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Introduction. There have been discussions from time to time of "abstract

measures" the values of which need not be numerical (e.g. [2], [3], [4], [6], [7]).

One of the purposes of this paper is to present arguments in favor of the use of

cardinal algebras as values for these measures. Cardinal algebras were introduced

and developed by A. Tarski in [8]. They have many of the good properties of real

numbers and arise naturally in situations like the following:

A (pseudo) group G of one-one functions is given with domain and range in a

a-ring of sets Jf. An equivalence relation between members of Jf is defined as

follows :

A^B iff there are A¡, Bi e Cti,fi e G for /<oo such that At n Aj = 0 = Bi n B¡ for

'V/ ^ = Ui<oo At, 5=Ui<« Bt, A^Domfi and ft*(Ai) = Bi for all i<co.

This is equivalence by countable decomposition. Equivalence relations like 2

have been considered in [2], [3], [4], [6], [7].

When the aim is to obtain a measure that is faithful to an equivalence relation

of this form, the first natural step is to consider the equivalence classes determined

by the relation. It happens that these equivalence classes with suitably defined

finite and infinite addition form a generalized cardinal algebra. For instance, the

"measure algebras" considered in [4] and [6] are generalized cardinal algebras.

My second purpose is to determine in what conditions we can obtain a numerical

measure- faithful to the equivalence relation ; that is, a countably additive measure

that satisfies the following:

(a) The only sets with measure zero are those that necessarily have to have it.

That is, sets that have infinitely many disjoint equivalent sets contained in a set of

measure one. These sets I call negligible.

(b) For sets with positive measure, it should be valid that two sets have the same

measure iff they are equivalent.

These characteristics are specially important with respect to probability measures

where we want to be as faithful as possible to the equal likelihood relation (cf. [3]).

Theorem 2.11, below, gives sufficient (and almost necessary) conditions on the

equivalence relation to obtain such a measure.
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Requirement (b), however, is not satisfied by Lebesgue measure when G is the

group of translations. However, this measure satisfies (a) and

(b') Two sets have the same measure iff they are equivalent modulo a negligible set.

Sufficient hypotheses for the existence of a measure that satisfies (a) and (b')

are given by Theorem 2.10.

The results of this paper depend heavily on the theory of cardinal algebras (see

[8]). The first section of this paper contains some new results about cardinal

algebras that are of interest in their own right. One of these results gives a necessary

and sufficient condition for a generalized cardinal algebra to be isomorphic to a

generalized cardinal subalgebra of the nonnegative real numbers with addition.

In the second section, the main theorems are proved that give the construction

of measures that satisfy (a), (b) or (a), (b')- The works of Maharam [4] and [6]

use equivalence relations with some properties like mine to construct strictly

positive measure on a-complete complemented distributive lattices (or a-complete

Boolean algebras). That is, measures that only vanish for the 0 of the algebra.

There is a discussion of the relation between Maharam's work and mine in this

section.

The last section contains some applications and examples of the main theorems.

As pointed out above, it is possible in many cases to obtain a probability measure

from the equal likelihood relation (cf. [3]).

By applying the main theorems to Lebesgue measure in Rn it is possible to prove

some new facts about the relation between the measure and translations. Partic-

ularly interesting are two characterizations of sets of measure zero and a refine-

ment of the Banach-Tarski result given in [1].

I. Real multiples in cardinal algebras. The results in this paper depend on the

book Cardinal algebras by A. Tarski [8]. I shall identify the theorems taken from

that book by their number and a T.

The possibility of defining real multiples of elements in a cardinal algebra is

mentioned in Tarski's book and some properties of the real multiples, namely

1.7, 1.8, 1.9, 1.10 below, are stated without proof. I shall give an indication of the

construction of real multiples and a sketch of the proofs of these properties.

In all this section I shall assume a fixed cardinal algebra % = {A, +, £>. a, b, c,

d, e will be elements of A with or without subscripts, n, m, N, i,j will be nonnegative

integers or oo.

First, I shall define rational multiples.

Definition 1.1. Let p be a nonnegative rational number, p=m\n with m, n

nonnegative integers. Then pa = b iff ma~nb.

By Theorem 2.34T and 2.36T it is easy to show that this definition is correct.

From the same theorems it is easy to deduce the following two theorems :

Theorem 1.2. Let p, q be nonnegative rational numbers. Suppose that qa and

p(qa) are defined. Then (pq)a is defined and (pq)a=p(qa).
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Theorem 1.3. Let p, q be nonnegative rational numbers, p-^q, pa and qa defined.

Then pa f^qa.

Theorem 1.4. Let N<co. If for every i<N, px is a nonnegative rational number

and p¡a is defined, then (2¡ <nPi)o is defined and

(2 Aa = 2 P*
\i<N      I i<N

Proof. We can assume that A^O. As for A=0 the result is trivial.

Let/7i=wi/ni with mt, w¡ relatively prime integers and let nibi=mta.

First we prove by induction, using 2.34T and 2.36T, the following lemma:

If the hypotheses of the theorem are satisfied and A^O, then there is a c such

that

a = kc,       b¡ = (j>ik)c

where k is the least common multiple of n0, nx,..., nN-x.

Having proved the lemma, we have

2 Pia = 2 bi = 2 (Pik)c-
i<N i<N i<N

But p¡k is an integer. So

2 pp = (2 pAc-
i<N \i<N I

On the other hand a = kc, so by 1.2

(2 Pik)a = (2 pAkc = Í2 M2V-
\i<JV / \i<W / \i<N I

Then by 2.34T

(2 P')a = Í2 P*k)c = 2 Pia-
\i<N      I \i<N I i<N

The next theorem provides the justification for the definition of real multiples.

