ux0),

(xO, q) eHfilx-m)-q}. If dxV 0, then set rff = {w} for some rae[n+l]-D (ux0)(this

set is nonempty) ; otherwise, put d2 ° = 0. Define dx0(m') = m for m' e D (m*) u í/£,

meD (m*°), s(m') = s(m).

It is readily checked that these definitions extend r to a mapping

r:{x\l(x) g «+1}->SSB

which has the same properties as the original mapping.

The above inductive definition yields a well-defined function r: T->Sm. It is

easily verified that r is a 23-run on (v, T). Now, using the notion of replacement

(Definition 3.4), (m, x) -> (m', y) and m#/n' imply that p(y,m')<p(x,m). This

implies that along every path tt, for every x e tt and m which is activated at x, there

exists a y > x and a m' such that (m, x) —>- (w', y) and, along that path tt, m! at

p(y, m') = w is always replaced by itself; i.e., for w<ze-n, (rrí, w) ->- (m', z).

Hence, for z ^y, z e tt, rx¡q(z) = rwq(z) (see Lemma 3.5). But In (rWtq\Tr) = In (rw\Tr) e F

which proves our assertion.

The proof that A is f.a. definable will be completed by showing that the property

ofthe paths wcFthat for every x E7randw e [n +1] activated at x, In ((rXiq\ir)) e F,

is recognizable by a (sequential) automaton, and appealing to Theorem 3.1.

Let i)c(S»)ffl be the set of all sequences 8 = ((uk, dk))k<a such that (u°, d°)=sf

and D (é/£+1) = D (uk) u d2. Note that for every 23-run r on any t e Vx, and every

path tt, (r\v)a e D; thus, it suffices to restrict ourselves to sequences in D. The set D

is obviously f.a. definable.

The notions of m e [n +1 ] being activated at k, 0^k<œ, and of m at k being

replaced by m' at k' > k ((m, k) -+ (m', k')), are defined for sequences S e D in the

same way as the corresponding notions were defined for runs r e Rn (23, t)

(Definition 3.4). Similarly, we have for k<w and m e [«+1] activated at k, the

sequence 8k¡q e S™ of states of 2Í.

What we must show is that the set fic(5»)m; B={S \ 8 e D,for every k<wand

m activated at k, In (8k „) e F}, is f.a. definable. This will be done by constructing a
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nondeterministic (sequential) automaton (£ = <Se, Me, Sf, FG> such that D n Ta((S.)

= D—B. (We do not care about what © accepts outside of D.) Define 5,<£={e} u

([« + I]x5), where e is a "new" element, and S is the set of states of 21. Put

M\e, (u, d))={e, (m, s0)} for m e d2, (u, d) e S*. Define

MH(m, s), (u, d)) = e if m ¿ D (da),

= (d3(m)), u(d3(m)),   for m e D (i/3).

Finally, define S?={e, (l,i„)}, and Fe={^ | /fc[B+l]xS,ft(fO eP(S)-

(Fu {0})}. We have D n TJ^) = D-B and this proves that B is f.a. definable.

3.7. Proof of Lemma 3.4. We use again the automaton 23 (Definition 3.3) and the

concepts and notations of Definition 3.4, Lemma 3.5, and §3.6. Note that we again

assume Q = {q).

Let rV<^ V% be as in Lemma 3.4. We claim that (v, T) e W if and only if there

exists an r e Rn (23, (v, T)) with r(A) = sf, so that for every path tt^T: (i) for every

XE77 and me[n + l] activated at x, In (rx¡q\Tr) e F; and (ii) every sequence

(xk,mk,mk), /c =1,2,..., such that xkeir, mk is activated at xk, mk + x edxx+i,

and (mk, xk) -*■ (mk+x, xk + x), is finite.

Assume the existence of such a run r. Define the set H^Tx{q}, the mapping

(x, q) i-> Hx-q and the 2l-runs rx¡q : Tx -> S, (x, q) e H, corresponding to this run r

as in Lemma 3.5 and the proof of Lemma 3.2. By the proof of Lemma 3.2, con-

dition (i) on r implies that H and (x, q) i-> Hxq satisfy conditions 1-3 of Lemma 3.2.

Assume now that (xk)k<0) is a sequence such that (xk+x, q) e Hx^q, k<w. This

relationship implies xfc<xfc+1, k<co. Therefore, there exists a unique path tt-cJ

such that xk e tt, k < w. Let mk e [n +1 ] be activated at xk, and mk + x e [n +1 ] be such

that (mk, xfc)->(mfc+1, xk + x). Now (xk + x,q)e Hx^q. This implies, by our defi-

nitions, that mk + xe dxk+i. Thus the sequence (xk,mk,mk)k<01 satisfies the con-

ditions of (ii), but is infinite, a contradiction. Hence (x, q)*-> Hx,q is well-founded

and thus (v, T) e W.

To prove the asserted implication in the other direction, assume the existence of

HzTx{q}, and a mapping (x,q)i-> Hxq, (x,q)eH, satisfying conditions 1-4

of Lemma 3.4. Let rx: TX->S, for (x,q)eH, be an 2t-run on the tree (v, Tx)

marked at Hx,q such that rx(x) = sQ and for every path tt<^Tx, In (rx\rr) e F.

Since (x, q) t-> Hxq is well-founded, H can be decomposed as in Lemma 3.3.

