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1. Introduction. In this paper we solve a variational problem generated by an

optimal filter problem with correlated noise. The solution of the variational

problem will furnish the solution to the filter problem. The variational problem,

which we call the " G-problem," is the following.

Problem (G-Problem). Let Y denote the class of functions y that are z'nLJO, oo],

that are absolutely continuous, that satisfy

(1.1) j»(0) = 0

and have the property that the function G defined by

(1.2) G(u) = -y'(u) + e~u + e-u PeY(t)dt
Jo

is in L2[0, oo]. Minimize the functional

(1.3) J(y) = ^ \y\ dtj + ^ G2 dt

in the class Y.

The filter problem that generates the variational problem will now be described.

A precise mathematical formulation of the filter problem and its relation to the

variational problem will be given in succeeding sections.

Let <t> denote the class of functions/of class C(2)on(—co, co) such that |/"(/)| ¿ 1

for all /. A function/in $ represents an incoming signal. This signal is accompanied

by a "noise" g. The problem is to filter out the noise for the whole class $ in an

optimal fashion using the following criterion of optimality. If the function K

represents the filter, then at time / the deviation between the actual signal f(t)

and the filtered signal is given by

Y(0 =/(/)- r K(u)[f(t-u)+g(t-u)] du.
Jo

Let E denote the expectation operator, let N denote the family of noise sample

functions, and let m be defined by

m = inf sup sup EN[(W(t))2].
K    tëO     <S
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If m is finite, we wish to determine a filter A* that achieves the value m. A precise

mathematical formulation will be given below.

The present criterion for the optimality of the filter is different from the criterion

of Wiener [1]. Our criterion is a reasonable one in problems such as the following

tracking problem. The tracked object is permitted to maneuver in a fashion not

known in advance by the tracker. The only information available to the tracker

is the bound on the absolute value of the acceleration of the tracked object. The

tracker wishes to guarantee that the maximum deviation (averaged over all

noise sample functions) of the actual position of the tracked object from the

position read by the tracking device does not exceed a given error.

In [2] we considered this problem, assuming "white" noise. We solved a general

variational problem whose solution in a certain special case furnished the solution

of the optimal filter problem. In this paper we shall consider correlated noise,

using the special correlation function exp(— \x\)ß. For treating correlated noise

it will be necessary to consider filters that are Borel measures. It will turn out,

however, that for our particular problem the optimal filter is the measure resulting

from a function of bounded variation with precisely one jump at the origin.

2. Reduction of filter problem to a variational problem. It is well known (see

e.g. [3, Chapter 8]) that to every bounded Borel measure p. on [0, oo) there corre-

sponds a function y' of bounded variation on [0, oo) and left continuous, such that

(2.1) y'(u) = p.([u, co)) = T dp.
Jv

and such that

(2.2) lim y'(u) = 0.

Conversely, to every left-continuous function y' of bounded variation on [0, co)

and satisfying (2.2) there corresponds a Borel measure p. related to y' by (2.1).

We shall, as customary, write the integral of a function/with respect to the measure

p. over a set A as \Afdy' and we shall use the notation \Af\dy'\ to denote the

integral of/with respect to the corresponding total variation measure.

Let C be an even, continuous and nonnegative function on (-co, co). The

function C will be the correlation function for the noise.

Definition 1. Let Y denote the class of functions y' that are of bounded variation

on [0, co), are left continuous, satisfy (2.2), satisfy

(2.3) J" u2\dy'\ < oo,

and satisfy

(2.4) T P C(v-u)\dy'(u)\ \dy'(v)\ < co.
Jo   Jo
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Since (2.3) holds and since

/•oo /»oo

r2|a>'| S u2       \dy'\,
Ju Ju

we get

(2.5) |/(«)| = I f dy'\ <  C \dy'\ = o(u~2).
I Ju Ju

Hence y' is in LJ0, oo), and the function y defined by

(2.6) Á«)=-[/(t)dt

satisfies the relation

(2.7) y(u) = o(u-i).

From (2.4) and Fubini's theorem we get

T P C(v-u)dy'(u)dy'(v)=  P dy'(v) f° C(v-u) dy'(u)
(y n\ Jo     Jo Jo Jo

= ^ dy'(u) P C(v-u)dy'(v).
Jo Jo

We now formulate the filter problem. Let 3> denote the class of functions / of

class C<2) on (-co, oo) such that |/"(f)l á 1 for all t. Let A denote the family of

noise sample functions such that

(2-9) £„(£) = 0,      EN(g(t)g(t-T)) = C(r),

where E denotes the expectation operator. Let

^(0 =/(')+ ^ f(t-u)dy'(u)+ r g(t-u)dy'(u)
Jo Jo

where y' is in Y. Note that our filter is now a Borel measure, — dy'. Let

m = inf sup sup Fw[T(r)2].
r   eso    «

Filter Problem. Determine whether m is finite. If m is finite, determine whether

there exists a y' in Y for which m is attained. If such a y' exists, and is unique, find it.

We now transform this problem into a variational problem. It follows from the

definition of T, from (2.8), and from (2.9) that

(2.10) EN[(Y(t))2] - [f(t) + ̂ fi(t-u)dy'(u)Y + j°j^C(v-u)dy'(u)dy'(v).

Since \f"(ü)\ Ú 1 we have/'(t<) = 0(|i/|) and./(w) = 0(u2). From this and from (2.3)

it follows that the first integral on the right in (2.10) exists. Since/is of class C<2)
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and y' is in LJO, co], we may integrate by parts twice and use the relations f(u)

= 0(u2),f'(u) = 0(\u\), (2.5), (2.6) and (2.7) to get the relation

rf(t-u)dy'(u) = -y'(0)f(t)+f'(t)y(Q)+ f°° f"(t-u)y(u) du.
Jo Jo

If we substitute this expression into (2.10) we get

^tCF(O)2] = [(l-y'(0))f(t)+f'(t)y(0) + ̂  f"(t-u)y(u)duj

+ r f C(v-u)dy'(u)dy'(v).
Jo   Jo

Since we can always add a linear function to / without leaving the class <I or

altering the value of the integral

^f"(t-u)y(u)du,

it follows that En[ÇV(t))2] cannot have a finite supremum over <D unless

(2.11) J'(0) = 1,       X0) = 0.