I shall adopt the convention that when 2i < «. p¡ diverges for p¡ real numbers,

Theorem 1.5. Let p¡, qx be nonnegative rational numbers for every i<co such that

Z¡ < «O Pi = 2i < » Çi-

Then ifpfa, qta exist for all z<oo, we have

2 Pia = 2 a<-a-
Í < oo Í < oo

Proof. Case 1. 2( < » A = 2f < oo í¡=0°- Then for every m<oo there is an w<oo

such that

2 Pi = 2 ?«•
i<n i<m
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Then by 1.2 and 1.3

2 P'a = (2 p)a = ( 2 4<)a = 2 ^a = 2 ?<a
i<n \i<n/ \(<m     / i<m i<oo

for every w<co.

Thus, 2¡<oo/>¡a^2i<co ?¡aby 2.21T.

Similarly we can prove the converse inequality.

Case 2. 2¡<«o A = 2¡<a= 9¡<c0-

Then there is an increasing sequence of finite positive integers n0, nu n2, ■.. such

that (l/«i)fl is defined for every /'< oo and l/«¡ —> 0 as /-> co.

So by 1.3 we have for eachy<oo and N<co such that for every n<oo

(,?/■)<•s (,?/■ +¿>
By 1.5

2 aû ^ 2 ^a + (_r - 2 9fa+(—)û
i</i i<JÏ V1// i<oo \w;7

for every «<co. Hence by 2.12T

2 /^ = 2 ^a + i^r   forevery/ < °°-
¡<0O ¡<00 \"J/

So by 2.29T there is a ¿> such that

2 Aa =  2 aia+D   anc*   * = I"-Ia   for every/
Í< CO i< OO \"//

< oo.

As m¡ —>- co as / —»• co we have nb^a for every «<oo. So, by 2.21T cob ¿-a and by

1.29T a + b = a. Using 2.36T and 1.46T we obtain q¡a+b=qia and hence by 1.28T

2 A« =  2 ?iûL
i < oo i< oo

By a similar argument we can prove the converse inequality, and hence the

theorem.

Definition 1.6. Let r be a nonnegative real number. Then ra = ¿» iff there is a

sequence of nonnegative rational numbers p0, pu ... such that /?¡a is defined for

all /<co, r=2(<oo/>< and ¿> = 2¡ < „/>¡a.

The next two theorems show a way of determining which real multiples are

defined.

Theorem 1.7. If for a given a, there is a largest integer «<oo such that a = nb

for some b, then if r is a nonnegative real number, ra exists in case rn is an integer,

and does not exist otherwise.

Proof. Based on 2.34T and 2.36T.
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Theorem 1.8. If, for a given a, there is no largest integer w<co such that a = nb

for some b, then ra exists for every nonnegative real number r.

Proof. The set of rational numbers p for which pa is defined is dense in the

nonnegative reals. Hence, for every nonnegative real r there are rationalsp0, px,...

with pta defined and r = ~2i<00 p¡.

Theorem 1.9. If «5=oo and for every i<n, rt are real numbers with rxa defined,

then (2i<n r¡)a is defined and

( 2 r')a = .2 r'a-
\i<n     / i<n

Proof. Let ri — Y1i<m Pa and ria = Jij<00plja for rational pti. Then from the

definitions:

2 r'a = 2 (2 p<A = (2 2 W)ß = (2 r)a-
i=n i<n   \;<co / \i<n   i< co       / \i<n     J

Theorem 1.10. If n^oo, r is a real number and ra¡ exists for every i<n, then

r 2i<n a¡ 's defined and

r 2 °i= 2 ra¡-
í<n i<n

Proof, (a) Let r=p/q with p, q integers. We have, for every i<n, some bt with

pai=qbi. So, 2¡<n/>ai = 2i<n?¿>> andp Zi<nai=q 2¡<n b¡.

(b) Suppose r = 2;<oo p}, with rai = 2;<eoPflh P,- rational. Then,

2 ra* = 2 ( 2 P'a)
i<n i<n  \i< oo /

= 2(2 Pi0*)    ky commutative law
;' < oo   \i < n I

= 2 (pi 2a) by (a)

= r 2 ûi by definition.
í <n

Theorem 1.11. Let r, r' be nonnegative real numbers. If ra and r'a are defined

andrer', then ra^r'a.

Proof. The result is obtained from 1.2, 1.3, 1.4 and 2.21T.

Theorem 1.12. If there is a finite nonnegative real number r#0 for which ra + b

= ra, then for every nonnegative real number c/0, with r'a defined, we have

r'a + b = r'a.

Proof. Let m be an integer with m^r. Then by 1.11, ma^ra, and by 1.28T,

ma + b=ma. Hence by 2.12T, a+b = a.

Let now n be an integer with (l¡rí)a defined. Then n(l¡n)a+b = n(l¡n)a. So by

2.12T(l/»)a+ô=(l/B)a.
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For any real r' such that r'a is defined, there is an integer n such that (l/n)a is

defined and (l/»)ár' (by 1.7, 1.8). Then by 1.28T r'a + b = r'a.

Definition 1.13. a is completely divisible iff there is no largest integer n<co

such that a=nb for some ¿». Otherwise, a is incompletely divisible.

Next we have two special theorems for completely divisible elements.

Theorem 1.14. Let a be completely divisible. Then a + c = a iff for every positive

real number r, c ̂  ra.

Proof, (a) Suppose a + c = a, r>0. Then by 1.12 ra + c = ra. So by 1.29T, c^ra.

(b) Suppose c^(l/n)a for every positive integer «<oo. So, nc^a for every

«<oo. Then by 2.21T, ooc^a, and by 1.29T, a + c=a.

Theorem 1.15. Let a be completely divisible. If for every positive real number r,

b^ra or ra^b, a + b^a and b^coa, then b=pa for some positive real number p.

