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1. Introduction. The notion of measure-theoretic uniformity was presented in

[23], [24]. In this paper the notion is first utilized in an arithmetic setting and then

extended to hyperarithmetic theory and set theory. The recursion-theoretic concepts

touched on are : the arithmetic, hyperarithmetic and analytic hierarchies of Kleene

[12]; co-models of the hyperarithmetic comprehension axiom of Kreisel [16];

recursive ordinals [11]; and hyperdegrees [13]. One of the recursion-theoretic

results we prove is: if P(X) is a fl{ predicate with free set variable X and the set

XP(X) has positive Lebesgue measure, then P(A) holds for some hyperarithmetic

set A. A corollary of this result is: the set of all A'such that the ordinals recursive in

X coincide with the recursive ordinals has Lebesgue measure 1 (see footnote (9),

below). In the area of set theory we are largely concerned with showing how relative

consistency results follow in a natural manner from the notion of measure-theoretic

uniformity. We develop Cohen's independence results [2] as well as a result of

Solovay [29], [30] on the extendability of Lebesgue measure to all sets of reals.

Solovay makes use of Cohen's forcing method, but he ingeniously replaces Cohen's

finite forcing conditions by closed sets of positive measure. He shows: if ZF

(Zermelo-Fraenkel set theory) is consistent, then ZF+ "there exists a translation-

invariant, countably additive extension of Lebesque measure defined on all sets of

reals"+ "the dependent axiom of choice" is consistent(2). We reprove Solovay's

theorem with emphasis on the notion of measure-theoretic uniformity and with the

help of some elementary properties of uniformly distributed, independent random

variables; however, the fine details of our argument are not substantially different

from those originated by Solovay. §4 of this paper, which deals solely with set

theory, can be read independently of §§2 and 3, but it is intended to be read as a

natural continuation of the earlier sections.
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Our interest in applying measure-theoretic ideas to questions of mathematical

logic began with the reading of Specter's measure-theoretic construction of two

incomparable hyperdegrees [32]. Spector showed, using Fubini's Theorem and the

measurability of analytic sets, that the set of all pairs (X, Y) such that X and Y

are hyperarithmetically incomparable has measure 1. Shoenfield extended Spector's

argument to show there exists an uncountable set of pairwise incomparable

hyperdegrees. Feferman [3] obtained two incomparable hyperdegrees by means of a

forcing argument, but Spector's proof, although less constructive than Feferman's,

is much shorter. In [22] we showed : if X is not recursive, then the set of all Y such

that the Turing-degree of y is incomparable with that of X has measure 1. In §3 we

show : if A' is not hyperarithmetic, then the set of all Y such that the hyperdegree of

Y is incomparable with that of X has measure 1. There is a significant conceptual

difference between these last two results. The proof of the former of the two relies

on the countable additivity of Lebesgue measure and on the following fact: if X is

Turing-reducible to (i.e., recursive in) Y, then Xis reducible to T by means of one

of countably many reduction procedures whose nature does not depend on Y (i.e.,

X={e}Y). In contrast, if X is hyperarithmetic in Y, then X is reducible to Y by

means of a hyperarithmetic reduction procedure whose nature depends on the

ordinals recursive in Y. Since the ordinals recursive in Y can be arbitrarily large

countable ordinals, the proof of the latter of the above two results has to take into

account uncountably many hyperarithmetic reduction procedures. This difficulty is

overcome in §3 by showing that if one ignores a set of T's of measure 0, then one

can assume the ordinals recursive in Y are the recursive ordinals.

It seems impractical at this point to give a general and formal account of the

notion of measure-theoretic uniformity. Instead, we give a variety of examples and

applications in the belief that the notion is simple enough to abstract from the

examples. Let N be the natural numbers. We put the usual probability measure on

2N as follows. Let m be the unbiased measure for 2={0, 1}: m({0, 1}) = 1, m({0})

= m({l}) = i, and m(0)=O, where 0 denotes the empty set. Let ¡x be the product

measure induced on 2N by N. Of course p is merely the product-space version of

Lebesgue measure on the unit interval [0, 1] of the reals [10, p. 157]. What we need

of measure theory can be found in Halmos [10].

Let A(A, x, y) be a recursive predicate [12] of the set variable T and the natural

number variables x and y. Thus the truth-value of A(A, x, y) for any actual choice

of A e 2N and x, y e N is determined by finitely much information about the

membership of A and the values of x and y. A familiar uniformity can be put as

follows :

(T)[(x)(Ey)R(T, x, y) -> (Ef)(f recursive in A & (x)R(T, x,f(x)))].

(In fact, f(x)^pyR(T, x,y).) Another way of expressing this uniformity is: for

each A, if the predicate (x)(Ey)R(T, x, y) has a Skolem function, then it has a

Skolem function recursive in A. Thus in our study of the predicate (x)(Ey)R(T, x, y),
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we can reduce our attention from arbitrary Skolem functions to Skolem functions

recursive in F. It is now quite natural to ask: can we reduce our attention still

further to recursive Skolem functions ? The answer is yes, if we ignore a set of F's

of measure 0, and if we replace Skolem functions by bounding functions: f is a

bounding function for (x)(Ey)R(T, x, y) if (x)(Ey)yèflx}R(T, x, y). The existence of a

bounding function is equivalent to the existence of a Skolem function.

Proposition 1.1. Let R(T,x,y) be recursive. If the set of all T such that

(x)(Ey)R(T, x, y) has measure 1, then the set of all T such that (Ef)[f recursive &

(x)(Ey)y êfix)R(T, x, y)] also has measure 1.

Proof. It is enough to show: for each rational S>0, there exists a recursive/

such that {F| (x)(Ey)ySf(x)R(T, x, y)} has measure at least 1 — 8. A nonempty,

basic open subset of 2N consists of all F satisfying a consistent conjunction of

finitely many atomic conditions of the form m e T or their negations. The measure

of a nonempty, basic open set is 2"n, where n is the number of distinct atomic

conditions that define the basic open set. Thus p-({T\ m eT&m+l $ F}) = l/4.

Since F is recursive, there exists a recursive function AJ",n such that for each m and n,

bf,n is a basic open subset of 2N, and such that for all F,

(m)(n)[R(T, m, n) ~ (Ei)(Te A?-»)].

For each m, let

f(m) = pt[p.({J {bf-n | f á f &n ä 0) 2 1 —S/2m+1].

For each m,f(m) is defined because /x((J {bf-n | z'^0 &«^0}) = 1. (Read "pt" as

"the least í suchthat".)

A stronger and more attractive proposition than 1.1, and one closer to the idea

of measure-theoretic uniformity would be : the set of all F such that

(x)(Ey)R(T, x, y) -* (Ef)[f recursive & (x)(Ey)yéHx)R(T, x, y)]

has measure 1. Unfortunately, D. A. Martin has shown that for some recursive F

this stronger proposition is false. We have to go to the language of arithmetic'to

realize the full flavor of measure-theoretic uniformity. Theorem 2.2 of §2 states :

let B(T, x, y) be arithmetic [12]; then the set of all F such that

(x)(Ey)B(T, x, y) -+ (Ef)[f is arithmetic & (x)(Ey)yánx)B(T, x, y)]

has measure 1. In short, if we restrict F to a set of measure 1, then we can restrict

ourselves, in our study of arithmetic predicates of T, to arithmetic bounding

functions. The reduction from bounding functions arithmetic in F to arithmetic

bounding functions is the essence of measure-theoretic uniformity in the arithmetic

case.

2. The arithmetic hierarchy. Let B(T) be an arithmetic predicate of T. The set

TB(T) is a Borel subset of 2N of finite rank and consequently is measurable. Let r
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be a variable ranging over the rational numbers in the unit interval [0, 1]. By

making use of some standard Gödel numbering, it is possible to regard the predi-

cate /ti(AA(A))gr as a number-theoretic predicate whose free variables are A

(ranging over the arithmetic predicates) and r (ranging over the rationals in [0, 1 ]).

For each « > 0, an arithmetic predicate is said to belong to 2°, (11°) if it is expressible

by means of a recursive matrix and a quantifier prefix beginning with an existential

(universal) quantifier and passing through «—1 alternations of quantifiers. Re-

cursive predicates are said to belong to both 2°, and n0,.

Lemma 2.1. (i) For each «SO: the predicate /x(ÁA(A))gr, restricted to AeS°,

is n».

(ii) For each « 2:0 : the predicate p(TB(T)) g r, restricted to B e U°, is TI°+1.

(iii) The predicate p.(TB(T)) g r, where B is arithmetic and otherwise unrestricted,

is hyperarithmetic.

Proof, (i) and (ii) are proved simultaneously by induction on «. First let «=0.

Then A(A) is a recursive predicate, and there exists a finite union (J {o¡ | i<k} of

basic open subsets of 2N such that

B(T)^(Ei)i<k(Tebi)

for all A; furthermore, the finite union [J {o¡ | / < k} can be found effectively from a

Gödel number of A(A). Clearly, ¡jl(ÎB(T))=p(\J {o¡ | i<k}). Now suppose «>0

and A(A) e 2°. Then A(A) is of the form (Ex)B(T, x), where A(A, x) e U°_x, and

P(TB(T)) g r^(m)[p(f((Ex)ximB(T,x))) g r].

The inductive hypothesis for (ii) implies that the right side of the above formula is

11°. Suppose instead that A(A) e 11°. Then A(A) is of the form (x)B(T, x), where

B(T,x)eZ°_i,wd

KTB(T)) g r^(8)(Em)[p.(f((x)xámB(T,x))) g r+8],

where S is a variable ranging over the positive rationals. The inductive hypothesis

for (i) implies that the right side of this last formula is n°+1.

To see (iii) observe that the "effective" nature of the inductive step of the proof

of (i) and (ii) implies the existence of a recursive function / with the following

property: for each «2:0,/(«) is the Gödel number of a 11° predicate A/(n)(o, r)

such that

PfUb, r) <-> b is the Gödel number of A(A) & A(A) e 2° & ¡x(fB(T)) g r.

The predicate A/(n)(o, r), with «, o and r as free variables, is hyperarithmetic, since

the truth set for arithmetic is hyperarithmetic.

In Theorem 2.2 we attempt to capture what we mean by measure-theoretic

uniformity in the arithmetic case. A standard uniformity for arithmetic predicates

of the form A(A, x, y) can be put as follows: if (x)(Ey)B(T, x, y), then (Ef)[f is



1969] MEASURE-THEORETIC UNIFORMITY 385

arithmetic in T &(x)(Ey)ySHx)B(T, x,y)]. The corresponding measure-theoretic

uniformity is obtained by demanding that the bounding function / be arithmetic

rather than arithmetic in T. The cost of such a demand is a set of F's of measure 0.

Theorem 2.2. Let B(T, x, y) be arithmetic. Then the set of all T's satisfying the

following condition has measure 1 : if (x)(Ey)B(T, x, y), then (Ef)[f is arithmetic &

(x)(Ey)yáHx)B(T,x,y)].

Proof. Let 8 be a positive rational. We define an arithmetic/such that

p,(f(x)(Ey)yáfMB(T, x, y))+8Z p(t(x)(Ey)B(T, x, y)).

Let b(x,r) be the predicate: p(t(Ey)B(T,x,y))>r. By Lemma 2.1, b(x,r) is

arithmetic. Then/(x) is the least/ such that for all r,

b(x, r) -+ p(f(Ey)y s ß(T, x, y)) > r- 8/2* +1.

Corollary 2.3. IfB(T) is arithmetic and the set TB(T) has positive measure, then

B(A) holds for some arithmetic A(3).

Proof. First we consider a special case, where B(T) is n2, and then we show how

to reduce the general case to the special case. Let B(T) be (x)(Ey)R(T, x, y), where

R(T, x, y) is recursive. By Theorem 2.2, there is an arithmetic function/such that

p(f(x)(Ey)yifix)R(T,x,y)) > 0.

There exists an arithmetic function cx such that for each x, cx is a finite union of

basic open subsets of 2N and

(Ey)yiKx)R(T,x,y)^Tecx.

For each x, let dx = C\ {c¡ | i^x}. Note that for each x, the closed set dx is non-

empty, because p(TB(T)) > 0. If A is an arithmetic set such that (x)(A e dx), then

B(A) holds/We define such an A by an induction on «:

« g A <-> p(T((x)(Te dx) & (z'),<„(z e F<-> i e A) & « g F)) > 0.

A is arithmetical, since it is arithmetic in the function dx.