Define a mapping Od : H -+{a \ <*</x} by Od (x, ¿¡r) = a if and only if(x, q)e Ha. We

have that (y, q) e Hxq implies Od (y, q) < Od (x, q).

As in the proof of Lemma 3.2, define by induction on l(x) x e T, a 23-run r : T^S®,

and a function px: D (ux) u d2-*T. The only difference will be in the definition of

D (ux0) ; here we define it as follows :

D (ux0) = {m | m e D (ux) u d2 ; for all m' such that s(m)=s(m') either

Od (p(x, m), q) < Od (p(x, m'), q), or Od (p(x, m), q) = Od (p(x, m'), q) and p(x, m)

<p(x,m')}.



24 M. O. RABIN [July

The idea behind this definition is that in going from x to xO, we replace all the

m' e D (ux) u d2 such that s(m')=s by the m with s(m)=s for which p(x, m) is

minimal with respect to the lexicographic ordering : (Od (y, q), y) < (Od (z, q), z)

if Od (y, q) < Od (z, q), or Od (y, q) = Od (z, q) and y < z. Note that for a fixed path

77, this is a well-ordering of {(y, q) \ y e tt, (y, q) e H).

lï(m, x) -> (m', y) and m + m!, then (Od (p(y, m'), q), p(y, m')) < (Od (p(x, m), q),

p(x, m)). This entails, in exactly the same manner as in the proof of Lemma 3.2,

that for every path 77c t, In (rx¡q\Tr) g F. Thus (i) holds for r.

To show that r satisfies condition (ii), let (xk, mk, mk), k= 1, 2,..., be a sequence

such that mk+1e df^+i, mk is activated at xk, and (mk, xk) -> (mk + 1, xfc+1). The last

two conditions imply Od (xk, q) = Od (p(xk, mk), q) ^ Od (p(xk+i,mk+1),q). Denote

p(xk + 1, mk+1) by y. From the definition of r it follows that mk+1e c?f*+i implies

(xk+1,q)e Hy,q. Thus, Od(y,q)>Od(xk+1,q). Combining with previous re-

lations, we have Od (xk, q) > Od (xk+u q) ; this forces the sequence to be finite and

establishes (ii).

To complete the proof that W is f.a. definable, we must again show that the

properties (i) and (ii) of a sequence r|77 are recognizable by a (sequential) automaton.

Again we consider 5 = (r|77)m and restrict ourselves to 8 e D (see end of §3.6). For

property (i) this has already been done in the proof of Lemma 3.2. Since the class of

definable subsets of (S®)"' is closed with respect to intersections, it suffices to show

that the set B^D of all sequences S with property (ii) is f.a. definable.

It is again easier to show that the complement of the set of sequences with pro-

perty (ii) is f.a. definable. Let C£D be the set of all sequences 8 = ((uk, dk))k<i0,

Se D, such that there exist an increasing to-sequence (A:t)1 <t) of integers and

sequences (mi)i<01, (ml)i<a, such that m( is activated at k{, (m¡, kt) -> (mi+1, ki+1)

and wi + 1 Gt/fi+i for i<to. We shall show that C is f.a. definable.

Construct an S^-automaton <£ = <Stt, Me,g, Fe> as follows. Define Sii={g}

u ([n + 1] x{e,f}), where g, e, f are any new elements. M\g, (u, d)) = {g}

u {(m, e)\ me d2}, (u, d) e Sm. Let s=(m, e) or s=(m,f), m e [n +1], define

M*(s,(u,d)) = g ifmtD(d3),

= {(d3(m), e)} if d3(m) £ dlt

= {(d3(m), e), («',/)}   if d3(m) e dlt {m'} = d2.

Set FE={G | G£5(i, G n ([«+l]x{/})^ 0}. It is readily seen that Ta(<$.) n D

= C=D—B. This implies that B is f.a. definable.

3.8. Dual acceptance by automata. In order to analyze the structure of the

complement Fs—F(9l) of a f.a. definable set, we need certain auxiliary concepts.

Definition 3.5. Let Ü = ((L(, Ui))lû(Sk be a sequence of pairs of sets. For a

mapping <f>: i^-5we shall say that <f> is of type Q. (notation: <j> e [Q.]) if for some i,

1 ¿i^k, In (<f>) r\ U=£ 0 and In (<f) n L¡= 0. Furthermore, we shall say that <f> is

of type H-empty (<f> e [Í2, e]), if <f> e [Q] and for some/ 1 ¿jék, <f>(A) r\Lj=0.
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The following concept is, in a sense, dual to the notion of the set defined by an

automaton. It will turn out, in fact, that every complement of a f.a. definable set

can be described in this way.

Definition 3.6. Let 2t=<5', M> be a2-table, seS, and let Q. be as above. We

shall say that 2C, with Q and s, (dually) accepts (v, Tx) (notation : (v, Tx) e D (21, Q, s))

if for every r e Rn (21, (v, Tx)) satisfying r(x)=s, there exists a path tt^Tx such that

r\TT e [Q], Using formal notation:

(v, Tx) e D (2t, Q., s) = Vr37r[r e Rn (21, (v, Tx)) A r(x) = s -> r \ tt e [£!]].

Notice that the prefix Vr37r in the above definition is dual to the prefix 3rW

in the definition of acceptance by an automaton (Definition 1.5).

