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1. Notation.   Let D be the complex plane cut along the negative real axis, let

F»' be the upper half-plane and let D" be the right half-plane. We define

DR = Dn {|z| ^ F},    D'R = D' n {|z| ^ F}   and    D"B = D" n {|z| < F}.

We are going to consider a function u subharmonic in D or DH. Let M(r)

= sup|Z| = r zz(z) and m(r) = inf[zl=r u(z). We also introduce, for r>0,

v(r) = lim sup u(z),   v(r) = lim sup u(z)   and   u( — r) = max (v(r), v(r)).
z-»-r + iO z-»-r-iO

The symbols -r + z'O and -r—iO indicate that z approaches the negative real axis

from above and from below, respectively. By vx and vx, we mean the correspond-

ing upper limits for the function ux. In the whole paper, we write z=reiB.

In §3, bx and ¿>2 denote positive bounded functions.

2. The main result.

Theorem. Let A be a number in the interval (0, 1) and let u (^ — co) be a function

subharmonic in D that satisfies

(2.1) H(-r)-cos7rAM(r) ^ 0.

FAe« either limr^„o r~ÁM(r) = oo or both (A) and (B) hold:

(A) There exists a number a such that

(2.2) lim r~Áu(reie) = a cos AÖ,        |0| < w,
r-» oo

except when 0 belongs to a set of logarithmic capacity zero.

(B) Given 80, 0 < 0O < tt, there exists an r-set A0 of finite logarithmic length such

that (2.2) holds uniformly in {z \ 10| ̂  0O} when r is restricted to lie outside of A0.

Remark. When 1/2<A<1, condition (2.1) is interpreted in the following way

at points where u(—r)= +co.

(2.1a) lim sup (u( - x + iy) - cos v\ u(x+iy)) g 0.
z-»r

It follows that we also have

(2.1b) lim sup(w(x + z» + w(-x+z») S (1 +cos TrX)u(r).
z-*r
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If we choose A= 1/2 and assume that lim inf^^ r~ll2M(r) is finite, we obtain

the Ahlfors-Heins Theorem [1].

For the special case 0< A< 1/2, an outline of the proof has been presented under

the same title by M. Essén, Bull. Amer. Math. Soc. 75 (1969), 127-131.

The proof of the theorem is long. At the end, we find ourselves in the classical

Ahlfors-Heins situation. An important part of the proof is the study of convolution

inequalities which will be deduced for u. §§3-5 are devoted to preliminary dis-

cussions. In §3, we deduce a generalization of a theorem of Kjellberg on functions

subharmonic in the complex plane. In §4, we find the convolution inequalities

mentioned above. The lemmas on convolution inequalities which we need are

brought together in §5. The proof of the main theorem is given in §§6-9. A reader

who wants to follow the main stream of reasoning of this work should start with

§§6-9 and use §§3-5 as references.

The present paper is inspired by the papers [6] and [7] of Professor Bo Kjellberg

whom the author wants to thank for many stimulating discussions and, in par-

ticular, for removing an unnecessary assumption similar to (3.1) from the main

theorem. The author also gratefully acknowledges interesting discussions with

Mr. John Lewis.

Added in proof, May 27, 1969. After this work was completed, I received a

preprint of a paper "Subharmonic functions in a circle", by Hellsten, Kjellberg

and Norstad which a reader interested in the present article would do well to

consult. It will appear in the Arkiv for Matematik.

3. Two lemmas on the growth of u at infinity. In the whole paper, we are going

to assume that there exists a positive number r0 such that

(3.1) u is harmonic, bounded and has a negative upper bound in D,a.

Condition (3.1) is an unessential restriction on u. In fact, any subharmonic

function for which (2.1) is true can be modified near the origin in such a way that

(2.1) and (3.1) will be true for the new function. The proof is given after the proof

of Lemma 3.1 which is related to results in Kjellberg [6].

Lemma 3.1. Let u (^ —oo) be subharmonic in D and let u satisfy (2.1) and (3.1).

Then either lim,...«.,, r~KM(r) = co or both lim sup^« r~Ku(r)<co and

lim sup r~xu(± ir) < oo.
r-»co

Proof. We use the technique of Kjellberg [7, p. 8], modified so that we can use

it in DR, where A>0. The subharmonic functions considered here are bounded

from above (cf. (2.1b)).