Now we show how to reduce the general case to the special case by consider-

ing an illustrative example. Let B(T) be (x)(Ey)(u)(Ev)R(T, x, y, u, v), where

R(T, x, y, u, v) is recursive. By Theorem 2.2, there is an arithmetic/such that

f(x)(Ey)yáfix)(ü)(Ev)R(T, x, y, u, v)

has positive measure. By using a trick of Kleene [12], we can pass a bounded

existential quantifier through a universal quantifier:

(Ey)yâHx)(u)(Ev)R(T, x, y, u, v) <-> (u)(Ey)yénx)(Ev)R(T, x, y, (u)y, v).

(3) Corollary 2.3 was independently obtained by H. Tanaka [34].
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By Theorem 2.2, there is an arithmetic g such that the set

f(x)(ü)(Ev)vágiXfU)(Ey)yéfMR(T, x, y, (u)y, v)

has positive measure. But now the argument of the special case can be applied.

Let us say that A(A) holds for almost all A if p(TB(T)) = l. Then Corollary 2.3

is equivalent to the statement : if A(A) is arithmetic and holds for all arithmetic A,

then it holds for almost all T. It follows immediately that the predicate "A is

arithmetic" is not arithmetic. This last result was first proved by Addison [1] by

means of a forcing argument.

Corollary 2.3 is an example of what might be called a measure-theoretic basis

result. Gandy's basis theorem [7] for arithmetic predicates states : if A(A) is arith-

metic and (AA)A(A), then B(A) holds for some A recursive in Kleene's O, the set of

all notations for recursive ordinals. (Kleene [13] gives an example of an arithmetic

predicate A(A) such that (ET)B(T) but A(A) holds for no hyperarithmetic A.)

Call a set T fundamental (with respect to arithmetic) if A(A) holds for every

arithmetic A such that p(TB(T)) = 1. It is possible to construct hyperarithmetic,

fundamental (with respect to arithmetic) sets with the help of Lemma 2.1, but we

prefer to deduce the existence of such sets as a corollary to Theorem 3.9. They

behave very much like the generic (with respect to arithmetic) sets of Feferman [3].

In particular, they are not implicitly arithmetically definable ; that is, they are not

unique solutions of arithmetic predicates.

3. The hyperarithmetic hierarchy. An analytic predicate A(A, x) (Kleene [12])

is said to be U\ if it is expressible in the form (Y)A(Y, A, x), where A(Y, T, x) is

arithmetic. Let A(A, x, y) be l~l\. A familiar uniformity due to Kreisel [16] can be put

as follows : if (x)(Ey)P(T, x, y), then

(Ef)[f is hyperarithmetic in A & (x)(Ey)yi!ix)P(T, x, y)].

The corresponding measure-theoretic uniformity is obtained by first discarding

a set of A's of measure 0 and then requiring that the bounding function / be hyper-

arithmetic rather than hyperarithmetic in A. We develop this result (Corollary

3.12) and several related ones by studying a relativization of Kleene's ramified

analytic hierarchy [14]. Very briefly, the ramified analytic hierarchy is obtained

by starting with the empty set and iterating the process of analytic defin-

ability through the recursive ordinals(4). Kleene [14] showed that the ramified

analytic hierachy is identical with the set of hyperarithmetic sets. Following

Feferman [3], we relativize by starting with an arbitrary set A rather than the empty

set(5).

(4) Many persons now use the term "ramified analytic hierarchy" to denote the result of

iterating the process of analytic definability past the recursive ordinals to its endpoint j80.

(5) It might seem more natural to relativize by replacing not only the empty set by T but

also the recursive ordinals by the ordinals recursive in T; however, it follows from Lemma 3.5

that this relativization is identical with the one we adopted for almost all T.



1969] MEASURE-THEORETIC UNIFORMITY 387

The relativization is described by a ramified, second-order language &(F),

which differs little from Feferman's language <e*(ST) ([3, p. 335]). &(F) is the

language of first-order number theory augmented by the constant symbol F

denoting an arbitrary set of natural numbers, some second-order set variables, and

the membership symbol (e). Let Ox be a \l\ subset of O such that Ox is linearly

ordered by <0 and has order-type <ox (the least nonrecursive ordinal). (The

existence of Ox is proved in [4] and in [6].) Thus each recursive ordinal has just

one notation in Ox ; if A is the unique notation in Ox for the recursive ordinal ß, we

write |A|=j8. For each b e Ox, &(F) has ranked set variables X", Y»,Zb,...;

3?(F) also has unranked set variables X, Y,Z,..., a numeral « for each natural

number «, and symbols for equality ( = ), successor ('), addition ( + ), and multi-

plication (•).

A formula F of ¿£(F) is said to be ranked if every set variable occurring in IF

is ranked. The ordinal rank of a ranked sentence F is the least a such that a > | A| for

every variable X" occurring in F. Let F be an arbitrary set of natural numbers.

Following Feferman [3], for each A g Ox, we inductively define a structure Jtb(T)

and truth in the structure (J {Jia(J) \ \a\ < \b\}:

(i) A sentence F of ordinal rank á |A| is true in IJ {Jía{T) \ \a\ < \b\} if it is true

when F is interpreted as F, the number variables of F are restricted to oj, and each

set variable Xa of F is restricted to Jta(J).

(ii) For each formula @(x) (with only x free) of ordinal rank ^ |A|, let x@(x)

denote the set {« | ^(«) is true in [J {J(a(J) \ \a\ < \b\}} ̂ b(T) consists of all sets of

natural numbers defined in this manner.

We define M(J) = (J {Jfb(T) \beOx}. Let Jt=Jt(<p)=the set of all hyper-
arithmetic sets. A sentence F of ¿¡?(F) is true (in symbols, J((T) Y F) if it

is true when each unranked variable is restricted to J((T) and the remain-

ing symbols of F are interpreted according to (i) and (ii). It is a routine matter to

choose a Gödel numbering for the formulas of ¿>f(F) with the following proper-

ties: the predicate "e is the Gödel number of a ranked formula of ¿£(F)" is u};

for each A g Ox, the predicate "e is the Gödel number of a ranked formula of

Jt?(F) of ordinal rank < |A|" is recursively enumerable (uniformly in A). The assign-

ment of Gödel numbers makes it possible to classify various relations involving

the formulas of 3?(F~). We will occasionally blur the distinction between formulas

and Gödel numbers of formulas.

The full ordinal rank of a ranked formula F is a function/: Ox -*■ co such that for

each A g Ox, /(A) is the number of occurrences of (Xb), (EYb),... in F. If / and g

are full ordinal ranks, then /< r g if

(Ec)[c g Ox &f(c) < g(c) & (d)(c <0ld-+f(d) = g(d))].

The relation < r is a well-ordering of the set of full ordinal ranks.

If @(x) is a ranked formula (with only x free), then F(x<i§(x)) denotes the result of

replacing each occurrence of te YinF( Y) by &(t). (t is a number-theoretic term.)
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Proposition 3.1. Let ¡F(Yb) be a ranked formula in prenex normal form whose

only free variable is Y". Let {@i(x) | /g «} be a finite sequence of formulas with only x

free of ordinal rank g|o|. Then the disjunction V 'iún^'(x@l(x)) is equivalent to a

prenex normal sentence of full ordinal rank less than that of(EYb)F(Yb).

Proof. By illustrative example. Let F( Y") be

(AXc)(T'i)(AZi')A(Xc, Yd,Z", Y»),

where A contains no quantifiers, and let « = 2. The following formulas are equiva-

lent:
V (EXc)(Yd)(EZ")R(Xc, Yd,Z»,x&i(x));
iSl

(EXe)\ V (Yd)(EZb)R(Xc, Yd, Z\ x&fa))] ;

(EX<)(Yd)(Y?)[ y(EZb)R(X°, Yf, Zb, x^(x))j ;

(EX°)( Yd)( Yd)(EZ»)[ V *(*c, Yd, Zb, x^(x))^.

The block of quantifiers ( Yd)( Y?) can be replaced by a single quantifier ( Yd) by

means of a standard trick : each occurrence of t e Yd(t e Yx) is replaced by 2/

e Yd(2t+1 e Yd). The formula

y R(X% Yid,Zb,x^(x))
¡si

is equivalent to a prenex normal formula Q(XC, Yd, Z") such that all of its quanti-

fiers have superscripts which are notations for ordinals < \b\. Clearly,

(EYb)(EXc)(Yd)(EZ»)R(Xc, Yd,Z», Y»)

has greater full ordinal rank than

(EXc)(Yd)(EZb)Q(Xc, Yd,Zb).

For each sentence F of &(3~), we define p(F), the probability that F is true in

J¿(T), to be the Lebesgue measure of {A | J({J) V F}. (It is easily seen by trans-

finite induction that {A | JíiJ) Y F} is a Borel subset of 2N.)

Lemma 3.2. The predicate p(F)^r, restricted to ranked F and rational r, is

m.
Proof. Spector observed that the intersection of all sets satisfying a 2J condition

is nj; i.e., if A(X) is2J, then f] {X \ A(X)} is U\. We give an inductive definition of

p(F) 2; r, restricted to ranked, prenex normal F and rational r, and then we note

that the cases of our inductive definition can be expressed by means of *L\ closure

conditions. The number-quantifier rank of F is the number of occurrences of

(x), (Ay),... in F. The rank of F is the ordered pair (f, rri), where / is the full

ordinal rank of F and m is the number-quantifier rank of F. We say (/, m) < (g, ri)
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if/< r g or iff=g and m < n. The inductive definition of p(F) ^ r proceeds according

to the rank of F.

Case 0. F has no quantifiers. The predicate p(F) ^ r, restricted to F without

quantifiers and rational r, is recursive; i.e., p(iñeF)=\ etc.

Case 1. F is of the form (EXb)Fx(Xb). Let {^(x) | zgO} be the uniform (in A)

recursive enumeration of formulas with only x free of ordinal rank ^ |A|. Then

p(F) ^ r is defined to be

(S)(Fm)[/,( \/^i(*W)) ^ r-8],

where 8 is restricted to the positive rationals. By 3.1, Vism ^i(x@i(x)) is equivalent

to a prenex normal sentence of full ordinal rank less than that of (EXb)Fx(Xb).

Case 2. F is of the form (X»)Fx(Xb). Then p(F) ä r is defined to be

(™)[/>( Am^i(*^(*))) ^ rj.

By the dual of 3.1, Aism ^iC^iM) is equivalent to a prenex normal sentence of

full ordinal rank less than that of (Xb)Fx(Xb).

Case 3. F is of the form (Ex)Fx(x). Then p(F) ;> r is defined to be

(S)(F/«)p(ym^i(0) ^ •*-«],

where S is restricted to the positive rationals. By the same argument used to

establish 3.1, V¡sm &i(0 te equivalent to a prenex normal sentence of lower rank

than that of (Ex)Fx(x) ; in fact, the full ordinal rank will be unchanged but the

number-quantifier rank will be less.

Case 4. F is of the form (x)Fx(x). Dual to Case 3.

Case 2 can be rephrased as a Si closure condition as follows : If F is a ranked,

prenex normal sentence of the form (Xb)Fx(Xb) and (m)[p(\/ iSm Fx(x^i(x)))^r],

where {^¡(x) | z'^0} is the uniform (in A) recursive enumeration of formulas with

only x free of rank á |A|, then p(F) ^ r. The hypothesis of Case 2 is II} in variables

F and r.

Lemma 3.3. Let F(x, Y) be a formula of £C(F) whose only free variables are x

and Y, and whose only unranked variable is Y. Then for each rational r, there is a

ceOx such that

p((x)(EY)F(x, Y)) ^ r -> p((x)(EYc)F(x, Yc)) ^ r(6).

Proof. Fix r and suppose p((x)(EY)F(x, Y)) ̂  r. Define ( Y)n to be {i\pl+,e Y},

where pn is the «th smallest prime (p0 = 2, px = 3,... ). Then

(m)^(EY)^/\F(ñ,(Y)n)^ ^ rl.

(e) It is not possible in general to improve 3.3 by finding a c that is independent of r.
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It follows that

(m)(8)(Ec)[c e Ox &p((EY°)(AF(n, ( T<%))) = r-8],

where 8 is restricted to the positive rationals. It follows from 3.2 that the predicate

[ce Gi &/>((ATc)( J\F(ñ, (T%)j) 2. r-S]

is 11} in c, m and 8. By Kreisel's Lemma [16, p. 307], there exists a hyperarithmetic

function c(m, 8) such that

(m)(8)Jp((ATc<m-«)( Am^(«,(Tc(m>i))n))) è r-81.

By Specter [31] there is a c e Ox such that (w)(S)(| c(«j, S)| g |c|). But then

^(Sí^pyOJA^.ÍTOn)) è r-8],

and consequently,/»((^(AT0)-^*» Tc))2tr.

By an instance of the hyperarithmetic comprehension axiom, Kreisel [16] means

the universal closure of any formula of the form

(x)[(EY)A(x, Y) <-^ (Z)B(x, Z)] -> (EX)(x)[x e X<-> (EY)A(x, Y)],

where A(x, Y) and B(x, Z) are arithmetic predicates that may contain free set

variables other than Y and Z.