Lemma 3.6. For every "L-automaton 21 = <S, M,sQ,F) there exists a IL-table

23 = <5S, A/33), a sequence Q of pairs of sets, and an element sf e S® such that

(v, T) £ rs-F(2l) if and only if(v, T) e D (93, Q, sf).

Proof. We have (v, T) e Fs-F(2l) if and only if

(3.1) Vr37r[r e Rn (21, (v, T)) A r(A) = s0 -> In (r|^) eP(S)-F].

Arrange P(S)-F-{0} in a sequence (Sx, S2,..., Sk). Set  ô=Xiais*^(Si),

and S® = Q x S. The table M» is defined by

((#1, íi)> (<l2, s2)) e M*((q, s), a),       (q, s)eQxS,

if and only if (sx, s2) e M(s, a) and, for 1 ̂  /Ú k, j= 1, 2,

1Á0 = ?(0 u {JK  if s e si> í(0 ^ s*,
= f(i), ifj#SJ,?(0#5„
= 0, if i(0 = S1,.

Finally, set i® = (io» ¿o) where tf0(0 = 0 f°r 1 íí*á&-

Let r 6 Rn (23, (v, T)). The mapping p2r:T^-S is an 2t-run on (v, T) with

p2r(A)=s0, and every 2X-run is obtained in this way.

Define now, for lfíiúk, Lt = {(q,s) \qe Q,se S-St} Ut = {(q,s) | q e Q, s e S,

f(0-$}; let Û-((I* ^))iít<fc.
Let r e Rn (93, (u, F)), and let ttc: F be a path. For a fixed /', l^iúk,ln (p2r\rr) =

Si, if and only if In (r|w) n i/,# 0 and In (r|77) n F,= 0 ; i.e., In (p2r\Tr) $ F if and

only if r|7r e Q. Thus (3.1) holds if and only if (v, T)eD (93, Q, s?).

Lemma 3.7. Let 2I = <5, M> 6e a Z-table, s e S, and Ü = ((JL„ £/,))iáisk- Fei /l èe

rAc set of all 2=2 x P(S)-trees t such that t=(v, Tx) e A if and only if

(3 2)       ^[reRnCñ,px(t)) Ar(x) = s

^37r[r|7T6[£2]] V 3y[yeTx A 0(y) = (a,q) A r(y)eq}].

There exist a Ii-table 93 = (S95, M8>, a irate JoeS33, a«<f a sequence Q =

((L|, i/())iätSA: ímcA rAar ̂ 4 = D (93, Q, í0). Afore that here the length of Q equals

that of Q..
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Proof. Let u$S. Set 5SB = 5u{w}; s0 = s. Define M*(u, 5)={(w, u)} for ieS.

For í g S, a e S, 9 e P(S), define

Af s(i, (a, q)) = M(s, a),   for s$q,

= {(«, «)},    for í g 9.

We see that for a 93-run r on a S-tree (0, 7/*), either there exists ay eTx such that

v(y) = (a,q) and /■(>>) Gt¡r, in which case r(z) = u for all z>y, or r is also an 9I-run

on the S-tree p^v, Tx)).

Let U^UiUiu}, Li=Li, lúiSk, C74 = i7(, 2£i£k, Ü = ((Li,Üi))i¿iék. With

these definitions, A = D (93, D., sQ).

Lemma 3.8. With the same assumptions and notations as in Lemma 3.7, let B be

the set ofZ-trees such that i=(v, Tx) e B if and only if

Vr[r g Rn (91, p^i)) A r(x) = s

-* 3t7[t7 c Tx A r\ir g [Q, e]] v 3y[y e Tx A v(y) = (a, q) A r(y) e q]].

There exists a table 93 = (S®, M">, a state s0 e 5®, and a sequence

n »«i,, üi)), ilik,

such thatLk= 0 andB = D (93, Ü, s0). Again the length ofD. equals that ofQ..

Proof. Set [/] = {1,..., /}, Oéiâk. Define 3> by <D = {<¿ | <f>: [i] -> [k], </> is 1-1,

Oèièk}. Note that <1> contains the function <f>: 0 ->[k]; i.e., 0 g í>. Define

S® = (0 x 5) u {u}, and j0 = (0, s).

We. shall define A/8 so that 93-runs will have the following features. If r8 is a

93-run on i=(v, T) and r®(x) ̂  w for all xeT, then r =^2rs is an 9I-run on px(t). For

r®(x) = (<f>, s), where <£: [1] -*■ [k], L,¡,m,.. .,Lm), will be, in order of appearance

along {y\y^x}, the L¡ for which L¡ n r({y \y^x})=£ 0. The state « will appear

if and only if for some yeT, v(y) = (a, q) and r(y) e q. This motivates the following

formal definitions.

Let (cf>,s)eSB, where <f>:[i]^[k]; à = (a,q)e'LxP(S). Define M*((<p, s), 5)

= {(u,u)} if seq; also, A/^w, d) = {(w, w)}. In all other cases, let b = {j\ seL;),

denote b — R (<t>) = {ju . . .,/„} where/</< • ■ • <jn, and define <£: [i+n] -»■ [fc] by

$ I ['] = <£> <j>(i+m)=jm, lernen (if ¿>-R (£) = 0 then ^=<£). With these notations,

define M*((<p, s), d) = {((^Sl), (f, s2)) | fe, s2) e M(s, a)}.