Proof. Let Q = {r : ra^b}, p = least upper bound of Q. Then by 1.14, p>0. If

p = oo then ¿> ̂ na for every n < oo and ¿» = ooa. Solet/?<oo,/?=2i<oo gl,pa = '2i<00 Ifl

with qt rational, different from 0. This is possible, as pa is defined, by 1.8.

Then Xi<n1fiúb for every n<oo. So by 2.2IT pa^¿». On the other hand,

¿» ̂  (p + \¡n)a = pa + (l/n)a   for every n < co.

Then by 2.28T, there is a c such that

b tí pa+c   and   c ^ (l/«)a   for every n < co.

Hence by 1.14 and 1.12, pa + c=pa. So b^pa and b=pa.

In general, the relation ;£ is only a partial ordering in cardinal algebras. When

it is a simple ordering, we have a very interesting situation, as is shown by the

following theorems.

Lemma 1.16. Suppose that for all a,b^c we have a^b or b^a. Then for all

nonnegative integers n ^ co and for all a,b^c, we have na^b or ¿> ̂ na.

Proof. We prove it first for « < co by induction on n.

By applying 2.21T, we obtain the case « = co.

Theorem 1.17. Suppose that for all a, b^a0, aSb or b^a. If there is a sequence

a0, «i,... and two sequences of finite positive integers k0, ku ..., l0, lu ... such that

an=knari+1 + lnan+2for every «<co, then a0 is completely divisible.

Proof. If a0 = 2a0, there is nothing to prove, because aQ = ma0 for every positive

integer m.

So, assume that

(0) a0^2a0.

We have

an = an+1 + (kn-\)an+1 + lnan+ 2   for every n < oo.
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So, by the remainder postulate, there is a c such that

an = c+(kn-l)an+x+ 2 Pi+n+2ai+n+2   for all n < co,
i< co

where pi+n+2 = /( +ki —1^0. Hence, c^an for all n<co.

So, by 2.21T, ooc^2i<°o aí+n+2úJ,i<ooPi+n+2ai+n+2. So

(1) <3Tn = 2,i<co JPt + n+2ai + n+2 + Kn_1an+1.

By induction we can prove

(2) an=2i< oo qi+n+m,nai+n+m for every finite positive integer m> 1. Them's are

finite positive integers.

Suppose now that for some n, k < oo we have

(3) an+ak = an.

So, an+at=an for all l^k by 1.30T. Hence a0+pat = a0 for all/>^oo and all

/£*, by 1.46Tand 1.28T.

Hence by 1.47T

a0 + 2   ?i + k.Oai+k = a0-
Í < 00

So by (2), a0 + a0 = a0, contradicting (0).

Then we have that (3) is false, i.e.

(4) an+ak^an for all k, n<co.

Let now the finite positive integer m be given. Let b0=a0 and define by recursion

elements bn, cn of A and nonnegative integers /„ for n > 0 such that

(i) cn=ak for some k or cn=0,

(ii) bn^mjncn,

(iii) mjncn + bn=bn_x,

(iv) ¿>n^0 and mjncn+bn¥=mjncn, or ôB = 0.

(a) « = 1. There is a & such that mak ̂  a0. Because if not, from the simple ordering

hypotheses and 1.16, we would have a0^mak for every k<co. Then ooa0

= w2,<oo Qi+i.oai+i- So by (2), ma0 + a0 = m0, and by 2.12T a0 + flo = ßo, contra--

dieting (0).

Let y be the smallest k with makSa0. Now, if na¡^a0 for every «<oo we would

have by 2.12T coa¡-¿a0, contradicting (4), by 1.29T. So let cx=a¡ and/=the largest

/ for which mla¡ ̂  a0. Thus there is a d such that

mjxcx + d = a0 = b0   and   d S mjxcx.

If mjxc+d=mjxcx, then define ei=0.

If mjxc+d^mjxcx, then define bx=d.

(b) Suppose bn, cn, jn are defined with the required properties.

Case 1. ¿„=0. Then define ¿>„+i=0 = cn+1,y'n+1=0.

Case 2. bn¥=0. Then mjncn^mjncn+bn. So, cn+bn^cn and c„ = a; for some/

In this case we proceed exactly as in (a), taking bn for a0, to define bn+x, cn+x,jn+x.

Thus, the definition is complete.
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So, we have bn=mjn+1cn+1 + bn+1 for every w<co. Hence, by the remainder

postulate, there is an e such that

K  = e+ 2   ™/n + i+lC„+j+i.
i< oo

Then eSbn¿mjncn for every «<co. So, coe^2(<00 mjn+l+1cn+i+1. So by 1.29T

a0 = ¿>o = m 2 Ji+iCt+i
i < 00

and the proof is completed.

Theorem 1.18. Suppose that for all c, d^a, we have c^d or d^c. Then ifb^na

for some integer n g co and a + b^a, there is a positive real number r such that b = ra.

Proof. Suppose first b-¿a. Let aQ = a, a1=b. We define by recursion for n>0,

an, and nonnegative finite integers kn, such that either

(1) knan+an+1=an-1, an+1^an, an + an+1^an, kn^0, or

(2) an+1=0.

(a) n = 1. Definition of ku a2. If for every k < oo, kb ^ a0, we would have oo¿> ̂ a0

contradicing a+b ^ a. So by 1.16, there is a largest / such that la1±=a0. Let ^ be

this /. So, k1a1 + c=a0 for some c with c^ûj.

If c-fa!=öi, define a2=0.

If c+a1 i= au define a2 = c.

(b) Suppose kn_1 is defined and a¡ is defined for i^n.

Case 1. Suppose a„=0. Then define an+1 = 0, kn = 0.