Lemma 3.4. If F is an instance of the hyperarithmetic comprehension axiom, then

p(F) = l.

Proof. Let A(x, Y) and B(x, Y) be formulas of 3?(F) whose only free variables

are x and Y and whose only unranked variable is Y. Let A be the set of all A such

that (x)[(EY)A(x, Y) <-> (Z)A(x, Z)] is true in Ji(T). Then (x)(EY)[A(x, Y)

V ~A(x, Y)] is true in Jt(T) for all AeA. Fix 8>0. By 3.3 there is a c e Ox such

that (x)(EYc)[A(x, Yc)v~B(x, Yc)] is true in Jf(T) for all Ae/£A, where

p(K-J)<8. But then (x)[(EYc)A(x, Yc) <-► (EY)A(x, Y)] holds in ^(A) for all

AeA Since (EYc)A(x, Yc) is a ranked formula with only x free, it follows that

(EX)(x)[x ein (Ay)^(x, Y)] holds in ^(A) for all AeA

Lemma 3.4 suggests : if a set of A's of measure 0 is avoided, then Jt{T) is very

similar to Jt. The similarity is pursued further in Lemma 3.5, and is exploited to

prove 3.7. The underlying cause of the similarity is expressed by Lemma 3.2, which

says that the probability that a ranked sentence F is true in Jt(T) can be " com-

puted" in J(. The use of the term "computed" is appropriate for two closely

related reasons : the predicate p(F) 2t r, restricted to ranked F and rational r,

is 21 in the sense of Jt (i.e., the existential set quantifier is restricted to the sets of

Jf); and the predicate is metarecursive [17] as well.
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Lemma 3.5. For almost all T, J((T) is the set of all sets hyperarithmetic in F(7).

Proof. The argument of Kleene [14, p. 35], relativized to F, shows that the sets

of Jt(T) are just those sets each of which is recursive in Hb for some A g Ox^Ot(b).

According to Kreisel [15], if F belongs to an co-model of the hyperarithmetic

comprehension axiom, then every set hyperarithmetic in F also belongs to that

co-model. Now apply 3.4.

Proposition 3.6. Let {F¡} be a hyperarithmetic sequence of ranked sentences of

¿¿'(F). Then there is a ranked sentence F such that for all T, J((T) Y F if and only if

(i)[Jt(T)¥F¿.

Proof. Let H be a hyperarithmetic set such that « g H <-► « is the Gödel number

of a member of {Ft}. By Spector [31] there is a c e Ox such that the ordinal rank of

F\ is ^ |c| for all i. Let VJ be the set of Gödel numbers of all formulas of ordinal

rank S |c| which are true in J((T). By adapting the argument of Kleene [14, p. 36],

one can show that Vf is recursive in 77<S for some c' in Ox £ 0T (see footnote (8)).

Clearly, (i)(i e H^-ie Vf) is equivalent to (i)\J((J) Y F\\. Again by adapting the

arguments of Kleene [14, p. 35], one can show the existence of ranked formulas

&i(x), &2(x), and &2(x) of &(F) such that for all T:

H = {n\Ji(T)Y<Sx(n)};

HI = {n | J((T) Y <S2(ñ)};

VI = {« I Jf(T) Y <§3(ñ)}.

The desired F is (x)(<8x(x) -> &3(x)).

The Gödel number of F can be found effectively from the Gödel number of

{Ft}, since one can pass effectively from the Gödel number of {Ff} to c, c', and the

Gödel numbers of @x and ^3.

Lemma 3.7. For each ranked sentence F and rational S > 0, there exists a ranked

sentence @ such that p(F & ~@)<8 and such that {T | M(T) Y <&} is a closed subset

of{T\J((T)YF}.

Proof. Let P(F, 8, <&) denote the following number-theoretic predicate : F is a

ranked sentence, 8 is a positive rational, & is a ranked sentence, p(F & ~ ^) < 8,

and {F | J((T) Y<S}tea closed subset of {F | J((T) Y F}. With the help of 3.2 and

the fact that Ji(J) Y F, restricted to ranked F, is Xl\, it is not hard to check that

P(F, 8, <$) is ni.

We prove by induction on the rank of F that (8)(E&)P(F, 8, <&). The cases are the

same as those of 3.2. (We again assume that F is in prenex normal form.) The most

(7) Feferman [3] showed by means of a forcing argument with finite conditions that for all

T outside a first category subset of 2", ~#(T) is the set of all sets hyperarithmetic in T.

(8) There is no harm in thinking of Ox as a subset of Ot, since there exists a recursive func-

tion/with the following properties: for all T, a<0lb <-> f(a)< oTf(b), and aeOx->-\a\ =

l/(«)|o*.
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interesting case is when F is of the form (Xb)Fx(Xb). Let {&t(x) | /2t0} be the

uniform (in o) recursive enumeration of formulas (with only x free) of ordinal rank

g |6|. For each /, Jt^x&fa)) has lower full ordinal rank than (X")Fx(Xb). So by the

induction hypothesis,

(i)(8)(Ejr)P(Fx(x$i(x)), S/2i + 1, *).

Since A is lli, it follows from Kreisel's Lemma [16, p. 307] that there exists a

hyperarithmetic sequence {3% \ i 2:0} of ranked formulas such that

(i)P(Fx(Wi(x)),8\2^\^.

By 3.6, there is a ranked formula $t° equivalent to the "infinite conjunction" of the

¿ifs. Then P(F, 8, jf).

Lemma 3.8. If F is a ranked sentence ofSe(F) and p(F)>0, then J/(T) Y F

for some hyperarithmetic T.

Proof. By 3.7 it is safe to assume that {A | J/(T) VF}isa closed subset of 2N. We

inductively define a sequence {@n | «2:0} of atomic sentences:

&n = ñeF   ifp(F & (i)l<n&i ScñeF) > 0

= « £ F   otherwise.

By 3.2 the set 77={« | <Sn h « e F} is hyperarithmetic. Clearly, Jt(H) r- F.

Theorem 3.9. IfiP(X) is Iii and the Lebesgue measure of XP(X) is positive, then

P(H) holds for some hyperarithmetic H(9).

Proof. By Gandy [6] or Spector [33], there is an arithmetic predicate stf(X, Y)

such that

(X)[P(X) <-> (EY)( Y is hyperarithmetic in X & s/(X, Y)].

It follows from 3.5 that for almost all A,

[Jt(T)V(EY)sé(F,Y)]^P(T);

consequently,

p((EY)^(F, Y)) = p(XP(X)) > 0.

By 3.8, Jt(Hx) N (EY)s/(F, Y) for some hyperarithmetic Hx. Since every member

of Jt(Hx) is hyperarithmetic in Hx, there must be a hyperarithmetic H e Jt(Hx)

such that s#(Hx, 77), and hence A(77), hold.

Theorem 3.9 is another example of what might be called a measure-theoretic

basis theorem. Shoenfield's basis result [27] for U\ predicates states: if P(X) is 111

and (EX)P(X), then A(C) holds for some C constructible in the sense of Gödel [9].

(9) Theorem 3.9 first appeared in Sacks [24]. Subsequently, H. Tanaka [34] independently

developed another proof of 3.9 in which Corollary 5 of Sacks [23] (Corollary 3.10 of the present

paper) is quoted but which avoids the formalism of the ramified analytic hierarchy.
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Theorem 3.9 can be relativized in a reasonable manner. Let P(A, X) be II} with A

and X as free set variables. For each A, if the Lebesgue measure of XP(A, X) is

positive, then P(A, H) holds for some H hyperarithmetic in A. It follows that if a

complementary analytic set of reals [28] has positive Lebesgue measure, then it

contains a real number hyperarithmetic in the determining system [28, p. 34] of its

complement.

Another way of expressing Theorem 3.9 is: if P(X) is 11} and holds for every

hyperarithmetic X, then P(X) holds for almost every X. We have suppressed a

considerable amount of uniformity inherent in 3.9. It is not difficult to check: there

is a partial recursive function/such that if e is the Gödel number of a 11} predicate

P(X) and the Lebesgue measure of XP(X) is positive, then/(e) is defined and is the

Gödel number of a hyperarithmetic set H such that P(H) holds.

The least ordinal not recursive in X is denoted by cof, the least nonrecursive

ordinal by co^

Corollary 3.10. The set {X | cof = co,} has Lebesgue measure 1.

Proof. First observe that wf >wx is II}. By Gandy [6] or Feferman-Spector [4]

there is a recursive linear ordering < R of the natural numbers whose maximal

well-ordered initial segment has order-type wx. Then t»x>wx is equivalent to the

following n} predicate : (Ee)[e is the Gödel number of a recursive-in- X well-ordering

of the natural numbers ( < e)] & (/)[/is not a 1-1 order-preserving map of < e onto

an initial segment of <B]. Now by Spector [31], cof = wx for all hyperarithmetic H.

Then by 3.9, co^coi for almost all X.

Corollary 3.11. If A is not hyperarithmetic, then the set {X \ A is hyperarith-

metic in X} has Lebesgue measure 0(10).

Proof. Suppose p({X\ AuhX})>0. By 3.5, p({T\ A eJt(T)})>0. There must

then exist a ranked formula 1ß(x) such that

p({T | A = {« | J((T) Y $(ñ)}}) > 0.

Let F£{F| A={n \ J?(T) Y &(ñ)}} be such that p(K) = r>0, where r is rational.

Let 7 be a finite union of basic open subsets of 2" such that p(KM)<r¡3. (FA7

= (K-J) u (7-F).) Let / be a ranked sentence of ¡£(F) with the property that

(T)[TeJ^Jf(T)¥fl

Then

« g A <-> p(<$(ñ) & /) ^ 2z-/3,

and consequently, A is hyperarithmetic by 3.2.

(10) S. Kripke has greatly strengthened Corollary 3.11 in the following direction: let

K^2N be a set of measure 0 such that <j> $ K and such that any set of the same hyperdegree as

some member of K is also a member of K; then the set of all X such that some Y e K is hyper-

arithmetic in X has measure 0.
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Corollary 3.11' (CarlJockusch). LetP(X) be n\. Ifi(Y)(YeHYP-> ~P(Y))

then the Lebesgue measure of{X \ (EY)(P(Y) & TghX)} is 0.

Proof. By 3.9 it is enough to show (AY)[A(Y) & Y^hX] is U\. This last predi-

cate is equivalent to (Eb)[b e Ox & Y is recursive in 77* & A( Y)].

A set A is said to be implicitly arithmetically definable if it is the unique solution

of some arithmetic predicate; i.e., there is an arithmetic B(X) such that (EXX)B(X)

and B(A). It is well known that each hyperarithmetic set is recursive in some

implicitly arithmetically definable, hyperarithmetic set. Feferman [3] showed by

means of a forcing argument with finite conditions that there exists a hyper-

arithmetic set which is not implicitly arithmetically definable. The notion of funda-

mental (with respect to arithmetic) was defined at the end of §2.

Corollary 3.12. There exists a hyperarithmetic set which is fundamental (with

respect to arithmetic). Each such set is not implicitly arithmetically definable.

Proof. A set A is fundamental (with respect to arithmetic) if for every arithmetic

predicate B(X),

P(XB(X))= 1->A(A).

By 2.2 (iii) and 3.9, there exists a hyperarithmetic A which is fundamental with

respect to arithmetic. If B(X) is arithmetic and A(A) holds, then XB(X) must have

positive Lebesgue measure.

Theorem 3.13. Let P(T, x, y) be HI. Then the set of all T satisfying the condition

below has Lebesgue measure 1 :

(x)(Ey)P(T, x, y) -* (Ef)HYP(x)(Ey)yánx)P(T, x, y).

Proof. By Gandy [6] or Spector [33], there is an arithmetic formula s/(T, x, y, Y)

such that for all A, m, and n :

A(A, m, n) <-> (AY)[Y ghA & sá(T, m, n, Y)].

By 3.5, we have for almost all A and all m, n:

P(T, m, ri) <-> Jt(T) Y (EY)œ?(F, m, ñ, Y).

Then for almost all A:

(x)(Ey)P(T, x, y) ̂  Jt(T) Y (x)(Ey)(EY)s/(F, x, y, Y).

Let 8 be a positive rational. We define a hyperarithmetic function/such thai the set

of all A satisfying the following condition has measure at least 1 — 8:

(x)(Ey)P(T, x, y) -> (x)(Ey)yáfMP(T, x, y).

Let b(n, r) be the predicate

p((Ey)(EY)j?(F,ñ,y, Y)) > r,
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where r is rational. By 3.2, A(«, r) is hyperarithmetic. Then/(«) is the least j such

that for all r,

b(n,r)-+p((Ey)ySj(EYW(F,n,y, Y)) > r-8/2»+1.