If we impose (2.11) we get

- /  /.QO \ 2 /»oo     /»oo I

w = infsupsup   I I    f"(t—u)y(u)du) + C(v — u)dy'(u)dy'(v)\,
V   tso    *     LVJo /       Jo    Jo J

where the infimum is taken on the subset F' of F defined by (2.11). Since

/»oo /»oo

SUP        f"(t — u)y(u)du=        \y(u)\ du
irisi Jo Jo

we finally get

{/  /»oo \ 2 /»oo     /»oo >

(I     |j|û?«)+ C(u-v)dy'(u)dy'(v)l

Thus, we have reduced the filter problem to the following variational problem.

Problem 1. Minimize the functional

(2.12) JM) = (£° \y\ d»f + [ [ C(u-v) dy'(u) dy'(v)

in the class A of functions y that are absolutely continuous on [0, oo), that are in

Li[0, oo], that satisfy (2.11), and possess derivatives y' such that y' belongs to F.

In [2], where we treat the case of "white" noise, Cis the delta function and the

functions y' are taken to be absolutely continuous. The variational problem

obtained there differs from this problem in that the double integral in (2.12) was

replaced by j" (y")2 du. The reader may find it instructive to compare the argu-

ments and results of this paper with those of [2].
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3. The G-problem.   In this section we formulate a problem related to Problem 1

for the case in which

(3.1) C(u) = e"|u|/2.

The new problem is obtained by transforming the double integral in (2.12).

Define

(3.2) G(u) = -2 I"" C(u-v) dy'(v) = -e~u f ev dy'(v).
Jo Jo

Upon integrating by parts and using /(0)= 1, we get

(3.3) G(u) = -y'(u) + e~u + e-u f" evy'(v) dv.

Clearly, G is measurable and G(u) is finite for all u ̂  0. Therefore, we may consider

/»oo /»co |   /»u

G\u) du = 2\    \G(u)\\      C(u-w) dy'(w) du
Jo Jo I Jo

^ 2 P \G(u)\i f C(u-w)\dy'(w)\\ du

(3.4) = 2 P \dy'(w)\ P \G(u)\C(u-w) du
Jo Jw

= 4 P \dy'(w)\ P C(u-w) du I f C(u-v) dy'(v)
Jo Jw I Jo

^ 4 P |a>'(w)| C C(u-w)du C C(u-v)\dy'(v)\.
Jo Jw Jo

Since u^v and «^h>, we may write

pu rw fu

(3.41) C(«-ü)|ö>'(d)| =       C(«-i;)|ay(iO|+ C(u-v)\dy'(v)\.
Jo Jo Jli) + 0

We remind the reader of the explanation of notation given in the first paragraph

of §2. If we substitute (3.41) into the last member of (3.4) we get

(3.5) j™ G2(u) du è h + I2,

where

/»GO /»CO /»ÎU

Ix = 4\    \dy'(w)\       C(u-w)du      C(u-v)\ dy'(v)\
Jù Jw Jo

/2 = 4 P |a>'(»| P C(u-w)du C    C(u-v)\dy'(v)\.
JO Jw Jw+0

We shall show that the integrals Ix and I2 are finite. It will then follow from

Fubini's theorem and the chain of inequalities (3.4) that we can remove the

absolute value signs throughout (3.4) and in the integrals Ix and I2 and replace
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the inequality signs by equal signs. In particular, equality will hold in (3.5) with

the absolute value removed from the integrals 7». and I2.

In /x we interchange the order of integration in the last two integrals to get

/» 00 /»tü /» 00

h = 4       |d/(w)|      \dy'(v)\\    C(u-v)C(u-w)du.
Jo Jo Jw

If we use (3.1) and recall that u^v, u^w, we obtain on integrating that

1     /»oo e»w

(3.6) h = 2)0 e~w\dy'^)\ J0 «W(»)|.

The right-hand side is finite by virtue of (2.4).

In I2 we also interchange the order of integration and get

h = 4 i" \dy'(w)\ r    \dy'(v)\ P C(u-v)C(u-w) du,
Jo Jw+O Jv

which is readily seen to yield

(3.7) I2 = \ ^ e™\dy'(w)\ P   e^\dy'(v)\.
*• JO Jw+O

The right-hand side is finite by virtue of (2.4).

Since Ix and I2 are finite we may remove the absolute values from /j and I2 in

(3.5) and equality will hold in the resulting relation. Moreover, from the argu-

ments in the two preceding paragraphs and from Fubini's theorem it follows that

if we remove the absolute values from I± and I2, then the resulting integrals are

given by the right-hand sides of (3.6) and (3.7) with the absolute values removed.

Hence we conclude that

/•OO 1        /»OO flW 1       /»OO /»OO

G2(u)du = ^\    e-wdy'(w)\    e° dy'(v) + ±       ew dy'(w) \       e~v dy'(v).
Jo ¿Jo Jo L Jo Jw + O

Hence

r G2(u) du = ^(   dy'(w) P e-l«--»l ¿y^y

Using (2.8) we finally get

n g2(u) du=\r r e-i»-«i <//(») <*>»
(3.8) Jo ¿Jo   Jo

= P r C(w-v)dy'(w)dy'(v).
Jo   Jo

Thus, G is in L2[0, oo] and we may write (2.12) as follows:

a oo \ 2 /»oo
\y\du) +Jo   G2du.

These considerations suggest the G-problem formulated in the introduction.
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Let Fr be the subset of Y consisting of functions y whose derivatives y' are in

T. The discussion that led to formula (3.8) shows that the class A of Problem 1 is

a subclass of Fr. Hence Aa Frc Fand so Fr and Fare not void. The discussion

that led to formula (3.8) also shows that if y is in A then

(3.9) Jx(y) = J(y).