Case 2. Suppose an^0. Then A:B_1aB_1+aB = aB_1, an-^an.1, k„^x^0, an-1+an

We proceed as in (a) to get an+1, kn, and the definition is completed. There are

two cases :

Case 1. There is an n such that aB=0. Let/' be the smallest such n; then a„=0

for n¡zj"^ 1. In this case we have

a = a0 = /»fly-i   for some integer/? < co, /» > 0,

b = ax= qa¡-x   for some integer # < co, q > 0.

So b=(qjp)a.

Case 2. There is no n such that aB=0. Then we have

an = £n+iön+i+an+2   for all « < co, kn+1 ¿ 0.

So by the previous theorem a is completely divisible. Hence by 1.15, as ¿? is com-

parable with all other elements ^a,b = ra for some positive real number r.

Let now búna for some integer n^co. Then there are ¿?¡ for i<n such that

¿»i^a and ¿» = 2i<B¿»i, by 2.2T. So we have from what was previously proved,

bi + a = a or bi = rta for some positive real number rt. We cannot have bt + a=a for
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all i<n, because we would then have b+a = a. If bt+a=a, we have bi+rja=r,a

by 1.12. So if in this case we put r¡=0, we have

b = 2 r,a = (2 r,)a   by 1.9, 1.47T.
i < n \i<n    i

The next theorem gives the uniqueness of the real number that determines a

multiple.

Theorem 1.19. Let a^2a. Then for all nonnegative real numbers, r and r', if ra

and r'a are defined and ra = r'a, then r — r'.

Proof. Suppose r>r', r—r'—s. Then sa is defined, by 1.9 and 1.8. Suppose

ra = r'a; then ra=r'a+sa = ra+sa.

Then by 1.12, as r>r'^Q, a + sa = a. Again by 1.12, as i>0, a = a + a.

As a summary of the theorems of this section, we can state the following

theorem:

Theorem 1.20. The following condition is necessary and sufficient for a generalized

cardinal algebra (& = (A, +> to be isomorphic to a generalized cardinal subalgebra

of Jf, the cardinal algebra of nonnegative real numbers with addition : There is a

finite element ae A such that

(i) For every be A, there is an integer «¿oo such that bfina.

(ii) For every b, ce A, with b^a, c^a, we have b^c or c^b.

Where a is finite means, ifia + b = a, then b = 0.

II. Construction of the measure.

Definition 2.1. Let JT be a <r-ring of sets, £ an equivalence relation between

elements of Jf. Then

(i) ^ is (finitely) refining if whenever ^4 ̂  Ä, A, Be Jf A = AX u A2, Ax n ^2 = 0,

Ax,A2eJf, there are Bx,B2eJf such that B=Bxv B2, Bx n B2 = 0, AX^BX,

A2 = B2,

(ii) s is countably additive if whenever At, Bx e Jf for every i< co, At n A, = 0

= B¡ n Bj for ijtj, At^Bi for all i<cc, we have U¡<*> ̂ ¡ = U¡<oo Bt.

Definition 2.2. Let JT be a a-ring of sets, 2 an equivalence relation between

elements of Jf'. Then

(i) For every A e Jf, put t(A) = {B eJf : B^A};

(ii) Y' = {t(A) :AeJf};

(iii) Let a0, ax,..., y g IT". Then

(a) c£0 + «i = y iff there are A, B, C e Jf such that a0 = t(A), ax = t(B), y = t(C),

A r\B=0andA ufi^C;

(b) 2i < » «i=y iffthere are A¡ e Jf for every i < oo and C e Jf such that A{ n A¡

= 0 for i=£j, ai = T(A¡), y = r(C) and \Ji<a¡ A^C.

It turns out that if s is refining and countably additive, <F, +, S> is a

generalized cardinal algebra (16.4T). The equivalence relations determined as

follows are refining and countably additive.
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Definition 2.3. Let Jf be a <7-ring, G, a set of biunique functions. Then G is a

pseudogroup of functions over C#~ if:

(i) Sfe Jf, 3>f-^eiï for all/e G.

(ii) If /, g e G, then / o g, /-* eG.

(iii) For every ^4 e ¿f, the identity restricted to >4 belongs to G.

Definition 2.4. Let Jf be a cr-ring, G a pseudogroup of function over Ctf.

Define for all A, B eX:

A s B iff there are At, Bte Jf,f e G for all i'<co such that AiC\ Aj=0=BiC\ B¡

for i+j, A = Ui<*, Ai, B=\Jl<x Bh Ai£g)fi and Bi=fi*(Ai) for all /<co.

It is easy to see (it is also contained in Tarski's book) that s defined as above

is a refining and countably additive equivalence relation. In the last section of

this paper I will consider the equivalence relation determined by a quite important

pseudogroup of functions. In the rest of this section, ¿f will be a fixed o--ring and

= a refining and countably additive equivalence relation between elements of

Jf. S is a fixed element of Jf.

As was mentioned in the introduction the algebra defined in 2.2 is the natural

way to assign "abstract measure" values. This algebra is a generalized cardinal

algebra (16.4T). It is more convenient to work with the closed algebra, i.e. a cardinal

algebra that is the closure of the algebra of 2.2 as defined in 7.IT. This closure is

very "conservative" and retains most of the properties of the original system

(cf 7.2T, 7.3T, 7.4T, 7.5T, 7.6T, 7.8T). So I shall assume 91 = <I\ +, S> to be this

closure. This closure coincides with the original algebra for elements of this last

one and does not add any new elements that are smaller than old elements.

I shall also consider another cardinal algebra obtained from 9Í by the following

process. Let Osf be the ideal (see 9.IT for definition of ideal) of all elements of

T absorbed by t(S) (A(t(S)) with the terminology of 9.15T). Then the algebra 33

will be the quotient algebra given by the following equivalence relation :

a = ß   iff there is a y e <J> (i.e. r(s) + y= t(s))

such that a + y = ß + y.

Then 83=91/ = .

33 is also a cardinal algebra (cf. 9. IT, 9.15T, 9.28T, 9.29T).