Theorem 3.13 is the instance of measure-theoretic uniformity we associate with

hyperarithmetic theory ; by suppressing a set of F's of measure 0, we are able to

restrict our attention from bounding functions hyperarithmetic in F (provided by

Kreisel's Lemma [16]) to bounding functions that are actually hyperarithmetic.

A sharpening of Theorem 3.13 will be useful.

Corollary 3.14. Let P(T,x,y) and Q(x, y) be n} formulas such that (x)(z)

■(Ey)ziyQ(x, y). Then the set of all T satisfying the following condition has Lebesgue

measure 1 :

(x)(Ey)[P(T, x, y) & Q(x, y)] -> (Ef)HYp(x)(Ey)yinx)[P(T, x, y) & Q(x,f(x))].

Proof. By 3.13, for almost all F there exists a hyperarithmetic g such that

(x)(Ey)[P(T, x, y) & Q(x, y)] -> (x)(Ey)yég{x)[P(T, x, y) & Q(x, y)].

Since (x)(z)(Ey)2éyQ(x, y), it must be that

(x)(Ey)[g(x) é y & Q(x, y)].

By Kreisel's Lemma [16], there exists a hyperarithmetic/such that

(x)[g(x) Ú f(x) & Q(x,f(x))].

But then for almost all F there exists a hyperarithmetic/such that

(x)(Ey)[P(T, x, v) & Q(x, y)]->(x)(Ey)yiRx)[P(T, x, y) & Q(x,f(x))].

Let To, Tx, T2,... be an arbitrary sequence of sets of natural numbers. We turn

our attention to the structure Jt(Tü, Tx, T2,...) introduced by Feferman [3]. The

language ^(Fo, Fx, F2,...) differs from Sf(F) (described at the beginning of §3)

only in that the set constant F has been replaced by the set constants

$~o, F., F¿,... ; the structure Jt(T0, Tx, F2,...) is defined in the same manner as

Ji(T). Each set constant ^ is of course interpreted as F¡. Each member of Jfb(TQ,

Tx, F2,...) is defined by a formula ^(x) of ordinal rank ^ |A|, where A.g Ox. Note

that each such formula ^(x) can explicitly mention only finitely many Fx\ ; thus

it is possible that Jt(T0, Tx, T2,...) will not, in general, have a member in which

all the Fj's are recursive.

We think of (F0, F», F2,...) as being a member of (2N)N. Lebesgue measure p. for

2N was defined in §1 as the product measure induced by the unbiased measure m on

each factor 2={0, 1}. Lebesgue measure p for (2^)" is defined similarly. If F is a

sentence of ^(F0, Fx, F2,...), then the set

{(FcF^.-OI^Fo,^,...)^^}
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is a Borel subset of (2")" and so is Lebesgue-measurable ; let p(F), the probability

that F is true in Jt(T0, Tx,...), be the measure of this set.

Let v and w be recursive functions such that the map h: N -> N x N, defined by

«(«) = (v(n), w(ri)), is one-to-one and onto. Let x e (T)y be defined by

(Eri)[n eT&v(ri) = x& w(ri) = y].

Then the map «: 2N -> (2")* defined by h(T) = ((T)0, (T)x, (T)2,...) is one-to-one,

onto, and measure-preserving; i.e., if .4£2", then A is a Borel subset of 2N of

measure m if and only if h[A] is a Borel subset of (2N)N of measure m (see foot-

note (12)).

Lemma 3.15. The predicate p(F)^r, where F is restricted to the ranked sentences

of &(F0, FX,F2,...) and r is rational, is \i\.

Proof. Same as 3.2.

By an instance of the 1\ axiom of choice, Kreisel [16] means the universal closure

of any formula of the form :

(x)(EY)A(x, Y) -> (EY)(x)A(x, (Y)x),

where A(x, Y) is arithmetic and may contain free variables other than x and Y.

Feferman [3] showed that the 2J axiom of choice holds in Jt(T0, Tx,...) for all

(A0, Ai,...) outside a first category subset of (2N)N by means of a Cohen-type

forcing argument.

Theorem 3.16. If F is an instance of the 2J axiom of choice, then F is true in

Jt(T0, Tx, T2,...) with probability 1.

Proof. Let s/(x, Y) be a formula of ^(F0, F~x,...) whose only free variables are

x and Y, and whose only set variable is Y. Let A be such that

Jt((T)0, (T)x, ...)Y (x)(EY)^(x, Y).

We intend to show that almost every such A has the property that

Jt((T\, (A),, ...)!= (EY)(x)s*(x, (Y)x).

The lemma then follows from the measure-preserving property of the map h(T)

= ((A)0, (A)i,...). Let {&b(x) | b e Ox} be a U\ enumeration of all ranked formulas

with only x free of £(F0, Fx, F2,...). Then

(ri)(Eb)[b eOx& Jt((T)0, (T)x, ...)Ys*(ñ, x%(x))].

If A lies outside a certain set of measure 0, then it follows from 3.14 that there

exists a hyperarithmetic function / such that

(ri)(Eb)búm)[f(n) zOx& Jt((T)0, (T)x, ...)Ysé(ñ, x<Sb(x))\

By Specter [31], there is a c e Ox such that/(n)<0lc for all n. Thus

(n)(Eb)[b g0lc & Jt((T)0, (Di, ...)Ys/(ñ, x$b(x))].
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There exists a ranked formula 3^(x) of 3?(F0, Fx, F2,...) such that for all F, «,

and A^0lc:

Jt((T)o, (T)x, ...)Y %(ñ) <-> J/((T)0, (T)x, ...)Yñe (xJf(x))b.

The existence of Jf follows by the same argument used in 3.6. But then

J(((T)o, (T)x, ...)Y (x)(EyW(x, (xJf(x))y).

It easily follows that

J/((T)0, (T)x, ...)Y (EY)(x)s/(x, (Y)x).

The proof of Theorem 3.16 was little more than an application of Corollary 3.14,

which was only a refinement of Theorem 3.13, the statement of measure-theoretic

uniformity for the hyperarithmetic case. In the same manner, Lemma 3.4 and

Theorem 3.9 can be viewed as consequences of Theorem 3.13. In short, if one

keeps in mind the hyperarithmetic version of measure-theoretic uniformity, as

expressed by Theorem 3.13, one can readily recover all the results of §3.

4. The constructible hierarchy. Let Jt be a countable initial segment of L, the

class of constructible sets, such that Ji is a model of ZF, the axioms of Zermelo-

Fraenkel set theory, and hence of V=L, the axiom of constructibility. (Jt=F"a for

some countable ordinal a, where F is defined in Gödel [9].) We utilize measure-

theoretic ideas in the style of §3 to study the effect of adding an arbitrary set F of

natural numbers to Ji. The resulting structure is denoted by Ji(T). Lemma 4.2

is the instance of measure-theoretic uniformity we associate with the constructible

hierachy of Jt, and it readily implies that the replacement axiom holds in J/(T)

with probability 1. In order to give a complete proof of Lemma 4.1, it is necessary

to give some details concerning the structure of Jf(T). For this purpose the

symbolism of Tharp [36] is convenient. The symbols of the language jSf° are:

g (membership) ; unranked set variables x, y, z,... ; ranked set variables

Xa, ya, z",... for each ordinal a of Ji; propositional connectives, and existential

and universal quantifiers for both ranked and unranked set variables. The atoms of

=S?° are of the form tx e t2, where tx and t2 are variables. The formulas of ¿if0 are

constructed from the atoms and the logical symbols in the standard manner. We

define a class # of constants (intended to name the members of Ji(T)) by induction

on the ordinals of Ji.

^(0)={«|«<co}.

#(«+1): F tea member of ^(<x+1). Let <£(*", yx,..., yn) be a formula of S?°

whose only free variables are xa,yx,.. .,yn (w^O), and whose only quantified

variables are of the form xß for ß less than or equal to a. Then x"(p(x", cx,..., cn),

where each c( (l¿i¿n) is either F or a member of IJ {^(ß) \ ß^a}, is a typical

member of c€(a+1).

W) = \J ÍW) I j8<A} for each limit ordinal A.
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Let <e = (J {<ë(a) | a e Jt}. The symbols of &(F) are those of JS?° together with

the members of (€. The atomic formulas of 3?(F) are of the form tx e t2, where tx

and t2 are variables or members of *<é'.

A sentence F of JíC(F) is said to be ranked if all its variables are ranked. The

ordinal rank of a ranked sentence F, denoted by o(F), is the least upper bound of

{j8 | (x") or (A/) occurs in F} u {ß+1 | x" occurs in J^}. If / e <€, then the ordinal

rank of t, denoted by o(t), is the ordinal rank of the sentence Ö e t. For each set A

of natural numbers, we simultaneously define several concepts by induction, on the

ordinals of Jt: ce ^(a) and o e Jta(T) and c denotes o; o(^")ga and F is true in

Jta(T).

1. a = 0. Jt0(T) = u> and « denotes «. J»7 is true in Jt0(T) if it is true when F is

interpreted as A, « is interpreted as «, and the variables x°, y°, z°,... are restricted

to CO.

2. a=y+1. Let c e #(a) be of the form xy<f>(xy). Then c denotes 6, where

o = {a | a e ^(A) & (Ed)[d e V(y) & a" denotes a & Jty(T) Y </>(d)]}.

Jta(T) is the set of all such 6's. Let o(F) g a. Then F is true in Jta(T) if it is true

when each quantified variable xe of F is restricted to Jtß(T), and each constant c of

fé'íjS) occurring in F is interpreted as the o e Jtß(T) it denotes.

3. ot = A, where X is a limit ordinal. Jt\(T) = {J {JtB(T) \ ß< À}.

Let Jt(T) = (J {^„(A) | a e ^}. Let J*" be an arbitrary sentence of £C(F). F is

true in Jt(T) (Jt(T) Y F) if it is true when each unranked, quantified variable

is restricted to Jt(T) and the remaining symbols are interpreted as above. If F is

ranked, then F can be put in prenex normal form without any increase in ordinal

rank. Assume F is in prenex normal form. The quantifier alternation rank of F,

denoted by a(F), is the number of alternations of quantifiers in the prefix of F.

The leading quantifier rank of F, denoted by 1(F), is the number of quantified

variables occurring in the prefix of F on the left of the left-most alternation of

quantifiers of F if a(F)>0. If 0(^=0, then 1(F) is the number of quantified

variables occurring in the prefix of F. Thus if J5" is (xa)(xß)(ya)(Eyy)&, where ^ has

no quantifiers, then l(F) = 3.

For each sentence F, the countability of Jt implies that {A | Jt(T) Y F} is a

Borel subset of 2N. For each F, the probability that F is true in Jt(T), denoted by

p(F), is defined to be the Lebesgue measure of the Borel set corresponding to F.

We have just given what might be called the external definition of the function

p(F). In Lemma 4.1 we give the internal definition, i.e., a definition inside Jt. If 'S

is an instance of the replacement axiom, then the fact that the replacement axiom is

true in Jt together with the fact the probability function p(F) is ^-definable will

suffice to show p(&) = 1. Hopefully, we will see this matter as a typical instance of

the phenomenon of measure-theoretic uniformity. Of course the ^-definability

of p(F) plays the same role here as the ^-definability of the forcing relation in

Cohen [2]. The difference, if there is one, is thatp(F) has a trivial external definition.
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Let A be an arbitrary set. We say A is ^-definable if there exists a formula

F(x) of ZF with constants denoting elements of Ji such that A equals

{a\ aeJi &a satisfies F(x) in Ji}.

Lemma 4.1. For each n ̂  0 : The function p(F), restricted to sentences F of£?(F)

having at most n unranked quantifiers, is Ji-definable.

Proof. We consider only « = 0, since Cases 1 and 2 below make clear how to

handle unranked quantifiers. We assume F is in prenex normal form and define

p(F) by induction on the rank of F=r(F), where r(F) is the triple (o(F), a(F),

l(^y>- (The triples are ordered lexicographically.)

Case l. F is (xa)Fx(xa). Then

p(F) = gib {/»( A ^(c,)) \n<w,cte V(a)},

where gib denotes "greatest lower bound". If c((z'^w) g ^(a), then Afsn ^i(c¡) can

be put in prenex normal form 'S such that o(f§) á o(F). We claim r(^) < r(F). If

1(F) > 1, then a(^) = a(F) and 1(&)<1(F). If 1(F) = 1, then a($)<a(F). The last

two assertions follow from the kind of elementary quantifier manipulation occur-

ring in 3.1.

Case 2. F is (Ex^F^x"). Dual to Case 1.