Let wx be the harmonic function in D'B which has boundary values %(u(r) + v(r))

at x= ±r, O^r^ A, on the real axis and which has boundary values M(R) on the

semicircle. The function wx is a harmonic majorant of \(u(x + iy) + u(-x + iy)) in

D'R and we clearly have u(iy)Swx(iy), 0<y<R. Let wx be the corresponding
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harmonic function in the lower half-plane. We define w2 as the function harmonic

in Dr with boundary values wx on the positive imaginary axis. wx on the negative

imaginary axis and M(R) on the semicircle. It is clear that wx and wx are harmonic

majorants of u in D'B and D'R, respectively, and that w2 is a harmonic majorant

of u in D"R. We can use Poisson's formula for a semicircle (cf. e.g. Boas [2, Theorem

1.2.3]). In D"R, we obtain

u(r) Í (r/rr) j*o ^l—2-^-^yWl(it) + Wl(-it))dt

(3'2> +**»[$&&«» +

The last term can be written (r¡R)M(R)bx(r¡R), where bx is a positive bounded

function. In D'R, we have

(3.3)   wx(it) Ú (tHJ* {j2^2-w^2?j(u(s) + v(s))ds+(tlR)M(R)bx(tlR).

By (2.1), u(s) + v(s)^(1+costtX)u(s). We have similar formulas for wx and

u + v. Eliminating wx and wx, we obtain

(3.4)

u(r) Í (2r(l+eosrrX),rr2) [u(s)[ t^-^^j

■ (pr^-2-FTTv) dt ds+{r¡m+log (Rlr))M(R)b*(rlR)-

In the right-hand member, we first replace u by u+ =ma\(u, 0), secondly we

the complicated expressions containing F in the inner integral, and thirdly we

replace F by co in this integral and divide by r \ We obtain

(3.5)   r~xu(r) ^  V s~Au+(s)K(r, s) ds + R'ÁM(R)(r¡Ry-\l+log(R¡r))b2(r¡R)

where

(sjryr log (r/s)
(3.6) K(r, s) = (2(1 +cos ttX)^2) ■

The kernel K is the function (18) in Kjellberg [7]. A formal passage to the limit

of course gives formula (17) in [7].

If u+(r)=0, u(r) has a finite upper bound and there is nothing to prove. Suppose

that sup0<r<B r~Áu(r) = i'Áu(i) is positive. By (3.1), 0<£<F. Using formula (19)

in Kjellberg [7], we obtain J™ K(r, s)ds=l. It follows from (3.5) that

rhu(0 I™ K(£,s)ds Ú Const R-*M(R)(ilRy-*{log(RIO+l}.
Jr

Putting £/F = /, we obtain if M(R) is positive, that

txu(0 í Const R~XM(R)  sup it^^log (1//)+1]( f" -f-¡- logy dy\ '
o<í<i l Um y -i J
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The constants do not depend on A or f and hence £_am(£)S= const R~XM(R).

If Urn infB^00 R'XM(R)<ao, it thus follows that lim sup ,._„, r~hu(r)<co. Com-

bining (3.3) and (2.1), we obtain lim sup^« r~Ku(±ir)<co, and the lemma is

proved.

We now prove that (3.1) is an unessential restriction. Important parts of this

argument are due to Kjellberg.

In this discussion, let A(R, 8) = D n{z \\\z\—R\<8}. We first change the

subharmonic function u into a new subharmonic function u2 which is bounded in

a domain of the type A(R, 8). We observe that if (2.1) is valid for a function u,

it is also valid for u - C where C is a positive constant. If we know that u is bounded

above in a domain of type A(R, 8), we can subtract a positive constant and obtain

a nonpositive function in this domain which still fulfills (2.1).

We first claim that there exist positive numbers rx and 8, rx > 28, such that the

subharmonic function u is bounded above in A(rx, 28). This is obvious when

0 < A ̂  1 /2. When 1 ß < X < 1 it follows from (2.1) that there exists a positive number

rx such that u( — rx) is not +00. We know that boundary values of a subharmonic

function are upper semicontinuous and hence u is bounded above in a domain

A(rx, 28) for some S>0.