I will put p(A) = t(A)I = for every A e Jf. Lower case Greek letters will be used

for elements of 91 or 33

Definition 2.5. (i) Let AeJf. Then A is negligible if there is a sequence

A0, Au A2,... of pairwise disjoint elements of Jf such that At^S for every i<oo

and A^Ai^Aj for every i,j<oo.

(ii) Let A, B e X. Then A ÚB if there is a C e CUT such that A^C^B.

(iii) Let A, Be X. Then A x B if there is a C e Jf such that C is negligible and

iu C^Bu C.

(iv) Let A,BeX. Then A<B if there isaCeJf such that C is negligible and

AuC^BkjC.
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As an immediate consequence of the definitions and of the theorems quoted

above, we have the following:

Theorem 2.6. Let A,B,Ce X. Then

(i) t(S) + t(C)=t(S) iff C is negligible,

(ii) r(A)Sr(B)iffA^B,

(iii) p(A) = p(B) iff Ax B,
(iv) p(A)úp(B)iffA<B,
(v) t(S)^2t(S) iff S is not negligible,

(vi) p(C)=0 iff C is negligible,

(vii) p(S) is finite.

Now some theorems that show the relations between real multiples of t(S) and

p(S) and elements of ¿f. They will be of use to prove the unicity of the measure.

Theorem 2.7. Let A, Be X, rt be positive real numbers for all i<n^oo such that

2,<„/•(< co. Then

(i) IfriT(B) is defined for every i<n, then r(A) = Jii<n /"¡t(ä) iff there are A{ e Jf

for i<n such that At O A¡ = § for i^j, A = {Ji<nAt and r(A,) = rtr(B) for all i<n.

(ii) Ifr¡p(S) is defined for every i<n, then p(A) = ^i<n r{p(S) iff there are A¡ e Jf

for i<n, such that At O Aj = 0for i^j, A = \Ji<nAi and p(Ai) = rtp(S).

Proof, (i) Suppose t(/í) = 2í<b rtr(B). From 7.4T and 2.2, there are 5¡ e Jf for

i<n such that B{ n 5;=0 for i^j, t(B¡)-r¡r(B) and A^\Jí<n /?(. Define pairwise

disjoint C¡ e Jf for /' < n by recursion such that :

C¡ S A, Cí^Bí   and    (A ~   \J   CA S U H,+J+1   for all i < n.
\ j < i + 1      /        Í < n

This definition is performed by successive applications of the refinement property.

Now let C=A ~ Ui<n Ct. So we have A = {Ji<n C, u C, C, n C, = 0 = C n C, for

i^j. Hence, r(A) = '2i<n t(C¡) + t(C). But, by countable additivity,

UQïU Bi.
i<n i<n

So, Ii<nr(Ci)^2i<nr(Bi) = r(A). Hence, we have t(A) + t(C) = t(A). But r(A)

= Ii<nrir(B) = (li<nri)r(B). So, by 1.12, r(C0) + r(C) = r0r(B) + T(C) = r0r(B)

= t(C0) and C0 u C^C0^B0. So, let A0 = C0 u C, ^¡ = Ct for all i, 0<i<n. Then

we have A = {Ji<nAi, At n A} = 0 for iVy, T(/4¡) = r,T(fl). The converse assertion

of the theorem is immediate from the definitions,

(ii) Suppose

(0) /i(¿) = 2.<»rfp(S).Wehave

(1) (ra)/= =r(a/=) for all a e F and real numbers r for which ra is defined, as

91/= is a homomorphic image of 9t (cf. 6.6T).

So from (0) we get
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Hence,   t(A u C) = 2¿<n ríT(S) + y = ^ii<n r¡T(S)  for  some   C negligible,  ye$.

Hence by (i), there are A for i<n such that

(2) iuC=U¡<» A, A n A = ° for IV/', t(£>í) = /-,t(5) for all i<n.

Let ^¡ = A n A, C¡ = A n C. We have ^¡ n ^; = 0 for ifkj, A = \Ji<n At and

Cj is negligible for all /<«. So,

(3) DtxAt.
From (1) and (2) we get p(Di) = riP(S). So by (3), P(Ai) = p(Di) = riP(S). The

converse is immediate.

Corollary 2.8. Let A e Jf, n be a finite positive integer. Then

(i) T(A) = (llri)r(S) iff there are S0, Sx,..., Sn_xe Jf such that St n S¡=0 for

ii=j, S=\Ji<nSi and St^S,^A for all i, j<n.

(ii) p(A) = (l/n)p(S) iff there are S0, Sx,..., Sn.xeJf such that St O S¡ = 0 for

ii=j, S=\Ji<n St and SiXSjXAfor all i,j<n.

Proof, (i) is an immediate consequence of 2.7 as r(S)=m(A); (ii) we have

p(S)=np(A).

So r(S)=nr(A u C), C negligible. Hence, there are S0, Sx,...,Sn_x pairwise

disjoint such that Ui«. St = Snnd St^S}^Au C. So, SiXSjXA.

Definition 2.9. (i) We say that 5 covers Jf if for every A e Jf there are S0, Sx,

S2,.. .,eJf such that S^S¡ for all ?<oo and A^{Ji<00 St.

(ii) We say that S covers * Jf if for every A e Jf there are S0, Sx,.. .eJf such

that SxSj for all ¿<co and ^sU¡<oo S¡.

Now I am ready to state and prove the main theorems.

Theorem 2.10. Suppose Jf is a v-ring of sets, ¡s a countably additive and re-

fining equivalence relation between elements of Jf, S an element of Jf such that

(i) 5 is not negligible,

(ii) for every A,BeJf, AsS, B^S we have A<B or B<A,

(iii) 51 covers * Jf.