The formulation of the G-problem was suggested by the filter problem and

Problem 1. Assuming for the moment that the (/-problem has a solution z, it is

not a priori clear that z will furnish a solution to the filter problem. If, however, it

turns out that z' is in Y, then z will furnish a solution to Problem 1 and to the filter

problem in the following manner.

Define

£'(«) = z'(«).      « > 0,

(3.10) £'(0) - 1,

{(«) = £ V dt.

Then £,(u)=z(u) for all u, t, satisfies (2.11) and £' is in Y. Hence £ is in A. Therefore,

by (3.9)

(3.11) m = Ji(Í).

On the other hand, /(£)=J(z)¿J(y) for all y in Y, and so again by (3.9) and (3.11)

Jx(0 ¿, Jx(y)   for all y in A.

But this says that £ is a solution to Problem 1. Hence £' is a solution of the original

filter problem.

We shall show that the G-problem has a unique solution z and we shall find this

solution. From the form of the solution it will be clear that z is in YT. Moreover,

we shall show that the solution z has an absolutely continuous derivative z'. Hence

the function £' defined in (3.10) is unique, except perhaps at the origin. At the origin,

however, we must have i'(0) — 1 for £' to be a solution of the filter problem. Hence

£' is unique, and the filter problem has a unique solution.

4. Existence and uniqueness of solution to G-problem. In this section we prove

the following result.

Theorem 1. The G-problem has a unique solution.

We begin the proof by obtaining a second relation between y and G that is

equivalent to (1.2). For convenience we shall call functions y and G that are

related by (1.2), related functions. If we define

Gm(v) =  P G dt,
Jo
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then it follows from (1.2) and (1.1) by straightforward integration that

Gw(v) = l-e~v-e-v C ey(t)dt = l-y'(v)-G(v).

Further integration from 0 to u and the use of (1.1) yields

(4.1) y(u) = u- Gm(u) - Gw(u),

where G™(u)=¡u0Gm dt.

Equation (4.1) is the desired relation. To show its equivalence to (1.2) we start

with (4.1) and differentiate both sides to get

(4.2) - y'(u) +1 = G(u) + Ga\u).

Hence

-eu(y'(u)-l) = e«(G(w) + G(1>(«)) = (euGm(u))'.

Integration gives

Ga\u) = l-e-u-e~u [Uéy'(t)dt.

If we substitute this into (4.2) we get (1.2).

Let m = inf [J(y) : ye Y]. Then m^O and there exists a sequence of functions

yn in F such that limn_œ J(yn) = m. Hence there exists a constant M>0 such that

(4.3) r\yn\dtúM,        r (Gn)2 dt û M,
Jo Jo

where Gn is related to yn. From the second inequality in (4.3) and the weak com-

pactness of closed balls in L2 it follows that there exists an element F in L2[0, oo]

and a subsequence of the sequence {yn}, which we relabel as {yn}, such that

(4.4) Gn-^F   weakly in L2[0, oo].

Define

(4.5) z(u) = u- f 7X0 dt- \   (u-t)F(t) dt
Jo Jo

= u-Fm(u)-F^(u),

where 7"(i), z'= 1, 2, is the z'th integral of F with lower limit of integration taken as

zero. From (4.1) and the definition of Ga) and G<2) we have

yn(u) = u- f Gn(0 dt- f (z/-0Gn(0 dt.
Jo Jo

It now follows from (4.4) that for all u 2:0,

lim yn(u) = z(u).
n-* oo
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Hence by Fatou's Lemma and (4.3) we get that

(4.6) P \z\ dt Ú lim inf P \yn\ dt è M.
Jo i-00    Jo

Therefore, z is in Lx[0, oo]. It is clear from (4.5) that z is absolutely continuous and

that z(0)=0. From (4.5) and the equivalence of (4.1) and (1.2) we get that F and

z' are related by (1.2). Hence since Fis in F2[0, oo], the function z is in Y.

We now show that z is a minimizing element; i.e. that J(z) ^J(y) for all y in Y.

Since F is the weak limit of G„ and since

(»GO /  /»CO \ 1/2//»go \l/2

J>"'s(l <**) (1H •
we get that

/•co / /»oo \l/2 / /»oo \ 1/2

F2dtú\\    F2dt\    lim inf        G2 a7 I    .
JO VJo / n-»oo      \Jo I

Therefore,

P F2 dt S lim inf P G2 dt.
JO n-»oo      Jo

Using this inequality and (4.6) we get

/  /»co \ 2 /»co /  /»GO \ 2

/(z) = I       |z| A ) +      F2 A ^ lim inf        \yn\ dt )
\Jo I Jo "-"*>     \Jo /

/»oo r / /»co \ 2 /»go "I

-Him inf      G2 Jr = lim inf III    \yn\ dt )+\    G2dt\
ti-h-oo     Jo n-»oo      LVJo / Jo J

= lim J(yn) = m.
TI-.00

On the other hand, since z is in Y, we have J(z)^m, and so J(z)=m, as asserted.

We next show that the minimizing function z is unique. Our first step is to

establish the following lemma.

Lemma 1. Let x and y be two functions in Y. Let a^O, ß^O, a+ß = l. Then

ax+ßy is in Y and

(4.7) J(ax + ßy)112 Í aj(x)ll2 + ßj(y)112.

If a=0 or ß=0, then there is nothing to prove. So suppose a>0 and ß>0. Let

G be the function related to x and let G' be the function related to y. Let w = ax+ßy.

Then, clearly, w is in Lx[0, co] and w(0) = 0. If G" denotes the function related to

w then it follows from (1.2) that G" = aG+ßG'. Hence G" is in F2[0, °o] and so w

is in Y.