Case 3. F has no quantifier prefix. Thus F is a propositional combination of

atoms of the form tx e t2, where tx, t2 e <€. If every atom of F has ordinal rank 0,

then p(F) is easily computed from the information given in Case 3a. If some atom

of F has ordinal rank > 0, then F is equivalent to a sentence of lower ordinal rank,

as is indicated in Cases 3b, 3c and 3d.

Case3a. p(men) = l if m<n;p(m eF~)=\;p(F ern)=p(F eF)=p(m en)=0

if m^n.

Case 3b. o(tx) < o(t2). t2 must be of the form x0<j>(xe). tx e t2 is equivalent to

<f>(tx). o(tx e t2)=ß+1 and ß^o(<f>(tx)).

Case 3c. o(tx) > o(t2). Then tx e t2 is equivalent to

(Fya)[(xa)(xa e/« ¿(x*)) &yae t2],

where tx is of the form ^^(x"). o(tx et2) = a+l, but the ordinal rank of the above

equivalent formula is á <*.

Case 3d. 0 < o(tx) = o(t2). Similar to Case 3c.

Cases 1-3 constitute the definition of p(F) "inside" Ji. A routine induction

shows the internal definition of the function p(F) agrees with the external defi-

nition.

The proof of Lemma 4.1 relied heavily on the notion of prenex normal form. We

comment further on this matter at the end of the paper. Lemma 4.2 is the instance

of measure-theoretic uniformity we associate with the constructible hierarchy of

Ji. It is analogous to Theorems 2.2 and 3.13, but there is a difference worth noting.
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Both 2.2 and 3.13 have the form: for almost every A there exists an/etc, but 4.1

has the form : there exists an / such that for almost all A etc. The difference is a

consequence of the strong "closure" properties of the constructible hierarchy.

Lemma 4.2. Let P(x, y) be a formula of ¿P(F) whose only free variables are x and

y. Then there exists an Jt-definable function f such that for allaeJt with probability

1:
(xa)(Ey)P(xa, y) «-> (xa)(Eyf(a))P(xa, ym)).

Proof. Let g(a, ß) =p((xa)(Eyß)P(xa, /)); g is ^-definable by 3.1. For each a,

Xß | g(a, ß) is a nondecreasing ^-definable function from the ordinals into the unit

interval. Since the replacement axiom holds in Jt, there must exist ^-definable

functions «(a) and/(a) such that h(a) is the least upper bound of {g(a, ß) | ß e Jt}

and g(a, f(a)) = h(a).

Lemma 4.3. Aef F be an instance of the replacement axiom. Then p(F)=l.

Proof. The replacement axiom for Jt(T) can be split as follows : (i) the range of a

function restricted to a set is contained in a set; (ii) let P(x) be a formula of J¡?(F)

whose only free variable is x; then

( v)(Az)(x)[x e y & P(x) <-> x e z].

By 4.2, (i) holds in Jt(T) for almost all A. But (ii) follows from (i) in Jt(T) by

standard arguments implicit in Gödel [8, 9]. Let y e Jt(T). Then it follows from (i)

by means of a Skolem-Löwenheim argument that there exists a v e Jt(T) such that

yev,y^v, and in Jt(T),

(x)(xey&P(x)<-> x e .y &Pv(xj),

where Pv(x) is the result of restricting the quantifiers of A to v. Then z — x(x e y &

Pv(x)) is a first-order definable subset of v; and z e Jt(T), since every first-order

definable subset of a member of Jt(T) is a member of Jt(T).

Proposition 4.4. Let {Fn \ new} be a sequence of Jt of sentences of £C(F) of

countable (in the sense ofiJt) ordinal rank. Then there exists a sentence F of count-

able ordinal rank such that for all A,

Jt(T) Y F <-> (Eri)(Jt(T) Y Fn).

In addition, F regarded as a function of {Fn \ new}, is Jt-definable.

Proof. Let a be a countable (in the sense of Jt) ordinal such that o(Fn) < a for

all «. Then

Jt(T)YFn<-+Jta(T)YFn

for all « and all A. By standard arguments there exist a countable ordinal ß>a

and a formula A(x°) of SC(F) of ordinal rank ß such that for all « and all A,

Jta(T)YFn^Jte(T)YP(ñ).
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The existence of P(x°) follows from two facts : (a) truth in Jia(T) has a first-order

definition (uniform in F) with quantifiers restricted to Jia+(a(T); (b) every first-

order definable subset of a member of Ji(T) is a member of Ji(T). The desired F

is (Ex°)P(x°).

Lemma 4.5. For each «2:0, there exists an Ji-definable function \F\F*,

defined for all sentences F of F? (F) having at most n unranked quantifiers, such that

p(F <-> F*) = 1 and F* has countable (in the sense of Ji) ordinal rank.

Proof. Similar to 4.1. We consider «=0 only, assume F is in prenex normal form,

and define F* by induction on the rank of F If F has countable ordinal rank, then

F* is F. Let F have uncountable ordinal rank. Suppose F is (Ex")Fx(xa). Then

p(F) = lub {/»( V -W) I Ci(i á ») e C(«)|

where lub denotes "least upper bound". As in 4.1, V/.án &\(cï) te equivalent to a

prenex normal sentence of lower rank than (Exa)Fx(xa). Then

^(V^i(A)^(V^ife))*) = 1,

where (Visn^i(Ci))* has countable ordinal rank. It follows from the ^-defina-

bility of ÁF \p(F) (4.1) that there is an ^-definable sequence {c¡ | z'<co}£C(a)

such that

p(F) = lub {p(VFx(Ci)y i < «y

Let F* be equivalent to \/n<a (Viân F(d))*. F* exists by 4.4.

If F is (x")Fx(xa), we proceed in a manner dual to the above.

If F has no quantifier prefix, then F is equivalent, as we saw in 4.1, to a sentence

of lower ordinal rank.

Lemma 4.6. Let a be a cardinal of Ji. Then p(a is a cardinal ofJi(T))=l.

Proof. We sharpen the argument of 4.2. Let a be an uncountable cardinal of Ji,

and let ß e a. We show p(ß can be mapped 1-1 onto a)=0. Let/be a constant ^

which denotes a function from ß into a. For each y eß, let

k(y) = {r\rea&p(f(y) = r) > 0}.

By 4.1, Ay | k(y) is ^-definable. Since / denotes a function and p is countably

additive in the sense of Ji, it follows that k(y) is a countable set of Ji for all y e ß.

But then \J {k(y) \ y e ß} is a subset of a of cardinality (in the sense of Ji) less than

that of a, and consequently,

P({f(y) I y £/3} £ U {k(y) \yeß}*a)=i.

Lemma 4.7. With probability 1 : the power set axiom holds in Ji(T).

Proof. Our argument is related to the one given by Gödel [9, p. 46] to show that
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the power set axiom holds in A. Let d be a constant of ?. It will suffice to find an

ordinal y of Jt such that for all c e ?,

p(c £ d-+ceJty(T)) = 1.

Let d e ?(a+1)—?(oc). Then the members of the set denoted by d can be denoted

by constants of ?(a). By 4.5 there is an .^-definable function Xbc \ (b e c)* such that

p(b e c <-» (6 e c)*) = 1

for all è, c e ?, and such that (o e c)* has countable ordinal rank. For each c e ?,

let k(c) = Xb | (6 e c)*, where b is restricted to ?(<x). If k(cx)=k(c2), then

p(cx £ d & c2 £ d-+ cx = c2) = 1.

Since ?(a) is a set of Jt and the power set axiom holds in Jt, it follows

{k(c) | c e ?} is a set of ^#. Since the replacement axiom holds in Jt, there must

exist a y such that for all ce?,

(Ac')[c' e C(y) & fc(c') = k(c)].

Lemma 4.8. With probability 1 : the generalized continuum hypothesis holds in

Jt(T).

Proof. We first sharpen the argument of 4.7, and then exploit the fact that the

generalized continuum hypothesis holds in Jt. Let a be an infinite ordinal of Jt,

and a+ be the least ordinal greater than a of higher cardinality in the sense of Jt.

For each ce?, let k(c) = Xb \ (b e c)*, where be a, p(be c*-> (o e c)*) = l, and

(6 e c)* has countable rank. As in 4.7, if k(cx)=k(c2), then

p(cx £ a & C2 £ a -> cx = c2) = 1.

As in 4.7, {k(c) \ c e ?} is a set of Jt. Let <7£? be a set of ^# such that for all

ce?,

(Ac')[c' ed&k(c') = k(c)],

and such that

(cx)(c2)[ci ed&c2ed-+ k(cx) ^ k(c2)].

Let c7* denote the set of sets of Jt(T) denoted by the constants of d. Then for all

ce?,

p(c £ a^-ced*) = 1.

Since k(c) can be regarded as a function of Jt from a into cu.., it follows that the

cardinality of ¿/(in Jt) is at most w\=2a=a+. But the cardinality of ci* (in Jt(T))

is at most that of d with probability 1.

Theorem 4.9 (R. Solovay). With probability I: Jt(T) is a model of ZF+GCH

+AC+"cardinals are absolute" + V^L.

Proof. Apply 4.3, 4.6, 4.7, and 4.8. For all A, Jt(T) Y F eL if and only if

TeJt. Clearly p(F e A)=0, since Jt is countable.
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We now develop Cohen's results concerning the independence of the continuum

hypothesis by making purely notational changes in the proof of Theorem 4.9.

Let y be an uncountable cardinal of Jt. We study the structure Jt(Ty), where Ty

is an arbitrary subset of y. The language S£(Fy) is similar to the language .5?(F)

(=SC(Fa)) except that F is replaced by Fy and ?(0) = {« \ new} is replaced by

{ß | ß<y}. Jta(Ty) is defined in the same manner as Jta(T) save that Jt0(Ty) = y

rather than w. Since y is countable, the product measure on 2y closely resembles the

product measure on 2N. If F is a sentence of £?(Fy), then the set

¡jy | Ty e 2» & Jt(Ty) Y F}

is a Borel subset of 2y; its Lebesgue measure, denoted by p(F), is the probability

that F is true in Jt(Ty).

Theorem 4.10 (R. Solovay). Let y be an uncountable cardinal of Jt. With

probability 1: Jt(Ty) is a model of ZF+ AC +" cardinals are absolute" + V^L. If y

is not cofinal with w (in the sense ofJt), then 2a — y holds with probability 1 in Jt(Ty).

Proof. Ranks are assigned to the sentences of J¡f(Fy) in precisely the same way

they were assigned to sentences of £C(F). There is no difficulty encountered when

F is replaced by Fy in 4.1, 4.2, 4.3 and 4.4; 4.5, 4.6, and 4.7 are unaltered by the

substitution of Fy for F, since they depend only on the countable additivity of the

measure. Let g:yxw->y be the canonical 1-1 correspondence between yxcu

and y. For each S > y, let a6 be a constant of ? which denotes {« | g(8, ri) e Ty}. If

8X¥"82, then p(ñ eaöl <->« e<if¡)=J for each «, and consequently p(aol = ai2)=0.

It follows that p(2a 2: y) = 1.

Now assume y is not cofinal with w. The argument of 4.8 serves to show p(2°'=y)

= 1. For each ce?, let k(c) = A« | (« e c)*, where new and (« e c)* has countable

ordinal rank. If k(cx) = k(c2), then

p(cx £ w & c2 £ w -> c?i = c2) = 1.

The cardinality of the set of sentences of ¿tf(Fy) of countable ordinal rank is y ; so

k(c) can be regarded as function from w to y. It follows {k(c) | c e ?} is a set (in Jt)

of cardinality at most ya=y, since (in Jt) y is not cofinal with w and the generalized

continuum hypothesis holds. But the cardinality of 2t0 (in Jt(Ty)) is at most that of

{k(c) \c e ?} with probability 1.

Let (A0, Tx, T2,... ) be a sequence of arbitrary subsets of 2N. We now study the

effect of adjoining (A0, Tx, T2,...) to Jt in the same measure-theoretic fashion we

studied the effect of adding an arbitrary Ato Jt. The language ¿¡?(F0, Fx, F2,...)

is obtained by altering 3?(F) as follows. Replace F by F0, FX,F2,... ; add primi-

tive symbols + (addition) and • (multiplication) with the proviso that they are to

operate only on number-theoretic terms. ?(0) is again the set of finite numerals.

?(a + l) is defined as at the beginning of §4 save that F is replaced by FQ, Fx,

F2,..., F{,... (i<w) and the formula <j> can have occurrences of + and •. Thus
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the constants of ^(1) now denote all the subsets of co which are arithmetical in some

finite subsequence of T0, Tx, T2,... ; truth in the structure Ji(T0, Tx, T2,...) and

the relation "c e ^ & A g Ji(T0, Tx, T2,...) & c denotes A" are defined as before.