Then there is a unique countably additive measure p, defined on all sets of Jf such

that

(a) p.(S) = l, and (b) p.(A)=¡x(B) iff Ax B.

Proof. Let the cardinal algebra S3 be defined as before. Then we have :

(1) p(S)¿2p(S) by (Ï).

(2) For all a,ß^P(S) we have a^ß orßga by (ii).

(3) For every AeJf, p(A)^np(S) for some ngoo by (iii). Hence by 1.18, (2),

(3) and 2.6:

For every A e Jf there is a nonnegative real number r such that p(A) = rp(S).

By 1.19 and (1): if rp(S)=r'p(S), then r = r'. So we can define for all A e Jf

p.(A) = r iff P(A) = rp(S). It is clear that p(S)=> 1 and p.(A) = p.(B) iff P(A) = P(B) iff

AxB.
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Let, now, A¡e X for all /<co, At n Aj = 0 for i^j, /x(y4i) = ?-i. Then we have

p(u Ai\ = 2 p(At) = 2 ^(5) = Í2 ''V^)-
\i < oo / í < co i < oo \i < oo      /

So, p, is countably additive. The proof of the uniqueness of the measure is as

follows :

Let v be a countably additive measure on JT such that (a) and (b) are satisfied.

Let A e Jf. We know that p(A) = rp(S) for some nonnegative real r.

Case 1. p(A) = (l¡ri)p(S) for n a positive integer. Then by 2.8 there are S0, Si,...,

Sn.jeJf such that St n S¡=0 for /#y", S=\Jl<nSi and AxSiXS, for i,j<n.

Hence, we have by (b) v(A) = v(Si) = v(Sj). By additivity and (a) we have

1 = v(S) = 2 KSD = nv(S0).
i<n

So v(A) = v(S0)=\¡n = p(A).

Case 2. p(A) = rp(S) for a finite positive real number r. Then r = 2i<m OM) for

some ni^oo, where n¡ is a positive integer for i<m and rp(S) = ~£i<m (ljni)p(S). So

by 2.7, A = {Ji<m At with ̂ ¡ n Aj=0 for zVy and p^Kl/nOpiS) for all i<m. By
countable additivity and case 1, we have

v(A) = 2 Mi) = 2 (!/»•) =r = ̂ )-
í <m i <m

Cizje 3. p(A) = 0. ThenAxO and x04) = 0=/*0<).

Case 4. /oL4) = oopiS). Then there are disjoint A¡^A for z'<oo such that AtxS.

Hence K^) = 2i<co v(At) = cov(S) = co. So v(^) = co=/i(^).

A similar theorem with a parallel proof that uses 9Í instead of 33, is the following :

Theorem 2.11. Suppose X is a o-ring of sets, = a countably additive and refining

equivalence relation between elements of Jf, S an element of Jf" such that :

(i) S is not negligible,

(ii) for all A, Be X~, A^S, BçS, we have A^B or B^A,

(iii) S covers X'.

Then there is a unique countably additive measure p. defined on all members of X,

such that:

(a) KS)=h
(b) p(A) = 0 iff A is negligible,

(c) ifp(A)¿0, then p(A)=p(B) iff A^B.

Hypothesis (i) (i.e. 5 is not negligible) in Theorems 2.10 and 2.11 is not only

partially sufficient but also necessary. It is even necessary when we weaken re-

quirement (b) of p. of Theorem 2.10 (or (b) and (c) of Theorem 2.11) to the following

(always assuming that we have a refining and countably additive equivalence

relation) :

(*) If A^B then p(A) = p(B).
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It is easy to see that "S is not negligible" is equivalent to the following con-

dition :

(**) There are no sets Sx,S2eJf such that S=S1vS2, Sx n S2 = 0 and

S^SX^S2. This can be paraphrased as "S has no paradoxical decomposition".

It was proved in 16.12T [8] that this is a necessary and sufficient condition for

the existence of a finitely additive measure that satisfies (a) and (*) when £ is

equivalence under finite decomposition with respect to a group of functions G.

My conjecture is that this is also necessary and sufficient when you require a count-

ably additive measure and s is equivalence as defined in 2.4. Necessary and

sufficient conditions for the existence of a strictly positive countably additive

measure p. on a nonatomic Boolean algebra (i.e. /x vanishes only for 0), have been

obtained in [5]. But our situation is different as we do not require the measure to

be strictly positive.

Hypothesis (ii) and (iii) in Theorems 2.10 and 2.11 are not necessary for the

existence of the measure, as can be shown by easy examples. However, if we add

to the requirements of the measure p., the following:

p.(A) g p.(B)   iff there is a C e Jf, C £ B such that ¡i(A) = p.(C),

then these hypotheses become necessary.

It is very simple to show that we could replace the ring of sets Jf by a ^-complete

distributive complemented lattice with a zero element. This is the set-up chosen by

Maharam in [4]. However, there are important differences between my work and

Maharam's [4], The main difference is that she does not obtain the characterization

of elements of measure zero as my negligible elements. As a matter of fact, her

measure is strictly positive. To prove her theorems, she makes extensive use of the

fact that the elements for which a measure is obtained are bounded (finite in

Tarski's terminology). That is, they are not equivalent to any proper subset. For

instance, a pivotal theorem is the following (in my terminology) :

(f) If aVx = èvx where aVx, bwx are bounded and aAx = bAx = 0, then

a^b.

This is certainly false if a V x and b V x are not bounded. If they are bounded

(finite) the proof of this theorem is very simple using the theory of cardinal algebras

(cf. 4.19T).

In none of the proofs of §1, do I use any fact about finite elements. On the other

hand I use extensively and essentially the remainder postulate (1.1 VII T) and the

characterization of elements that are absorbed (1.29T). These theorems were not

apparently known by Maharam. Maharam's system JÍ* of the totality of measure

values is certainly a generalized cardinal algebra. Most of her theorems could be

easily proved using this theory.