For l¿i<k define [/j={(^j)¡ieD(^)^[4^(i)=Í implies seU,}; L{ =

{(<j>, s) I 1 g D (</V)^ [&], <f>(i)=j implies s e L,}. Finally, define Uk = {u} u {(<£, s) \for

some i, lfii^k,ii£R (<f>) and s e Ut} ; Lk = 0. Set Q. = ((Lu C/¡))i s t ¿ u- It can now be

verified that 5=D (93, Q, ¿0).

3.9. Results concerning D (91, Q., s). To prove that the class of f.a. definable sets

is closed under complementation, it suffices, by Lemma 3.6, to show that sets of the

form D (9t, Q, s0) are f.a. definable. The proof will be accomplished by induction

on the length 1(0.) of O. Assume that the statement has been established for all sets
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D (2f, Ü', s) where 21' is a table over any alphabet 2' and l(Q.')=k-l. We shall

prove that for every 2-table 21, every s0 e 5s1, and every sequence Q = ((Lt, Ui))x éiék,

the set D (21, Q, s0) is f.a. definable. The induction from k — 1 to k will actually

proceed in two "half-steps" (§3.11).

This plan calls for an analysis of (v, T)eD (2t, Í2, s0) by dual acceptance in-

volving shorter sequences Q,'.

Lemma 3.9. Let 2Í = <S,M>, £}=((!,, Ut))lsiák, and f^.i-(ÇE» U())Xéi¿k.x.

If t = (v,T)eD(W,Q,s0), then there exists a set H0^(T-{A})xUk such that

(1) (x, s) e H0 implies (v, Tx) e D (2t, Q, s); (2) for every %-run r on t satisfying

r(A) = s0, if r\n <£ [Qk-X] for every path ttct, then there exists a (x, s) e H0 with

r(x) = s.

Proof. Define

(3.3) H0 = {(x,s)\xe T- {A}, s e Uk, (v, Tx) e D (21, Q, s)}.

Condition 1 holds for this H0. Assume now that r is an 2t-run on (v, T) with r(A)

=s0, such that r\ir $ [üfc_i] for every path tt^T, and r(x)^s for every (x, s) e H0.

Let n = {tt I tt^T, r(TT-{A}) n [/fc=¡¿ 0}. Define a mapping tty^- x(tt), tte n, by

x(TT) = mm{y\ A^ye-rr, r(y)eUk}. If tt, tt' e U, then either Tx(n)=TxW) or

Txw n TxW)=0.

Note that the set D = T—\J^nTxW contains no y^A with r(y)e Uk. Con-

sequently, for every path tt<^D, r\w $ [Q,].

Since (x(tt), r(x(Tr))) $ H0 for tt e Yl, there exists a run rn: TxM -> S with rn(x(Ti))

= r(x(Tr)) so that for every path tt'<=TxM, r^' $ [£2]. Define an 2t-run r': F->- Sby

r'(y) = r(y),     if^Ur**,
Ben

= r„(y),   if j e TxM for some ne II.

We have r'(A)=r(A)=s0. Let tt'<=T be a path. Either tt'^D which implies r\Tr'

—r'\w', and hence r'\n $ [Q.]; or for some n e U we have that tt'—TxM is finite and

hence again r'|ir' <£ [Q]. Thus (v, T) i D (21, £2, s0), a contradiction. This establishes

condition 2 for ii0-

Remark. The above lemma, and its proof, remain valid for k = 1. In this case

Clk-X is empty and we stipulate that r|w^ [ßk_i] always holds. The same remark

applies to the following

Lemma 3.10. Let 2t = <5, M) be a Z-table; Cí=((L¡, Ut))lstsH with Lk= 0 ;

&k-i — {{Li, Ui))x ¿ i á k _ i ; and s0e S. A Z-tree (v, T) is in D (21, £), s0) if and only if

there exist a set H£(F- {A}) x Uk u {(A, s0)} and a mapping (x, s) k>- Hx,s, (x, s)eH

such that (1) (A, s0) e H; (2) for (x, s) e H, Hx-ss((Tx-{x}) x Uk) n H; (3) for

(x, s) e H,

Vr[r e Rn (21, (v, Tx)) A r(x) = s -> 3tt[tt <= tx A r\ir e [Ofc_!]]

V 3y[x ¿yeTxA(y, r(y)) e IP-]].
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Proof. Assume existence of H and (x, s) k» Hx,s satisfying 1-3. Let r be an

91-run on (v, T) with r(A)=s0. We must prove the existence of a path 77c T with

r\ir e [Q,]. If for some 77<=7; r\ir e [Q.k_i] then we are done. Otherwise, for every

subtree (v, Tx) and every tt<=Tx, (r\Tx) \ Tr = r\TT$ [Í^.J. By 1-3 there exists a

x0 > A such that (x0, r(x0)) e H and, hence, r(x0) e Uk. By 2-3 there exists an Xj > x0

such that (x1} r(xx)) e H and again r(xx) e Uk. Continuing in this way, we get an to

sequence (x()i < a such that Xt<xi + 1, r(xt) e Uk,i<m. For the unique path 77 c 7/ such

that x¡ g 77, i<<D, we have In (r\n) n Uk^0 and In (r|77) n Lfc = In (r\Tr) n 0 = 0;

thus r|ir g [£2].