Regard (T0, Tx, T2,...) as a point in the space (2N)N, and give (2N)N the product

measure induced by the measure m on each factor 2. (m({0})=m({l}) = \.) Then for

each sentence F of S?(F0, Fx, F2,...), the set

{(To, Tx, T2,...)\ Ji(T0, Tx, T2,...)YF}

is a Borel subset of (2")"; the measure of this set, denoted by p(F), is the proba-

bility that F is true in Ji(T0, Tx, T2,...). The argument of 4.1 now shows: for

each «2:0, the function p(F) restricted to sentences F of S?(F0, Fx, F2,...), is

^"-definable. The arguments of 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 still work, and

together they show : with probability 1, Ji(T0, Tx, T2,...) is a model of ZF +

"cardinals are preserved". Actually, it is necessary to restate and reprove 4.4, 4.5,

and 4.7 as 4.17.1, 4.17.2, and 4.17.3. That task is postponed until 4.17 is established.

It is instructive to consider why 4.8 now fails. The last line of the argument of 4.8

assumes the existence of an ^(F)-definable function which assigns to each set

of Ji(T) a constant of *? that denotes it; the function is obtained by assigning

F to F and then exploiting an ^-definable well-ordering of the formulas and con-

stants of S?(F). In the present case, the language J?(F0, Fx, F2,... ) has an

^-definable well-ordering, but with probability 1 (as we shall see below) there is

no Ji(T0, TX,T2,.. .)-definable function which assigns FK to F, for all i<w.

Ji(T0, Tx,...) has certain symmetries studied by Cohen [1], Feferman [2], and

Solovay [29], [30] which we shall study in terms of measure-preserving transforma-

tions of (2")". Let r be a function whose domain is {FK \ i e co} and whose range is a

subset of ^(1); r can be extended to a function from ^€ into ^ as follows:

r(c(Fo, ...,Fn)) = c(r(F0),..., r(Fn));

in the same manner, r can be extended to a function from the sentences of

£?(F0, Fx,...) into itself. If r is a map from ^(1) into #(1), then r induces a map r*

from (2N)N into (2*)" as follows:

« g r*(Ti) ^ Ji(T0, Tx,...)Yñer(Fi);

r*(T0,Tx,...) = (r*(T0),r*(Tx),...).

We say r is a map from #(1) onto 'íf(l) if r is a map from <^(1) into ^(l) and if for

each i e w, there is a ut e ^(1) such that r(ui)=Fi(11). If r is a map from "t#(l) onto

^(1), then r* is a 1-1 map from (2N)N into (2*)".

Lemma 4.11. Let r be a map of W(l) onto %(l). Then Ji(T0, TX,...)Y r(F)

^ Ji(r*(T0), r*(Tx), ...)Y FJor all (T0, Tx,...).

(") Let c, de <é. We say c = rfif c and ¿/denote the same member of ~#(T0, Ti, T2,...) for

all (T0, Tx, T2,. ..). J. Rosenthal [21] has shown that this notion of equality is ^-definable.

His result is not needed in the present paper.
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Proof. By induction on the rank of F. (We use the same notion of rank employed

in 4.1.) It is sufficient to consider two cases.

Case l. F is « e FK. Then Jt(T0, Tx,...) Y r(ñeF^<^ Jt(T0, Tx,...) Y «

e r(F¡) <-+ « e r*(Tt) ^ Jt(r(T0), r(Tx), ...)YñeFt.

Case 2. F is (Axa)^(x", b), where o is the only member of ? occurring in F

It is easily checked that r maps ?(a) onto ?(a); i.e., for each de?(a), there is a

c e ?(ce) such that r(c)=d. The following formulas are equivalent:

Jt(r*(T0), r*(Tx), ...)Y (Ex«)<$(x\ b);

(Ec)[c e ?(«) & Jt(r*(T0), r*(Tx),...) Y <S(c, b)];

(Ec)[c e ?(«) & Jt(T0, TX,...)Y $(r(c), r(b))];

(Ed){deV(a) & Jt(T0, TX,...)Y <§(d, r(b))];

Jt(T0,Tx,...)Yr((ExaW(xa,b)).

The second formula is equivalent to the third by the induction hypothesis.

Lemma 4.12. Let r be a map of£(l) onto ?(1) such that the induced map r* : (2N)N

-> (2N)N is measure-preserving. Then p(F) =p(r(F)).

Proof, r* is 1-1 and maps (2N)N onto a set whose complement has measure 0.

Now apply 4.11.

Feferman's transformation lemma [3, 4.8] is a forcing-theoretic version of our

Lemma 4.12.

Let ?(«; F0, Fx,...,Fk_x) (k^O) be the set of all constants of ?(a) whose

^-symbols are included in the sequence F0,..., Fk_x. Let Jt(a; T0,..., Tk_x)

be the set of all sets of Jta(T0, Tx, T2,...) denoted by members of

?(<*; F0,..., Fk_x).

It is clear that ? has a constant which denotes Jt(a ; T0,..., Tk _ x) ; let us adopt the

convention of denoting Jt(a; A0,..., Tk_x) by Jt(a; F0,..., Fk_x). Similarly, let

?(^0,. ..,Fk_x) = (J {?(«; F0,.. ., Fk_x) \aeJt},

and let Jt(F0,. ..,Fk_x) denote \J {Jt(a; A0,..., Tk_x) \ aeJt}.

Proposition 4.13 (R.Solovay). For each k^O: Jt(F0,.. .,Fk_x) is well-ordered

with probability 1.

Proof. Let JÍ = Jt(JQ, Tx, A2,...) be a model of ZF with the allowable exception

of the power set axiom. Fix k 2; 0. In Jf we can define truth in Jf for all ranked

sentences whose ^-symbols are included in the list F0,...,Fk_x. It follows by

standard arguments that there exists a 1-1 ̂ "-definfible map hk of Jt(T0,..., Tk_x)

into ?(^To,..., Fk_x), i.e., each set of Jt(T0,..., Tk-X) is mapped to a constant of

^(■^o, ■ • .,&k-i) which denotes that set. But there exists an ^-definable (hence

Jf-definable) well-ordering of?. The definition of hk has A0,..., Tk-X as param-

eters.
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Lemma 4.14 (R. Solovay). Let F(xa) be a formula ofSJC(F0, Fx,...) whose only

free variable is Xa, and whose Frsymbols are included among F0,..., Fk_x. Then

with probability 1,

(Ex")F(xa) <-► (Exa)[F(xa) &xae Ji(a; F0,..., Fk)].

Similarly, with probability I,

(Ex)F(x) <-> (Ex)[F(x) &xe Ji(F0,..., Fk)\

Proof. Let k = 1. To prove the first half of the lemma, it is enough to prove : for

each sequence c0, cx,..., cn e(€(a), there exists a sequence r(c0), r(cx),..., r(cn)

G^(a;^,^i)suchthat

p(\/nF(d)} = p(\/nF(r(Ci))y

Let m be so large that c0, cx,...,cne<€(a; F0,..., Fm). Consider the following

map r of V(l) into #(1):

r(F0) = F0; r(Fi+m+x) = Fi+2       (i ^ 0);

r(Fj+x) = x0(mx0+jeFx)       (J < m).

It is not difficult to check that r maps #(1) onto <ë(l) and that r* is measure-

preserving(12). Clearly, r(c¡) e<#(a; F0, Fx) and r(F(ct)) is F(r(c{)) for each i¿n.

Now apply 4.12.

We specify some maps of %(l) into #(1) needed for the proof of Lemma 4.15.

For each « ̂  0 and i ï: 0, let

(Fm)i = x0[(2i + 1x° + 2i-l)eFm];

(Fmy = x0[(2nx° + 2n-l)eFm].

For each m, «5:0, we define a map r™ of'tf(l) into ^(1):

rW,) = F, (j < m);

rZ(Fm+{) = (Fm)i       (i < «);

rn^m + n)  =  \<Sm)   ',

rn(Fm+n+k) = Fm+k       (k S: 1).

It is not hard to see that (rf)* : (2N)N -> (2")^ is measure-preserving (see footnote

(12)). We claim that r™ maps %(l) onto <ë(l). Consider the constant d™ e <g(l)

defined by

x°e</> (Ey°)(y° e Fm+„ & x° = 2ny° + 2"-1)

V (Fz)oSi<„(F/)(v°G^m+i&x0 = 2i + y+2'-l).

(12)Cf. Halmos[10,p. 159(7)].
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Clearly, r%(d%)=Fm. Thus r™ is a map of ?(1) into ?(1) which meets the hypotheses

of Lemma 4.12.

Lemma 4.15 (R. Solovay). With probability 1, the dependent axiom of choice

holds in Jt(T0, Tx, T2,...).

Proof. Let F(x, y) be a formula of SC(F0, Fx,...) whose only free variables are

x and y and all of whose ^¡-symbols are included among F0, Fx,..., Fm_x («.2:0).

We intend to find an/e?(^>,..., Fm) such that/denotes a function on w and

such that with probability 1,

(x)(Ey)F(x, y) -> (x°)F(f(x0),f(x° + ï)).

For the sake of notational simplicity, let m = 1. By 4.14, for each « 2t 0, the following

two sentences are equivalent with probability 1 :

(x)(Av)[x e Jt(F0, ...,Fn)-+ F(x, y)] ;

(x)(Ey)[x e Jt(F0, ...,Fn)-> F(x, y)&ye Jt(F0, ...,Fn+x)].

With the aid of 4.12, we apply rl+x to the above pair of sentences to obtain another

pair equivalent with probability 1 :

(x)(Ey)[x e Jt(F0, (Fx)0,..., (Fx)n_x) -> F(x, y)] ;

(x)(Ey)[x e Jt(F0, (Fx)0,..., (Fx\_x) -> F(x, y)&ye Jt(F0, (Fx)0,. ..,(Fx)n)].

(Note: Jt(F0, (Fx\,..., (Fx)n) denotes the collection of all sets of Jt(T0,Tx,

T2,...) denoted by constants of the form r¿+1(c) for some c e ^(F0, Fx,..., Fn+X).)

It follows from 4.13 that the sequence of sets Jt(F0, (Fx)0,..., (Fx)n) («2:0) can

be well-ordered uniformly in « with probability 1. But then for some/e ?, we have

with probability 1 : if (x)(Ey)F(x, y), then

fi(Ö)eJt(F0),

/(« +1) e Jt(F0, (Fx)0,..., (Fx)n)       (n ^ 0),

(x°)F(f(x°),f(x° + ï)).

We can insist that/e ^(F0, Fx), since the constants that denote the well-orderings

needed in the definition off are members of ^(F0, Fx).

The argument of Lemma 4.15 can be greatly simplified, if one merely wishes to

establish the countable axiom of choice (see footnote (2)). In fact, Proposition 4.13

and Lemma 4.14 readily imply: with probability 1, the product of a family of non-

empty sets, indexed by a well-ordered set, is nonempty.

A very simple notion of conditional probability of truth in Jt(T0, Tx, T2,...) will

make it possible to strengthen Lemma 4.12. Let {F¡\ ieK} be a finite set of

.^-symbols ; let At £ w for each / e K. The conditional probability that F is true in

Jt(T0, Tx, T2,...), given that Ti = Atfor all i e K, is denoted by

p(F\Fi = Ai,ieK),
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and is defined as follows. Let (2W)£ be the set of all sequences (F0, Tx, T2,...) such

that F¡ = Ai for all i e K. Think of (2N)% as the product of countably many copies of

2N and finitely many one-point spaces, one one-point space {At} for each i e K.

Give each copy of 2N the usual Lebesgue measure, and give each one-point space

measure 1. Let (2N)g have the product measure induced by the measures assigned to

its factors. Then p(F \ Fi=Ait ie K) is the measure of the set of all sequences

(T0, Tx, F2,...) of (2N)% such that F is true in Ji(T0, Tx, T2,...).

Let r be a map of (ë(l) into ^(1). Then for each i, r(F^) is a member of '£(1) in

which only finitely many ^¡-symbols occur. Suppose for each z, either all or none of

the ^-symbols occurring in r(Ft) also occur in the set {Fx \ i e K}. We describe this

state of affairs by saying that fixing {Ft\ ie K} has the effect of fixing {r(F\~) \ i e Kr},

where Kr is the set of all i such that every «^¡-symbol occurring in r(F¡) also occurs

in {Ft | i e K}. We will always assume, for convenience only, that K and Kr are

finite. Observe that fixing F, = ^( for all z'gF has the effect of fixing r*(F()=Ff

for all i e Kr, where F( is the set in Ji(T0, Tx, T2,... ) denoted by r(F¡) when Tt = At

for all i g K.

Lemma 4.16. Let r be a map of V(l) onto <£(l) such that r* : (2N)N -> (2N)N is

measure-preserving. Suppose that fixing {F{ \ ie K} has the effect of fixing

{r(FT)\ieKr}.