Instead of using boundedness for the construction of the measure, I use a unit

set S which does not have a paradoxical decomposition. If a set is bounded then it

does not have a paradoxical decomposition, but not vice-versa. Another difference
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is in Maharam's condition (8) [4, p. 422]. She assumes comparability for any pair

of elements of JÍ*. I assume only comparability for elements that are s S

(condition (ii)) and that every set can be covered by copies of S (condition (iii)).

This does imply (S), but the proof that it does is not trivial. (8), on the other hand,

implies (ii) and (iii) for some 5".

In [6] Maharam extends her results of [4]. In this paper she works with a a-

complete Boolean algebra that satisfies the countable chain condition, and an

equivalence relation that is countably additive and refining. So her "measure

algebra" is again a generalized cardinal algebra. But she adds the following

postulate:

(III) If x^y then there are bounded elements xn, yn such that x= \/xn,

)'=V yn, xn rsxm = 0=yn Aym for n^m and xnZyn for all n<oo.

This postulate does not have an easy translation into the theory of cardinal

algebras. As in [4], Maharam uses the cancellation law for bounded elements (f)

and does not use the remainder postulate nor the characterization of absorbed

elements. Thus her proofs, in [6], as in [4], are very different from mine. She

cannot obtain in [6] the characterization of null sets as she could not do it in [4].

III. Applications.

A. Probability theory. It is well known that the classical definition of prob-

ability is based upon the concept of equal likelihood, an equivalence relation

between events. This definition was only possible when the sure event was de-

composable into a finite number of equally likely elementary events. The theorems

I have just shown give the possibility of defining a probability measure even in

cases when the number of elementary events is infinite, provided the equal likeli-

hood relation satisfies certain additional properties. For a detailed discussion of

this problem, see [3].

As a simple example of the use of cardinal algebras as values for abstract

measures, consider the following:

Suppose we throw a ball along the floor, following a line / perpendicular to a

wall from which it will rebound : We want to determine the probability of the ball's

stopping in a certain area of the floor. It is clear that two areas are equally likely

iff they are symmetric with respect to the line /. It is also clear that not every set is

comparable and that we cannot assign a numerical probability to all sets (or even

to all Lebesgue measurable sets), that is faithful to the equal likelihood relation.

It is even true that the sets to which we can assign a numerical measure do not

form a a-ring (or even a ring). In this case, it would be best to consider the cardinal

algebra of equivalence classes as defined in 2.2, with respect to the group of

symmetries around /, as values for the measure (cf. [3]).

B. Lebesgue measure in Rn. Let us take £ as defined in 2.4, taking as Jf the

<7-field of Borel sets, and as G, the group of translations of Rn. Then, as there is a

measure in Jf that is invariant under translations, namely Lebesgue measure,
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2.10(f) is true, taking for S any set of positive finite measure, in particular [0, 1]".

Conditions (ii), (iii) of 2.10 are not necessary. The next few theorems give a useful

way of showing that (ii) is satisfied.

We assume as before that Jf is a a-ring of sets, £ a refining and countably

additive equivalence relation between elements in Jf, S e X'. We also assume all

the definitions of the last section.

Lemma 3.1. Suppose that B, An e JT, BsS, An+1^An^Sfor all w<oo. Then if

B<Anfor every n<co, B<(~)n<m An.

Proof. Let *n = P(An), ßn = P(S~An), ß=P(B), a = P(S). So, a, ß, «„, ßn e 33 for

all n<co. We have osB+1^aB and an+ßn=a for all «<co. It is clear that a = p(S)

is finite (cf. 4.10T). Then by 4.24T, Hn<oo «„, Un<oo ßn exist and

n «n+ U A, = «.
n< oo n< oo

But Un<co p(S~An)=p((Jn<x (S~An)), because Un<co r(S~An)=T(Vn<00 (S~AJ)

and 33 is homomorphic to 91. By the same reasons:

PÍO An\ + p(U (S ~ An)\ = p(S) = a
\n< oo        I \n < oo /

and

H   «n + PfU   {S~A¿\ =«.
n< oo \n< co /

As a is finite, p(P|n<«» ^n)=rin<co ««• As we have£5;an for all n<co, j9^Hn<« «n

= P(rin<« ^„), i.e. 5<nn<co ^n-

Theorem 3.2. Leí <?£ Jf" a«¿¿ /eí ¿T ¿>e i/ze monotone class generated by S. Then

if for all A, B e S with A^S, B^S we have A-KB or B-KA, the same is true for all

pairs of elements of Ct subsets of S.

Proof. Define Xx for all ordinals A^O (the first uncountable ordinal) by

recursion as follows:

(i)     X0 = S;

XA = r H A'i : 3/c < A A'i e JfK and A¡+1 s A¡ for all / < oo| if A is odd,

<^a = / U A'i : 3/í < A A", e J^ and Xi+1 3 A'i for all z < co\ if A is even.

Then we have JfA<^JfK if A^/c and JT=J>^. I shall prove by transfinite induction

on A: If A, Be XA with A ̂ S, BçS, then A<B or B< A.

(i) The condition is true for X0 by hypothesis.

(ii) Suppose A odd and claim proved for ctK with k < A.

Case 1. Suppose T, A,e \JK<XX~K, *i+i = *i for all i<oo. If Y<Xt for all

z'<co, then T^D¡<co A'i by Lemma 3.1. If there is an z'<oo such that X,-^Y,

then Hi<» XX<Y.
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Case 2. X¡, F¡ g \Jk<„ JfK, Xi+1c*¡, Fi+1ç F, for all ¿<oo. Then by Case 1,

0f< oo Xi-K Y i for every /< oo or there is an i< oo such that Yi<.(~)i< x Xx. Again by

Case 1, Of < o» Xt and H> < oo F¡ are comparable.