If we let || • • • \\x denote the Lx[0, oo] norm and let || • • • ||2 denote the F2[0, oo]

norm, then from (1.3) we get

J(w) = ||H|2+||G"||¡ = H«+/3^||2+||aG+iSG'|^

i(a\\x\\x+ß\\y\\x)2 + (a\\G\\2+ß\\G'\\2)2.
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Since L2 is completely convex we have that if equality holds then G' = kG for some

constant k > 0. Upon squaring and collecting terms on the right we get

(4.8) J(w) è *2J(x)+ß2J(y)+2*ß(\\x\\1\\y\\1 + \\G\\2\\G'\\2),

where equality implies G'=kG for some k>0. A straightforward calculation shows

that

^yW-(lkl|1|>'l|1+l|G||2||G'||2)2 = (||x||1||G'||2-|b||1||G||2)2.

Thus

J(xY2J(yY'2 2: llxlUHU + HGyiG'll,.

Substituting this into (4.8) gives

J(w)112 é [ccJ(x)ll2+ßJ(y)112],

which is the desired result.

We have also established the following corollary.

Corollary. If equality holds in (4.7), then G' = kG for some k>0.

Let us now suppose that there are two minimizing functions z and z0 with

related functions Fand F0. Then by Lemma 1, (z+z0)/2 is in Fand

m112 í J((z + z0)l2)112 Ú 7(z)1'2/2+7(z0)1/2/2 ^ m1'2.

Hence equality holds throughout, and by the Corollary we get that FQ = kF for

some k>0. Hence, by (4.1)

z(u) = u - Fm(u) - F™(u),       zQ(u) = u-kFm(u) - kF(2)(u).

If we subtract the second equation from the first we get

z(u)-z0(u) = -(l-k)(F™(u)+F™(u)).

If k t¿ 1, we can divide through by (1 - k) and get that F(1) + F™ is in L\[0, oo]. But

then, u=z(u)+Fa)(ü) + F{2)(u) would be in LJ0, oo]. Since this is impossible, we

get that k—l. Hence z=z0 and the uniqueness is established.

5. Characterization of solution.

Theorem 2. Let z be the minimizing function for the G-problem and let F be the

corresponding related function. Then z is characterized as follows:

(i) The function F is absolutely continuous and the derivative z' is absolutely

continuous.

(ii) There exists a finite set of points 0 = ao<a1< ■ ■ • <aN = X such that z(an) = 0
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for n = 0, 1, 2,..., A, z(u) = 0 ifu^X, and z(w)=¿0 for all other points u. On each

interval [an, an+1], w = 0, 1,..., A— 1, z is a quartic and for u in (an, an+1)

(5.1) Signum z(u) = (-1)",

(5.2) z<*>(u) = (-l)»/,

where

(5.3) / = P \z\ du.

Ifu^X, then

(5.4) F(u) = F(X)e«-"\

(iii) In each interval [an, an+1], n=0, 1, 2,..., A—2, the derivative z' has pre-

cisely one zero which occurs at an interior point of the interval (an, an+x). In the last

interval [an-x, a„], z' has precisely one zero in the interior and z'(aN) = 0.

(iv) At the zeros ax,..., aN_x the right- and left-hand derivatives z" and z" satisfy

the following relations

(5.5) z'<(an + 0)-z"(an-0) = /[CT(an + 0)-a(an-0)],

(5.6) z"(an + 0) = z>„-0),

where I is defined in (5.3) and a(w) = signum z(u).

(v) The value of the minimum is given by

(5.7) m = F(0)-F2(0)/2

and

(5.8) m =  P F(/>-' dt.
Jo

The proof of this theorem will be given below.

Theorem 3. The solution of the G-problem furnishes the unique solution to

Problem 1 and to the filter problem.

This follows from the discussion at the end of §3 and the observation that

Theorem 2 shows that z is in Yr and that z' is absolutely continuous.

6. Absolute continuity of F. In this section we shall prove that F is absolutely

continuous. It will then follow from (1.2) with G replaced by Fand y' replaced by

z' that z' is absolutely continuous. Conclusion (i) of Theorem 2 will then be proved.

The following lemma will be used in the proof of the absolute continuity of F.

Lemma 2. Let Vk denote the class of all functions r¡ of class C'*"-0 on [0, oo] that:

(i) vanish at the origin together with r¡',..., rfk ~1), (ii) vanish outside of a finite interval,

(iii) possess an absolutely continuous (k—l)th derivative. Let g be a function in

Fi[0, oo], let I be a positive constant, and for every r¡ in Vk let

(6.1) I P gyfk)dt   ^ I T \v\dt.
I Jo Jo
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Then g is of class C{k  " on [0, oo], and gik  " is absolutely continuous, and

(6.2) \gm(u)\ ï I.

The class Vk is clearly a dense subspace of Li[0, oo]. The function g defines a

linear functional A on Vk as follows :

Mv) = P
Jo

gr¡m dt

From (6.1) it is clear that A is bounded on Vk and ||A||fc^/, where ||A||fc denotes

the norm of A on Vk. Hence A can be extended to all of L±[0, oo] and the norm

|| A || of the extended functional will equal ||A||fc. Thus |A||^7. Therefore, there

exists a function h in LM[0, oo] such that ess sup \h(u)\ = ||A|| ¿/and

Afo) = P gr¡™ dt = P hr, dt
Jo Jo

for every r¡ in Vk. We now integrate by parts k times in the last integral. Since r¡

is in C(k_1) and 7¡a~1) is absolutely continuous, and since t¡, t¡',..., ijCk_1) all

vanish at the end points of the intervals on which r¡^0, we get the relation

/;
[g-H™]v™dt = 0,

Jo

where Hm is a kth integral of h. This relation holds for every rj in Vk.

Let us now fix an interval [a, b] and consider all functions r¡ in Vk that vanish

outside of [a, b]. We get

* [g-Hik>]v™dt = 0.
iJa

It now follows from an extension of the fundamental lemma of the calculus of

variations (see e.g. [4, p. 198]) that almost everywhere on [a, b]

g(u) = £T«(«)+i»fc_1(iO,

where Pk-i is a polynomial of degree k— 1. Clearly, we may redefine g so that the

preceding equality holds everywhere. Hence the function g has the asserted prop-

erties on [a, b]. Since [a, b] is an arbitrary interval, it follows that g has the

asserted properties on [0, oo].