We can assume that u is nonpositive in A(rx, 28). Let g be the harmonic function

in A(rx, 28) which has boundary values u on the two circular arcs and boundary

value 0 on the part of the boundary which is on the negative real axis. The function

w2 defined by

u2(z) = g(z),       z e A(rx, 28),

u2(z) = u(z),       z e D-A(rx, 28),

is subharmonic in D and is bounded in A(rx, 8).

Hence u2 has an upper bound A and a lower bound b on the closure of

{z\r3 < \z\ < r2} n D.

Let w=peilS' = è, + ir¡. We now map D onto S={w | |ç4|<a7r} using the mapping

w=za where a > 0. A new function Ux is defined in S by Ux(w) = u2(z). If the positive

number a is small enough, there exists a function V defined by V(w) = CxÇ + C2,

weS, where Cx and C2 are constants, such that V(w)<b, \w\=r2, ¡falcar, and

V(w)>B, \w\ =rg, \<f>\ ^an. The function U2 defined in S by

U2(w) = V(w), M < ri,

U2(w) = max (Ux(w), V(w)),       ra3 Z \w\ £ ra2,

U2(w) = Ux(w), r$ < \w\,

is subharmonic in S. Going back to the z-plane, we obtain a function which is

bounded in Dt2 and which fulfills (2.1) for r^r2. Subtracting a positive constant,

we obtain a function subharmonic in D for which (2.1) and (3.1) are true.
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The author is indebted to Professor Bo Kjellberg for pointing out the following

lemma of well-known type (cf. e.g. Boas [2, Theorem 5.1.2]).

Lemma 3.2. Let u be subharmonic in D", let u(it) = lim sup2_(¡ u(z) and assume

that lim infria, M(r)/r = 0. We define

yx = lim sup t'Ku(it)   and   y2 = lim sup /"Aw(—/'/)
í-> + 00 (-. + 00

and suppose that they are finite. If'lim supr_„o r~xu(r) = 0, then yi+y22:0.

Proof. Let £>0. Then there exists a sequence {rn}x, lim,,^,*, rn = oo, and constants

Ax and A2 such that

u(r) > -er\ re{rn}?,

u(it) < Ax + (yx + e)tk, t > 0,

and

u(-it) < A2 + (y2 + e)tA, t > 0.

Using the Poisson representation formula for a half-plane, we obtain if r e {rn}x,

that

Ax + A2 + (yx+y2+2e)t> dtu(r) ¿ (rlrr) £

Let rn -*■ oo. We obtain

/»OO f \

~™ =   I     j2-^r[dt(Yi + Y2 + 2e).

Since e>0 is arbitrary, Lemma 3.2 is proved.

4. Integral inequalities. In this section we deduce several formulas by letting

F -s- oo in formulas like (3.4) and (3.5). We always assume that

liminfF"AAi(F) < co
R-* oo

and that F tends to infinity through a sequence {Rv}x such that M(RV) = 0(R\),

v—>oo.

Divide (3.4) by r x and let F -> oo. The positive kernel in the integral is less than

F(r, í), r~Ku(r) is bounded above at infinity and negative near the origin, and

hence

(4.1) r~Áu(r) S  i" s'hu(s)K(r,s)ds.

Since u^—cc, the left-hand member is finite for certain values of r and the

integral is absolutely convergent.

Suppose that the Poisson integral w of the boundary values of u in the upper

half-plane D' exists and is a harmonic majorant of u in D'. The corresponding
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majorant in the lower half-plane is called w. The nonnegative functions p and p

are defined by

(4.2) u(z) = w(z) - p(z),       Im z > 0,

(4.3) u(z) = w(z) - p(z),       Im z < 0.

Similarly, let a be the harmonic function in the right half-plane D" which has

boundary values u(it), t e R. Under the same assumptions as above, the non-

negative function q is defined by

(4.4) u(z) = o(z)-q(z).

Repeating the argument leading to (3.4) (with A = oo), we obtain the following

relation after division by r \

2(1 +cos nX)(r-xu(r)- P s-*u(s)K(r, s) ds\

(4.5) =  (X s-\v(s) + v(s)-2 cos rrXu(s))K(r,s)ds

-20+cos 7rA)(r-ty/O + O-1-^) j" s-x(p(is)+p(-is)) j^ ds}-

5. Lemmas on convolution inequalities. From the formulas (4.1) and (4.5), by

the change of variables r = ex,s—ev we can deduce convolution inequalities. In this

section, we have brought together some simple results on such inequalities which

will be needed in the sequel.