(iii) Suppose A even and claim proved for JfK, k<X. There are two cases similar

to (ii) as, clearly, if Xt Q Xi+x< Y for all i < oo, \J( < „ Xt< Y.

As a particular case of this theorem, we have that if Jf is the a-ring generated by

the ring 3? and all elements of 38 subsets of 5 are comparable, then all elements of

Jf, subsets of >S are comparable.

Let us consider now the case of Än. Let Jf be the class of Borel sets, G the group

of translation, S=[0, l]n. Define £ as in 2.4.

Theorem 3.3. For all A, Be Jf A^S, B^S we have A<B or B<A.

Proof. Consider the field J5" that contains all finite unions of cubes In where /

is an interval of R with rational endpoints. Then Jf is the <j-field generated by !F.

It is easy to see that all hyperplanes parallel to any axis are negligible. So, cubes

with sides of the same length are equivalent because faces are negligible. As all

intervals in ¡F have rational endpoints, any finite union of cubes can be considered

as the finite union of equivalent cubes. This shows that all elements of !F subsets of

S are comparable. So the theorem follows from 3.2.

Theorem 3.4. There is a unique countably additive measure p. defined in Jf such

that p.(S)=l, p.(A) = p.(B) iff Ax B.

Proof. 2.10(i) has to be true, as remarked before.

2.10(ii)is true by 3.3.

2.10(iii) is obviously true.

£ is a countably additive, refining equivalence relation between elements of Jf

as remarked after 2.4. So, Theorem 2.10 applies and the result is obtained.

From this theorem we obtain some new results about Lebesgue measure in Borel

sets and translations, namely:

Corollary 3.5. Let Jf be the family of Borel sets of Rn, X, the Lebesgue measure

on Jf, _ the equivalence by countable decomposition over Jf under the group of

translations and S=[0, l]n. Then

(1) X(A) = 0 iff A is negligible, i.e. there are A0, Ax,...eJf such that A¡n A¡ = Q

for i^j, A^S and A^Afior all /'<oo.

(2) X(A) = X(B) iff there is a negligible set C e Jf such that Au C^Bu C.

It is clear that it is possible to replace Jf by the tr-algebra of measurable sets

in 3.5.

3.5.(2) is similar to a theorem of Banach and Tarski [1]. They proved directly

(2) with "negligible" replaced by "of measure 0". The Banach-Tarski result was

also obtained as a corollary in Maharam's papers [4] and [6].
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Theorem 2.11 is not applicable to Lebesgue measure. If it were we would have for

sets of positive measure A, B

X(A) = X(B)   iffA^B.

But it is evident that if A £ B then A and B are of the same (Baire) category.

On the other hand, we know that there are sets of different categories that have the

same positive measure.

However we have the following:

Corollary 3.6. Let A, B be Lebesgue measurable sets with nonempty interiors.

Then X(A) = X(B) iff A^B.

Proof. I shall give the proof for Borel sets A, B with nonempty interiors. It is

easy to generalize for measurable sets. It is clear, from 3.5, that if A^B then

X(A) = X(B).

So suppose X(A) = X(B). By 3.4 we get AxB, i.e. p(A) = p(B). Hence there is a

y e 9Í such that

(1) T(A) + y = r(B) + y and r(S)+y=r(S).

As A, B have nonempty interior, there are cubes A', B' of volume some r>0,

included in A and B respectively. Now, T(A') = rr(S) and T(B') = rr(S). From (1)

we get, rT(S) + y = rr(S) by 1.12. As r(A)^rr(S) and r(B)^rr(S), we get r(A) + y

= t(A), r(B)+y=r(B). So t(A) = t(B) and A^B.

The next corollary gives a new characterization of null sets besides the one

given in 3.5(1).

Corollary 3.7. Let A be a Lebesgue measurable set. Then X(A) = 0 iff for every

open set B there is a B'^B such that A^B', B' measurable.

Proof. As usual, I shall prove the statement for Borel sets.

We know from 3.5 that X(A)=0 iff A is negligible, i.e. t(A) + t(S) = t(S). It is

clear that t(S) is completely divisible. So from 1.12 we get t(A) + t(S) = t(S) iff

t(A) ^ rr(S) for every positive real number r.

But if B is an open set, then as in 3.6 we get an r > 0 such that rr(S) ^ t(B). So

A(^)=0 iff t(A)^t(B) for every open B.

It is well known that there is a set of second category and of measure 0. As it

was mentioned above, the relation ^ preserves category. Hence from 3.5 we can

infer immediately :

Corollary 3.8. In any open set there are countably many disjoint sets of second

category that have measure 0 and are equivalent to each other.

As Choquet remarks [2], Lebesgue measure is rather crude as it does not respect

category and does not distinguish the different sorts of null sets. Sets so different as

finite, countable, of the power of the continuum, of second category are all lumped

together as null sets. He suggests replacing the real numbers by another structure
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for values of the measure. I think that a natural structure would be 91, the closure

of the algebra given by {r(A) : A e Jf} (Definition 2.2). It is a cardinal algebra and,

hence, it has many properties in common with the real numbers (see [8]). On the

other hand, if t(A) = t(B) then A and B are of the same cardinality and of the same

category. I think it would be worthwhile to investigate this algebra. In it the equiv-

alence classes (types) given by sets with nonempty interiors plus the empty set

form a subalgebra isomorphic to the additive algebra of nonnegative real numbers.

But, as was pointed out above, there are other types beside these.

The main problems left open are the following :

(a) A simplified version of the condition: "5 is not negligible". As it stands

now, it is very difficult to prove directly. If we had a direct proof that did not in-

volve the construction of the measure then we would have a new construction of

Lebesgue measure.

(b) The generalization of Theorem 3.4 to arbitrary locally compact topological

groups.
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