We now prove that F is absolutely continuous. Let r¡ be any function in the

class Vx. Then for any real number e, the function yc=z + eTj is absolutely contin-

uous on [0, oo], and satisfies ys(0) = 1. Here, of course, z is the minimizing function.

From (1.2) we see that the function Gs related to ye is given by

(6.3) Ge(u) = F(u) + eoj(u),

where

(6.4) w(u) = —r¡'(u) + e-u f" ey(0<#.
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Since 7] is absolutely continuous and vanishes outside of a finite interval we see

that w is in L2[0, oo]. Hence Gs is in F2[0, co] and so ys is in Y. Therefore, if we let

m denote the minimum of the functional (1.3) we have the following:

a GO \  2 /»GO
\z + er¡\\  +       (F+eoS)2dt

aoo \    /   /»CO \ /*0O /»0O /»CO

|z| dt\{\    \v\dt\ + \e\a\    \v\2dt + 2e\    Fojdt + c2\    w2 dt.

Since F, w, and r¡ are in F2[0, co] and since z and -n are in Lx[0, co], all of the integrals

on the right are finite.

From the preceding inequality we get

-• r Fwdt ú wir \z\dt\(r \7i\dt\+\ç r \v\*dt+j r«2*.

If we divide through by positive e and then let e tend to zero we get

/•OO /»CO

-      Fœdt Ú I \    hi dt,
Jo Jo

where /is defined in (5.3). If, instead, we divide through by negative e and then let

e tend to zero we get
/•CO /»CO

-      Fwdt ^ -I \    \r¡\ dt.
Jo Jo

Upon combining the last two displayed inequalities, we get

(6.5) I P Foj dt I g / P \r¡\ dt.
I Jo Jo

If we now substitute the right-hand side of (6.4) into (6.5) and interchange the

order of integration in the resulting iterated integral we get

/»OO /»CO

(6.6) Fwdt=       gr,' dt,
Jo Jo

where

(6.7) g(u) = -F(u) + eu P F^e-'dt.
Ju

Since Fis in L2[0, co], the integral on the right in (6.7) is finite. The interchange of

order leading to (6.6) and (6.7) is justified because F(r){exp (-t)} is in Lx[0, co]

and r, vanishes outside of a finite interval.

If we now combine (6.6) and (6.5) we get

/»OO /»OO

gr, dt    ^ /        \t]\ dt.
Jo Jo
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Since 7] is an arbitrary element of Vx it follows from Lemma 2 that g is absolutely

continuous and satisfies (6.2). It then follows from (6.7) that F is absolutely

continuous.

The authors acknowledge their thanks to Professor Wendell H. Fleming who

suggested the present proof of Lemma 2 to replace a more complicated proof

originally given by us.

7. The Euler equation. In this section we deduce a necessary condition that the

minimizing function z must satisfy. This condition is the analogue of the Euler

equation in classical variational problems.

The minimizing function z is continuous. Therefore, the set £l={u : z(u)^=0} is

open and has a unique representation as the union of an at most countable number

of disjoint open intervals {K¡}.

Lemma 3. On each component K¡ ofQ. the function z satisfies the equation

(7.1) z<lT)(«) = -Hu),

where a(u) = signum z(u) and I is given by (5.3). Hence in the closure of each K¡ the

function z is a quartic. Moreover, on each component K¡, F is a quadratic and

(7.2) F"(u) = Ia(u).

Since z and Fare related functions it follows from (4.1) that

(7.3) z(u) = u- F(2>(«) - Fa\u).

Therefore, if we establish that Fis of class C(2> on components and satisfies (7.2),

it will follow by differentiation of (7.3) that (7.1) holds.

Let (a, b) be a component of Q. and let c and dbe real numbers such that a<c<d

<b. Let r] be a C(2) function that vanishes outside of (c, d). Then,

(7.4) v(c) = v(d) = i(c) = v'(d) = 0.

Also, r¡ is in Ki. For functions r¡ in Vx we showed in §6 that for every real e, the

function z + erj is in Y and the related function Gs is given by (6.3) and (6.4).

Let

aoo \ 2        /»oo
\z + er¡\ dt I   +        (F+ew)2dt.

Then, since z minimizes J(y) over Y, it follows that the real valued function <p

has a minimum at e=0. From the definition of 77 it is clear that for \e\ sufficiently

small,

signum (z(u) + ei?(z¿)) = o-(w).

Hence, for |e| sufficiently small,

(7.5) <p(e) =  Í   ° \z\ dt+ f (z + erj)adt+ P \z\ dtY + P (F+eœ)2 dt.
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From (7.5) it is clear that <p' exists for |e| sufficiently small. Since <p has a minimum

at e=0, we have <p'(0) = 0. If we compute <p'(0) and set <p'(0) = 0, we get

li'-nodt+i   Fwdt = 0.

If we now use (6.6) and the definition of r¡ we get

(7.6) / Í   ar¡dt+ C gr,'dt = 0.

If we set ox(u)=$ç o-dt=(u-c)a(u), ue(a,b), integrate by parts in the first

integral in (7.6) and use (7.4), we get

Í [-/*!+£#.* = 0.

It now follows from the fundamental lemma of the calculus of variations that on

[c,d]

g(u) = I(u-c)o(u)+A,

where va is a constant. Hence, for u in [c, d]

(7.7) g'(u) - Ia(u).

Since c and d are arbitrary real numbers satisfying a < c < d< b, it follows that (7.7)

holds for all u in (a, b).

Upon differentiating (6.7) we get that

(7.8) g'(u) = -F'(u)+g(u)   a.e.