Let A be a nonnegative function in L\—oo, co) such that ¡I«, K(x) dx=l and

/"„ xK(x) dx=m^0 where the integrals are assumed to be absolutely convergent.

The function N is defined by

N(x) = P K(y) dy, x > 0,

= -f    K(y)dy,       x<0.

In Lemma 5.2, we also assume that

(5.1) |7Y(*)| ̂  Const K(x).

In the applications in this paper,

rpx{l - A)

(5.2) K(x) = (2(1 +costtA)/^2) e2x_x ,       0 < A < 1,

and w= — wtan (7rA/2) (cf. Essén [4, Formula (3)]). For this function, (5.1) is

obviously true with a suitable choice of the constant.

The functions K and K(r, s) of (3.6) are connected by the following formula:

(5.3) K(x-y) dy = K(r, s) ds,

where r=ex, s=ey.
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We study the convolution inequality

(5.4) <¡>-</>*K^0.

A solution of (5.4) is a locally integrable function </> such that <f> * K converges

absolutely and the inequality is valid.

For the concept of a slowly decreasing function, we refer to Widder [9, Chapter

IV (9b)].

Lemma 5.1. Let <f> be a bounded solution of (5.4). If lim^i-,«, fa{x) = 0, then

fax)=0 a.e.

Proof. Let 4> — <f>* K=h. Arguing as in Essén [4], we obtain

(5.5) f  h(t)dt = N* <f>(b)-N* fad).
Ja

Let b-*■ +00 and a-> —oo. Hence jZm h(t)dt=0, and since « is a nonpositive

function, «=0 a.e. It follows from (5.5) that N * <f> = 0. Since Ñ(t)¿0 (cf. Essén [4])

and <j> e A™, it follows by a standard argument that <f>(x)=0 a.e.

Lemma 5.2. Let <f> be a nonpositive solution of (5 A). If

(i) lim sup^oo (f>(x) = 0,

(ii) (5.1) is true,

then <f>-<f>* KeL\0, oo).

Proof. Put b=x and a=0 in (5.5). We obtain

4> * N(x)-4> * 7V(0) = T h(t) dt.

By (5.1) and (5.4), we have

|<¿ * N(x)\ Ú const \<f> * K(x)\ ¿ const \<f>(x)\.

Hence liminf,;-.« \)x h(t) dt\ <oo. Since « is nonnegative, «eA^O, oo), and the

lemma is proved.

We define

fa(x) = fa(x),       fa(x) ̂ -c,

= — c,        <f>(x) < —c.

Lemma 5.3. Let <f> be a nonpositive solution of (SA). If (i) lim sup*-.«, <f>(x) = 0,

(ii) there exists a positive constant c such that fa is slowly decreasing at infinity, then

lim,.^« c4(x)=0.

Proof. From (5.4), we deduce that fa^fa*K. By the same argument as in

Essén [4], we conclude that limx_„o fa,(x) exists. Hence

0 = lim sup <f>(x) ^ lim fa(x) ^ 0,
X-*oo JC-.00

fax) = fa.(x) when x is large and lim*,,«, <f>(x)=Q. Lemma 5.3 is proved.
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Lemma 5.4. Let (f> be a solution of

(5.6) <p-<p*K^ -P*KX-Q,

where (i) Kx eF1(—oo, oo) and is nonnegative, (ii) F and Q are nonnegative, locally

integrable and P * Kx is defined, (iii) </> — <f> * K e L\0, oo). FAe« F and Q are in

L^O, oo).

Proof. Integrating (5.6), we obtain

_co < _  T   T P(u)duKx(y)dy- f Q(y)dy,
J - oo   J -y JO

and the lemma is proved.

6. Preliminary study of u. We assume in the remaining part of the paper that

lim inf^oo r~xM(r)<co. In the other case, \imr^xr~KM(r) = co, and there is

nothing to prove.

It follows from Lemma 3.1 that a = lim sup,..,«, r~xu(r)<co. If a^ -co, we form

ux(z) = u(z)-arA cos A0. It is easy to check that the assumptions of the main

theorem of this paper are fulfilled by ux and hence that the formulas of §4 are

valid with u replaced by ux.

Lemma 6.1. a is finite and ux(r) is nonpositive, r^O.