To prove the other direction, assume (v, T) e D (9Í, Q., s0). Define H={(A, s0)}

u H0, where H0 is as in (3.3); thus, (A, î0) g H. Applying Lemma 3.9 to each tree

(v, Tx) and se S such that (x, s) e H, we obtain the existence of a set HX,S^H such

that 2-3 hold. The mapping (x, s) i-> Hx,s is the desired one.

Remark. For the case k = \, Lemma 3.10 reads: Let 91=(S, M'y, s0eS, and

U<=S. A S-tree t = (v, T) satisfies

Vr[r e Rn (91, t) A r(A) = s0-> 3tt[Iïi (r\n) n U * 0 ]]

if and only if there exist a set H and a mapping (x, j) i-> Hx,s satisfying 1-2 of

Lemma 3.10 and: (3') for (x, s) e H,

Vr[r g Rn (91, (v, Tx)) A r(x) = s-+3y[x ¿ y eTx A (y, r(y)) e Hx*]\.

Lemma 3.11. Lei 9i = <5, A/> be a 2,-table, D = ((L¡, Ui))1Si¿k, and s0eS.

(v, T)eD (91, Ü, i0) if and only if there exist a set H^Tx S and a mapping (x, s)

h-> Hx's, (x, s) g H, such that

(1) (A, s0) g H;

(2) Hx-S £ (Tx - {x}) x S and Hx-S £ H ;

(3) if (x, s) e H then

Vr[r g Rn (9t, (v, Tx)) A r(x) = s -*• 3t7[t7 c Tx a r\ir e [Q, e]]

V 3y[x ïyeTx A (y, r(y)) e#*•»]];

(4) i/ze mapping (x, s) h-> /i*,s is well-founded.

Proof. Assume that í = (¡;, F) satisfies the conditions concerning the existence of

H and (x, s) i-> /P,s. Let r: F-> S be an 9i-run with r(A)=s0- We must prove that

for some path 77c F, r¡77- g [Í2]. If for some path 77<=Fwe have r|77 g [Q, e], then we

are finished. Otherwise, by conditions 1 and 3, there exists a (xu sj e HA,so such

that r(xi)=si. If for some path ttcTXi we have r\ire[Q.,é\, then again we are

finished. Otherwise, since (x1; jj) g H, there exists a (x2, s2) g Hxi-sí with r(x2)=í2;

and so on. Since the mapping (x, s) i-* Ti^-5 is well-founded, we must arrive at a pair

(xn, sJeH such that /-(xn)=in and for some path tt<=-TXtî, r\ire\Çl,é\. Let 77'

={y I j^xn} u 77. Then 77' is a path of T and /-|t7' g [Q].
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Assume, conversely, that t e D (9t, Q., s0). Let H0 £ Tx S be defined by (x, s) e H0

if and only if

Vr[r g Rn (91, (v, Tx)) A r(x) = i -»■ 3t7[t7 <= F, A r^ g [Q, e]]].

A sequence of sets Ha^TxS will be defined by transfinite induction on a. Set

G a = Ua < a Hx- Define Ha by (x,s)e Ha if and only if (x, s ) $ Ga and

Vr[r g Rn (91, (v, Tx)) A r(x) = s -+ 3tt[tt c Tx A r\n e [Ü, e]]

V Sj^íJO^gG« A r(y) = jj].

There exists an ordinal p. such that Hli=0. Set H=GU (=Ua<» #a)- For

(x, i)e// let «</x be such that (x, s) e Ha. Define TF^^F^-ix^xS) n Ga.

Our definitions insure that 77 and the mapping (x, s) h> Hx,s satisfy conditions 2-4.

It remains to show that (A, s0) e H.

Assume that (x, s) $ H. There exists an 91-run rxs on (v, Tx) such that rxs(x)=s,

for every y e Tx we have (y, rxs(y)) $ H, and for every path ttcTx we have

rxJn i [O, e].

Thus, if 77^7^ and rx¡s\Tre [ii], then there exists a minimal y(Tr), x<y(-rr) e-rr

such that rx¡s({z \ xSz<y(n)}) r\Li±0 for all l^i^k. Define F(x, s)={y(Tr) | 77

CTX, rXtS¡TT g [D]}. The set F(x, s) consists of pairwise incomparable elements.

Notice the Tx— Uyefu.s) Ty contains no path 77 with rx¡¡t\ir g [Q],

Assume by way of contradiction that (A, s0) i H. Define by (ordinary) induction

a sequence (£„)„ <„,£„£ F, and a mapping <f> : (Jn <m En -> S. Let E0 = {A}, <f>(A)=¿0.

Assume that En and </> : F„ -> S are already defined, that (>>, <j>(y)) $ H for j> g Fn,

and that the elements of £„ are pairwise incomparable. Define Fn+1 =

LUe„ F(j>, <f>(y))- Since FO>,^O0)£F,,-{j>} and the elements of F(y,<j>(y)) are

pairwise incomparable, it follows that the elements of En+1 are pairwise incom-

parable.

For every xgF„+1, there is a unique jgF„ such that x e F(y, <j>(y)). Define

4>:En + 1^ S by

<l>(x) = ryMy)(x),       x e F(y, <f>(y)), y e En.

Again, (x, <f>(x)) $ H for x e En + x.