Then for each sentence F of ±?(F0, Fx, F2,...),

p(r(F) \Fi = Ai,ieK)=p(F\Fi = Bu i e Kr),

where for each i e Kr, F( is the set denoted by r(F¡) when TK = Aifor all i e K.

Proof. We extend the argument of 4.12. The map r*: (2N)N -> (2N)N is 1-1. Let r%

be the restriction of r* to (2NfK. Then r* is a 1-1 map of (2NfK into (2N)%r. The

lemma will now follow from 4.11, after we show r* is measure-preserving. Let

{d | i e co} be a sequence of constants of <€ which denote subsets of co. We say

{c\ | z ̂  «} is a sequence of independent, uniformly distributed w-terms if

p(iñx g ciX & m2 e ci2 &• • • & mk e cik) = 1/2*

whenever O^z'l áz'2^ • ■ ■ ̂ ik^n and m¡ = mT-^-ij^ip for lúj<púk. We say

{q | z g co} is a sequence of independent, uniformly distributed co-terms if {c( | z ̂  «}

is such a sequence for all n ̂  0. It follows from 4.12 that {r(Ft) \ i e co} is a sequence

of independent, uniformly distributed co-terms. This last fact implies r% is measure-

preserving (cf. Halmos [10, p. 191-192]).

Corollary 4.17. Let {Ft\ ieK} include all the F¡-symbols occurring in the

sentence F of ¿C(F0, Fx, F2,...). Then for every sequence {At \ ie K} of subsets

of co, p(F | F=Ai, ieK) = 0 or 1(13).

(13) S. Kochen pointed out that Corollary 4.17 is an instance of the 0 — 1 law [10, p. 201].
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Proof. Let o denote an arbitrary propositional combination of sentences of the

form m e Fi, ñ $ Fj, where /, j $ K. Then p(b) can be thought of as the measure of

an arbitrary finite union of basic open subsets of (2N)1¡. ((2N)% is defined just before

4.16.) It follows from 4.16 that

p(F & b | Fi = Ai, i e K) = p(b)p(F \Ft = Auie K).

For example, if A= {0}, o is m e Fx, and r is the map defined by r(^i) = w — Fx and

r(F¡) = Fi(i^l), then

p(F &meFx\F0 = A0) = p(F &m^Fx\F0 = A0)

by 4.16, and consequently,

p(F & m e Fx \ F0 = A0) = \p(F \ FQ = A0).

For each 8 > 0, there exists a 6 such that

p(F<^b\F, = At,ieK) 2t 1-8.

But then p(F \ Ft = Ai,ie K) must be a solution of x=x2.

Suppose {F{ | / e A} includes all the .^-symbols occurring in F, where F is a

sentence of ¿£(Fq, Fx, F2,...). Then Corollary 4.17 tells us that the truth-value of

F in the structure Jt(TQ, Tx, A2,...) is determined by the choice of {A( | / e A} for

almost all sequences (A0, Tx, T2,...). Let (2N)K be the product of A-many copies of

2^, one copy of 2N for each / e K. Give (2")* the usual product measure. Identify

the sequences {A{ \ieK} with the points of (2N)K. Then by Fubini's theoremp(F)

is the measure of the set of all sequences {Ai \ie K} such that p(F \ Fi = Auie K)

= 1.

Proposition 4.17.1 (Cf. 4.4). Let {Fn \ new} be a sequence of Jt of sentences

ofi¿¡f(F0, Fx,...) of countable (in the sense of Jt) ordinal rank such that for some k,

no Fi-symbol with i^k occurs in any Fn. Then there exists a sentence F of countable

ordinal rank containing no F¡-symbols not occurring in at least one Fn and such that

for almost all (T0, Tx,...),

Jt(T0, TX,...)YF^ (En)(Jt(T0, Tx,...) Y Fn).

In addition, F regarded as a function of{Fn \new} is Jt-definable.

Proof. The argument of 4.4 establishes the first part of the proposition, namely,

that the desired F exists. The ^"-definability of F as a function of {Fn \new}

follows from the ^-definability of the probability function p restricted to sentences

of £?(F0, Fx,...) of countable ordinal rank and from the following equations

which characterize F no to a set of measure 0 :

mi*-**)-1]*
(8)(A/)p>p^ V ^n) £1-8];

8 is a variable ranging over the positive rationals.
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Lemma 4.17.2 (Cf. 4.5). For each «^0: there exists an Ji-definable function

\F | F*, defined for all sentences F of S¥(F0, Fx,...) having at most « unranked

quantifiers, such that p(F <-> F*) = 1 and such that F* has countable (in the sense of

Ji) ordinal rank and contains no Frsymbols not occurring in F.

Proof. We proceed by an induction on rank after the fashion of 4.5. Let F be a

prenex normal sentence of uncountable ordinal rank of the form (Ex^F^x") such

that F0 is the only .^-symbol occurring in F. By 4.14,

p(F) = lub {/»( V ^ife)) I Ci g <?(«; Fo, Fx)y

where lub denotes "least upper bound". As in 4.1, Visn &\(ci) is equivalent to a

prenex normal sentence of lower rank than (Exa)Fx(xa). Then

/'(V^i(ci)^(V^i(ci))*) = 1,

where (Visn^ífe))* has countable ordinal rank and contains no ^-symbols

other than F0 or Fx. It follows from the ^-definability of p that there exists an

^■-definable sequence {c( | i<of}<=,c€(a; F0, Fx) such that

p(F) = lub f^V^c-i)) | « < coj.

Let ^ be a sentence of countable ordinal rank equivalent with probability 1 to

Vn<oj (Vfsn^ífo))*- The existence of ^, as well as the fact that & contains no

^-symbols other than F0 or Fx, is a consequence of 4.17.1.

If ^ contains only F0, then the desired F* is ^. Suppose ^ contains both F0

and Fx. We know that p(F <-><&) = I and that the only ^-symbol occurring in F

is F0. It follows from 4.17 that/»(S? \ F0 = T0) equals 0 or 1 for almost all F0. The

function AF0 | pÇ3 \ F0 = T0) is Ji(TQ, Tx,.. .)-definable for almost all (T0, Tx,...);

its definition contains no ^-symbol other than F0, and has countable ordinal rank

because & does. Thus there is a formula J^(F0, x°) of countable ordinal rank

such that for almost all (F0, Tx,...):

Ji(To, TX,...)Y J?(F0, Ö) ̂ p($ | F0 = F0) = 0;

Ji(To, Tx, ...)Y tf(F0, Ï) ++p(9 | Fo = To) = 1.

Then the desired F* is M?(F0, Î).

Note that the above argument merely establishes the existence of F* and not its

^-definability. The ^-definability of F* is a consequence of the ^"-definability of

the probability function/? (restricted to sentences of £?(F0, Fx,...) having at most

« unranked quantifiers) and the following characterization of F* up to a set of

measure 0 : p(F <-> F*) = 1 ; F* has countable ordinal rank and contains no Fr

symbol not occurring in F.

Lemma 4.17.3 (Cf. 4.7). With probability 1: the power set axiom holds in

Ji(T0,Tx,...).
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Proof. Same as 4.7 save that 4.5 is replaced by 4.17.2.

Feferman [3] showed that if A0, A1; T2,... is a sequence generic in the sense of

Cohen (i.e., generic in the sense of forcing with finite conditions), then in

Jt(T0, Tx, T2,...), the Boolean algebra of all subsets of w has no nonprincipal,

maximal ideal. The proof of 4.18 is a measure-theoretic analogue of his argument.

Theorem 4.18. With probability 1 : The Boolean algebra of all subsets ofiw has no

nonprincipal, maximal ideal in the structure Jt(T0, Tx, T2,...).

Proof. Let c e ? be a constant which denotes a set of subsets of w. Suppose

p(c is a nonprincipal, maximal ideal of 2m)>0. Let F0,..., Fn_x include all the

^¡-symbols occurring in c. By 4.17 and Fubini's theorem, there must exist sets

A0,..., An_x such that

p(c is a nonprincipal, maximal ideal of 2a | Ft = Au i < ri) = 1.

Let a" denote w — d. We intend to show

p(Fn e c & F^ e c \ Ft = Ai, i < n) = I.

Eitherp(Fn e c \ Ft = Au /<«) orp(F¿ e c \ Fl=Ai,i<ri) must be positive. Suppose

the former is positive ; we claim it must be equal 1. To see the claim, let A be the set

of all A such that

p(Fnec\Fi = Ai, i <n,Fn = A)= 1.

By 4.17 and Fubini's theorem, p(Fn e c \ Ft = Ai, /<«) equals the measure of

A£ 2N. Let fin (A) be the collection of all subsets of w that differ finitely from some

member of A. If fin (A) = A, then the measure of A must be 0 or 1 by a standard

zero-one law argument [10]. Let/L4) be a subset of w differing finitely from A, and

let/(^,) be a term that differs from Fn in the same way that f (A) differs from A.

By 4.16,

p(f(Fn) e c [ Fi = Ai, i < «, Fn = A)

= p(Fnec\Fi = Ai, i <n,Fn= f(A)).

But

p(Fnec^f(Fn)ec\Fl = Ai,i<n) = 1,

since c denotes a nonprincipal maximal ideal with probability 1 when F{ is fixed

at Ai for all /<«. That establishes the claim that p(Fn e c \ Fi = A{, /<«)=1.

Another application of 4.16 gives

p(F;ec\F( = Al,i<ri) = 1.

In order to develop Solovay's relative consistency result on the extendability of

Lebesgue measure, we shall replace ? by ?*, &(F0, Fx, F2,...) by ä'*(F0, Fx,

F2,. ..), and Jt(T0, Tx, T2,...) by Jt*(T0, Tx, T2,...). These changes will be

small but important; our sole purpose is to insure that ?*(1) is as symmetrical as
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possible from a measure-theoretic point of view. This device was originated by

R. Solovay.

Let c0 = c0(FQ,..., Fn) be an co-term of #, that is to say, a constant of % which

denotes a subset of co. (We can assume that the ^-symbols occurring in c0 are

F0, Fx,..., Fn for all sufficiently large «, since we can always add ^-symbols to c0

in a spurious fashion.) Recall the notion of " sequence of independent, uniformly

distributed co-terms" introduced at the end of the proof of 4.16. We say c0 =

Co(^ö, • • •, &n) is a projective, uniformly distributed co-term if there exist co-terms

Ci(F0, ...,Fn) (I-¿i^n) and kt(F0, ...,Fn) (i^n) of <ê such that {ct \i^n} and

{kt | z'ij«} are sequences of independent, uniformly distributed co-terms and such

that

F\ = k¡(c0,..., cn) = Ci(k0,..., kn)

for all i^n. (kt(c0,..., cn) is the result of substituting c¡ for FK in kt.) Note that if c0

is a projective, uniformly distributed co-term by virtue of the existence of c¡ (1 ̂  / ̂  «)

and ki (i S «), then c¡ (1 ̂  i ̂  «) and k¡ (i ̂  «) also are projective, uniformly distributed

co-terms. It is tedious but routine to check that (Fm)h (Fm)n and d%, which were

defined immediately preceding the proof of Lemma 4.15, are projective, uniformly

distributed co-terms. The collection of all such terms is ^-definable, since p(F),

restricted to the ranked sentences of ^(Fq, Fx, F2,...), is ^-definable.

Let <tf*(0)='tf(0) = {ñ | « g co}. Let <«?*(1) be the set of all projective, uniformly

distributed co-terms. In the previous paragraph it was remarked that ^*(1) is

^-definable. It is convenient to make c€*(l) a set of Ji by the following device.

The proof for the power set axiom for Ji(T0, Tx, T2,...) (essentially the, argument

of 4.7) shows that there exists a set A g Ji of co-terms such that with probability 1,

each co-term of ^ is equal to some co-term of A. Thus there is no harm in restricting

the concept of co-term to A. (€*(y +1) (y > 0) and #*(A) (A a limit ordinal) are defined

in the same manner as &(y+l) and ^(A). The constants of (€*(y+1) (y>0) denote

the first-order definable subsets of Jif+X(T0, Tx, T2,...). The atomic formulas of

3?*(FÜ, Fx, F2,...) are of the form tx e t2, where tx and t2 are variables or con-

stants of <ë*.

Let JiUjo, Tx, T2,.. .) = co. Let t e #*(1); suppose {Ft\ie K} is the set of all

^-symbols occurring in t. By Lemma 4.17,

p(ñet\ F¡ = Ti,ieK) = Oorl.