Combining (7.7) with (7.8) gives

(7.9) Ia(u) = -F'(u)+g(u)

for « in a component Kf. If necessary, we can redefine F and F' on sets of measure

zero so that (7.7) holds everywhere on K¡. Since g is absolutely continuous, it

follows from (7.9) that F" exists on components. If we differentiate (7.9) and use

(7.7) we see that F is quadratic on components and that (7.2) holds. This proves

the lemma.

We emphasize that we have shown that on components g is linear (relation

(7.7)), Fis quadratic (relation (7.2)), and z is quartic (relation (7.1)).

8. Structure of Q.   In this section we shall determine the structure of Q.=

{u : z(u) + 0} and derive a useful integro-differential equation that z satisfies.

Lemma 4. There exists a real number A>0 such that z(u)=0fior all u^X.

Suppose the assertion false. Then either there exists a component of Ü of the

form (a, co), or there exists an infinite number of components (an, ßn) tending to
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infinity. The first alternative cannot occur. For by Lemma 3, z is a quartic on

(a, oo). Since z is in LJ0, co], this is impossible.

To rule out the other possibility we proceed as follows. Define

/•oo

(8.1) ip(u) = e"       e-lF(t)dt.
Ju

Then since F is in L2

1/2/  />oo \l/2/•oo /  /»oo X1'2/  f00 X1

e~lF(t)dt   g e"M    e~2t dt\    I       F2 A I

Thus iji(u) is defined for all u and

(8.2) 0(h) = 0(1)

as « -> oo. Moreover, i/< has an absolutely continuous derivative ^'. Differentiation

of (8.1) yields

(8.3) \ji(u) — \p'(u) = F(u)   everywhere.

Differentiation of (8.3) yields

(8.4) i//(u)-f(u) = F'(u)   a.e.

Upon differentiating (1.2) with G replaced by F and y' replaced by z', we get

(8.5) z"(u) = -F(u)-F'(u)   a.e.

If we substitute (8.3) and (8.4) into this equation we get

(8.6) z"(u) = ip"(u)-<p(u)   a.e.

From the definition of g in (6.7), from the definition of ^ in (8.1), and from (8.3)

we get

(8.7) g(u) = -F(u) + >p(u) = ip'(u)   everywhere.

Hence

(8.8) nu) = g'(u)   a.e.

For u in D, however, we have by (7.7) that g'(u) exists and is equal to Io(u). Hence

>p"(u) exists and

(8.9) jj"(u) = Ia(u),       ueQ.

Substituting this into (8.6) we see that

(8.10) z"(u)-Ia(u) = -ip(u),       ueù.

Since <p(u) = o(l) as «-> oo, we now obtain

(8.11) lim [z"(u)-Ia(u)] = 0,
U-» oo

where the limit is taken over values of u in Q..
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Let (an, ßn) be a sequence of components tending to infinity. It follows from

(8.11) that on all but a finite number of these components

signum z"(u) = signum z(u)

for all u in the component. Since z(an) = z(ßn) = 0, this is impossible, and the lemma

is proved.

We next derive an integro-differential equation that z satisfies. This relation will

enable us to obtain more precise information about the minimizing function z.

Lemma 5. The minimizing function z satisfies the following relation:

(8.12) / P \z\ dt+ P F2 dt = X(u) + F(u)z'(u) + F2(u)ß,       0 è u < oo,
Ju Ju

where

X(u) = 0 ifz(u) = 0,

= -z(u)F'(u)   ifz(u) ¥= 0.

We point out that (8.12) is the analogue of (8.4) in [2].

Suppose that z(u)^0. Then u is an interior point of a component (a, ß), and

/•m çb r

I       \z\ dt = I \    \z\ dt + I     \z\ dt,
Ju Ju JB

where B is the union of components A, = (ay, ft) such that a¡ ̂  ß. Hence, since (7.2)

holds on components, since F is quadratic on components, and since z vanishes

at the end points of components we obtain

/•GO /»/J /•

I       \z\dt = I     ZCT dt + I     za dt
Ju Ju JB

(8.13) = f zF" dt+\ zF" dt =  ï" z dF'+ (   z dF'
Ju JB Ju JB

= -z(u)F'(u)- f z'F' dt-i z'F' dt.
Ju JB

In Lemma 4 we established the existence of a real number A such that z(v) = 0

for v^X. Hence

f z'F' dt = ([*+[ + [ + \ )z'F' dt,
Ju \Ju     Jb    Jz    Jn/

where

Z = {t:t -¿X, z(t) = 0, z'(t) = 0},

A = {t : t g A, z(t) = 0, z'(t) ¿ 0}.

The set A is clearly isolated and hence of measure zero. Therefore,

f^'MH)2'™
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Substituting this into (8.13) gives

(8.14) / P |z| dt = -z(u)F'(u)- f z'F'dt.
Ju Ju

We have already shown that z' is absolutely continuous. Therefore, since z(u)=0

for u^X, we have z'(A)=0. Hence if we integrate by parts on the right in (8.14)

and make use of (8.5) we get

(8.15)   / P |z| dt = -z(W)F'(h) + z'(w)F(w) + F2(k)/2-F2(A)/2- f F2
Ju Ju

dt.

From (8.5) it follows that F(0 + F'(0 = 0 for t^X, and so F(0=F(A)e-(t-A\

t Si A. Hence

(8.16) P F2 dt = F2(A)/2.

Using this relation in (8.15) gives

/ P |*| dt+ P F2 dt = -z(u)F'(m)+z'(k)F(z.)+F2(«)/2.
Ju Ju

Thus we have established (8.12) for u such that z(h)^0.

If z(u)=0, then either u is a limit point of Q. or u is an interior point of an interval

on which z(0=0. In the first case, there exists a sequence of points un in Q such

that lim,,...» un = u. For each un the formula (8.12) holds. From (8.7) we have that

for all t,

F'(t) = -s'(0+f(0 = -g'(t)+g(t).