For x g F there exists a maximal n such that for some (unique) y e En we have

x g Ty. Define a mapping r: T^- S by r(x) = ryMy)(x) where x and y retain their

above meanings. It can be verified that r is an 9i-run on (v, T).

We wish to show that for every path 77c:F, r|7r £ [Q.]. This will contradict (v, T)

e D (91, Ü, s0) and, therefore, imply (A, j0) g 77, thus finishing the proof. Observe

that the construction of (En)n < a and the fact that F(y, <j>(y)) £ Tt—{j}, imply that if

tt r\ En^0 then c (77 n Fn)=c (77 n Fm)= 1 for O^mfin. Thus there either exists

a maximal n such that 77 n Fn^ 0, or else 77 n F„ # 0 for n < to.
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In the first case, let rr n Fn={x}. We have

tt' = {y\yeTT,x-¿y}zTx-      \J      Ty = D.

For yeDwe have r(y)-=rxMx)(y). Hence r\Tr' = rXt<Hx)\Tr' $ [ß], so that r\ir $ [ß].

In the second case, let tt n Fn={x„}, «<<u. Now xn + 1 e F(x„, <£(xn)) for n<tu.

Hence

'({j I *n ^ y < xn + x}) n L¡ = r^itojly \ xn ¿ y < xn+1}) n Lj ^ 0,

for l¿í¿¿. Thus In (r|ir) n L(^ 0, 1 ¿i^k; this again implies rjir£ [ß].

3.10. Automata on finite trees. We recall some facts concerning automata on

finite trees. Our formulation differs from the one employed by Doner, Thatcher,

and Wright (see [3], [16], [12]). It is, however, not hard to prove the equivalence of

the various definitions.

A finite binary tree is a finite subset E^T, closed with respect to the predecessor

function pd. The nodes x e E for which xO £ F and xl $ E, are called the terminal

nodes of E. The set of terminal nodes of E is called the frontier of F and is denoted

by Ft (E). A finite binary tree E is called frontiered if x e F and x i Ft (E) imply

xO e E and xl e E. The term finite tree will, henceforth, always mean finite fron-

tiered tree.

Let 2 be a finite set. A finite "L-tree is a pair (v, E) where v: E—Ft (E) ->2.

A 2-automaton on finite 2-trees is a system 2t = <S, M, s0,f} where S is a finite

set, M: S x2 -> P(Sx S u {(/,/)}), j0 e 5, and/£ 5.

The notion of an 2t-run on (v, E) is completely analogous to Definition 1.4.

We shall say that 2t accepts t=(v, E) if for some 2l-run r on t, r(A)=s0 and r(x) =/

for x e Ft (E). The set of all (v, E) accepted by 21 is denoted, as usual, by F(2I).

Whether this notation refers to the finite or infinite case will be clear from the

context. A set B of finite 2-trees will be called finite automaton definable if for some

2t,fi=F(2I).

The f.a. definable sets of finite 2-trees form a boolean algebra. There exists a

natural one-to-one correspondence between the f.a. definable sets of finite {0, l}n-

trees and the «-ary relations between finite subsets of {0, 1}* which are definable

in the weak second-order theory of two successor functions.

If (v, T) is a 2-tree and F<= F is a finite tree, then we shall denote the finite 2-tree

(v\(E-Ft(E)),E)hy(v,E).

Lemma 3.12. Let A be a f.a. definable set of finite 1,-trees. Let B^V^ be the

invariant set defined by the condition: (v, T)e B if and only if there exists a finite tree

E^T such that (v, E) e A. The set B is f.a. definable.

Proof. Let ,4 = F(2i) where St = <5, M,s0,f}. Set S=Su{/}. Define M: Sx2

->F(5xS) by M(s,<j) = M(s,o) for s e S, M(f,a)={(f,f)}. Define 93 = <5,M,

*o, {{/}}>• We claim F(23) = fi.
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That B £F(93) is quite obvious. To prove F(23)£fi, assume t = (v, T) e F(93).

Thus, for some r e Rn (23, t), r(A)=s0 and In (r|f) = {/} for every path tt. Define

x(7r)=min {x|xe7t, r(x)=/}. The set E={y\ySx(Tr) for some tt^T} is a finite

(frontiered) tree. Let t = (v, E). r\E is an 2I-run on t and r(x)=/for x e Ft (E).

Hence, te A and t e B-

We shall now fill up the small gap remaining in the proof of Theorem 1.7.

Corollary 3.13. IfP is a principal formula (§1.5), then there exists an automaton

representing it.

Proof. Assume that P(AX,..., Am) is the formula (1.2). Let

R = t({Ä I Ä e P(T)m, 9Î2 ¥ P(Ä)}).

A {0, l}m-tree t = (v, T) is in R if and only if for some x e F, and for 1 újúk,

Pi^xWj)) = e¡, where e¡ — 1 if r¡¡ is €, and e¡ = 0 if r¡¡ is £.

Now, a tree í satisfies this condition if and only if for some finite subtree E^T,

(v, E) satisfies it. Since the set of finite {0, l}m-trees satisfying the above condition

(which, for finite trees, is expressible in weak second-order theory of 9Î2) is f.a.

definable, our assertion follows from Lemma 3.12.