Proof. Inequality (4.1) is valid for u. By the change of variables r=ex, s = ev,

we obtain by (5.3) a convolution inequality of the type (5.4) where the kernel K

is given by (5.2) and <f>(x) = e~Kxu(ex). Suppose a= -co. Since lim*.,.«, <p(x)= -co,

it follows that lim|X|^„o (<j>(x) — a)+ =0, where a is an arbitrary real number. From

the inequality, we deduce that

(<f>-a)+ ̂  (¿-a)* *K.

Applying Lemma 5.1, it follows that (<f> — a)+=0 a.e. Since (</> — a)+ is upper

semicontinuous, it follows that (</> — a)+=0. This is true for all real numbers a,

hence <f>=-co and hence also u(z)= -co, which is impossible. Hence a is finite.

Repeating this argument for (<f> — a) +, we obtain that (<f> — o¡)+=0. Hence ux is

nonpositive and the lemma is proved.

If we can prove that r~xux(reie) tends to zero when r -> oo in the sense of (A)

or (B), our theorem will be proved.

7. A lemma on ux.   We introduce

(7.1) Ux) = e~xxux(ex).
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Inequality (4.1) is valid for ux. By the change of variables r = ex, s = ey, we obtain

<j>x-<f>x* A¿0, where Ais given by (5.2) (also cf. (5.3)). By the remark after (4.1),

the integral is absolutely convergent.

The following lemma is an immediate consequence of Lemma 5.2.

Lemma 7.1. fa,-<f>x* Ke A^O, oo).

8. Harmonic majorants in half-planes. We first deal with the more complicated

case 1 ß < X < 1. Consider the subharmonic functions Vx(z) = ux(x+iy) + ux(—x + iy)

and V2(z) = (l +cos ttX)ux(z) — cos ttXVx(z) which have nonpositive boundary values

on the real axis (cf. (2.1), (2.1a), and (2.1b)). We have assumed that

liminf r~ÁM(r) < oo.
r-»co

It follows from the Phragmén-Lindelof theorem (cf. e.g. Heins [5, p. Ill])

that Vx and V2 are nonpositive in the upper and lower half-planes. Using two

representation theorems, one of F. Riesz (cf. Radó [8, §6.19]) and one of

Herglotz (cf. Heins [5, Theorem 4.2]), we obtain in A»'

gx(z)-Px(z),

g2(z)-P2(z),

where ax and a2 are increasing functions and Px and A2 are potentials in D'.

It follows from Lemma 3.2 that no y-term appears in the expressions for Vx and V2.

Hence

(1 +COS ttX)ux = COS trX gx+g2 — COS 77 A Px—P2,

(cos nXgx+g2)l(l +cos nX) is the least harmonic majorant of ux in D' and it

corresponds to the boundary measure

dp. = (—cos TtX dccx — da2)l(l +C0S ttX).

The purpose of the present section is to prove that the Poisson integral of the

boundary values of ux in D' is a harmonic majorant of ux in D' and that this

harmonic majorant has the right kind of behavior at infinity.

We claim that :

I. The singular part ps of p is nonpositive.

II. Let dp.=f(s) ds + dps be the canonical decomposition of p. into an absolutely

continuous and a singular part. Then f(s) è ux(s) a.e. on R.

It follows immediately from (I) and (II) that the Poisson integral of the boundary

values of ux in D' is a harmonic majorant of ux when 1/2 < A < 1. When 0 < A g 1/2,

Vliz) = _i r _j*&>    Pl(z)
w J-oo (x-s)2+y2

and

k2(z) = -i r _^) -a2(z)
*■ J-w (x-s)2+y2
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this is a consequence of the Phragmen-Lindelöf theorem (cf. e.g. Heins [5, p. 111]).

Similar statements are true in the lower half-plane.

Proof of I. Since ux is subharmonic in a region containing the positive real axis,

its boundary measure p is absolutely continuous on this part of the boundary of D'.

Hence dp.s = 0 on {z>0}. On the negative real axis, ps is the singular part of -a».

This is clear since the second term in the sum defining Vx corresponds to an

absolutely continuous boundary measure on {z<0}. Hence (I) is proved.