In the proof of the absolute continuity of F we showed that g' satisfies (6.2). Thus

g' is bounded. From the continuity of g we get that g is bounded in any neighborhood

of u. Hence F' is bounded in any neighborhood of u. Therefore, if we let un -*■ u,

we get (8.12) for the case in which u is a boundary point of ß.

Suppose now that u is an interior point of an interval on which z vanishes. Then

if ß g oo is the right-hand end point of this interval, we have

/•oo /»OO /»oo /* 00 P>ß

I      \z\ dt+      F2 dt = /       |z| dt+      F2 dt+     F2 dt.
Ju Ju Jß Jß Ju

The first two integrals on the right fall under cases already established. Therefore,

we can replace them by the right-hand side of (8.12). From the definition of ß

and the continuity of z and z' it follows that z(j3)=z'(jS)=0, so that

(8.17) / P \z\ dt+ P F2 dt = F2(j8)/2+ P F2 dt.
Ju Ju Ju

On the interval [u, ß], z(0=0. Hence z"(0=0 on this interval and from (8.6)

we get that F'(0 + F(0 = 0 on [u, ß]. Therefore, for t in [u, ß],

F(t) = F(u)e-«-u)
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and so

f F2 dt = F2(u)ß-F2(ß)ß.
Ju

If we combine this relation with (8.17) we get

/ P \z\dt+r F2dt = F2(u)ß.
Ju Ju

Since z(u)=z'(u)=0, this equation is (8.12) in the case under consideration.

Lemma 5 is thus established.

Lemma 6. If z(a)=0 and z'(a) = 0 for some a^0, then z(u)=0 for all u^a.

From the definition of m we get

/»oo /»a /»a /»co /»co

m = 72+       F2 <ft = /      |z| dt+     F2 aV+7       |z| rfr-H       F2 A.
Jo Jo Jo Ja Ja

If we now apply (8.12) to the last two integrals and use the hypothesis z(a)=z'(a)=0,

we get

m

(8.18)

= / r |z| A + f F2 dt + F2(a)ß
Jo Jo

= ir 1*1 dt\\ r F2dt+(r \z\ dt\{[a \z\ dt\+F2(a)ß.

Let z0 be defined as follows

z0(u) = z(u)   if u ^ a,

= 0 ifu^a.

Let F0 be the function related to z0. Then it follows from (1.2) that for u^a,

F0(u) = F(u) and for u ^ a,

F0(u) = e-u\l+r éz'(t)dt] = ea~uF(a).

Thus, F0 is in L2[0, co] and z0 is in Y. Hence

J(z0) = ( i" \z\ dtY+r F2 dt + F2(a)ß.

Comparing this with (8.18) we see that J(z0)<m unless z(u) = 0 for u^a. Hence,

since z is minimizing we must have z(u)=0 for u^a.

Corollary 1. z'(0)/0.

If z'(0)=0, then by the lemma we have that z(u)=0 for all w. From (1.2) we get

that F(«) = exp (-u) for all u. Hence J(z)=%.
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Let 0<a</3<co and let y be any C(1) function that vanishes outside of (a, ß)

and does not vanish on (a, ß). It follows from (8.12) that

(8.19) J(y) = G2(«)/2+ P G2 dt,
Jo

where G is the function related to y. Since y(u) = 0 on O^u^a, we get from (1.2)

that G(w) = exp ( — u) for OrSzzSja. It now follows from (8.19) that J(y) = \. Since

the minimizing function is unique and J(y)=J(z) = \, it follows that z cannot be

the minimizing function. Hence z'(0)=0 is impossible.

We point out that we have also proved by this argument that m<\.

Lemma 7. 0 < m < \.

We have already shown that m < \. If m = 0, then from the form of J it is clear that

F=0. But if F=0, then by (4.1) z(u) = u. This is not possible, since z is in T.J0, oo].

Lemma 6 and its corollary provide us with further information about z and the

structure of Q as follows. From the corollary and the continuity of z' it follows

that Q. has a component, say Ku whose left-hand end point is a0 = 0. Since z is in

Li[0, oo] and z is a quartic on components, it follows that Kx is finite. Let ax

denote its right-hand end point. Thus z(a1) = 0. If z'(a1) = 0, then by Lemma 6

z(w) = 0 for all u^ax. If z'ia^^O, then there is a component K2 with left-hand end

point at a. and finite right-hand end point a2. Since z does not vanish on Ku the

signs of z'(ax) and z'(a0) are opposite. Hence z has opposite signs on Kx and K2.

By repeating the argument just made we see that either z(zi)=0 for u^a2 or

there is a component K3 on which the sign of z is opposite to its sign on K2. Pro-

ceeding inductively we see that Q. has one of two possible structures. Either O

consists of a finite number of contiguous components of finite length or of an

infinite number of contiguous components, each of finite length. Moreover, the

sign of z is different on contiguous components. We shall now show that it is not

possible for Q to have infinitely many components.

Suppose that Q had an infinite number of components Kj = (aj, ß3),j=l, 2, 3,....

Then by Lemma 4, these components cannot go off to infinity; that is, there exists

a real number A such that an -> A, ßn -> A. The function 0 defined in (8.1) is con-

tinuous. Therefore, from (8.11) we get that

(8.20) lim [z"(u)-Ia(u)] = -0(A),
u-a

where the limit is taken through values of u in Ü.

Suppose first that 0(A) g 0. Let P denote the set of components on which z(u) > 0.

Since z alternates in sign on contiguous components, every neighborhood of A

contains infinitely many components of P. Since a(u) = 1 for « in P, it follows from

(8.20) that for infinitely many components belonging to P, z"(u)>0 and z(w)>0

for all u in the component. This is clearly impossible since z vanishes at the end

points of a component.
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If i/r(A) > 0 we consider A, the collection of components on which z(u) < 0. Then

for u in A, a(u) = — 1. Hence for infinitely many components belonging to A,

z"(u) < 0 and z(u) < 0 for all u in the component. This again is impossible.

We summarize the results of the discussion in the following lemma.