Lemma 3.14. Let 2I=<S, M), s0eS and t = (v,T). If H0çTxS is such that for

every r e Rn (21, t) with r(A) = i0 there exists an xeT so that (x, r(x)) e H0, then

there exists a finite Hx £ H0 with the same property.

Proof. Assume the conclusion not to hold. Denote Tn={x \ x e T, l(x)^n}. For

every «<o> there exists an 2i-run rn on t satisfying rn(A)=s0 and, for xeTn,

(x, rn(x)) $ H0. By König's Infinity Lemma there exists an increasing sequence

{n(i))i<co such that for i^j<u>, rn(i)\T' = rnU)\Ti. Let r: T-> 5 be the limiting func-

tion; i.e., ^V-r^V, i<a>. r is an 2X-run on t with r(A)=j0. Furthermore,

(x, r(x)) £ H0 for all x e F, a contradiction.

Corollary 3.15. Let % = (S, M> be a Z-table, s0 e S, P=P(S). Let B be the

invariant set o/2=2 xP-trees defined by the condition: t = (v,T)e B if and only if

for every 'ñ-run r on px(i), if r(A) = s0 then for some xeT, v(x) = (a, q) and r(x) e q.

The set B is f.a. definable.

Proof. Let A be the set of all finite (frontiered) 2-trees (v, E) satisfying the above

condition. The set A is f.a. definable.

By Lemma 3.14, t e B if and only if for some finite tree E<=T, (v, E) e A. The

set B is now f.a. definable by Lemma 3.12.

3.11. Proof of Theorem 1.5. To show that the class of f.a. definable subsets of Ks

is closed under complements, it suffices, by Lemma 3.6, to show that sets of the

form D (21, ß, í0) are f.a. definable. This will be done by induction on 1(0.).

We assume as our induction hypothesis that for all 21 = <5, M> (over any 2),

all sequences  ßfc_1 = ((Li, Ui))1Siék-x  of length k-\  and all je S, the set
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D (91, Qfc_i, s) is f.a. definable (if k= 1 then our assumption is vacuous). We wish

to show that the same statement holds for all sequences Q = ((Lj, Lj))1SiSfc of

length k with Lk = 0.

Proof. Let 9Í and £2 be as above (thus Lk= 0), s0e S, and t=(v, T) e Vs. By

Lemma 3.10, / e D (91, O, s0) if and only if there exist a set 77£(F-{A})x Uk

u {(A, s0)} and a mapping (x, s) i-s> 77x,s, (x, s) e H, such that for k > 1 conditions

1-3 hold, and for &=1 conditions 1-3' (of the remark following Lemma 3.10)

hold.

Consider first the case k = \. By Corollary 3.15 there exists for every ieSan

automaton 9ts over 2 x F(S)-trees such that for (x,s)e H the tree (v, Tx) marked at

jjx.s (Definition 3.1) is accepted by 9ts if and only if 3' holds.

Consider next the case k>\. Let se S. By Lemma 3.7 there exists a SxP(S)-

table 9t¡, a state s of 9ÎS, and a sequence ük_ x of length k -1 such that for (x, s) e H,

the tree (v, Tx) marked at Hx-S is in D (97s, Qk-1, s) if and only if condition 3 of

Lemma 3.10 holds. By the induction hypothesis, there exists a finite automaton 9ts

such that F(9ls) = D (9ts, ñk_u s).

In either case, D (91, Q, s0) is f.a. definable by Lemma 3.2.

We have thus far established that if 91 = (S, A/> is a 2-table, se S and Q, =

((Lh Ui))iii¿kmthLk= 0. ThenD (91, Q, s) is f.a. definable. We now wish to show

that D (91, £2, s0) is f.a. definable for an arbitrary sequence O of length k.

Proof. By Lemma 3.11, (v, T) e D (91, Q., s0) if and only if there exist a set

77 £ Tx S and a mapping (x, s) \-> Hx,s such that conditions 1-4 ofthat lemma hold.

By Lemma 3.4 the proof that D (91, Q, s0) is f.a. definable will be finished if we can

show that for s e S there exists an automaton 9ts over the alphabet E=S xP(S),

such that for a E-tree t = (v, Tx) and a set Hx-s<=TxxS, 9ts accepts the tree t

marked at Hx,s if and only if 3 of Lemma 3.11 holds.

According to Lemma 3.8 there exists a 2-table 93s, a sequence £2S = ((L(, t/¡))1Sisfc,

with Lk=0, and a state seS8' such that for a S-tree t = (v, Tx) and a set Hxs

ç F* x S, condition 3 of Lemma 3.11 holds if and only if the tree t marked at Hxs

is in D (93s, Q, s). But D (93s, Qs, s) (which is a set of S-trees) is f.a. definable by a

2-automaton 9ls according to our inductive assumption. This completes the

proof.

3.12. Solution of the emptiness problem. We wish to give an effective procedure

which will enable us to determine for every f.a. 9t = <S, M, s0, F>, over any S,

whether F(9l) = 0. Consider the automaton 91 = <S, M, s0, F> over the single letter

alphabet S = {a} defined by M(s, a) = Utres M(s, a), s e S. Instead of M(s, a), we

shall simply write M(s). Since there exists for every subtree Tx just one {«}-valued

tree (v, Tx) (namely, v(y) — a, y e Tx) we shall omit mention of the valuation and

talk about 9î-runs on Tx, 9t accepting F, etc.