Proof of II. We apply Theorem 4.3 of Doob [4] to the nonpositive subharmonic

functions Vx and V2 and the positive harmonic function z r^rx cos A(0--n-/2),

Im z > 0. We conclude that Vx and V2 and hence also ux have boundary values a.e.

on the real axis in the fine topology. Similarly, the fine limits of the potentials are

0 a.e. on the real axis. By well-known properties of Poisson integrals, the fine limit

of ux is f a.e. on R. Hence/(j) i£ lim sup3_s ux(z) ^ ux(s) a.e. on R and (II) is proved.

We now discuss the behavior of the Poisson integral w of the boundary values

of ux.

Lemma 8.1. lim^«, r~xw(reie) = 0, O<0<7r. The convergence is uniform in each

inner sector. A corresponding result is true in the lower half-plane.

Proof. We first deal with the case 1/2<A<1. Define, for functions/such that

the integral is absolutely convergent, with z=x+iy,

We also introduce the nonnegative function (cf. (2.1))

ipx(s) = cos tt\(ux(s) + vx(s)),       seR,

and the nonpositive function

fas) = ux(s) — cos wA vx(s),       s > 0,

= vx(s) — cos -nX ux(s),       s < 0.

Clearly w(l+cos Tr\)=P(>px)+P(<p2), and we shall prove that P(<px) and P(fa

both have the right kind of behavior at infinity. We only discuss P(fa. The treat-

ment of P(ipx) is similar.

Since i/>2 is nonpositive, it is sufficient to prove

(8.1) lim r-KP(fa(ir) = 0.
r-»oo

But P(tp2)(ir) = (l — cos nX)wx(ir), r>0, where wx is the harmonic function in D'

with boundary values i(ux(s) + vx(s)), seR (cf. the beginning of the proof of

Lemma 3.1 with F = oo). It is sufficient to prove that lim^a, r~xwx(ir) = 0.
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Also here we apply the technique of Kjellberg [7, p. 8]. It follows from (2.1) that

(8.2) ^jfii^rÄ*
IT JO     S    +r

We have a corresponding inequality in the lower half-plane. In the right

half-plane, a similar formula is true :

(8.3) ui(s) ú-\"
T* Jo

wx(it) + wx(-it) ds
t2 + s2

Eliminating ux from (8.2) and (8.3), we obtain after division by rA (cf. (4.1)):

(8.4) r-\wx(ir) + wx(-ir)) ^  í    s-Á(wx(is) + wx(-is))K(r, s) ds,

(K(r, s) is defined by (3.6)).

Changing variables (cf. §5), we see that the function

(8.5) x r^e -Xx(wx(iex) + wx(- iex)),       xeR,

is a solution of a convolution inequality of the type discussed in §5. Lemma 8.1

will be proved in the case l/2< A< 1 if we can apply Lemma 5.3. We have to check

two assumptions. The first one is

(8.6) lim sup r~K(wx(ir) + wx(-ir)) = 0.
r-*oo

It is clear that ux(ir)^wx(ir)^0. We have a corresponding relation in the lower

half-plane. Consider the nonpositive number y = lim supr^OT r~Á(ux(ir) + ux(—ir)).

Since lim sup,.-.«, r~Kux(r)=0, it follows from Lemma 3.2 that y2:0. Hence y=0

and (8.6) is proved.

We also have to check that the function defined by (8.5) has property (ii) of

Lemma 5.3. This function can be written

fax)= ¡X   Kx(x-t)g(t)dt
J — 00

where

(8.7) Kx(x) = ((1 + cos 7TX)lrr)e -Xx(2 cosh x)"x

and g is a nonpositive function. It is easily proved that |Ai(x)| ^ Const Kx(x).

Thus \fa(x)\ S Const \<f>(x)\, <f> is uniformly continuous on the set {x \ \fax)\^c}

and fa, is slowly decreasing at infinity.

Hence we can apply Lemma 5.3 and Lemma 8.1 is proved when l/2< A< 1.

When 0< A^ 1/2, the same proof works, except that no decomposition of w is

necessary.
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9. The final proof. We now know that ux is a function subharmonic in D

which has harmonic majorants in the upper and the lower half-plane and which

can be written as the sum of the majorant and a subharmonic function as in (4.2)

and (4.3). The corresponding formula for the right half-plane is (4.4). By Lemma

8.1, we know the behavior of the majorants and it remains for us to consider the

nonpositive subharmonic functions.