Lemma 8. Q. consists of a finite number of contiguous components (an, an+1),

« = 0, 1,..., A—1, where a0 = 0 and aw = A<co. The function z has opposite signs

on contiguous components andz'(an)^0, n=0, 1,..., A— 1.

9. Completion of proof of Theorem 2. In this section we shall complete the

proof of Theorem 2. We first summarize what has already been shown and what

remains to be shown. Statement (i) of the Theorem was established in §6. If we can

establish that z(u) > 0 on the component Kx = (0, ax), then all of the statements of

(ii), with the exception of (5.4) will follow from Lemma 3 and Lemma 8. Equation

(5.4), however, is an immediate consequence of (8.5) and the fact that z(h) = 0 for

u ä A. Thus to prove the theorem we must establish that z(u) > 0 on (a0, <*i) and

that (iii), (iv), and (v) hold.

We first establish (v). If we set w=0 in (8.12) we get

(9.1) m = F(0)z'(0) + F2(0)/2.

From (1.2) we get

(9.2) F(0) = z'(0) + 1

and hence m = F(0) - F2(0)/2, which is (5.7).

To establish (5.8) we consider the function y(u; a) = az(u), where a is any real

number. It follows from (3.10) that the function Ga related to y(t; a) is given by

Ga(u) = aF(u) + (l-a)e~u.

Hence, for all a, y(u; a) is in Fand

<p(a) = (P |az| dtY+ P (aF-Kl-a)*;-')2^

= a2/2 + a2 fC°F2a'i+2a(l-a) P F(i)e-( ar+(l-a)2 P e~2tdt
Jo Jo Jo

has a minimum at a=l. Clearly, (p'(l) = 0. If we differentiate with respect to a,

set a= 1, and then set <p'(l) = 0 we get (5.8).

We next establish (iv). From (8.9), (8.7), and (8.6) we see that z" is differentiable

on components and that z"(u)= —if>'(u)=g(u) on components. Since g is con-

tinuous it follows that (5.6) holds. From (8.6) and (8.9) we get that on components

(9.3) z"(u)-Ia(u) = -<P(u).

Since ^ is continuous, we obtain (5.5).
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We next show that z(u)>0 on (a0, aj. As already pointed out, this will establish

(ii). The desired result will be a corollary of the following lemma.

Lemma 9. For each n=0, 1, 2,..., TV-1, z'(an)z"(an + 0) S 0.

Suppose that the assertion is false for « = i. For the sake of definiteness, suppose

that z'(a¡)<0 and z"(a¡+0)<0. Since z'(a¡)<0 it follows that z(u)<0 for all u in

the component (a¡, ai+1). Hence, z"(u) cannot be negative for all u in [a¡, cei+1),

and so z" has at least one zero in (ai; al+1). But since z(«)<0 on (o¡(, a(+i), we have

from (7.1) that (z")"=zlv = /on (au ai+1); i.e. the graph of z" is concave up. There-

fore z" has precisely one zero, say y( in (a¡, ai+1). Hence

(9.4) z'(«,+i-0) > 0.

It now follows that z' decreases from z"(a¡) > 0 to its minimum value at z'(yù and

then increases on (yiy ai+1). Since z(a¡) = z(ai+1) = 0, there is a point ßt in (y¡, ai+i)

such that z'fj3)=0. Hence since z"(u) >0 for u in (yu ai+i), we have z'(ai+1)>0.

Since z'(ai+i)>0, there exists a component (a,+1, a¡+2) with o£i+1<ai+2<co on

which z(w)>0. It now follows from (5.5) and (9.4) that

z"(«t+i + 0) = z"(ai+1-0)+2I > 0.

Thus z"(«¡+! + 0)z'(af+j.) > 0.

We can now repeat the argument and obtain the inequalities z"(ai+2—0)<0

and z'(ai+2)<0. Hence there is a component (ai+2, £"¡¡+3) contiguous to (oci+i, ai+2).

Proceeding inductively in this fashion we obtain the existence of infinitely many

components. This contradicts Lemma 8, and so the present lemma is proved.

Corollary 1. z(u) > 0 on (0, ax).

Suppose that the corollary were false and z(u) > 0 on (0, ctj). Then z'(0) < 0,

since z'(0)^0. From (9.3), (8.1) and (5.8) we get that

z"(0+) = /a(O+)-0(O) = -I-m < 0.

But by Lemma 9, we cannot have z"(0+) and z'(0) < 0. Hence z'(0) > 0, and z(u) > 0

on (0, a,}.

Corollary 2. z"(0+)=/- m < 0.

The equality follows from (9.3), (8.1), and (5.8). The inequality follows from the

lemma and the fact that z'(0) > 0.

To complete the proof of the theorem we must prove (iii). From Lemma 6 we

have that if z(a()=z'(aj)=0, then z(m)=0 for all ¡iïta,. Hence z'(a¡)^0, except for

z'(aN), which is equal to zero since z(h)=0 for all u^aN = X. Hence (iii) will be

proved once we prove the following lemma.

Lemma 10. In any component (at, a(+i), z' has precisely one zero.
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For the sake of definiteness, suppose that z(u)>0 on (ai; ai+i) and that (at, ai+x)

is not the last component. Then z'(°!i)>0 and z'(al+x)<0. Since z' is a cubic on

(ai, ai+i) it either has one or three zeroes (counting multiplicities) on (ce¡, a(+i).

If the second alternative holds, then z"—(z')' has two zeroes on (a,, ai+1). Since

z'(o¡i)>0, we must have, according to Lemma 9, z"(o¡i+0)<0. Since z" has two

zeroes on (a¡, ai+i), we must also have z"(ai+x—0)<0. Hence

z"(«1+i+0) = z"(ai+1-0)-27 < 0.

Since z'(ai+i) < 0, this is impossible.

We leave the adjustments in the arguments to cover the case in which (af, a,+1)

is the last interval, to the reader.

With this lemma the proof of Theorem 2 is completed.
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