Notice that every 91-run r: T —> S on a 2-tree t = (v, T) is also an 91-run on F

Conversely, if r is an S-run on F, then there exists a S-tree t so that r is an 91-run on

/. Coupled with the definition of F(9t), this implies that F(9i)^ 0 if and only if
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T(Ñ)¿0 ; i.e., if and only if F(2t) = {FÄ \xeT). Thus, the emptiness problem is

reduced to the case of automata over a single letter alphabet 2 and, henceforth, we

shall restrict ourselves exclusively to this case.

The set Vf, — F(2t) is f.a. definable and, given 2Í, we can effectively construct a 23

such that F(93)=K£-F(2t). Now, F(2l)= Vf-TÇ®). According to Lemma 3.6

we can effectively construct a table <£, a sequence ß = ((Lj, Ui))Xèisk, and a state

i0 of S so that F(2l)= Fë-F(93) = D (©, ß, í0).

Thus the emptiness problem will be solved if we exhibit an effective procedure

for deciding for every 2-table 21 = <S,M>, sequence ß = ((£,;, Ui))x¿iák, and

s0 e S, whether F e D (21, ß, í0)- This will be done by reducing the length k

of ß.

In fact, the reduction will proceed in the same "half steps" used in proving

(for an arbitrary 2) that the sets D (2t, ß, s0) are f.a. definable.

We shall show how to reduce the question whether F e D (21, ß, s0) to a finite

number of questions whether F e D (21, ß', s), where ß' = ((L'i, UÏ))Xéièk, and

L'k= 0. Next we shall show that a question whether Te D (2Í, ß', s), with ß' as

above and k>\, reduces to a finite number of questions whether F e D (2t, ßfc_i, s),

where Ok_x is a sequence of length k—l. Finally, we show how to solve effectively

the problem Te D (21, ß, s) where ß = ((0, £/))• We shall need the following

Definition 3.7. Let 2t = <5, M> be a table, S'zS. The table 21 restricted to S',

denote it by 2l|S', is (S, M") where M'(s) = M(s) C\S',se S.

Remark Note that 2t|5'-runs r on Tx are precisely those 2t-runs for which

r(y) e S' for y > x.

In the case 1 á k and arbitrary ß, let 2Í = (S, M), ß = ((L¡, U¡))x s ¡ g k, s0 e S. In the

proof of Lemma 3.11 we constructed a sequence (Ha)a<u of sets and showed that

(v, T) e D (21, ß, s0) if and only if (A, s0) e {Ja<li Ha. In the case of a single-letter

alphabet, the construction specializes as follows. Define HQ £ S by s e H0 if and

only if Vr[r e Rn (21, T) Ar(A) = s => 3H>|tt e [ß, e]]].

Set Gm=\JiámH¡ and define Hm + xçS by s e Hm + X if and only if s $ Gm and

(3.4)      Vr[r e Rn (21, T) A r(A) = s -* 3tt[/-|77 e [ß, e]] V 3y[r(y) e Gm]].

Let c(S) = n; then Hm= 0 for m>n. Now FeD(2í, ß, s0) if and only if s0e

By Lemma 3.8 there exists for any se S and 0 £fJm£S, a table 93, a sequence

ß = ((£j, í/j))1SiSJ. withLfc= 0, and a state seS* such that (3.4) holds if and only

if F e D (23, ß, s). Thus the computation of (Hm)0imSn and the question whether

F e D (21, ß, s0), are reduced to deciding a finite number of questions whether

F e D (93, ß, s) where each ß is a sequence of length k with Lk = 0.

FAe caie 1 <k, Lk= 0. Let 2t = <S, M>, j0 e S, ß = ((Fj, í/¡))lgiSfc, Lk= 0, and

Specializing Lemma 3.9 to our case of a single letter alphabet, we see that
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F g D (9t, Q, s0) if and only if there exists a nonempty subset 77c Uk such that for

s g H u {s0}

(3.5) Vr[r e Rn (9Í, F) A r(A) = í-> 3t7[/-|t7G [Q^.J] v 3x[A < x A r(x)eH]].

In view of Definition 3.7 and the remark following it, (3.5) holds if and only if

(3.6) V/-'[r' g Rn (91', F) A r'(A) = s => 3t7[/|t7 g [S^.Jil

where 9l' = 9l|(S-77). But (3.6) is equivalent to Fg D (91', Q.k_u s). Thus the

question whether F g D (91, Q., s0) effectively reduces to a finite number of questions

whether Fg D (91', Qk-U s) where 91' ranges over automata 9t|(5-77), HeP(S),

se S, and Qfc_! is of length k — 1.

The case k=\,L1=0. Let 91 = (S, M>, Q = ((0, [/)), î0 g Sq. It follows at once

from Lemmas 3.9 and 3.14, that F g D (91, Q, s0) if and only if there exist a non-

empty set UQ={si,..., im}£ U and finite trees Eu O^fim, such that for Og/'áw,

if r is an 91-run on £¡ with r(A)=st then r(E¡ - {A}) n U0¥= 0 ■

Now the question whether for a set t/0 £ £/ and an element s g 5 there exists a

tree F such that for every 9t-run r on £, r(A)=s implies r(F-{A}) O UO7é0, is

expressible in the weak second-order theory of 9?2, and hence, decidable by [3], [16].
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