By the change of variables r=ex, s=ey in (4.5), we obtain using (2.1) and (7.1)

that

(9.1) <f>x-<f>x*K¿ -Q-P*KX

where P(x) = e-ÁX(p(iex)+p(-iex)) and Q(x) = e~Xxq(ex). We refer to (5.2) and

(8.7) for the definitions of F and Kx.

We want to prove that the following integrals are convergent, i.e.,

(9.2) j" r"1"A(/?(z>)+ip(-z>)) dr < oo,

(9.3) i™ r-1-xq(r)dr < oo.
Jo

It follows from Lemma 7.1 that <px — <f>x * K e F^O, oo). Applying Lemma 5.4 we

conclude that F and Q are in F^O, co), e.g. that the integrals (9.2) and (9.3) with 1

instead of 0 as the lower limit are convergent. Since ux is harmonic in a neighbor-

hood of the origin (cf. (3.1)), the support of the Riesz mass has a positive distance

to the origin and the convergence of the integrals over (0, 1) is not'difficult to

prove. Hence (9.2) and (9.3) are true.

Consider now the upper half-plane D' and the superharmonic function p. It

is an unessential restriction to assume that p has continuous boundary values on

the real axis and that these boundary values are 0 (otherwise consider

max (— p(reie), —r sin 0)).

We define a subharmonic function in the following way:

h^ref8) = -p(reiB),       0 < 0 á w/2.

When 7r/2<0<77-, define hx as the least harmonic majorant of — p in this sector.

Clearly A. has boundary values zero on the real axis. Let Hx be the function in

{z | 0 < 0 < 3tt/2} which we obtain when hx is harmonically continued over the

negative real axis, e.g. Hx(z)= —hx(z) when z is in the third quadrant. Hx(—ir)

is positive, and by (9.2),

(9.4) °° r-i-^H^-ir) dr < co.
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Choose a number a in the interval (1, 3/2) such that A-an=l for some natural

number «. Map {z | 0 < 0 < 37r/2} onto {w | 0 < <p < 37r/(2o¡)} using the mapping

w=zVa. We define H2(w) = Hx(z). If z = rew and w = pei'" = $ + ÍT], we see that

r~xHx(z) = p~aXH2(w). The function 772 is continuous at all points of the negative

real axis and it follows from (9.2) and (9.4) that

(9.5) " |/72(-x)|x"1"a;v dx < co.

We form the Poisson integral

p(W)-ir  H&>> itp*w) ";J-.(f-o*¡V*
F2 is positive in D' and we deduce from (9.5) that

°° \P2(it)\rl-aX dt < co.

Finally, we define A2 = /72-F2. The function A2 is subharmonic in D', it has

boundary values 0 and

"f-1-"*^»)! A < oo.

Hence A2 has exactly the same properties in D' as px except that the exponent A

has been replaced by Aa. Repeating this construction « times, we obtain a function

An+1 subharmonic in D' such that

(9.6) r-xp(reM) - p^hn+x(Pe^) + e(Pei%       0 < 0 è ir/2,   O < <f> ï ttA/2,

where 9 = <j>an, r = pa" and lim,,..«,, e(/oe'*) = 0, uniformly in each inner sector of the

half-plane. It follows from the construction that

(9.7) j" p-2\hn+x(pe^)\ dp < oo,       0 < <f> < v.

The function An+1 has boundary values zero, it is nonpositive and hence the

conclusions of the Ahlfors-Heins theorem [1] are true for An+1. Due to (9.7), we

thus have lim,,-,«, p-1AB+1(pe'*)=0, 0<<p<ir, in the sense of (A) and (B). Since

the properties of the exceptional sets which we discuss here are invariant under

the mappings which have been used, it follows from (9.6) that lim,.., „ r~xu(reie)=0,

in the sense of (A) and (B) when 0 < 0 S 77/2.

Continuing F over the positive real axis, we get the corresponding result in the

second quadrant. Obviously the same proof applies in the lower half-plane.

We have proved our theorem but for one detail : we have not proved (B) as far

as the positive real axis is concerned. This omission is obviously purely technical.

Since we have (9.3), the function q in the right half-plane has the same properties

as the functions p and p and the preceding argument is valid also for q. By Lemma
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8.1 and (9.2), the behavior of the boundary values on the imaginary axis of the

least harmonic majorant in D" is well known, and the proof of the theorem is

complete.
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