We say that t denotes {n\p(ñet\ ^=F(, i e K) = l}. Jif(T0, Tx, T2,...) is the set

of all sets denoted by some t e <^*(1). Ji*+ X(T0, Tx, T2,...) (y >0) is defined in the

same inductive fashion as Jiy+X(T0, Tx, T2,...). Thus the only conceptual differ-

ence between Ji(T0, Tx, F2,...) and Ji*(T0, Tu F2,...), or between &(F0, Fx,

F2,...) and S?*(F0, Fx, F2,...), is the difference between #(1) and V*(l).

A routine transfinite induction establishes the existence of an ^-definable

/: #* -> # with the following properties for each c e &* : if c is an co-term, then/(c)
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is an cu-term; c and/(c) have the same occurrences of ^-symbols; the set denoted

by c in Jt*(T0, Tx,...) equals the set denoted by fi(c) in Jt(T0, Tx,...) for all

(Ac, Ti,...).

For each sentence F of J?*(F0, Fx, F2,...), the probability that F is true in

Jt*(T0, Tx, T2,...), denoted by p*(F), is the measure of the Borel set

{(A0, Tx, T2,...)\ Jt*(T0, Ai, A2,.. .)YF}.

The argument of 4.1 shows: for each «2:0, the function p*(F), restricted to

sentences of ¿¡?*(F0, Fx, F2,...) having at most n unranked quantifiers, is Jt-

definable. Note that the peculiar definition of ?*(1) requires the use of the Jt-

definability of p for ranked sentences of ^(F0, Fx, F2,...) in the proof of the

^■-definability of p*. The arguments of 4.17.1-3 show that with probability 1,

Jt*(T0, Tx, T2,...) is a model of ZF. Observe that if / e ?*(1)£?, then p*(ñ e t)

=p(ñ e t) for all new.

Lemma 4.19. Let r be a map o/?*(l) onto ?*(1) such that r*: (2N)N -> (2N)N is

measure-preserving. Suppose that fixing {F¡ \ ie K} has the effect of fixing

{r(Fi)\ieKr}.

Then for each sentence F of^*(F0, Fx, F2,...),

p(r(F) \Fi = AuieK)=p(F\Fi = Bt, i e Kr),

where for each i e Kr, B¡ is the set denoted by r(F¡) in Jt*(T0, Tx, T2,. ..) when

A( = Ai for allie K.

Proof. Same as 4.16. The arguments of 4.11 and 4.12 are correct for

Jt*(T0, Tx, T2,...). The differences between ?(1) and ?*(1) are irrelevant.

Lemma 4.20. Let {F¡ \ ie K} include all the Frsymbols occurring in the sentence

F of ¿if*(F0, Fx, F2,...). Then for every sequence {At \ ie K} of subsets of w,-

p(F\Fi = Ai,ieK)=Qor 1.

Proof. Same as 4.17. But it is necessary to check that the maps of ?(1) onto ?(1)"

employed in the proof of 4.17 are also maps of ?*(1) onto ?*(1). This is a routine

matter, since all the relevant terms of ? (w-Fx, etc.) are projective, uniformly

distributed w-terms.

Lemma 4.21. With probability 1, the dependent axiom of choice holds in Jt*(T0,

TX,T2,...).

Proof. Same as 4.15. But it is necessary to check that the maps of ?(1) onto ?(1)

employed in the proofs of 4.14 and 4.15 are also maps of ?*(1) onto ?*(1).

From now on we will identify elements of 2" with real numbers in the closed unit

interval [0, 1] by means of the usual dyadic expansions. Thus if A, Be 2N, then

/I+A (mod 1) will correspond to the arithmetic sum (mod 1) of the real numbers

corresponding to A and A. A similar remark applies to cu-terms of?*.
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Lemma 4.22. (a) Let c(F0,..., Fn) e?*(l); then there exists a map r o/?*(l)

onto ?*(1) such that r(F0) = c(FQ,.. .,Fn), r(Fx)=Fn+x, and the induced map

r* : (2N)N -* (2^)^ is measure-preserving.

(b) Ift(F0,.. ,,Fn_x) is an w-term of£*, then there exists a cne ?*(1) such that

cn = Fn + t(F0,..., Fn_x) (mod 1) with probability 1. 7« addition, there exists a map

r o/?*(l) onto ?*(1) such that r(F¡)=Ft (/<«), r(Fn) = cn, and the induced map

r* : (2N)N -*■ (2N)N is measure-preserving.

Proof. Since c0 = c(F0, ...,Fn)e ?*(1), there must exist ct(F0, ...,Fn) and

ki(FQ,..., Fn) (/g«) such that {ct | /g«} and {kt | /g«} are sequences of in-

dependent, uniformly distributed co-terms of ?*(1) and such that Fi = ki(c0,..., cn)

(/g«). Then the map r, defined by

r(F0) = c(F0, ...,Fn) = c0,

r(Fx) = Fn+X, r(Fn+k) = Fn+k       (k > 1),

r(^+i) = Ci       (1 g / g «),

maps ?*(1) onto ?*(1). The induced map r*: (2N)N -> (2N)N is measure-preserving,

since {r(Ft) \ i e w} is a sequence of independent, uniformly distributed co-terms.

(Cf. end of proof of 4.16.)

By the remarks immediately preceding 4.19, there exists an co-term tx(F0,...,

Fn_x)e^ such that Fn + t(F0, ...,Fn_x) denotes the same set in Jt*(T0, Tx,. ..)

that Fn + tx(F0, ...,Fn_x) denotes in Jt(T0, Tx,...). We must show cn=^"n + /i

is a projective, uniformly distributed cu-term. For this purpose, it is convenient to

think of the co-terms of ? as random variables [5] defined on the sample space

(2")". An co-term is uniformly distributed in our sense if and only if it is uniformly

distributed in the standard sense when it is interpreted as a random variable.

Thus if c0,..., cn is a sequence of uniformly distributed co-terms such that c¡ and c¡

(Og/</g«) have no ^-symbols in common, then c0,. ..,c„ is a sequence of

independent, uniformly distributed co-terms (cf. Halmos [10, p. 194]). We claim

^0, ■ ■ -, Jn-1, "Sn + tnyO, • ■ -, *'n-l), *^n+l> • • •

is a sequence of independent, uniformly distributed co-terms. The claim is a con-

sequence of the following type of standard argument. Let X0, Xx, Y be random

variables on (2N)N such that X0, Xx are independent and uniformly distributed, and

such that X0, Y are independent. Then X0+ Y (mod 1), Xx are independent and

uniformly distributed, since

p(X0+ Y=a&Xx = c)= ^p(Y=a-b &X0 = b&Xx = c)
b

= p(X0 = a)p(Xx = c)^p(Y = a-b \ X0 = b&Xx = c)
b

= p(X0 = a)p(Xx = c).

To check that cn = Fn + tx(F0,..., Fn_x) is projective and uniformly distributed,
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let Ci=kt=Fi(i<n) and let kn=Fn — tx(F0,..., Fn_x) (mod 1). The desired map r

is defined by r(Fi) = Ft (i^n) and r(Fn) = cn.

Let xn be a restricted variable of F?*(F0, Fx,...), restricted to the subsets of co

in Ji*(T0, Tx,...). Thus we can denote each subset of 2N in Ji*(T0, Tx,...) by a

constant of the form xaF(xn), where F(xn) is a formula of ±?*(F0, Fx,...)

whose only free variable is xn. For each (T) = (T0, Tx, T2,...), we define the

absolute (in F) measure of xaF(xn), denoted by pl(xnF(xa)), as follows :

pl(xaF(xn)) = p*(F(Fj) \Fi = Ti,ie K),

where j $ K and {Ft \ ie K} is the set of all ^-symbols occurring in F (By 4.19, the

value of j is irrelevant so long as j <£ K.) For each (T) = (T0, Tx, T2,...), we say

Ji*(T0, Tx, T2,...) is measure-complete if for every F(xa) e áC*(F0, Fx,...), we

have

pl(xaF(xa)) > 0 -> Ji*(T0, TX,...)Y (Exa)F(xn).

The concept of absolute (in F) measure has been defined for definitions of subsets

of 2" in Ji*(T0, Tlt...) rather than subsets of 2N; for each (T) = (T0, Tx,...), let

us say pi is well-defined on all subsets of2N if all definitions of any given subset of 2N

in Ji*(T0, Tx,...) have the same absolute (in F) measure.

Lemma 4.23. With probability 1: (a) Ji*(T0, Tx, T2,...) is measure-complete;

(b) ifJi*(T0, Tx, T2,...) is measure-complete, then pi is well-defined on all subsets of

2NinJi*(T0,Tx,T2,...).

Proof. First we do (a). Let F0 be the only ^-symbol occurring in F(x°, F0).

We must show: for almost all (T) = (T0, Tx, T2,...), if pl(xaF(xn, F0))>0, then

Ji*(T0,Tx,T2,...)Y(Excl)F(xn,F0). Suppose not. Then by 4.20 and Fubini's

theorem, there exists a set F£ 2N of positive measure such that for all F0 g K,

p*(~(Exn)F(xn, F0) \Fo = T0)=l,

p*(F(Fx, Fo) | F0 = T0) > 0.

Now we do (b). Let F0(xn, F0) and Fx(xn, Fx) be formulas such that Ft is the only

^-symbol occurring in F¡(xn, Ft) (i<2). By 4.20 and Fubini's theorem,

«o = pl(xnFo(xa, F0)) = p*(F0(F2, F0) | F0 = F0, Fx = Tx)

for almost all (T) = (T0, Tx, T2,...). Similarly,

mx = pl(xnFx(xn, Fx)) = p*(Fx(F2, Fx) \ F0 = F0, Fx = Tx)

for almost all (F). Let F0 A Fx denote (F0 & ~ Fx) v (Fx & ~ F0). Then for

almost all (T), if

mA = pl(xn(F0(xn, F0) A Fx(xn, J[))) = 0,
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then m0=mx. Finally, for all (T) = (T0,TX,T2,...), if J/*(T0, Tx, T2,...) is

measure-complete and

Ji*(To, Tx, T2,...)Y (xa)(F0(xn, Fo) = Fx(xn, Fx)\

then m a =0.

Lemma 4.23 strongly suggests that pi is a good candidate for a countably ad-

ditive, translation-invariant extension of Lebesgue measure to all subsets of 2N in

Jt*(Jo, Tx, F2,...) for almost all (T) = (T0, Tx, F2,...). We shall of course cfirry

out this suggestion, but there is a delicate problem, easily overlooked, that we must

face immediately. The definition of pi was given by means of terms denoting sub-

sets of 2N in Ji*(To,Tx,T2,...). With probability 1, there is no map in

Ji*(T0, Tx, T2,...) which associates with each subset of 2N a term denoting that

subset; this follows from the argument of Theorem 4.18. Nonetheless, we are able

to define pi in Ji(T0, Tx,...) for almost all (T) = (TQ, Tx,...) by exploiting the

measure-theoretic symmetries of ^*(1). In fact, Lemma 4.24 is the sole reason we

insisted that every co-term of ^*(1) be projective and uniformly distributed.

Lemma 4.24.  With probability 1 : pi is Ji(T0, Tx,.. .)-definable.

Proof. Let s be an arbitrary subset of 2N in Ji*(T0, Tx, T2,...). For almost all

(T) = (T0, Tx, T2,...), there exist Ji*(T0, Tx, T2,.. .)-definable maps/and A such

thatf(s) = R(xn, y) is a ranked formula of £?*(F0, Fx,...) in which no ^-symbols

occur, b(s) = b is a subset of co in Ji*(T0, Tx, T2,...), and xnR(xn, y) denotes s in

Ji*(Jo, Tx, T2,...) when y is interpreted as A. The set A is merely an encoding of

the finitely many F¡'s that are denoted by J7-symbols in some term denoting s; it is

easily checked that all such encodings can be accomplished by projective, uniformly

distributed co-terms (cf. d™ defined immediately preceding 4.15). Thus A is denoted

by some term c(F0, Fx, F2) e ^*(l), and

pl(s) = p*(R(F3, c(F0, Fu F2)) \Fi = Ti,iú 2).

Unfortunately there is (with probability 1) no Ji*(T0, Tx,.. .)-definable map A such

that h(r) = c(F0, Fx, F2). But, thanks to the symmetry of ^*(1), we don't need c.

We claim:

Pl(s) = p*(R(Fu F0) | F0 = A).

The claim follows from 4.22 (a), 4.19, and Fubini's theorem. Finally, note that the

conditional probability function p*(F \ F0 = b), restricted to ranked sentences

F e ±?*(F0, Fu...) and sets A g Ji*(T0, Tx,...), is Ji*(T0, Tx,.. .)-definable for

almost all (F0, Tx,...) by a routine modification of the argument of 4.1.

Lemma 4.25. With probability 1 : pi is countably additive, translation-invariant,

and agrees with Lebesgue measure on all Lebesgue-measurable sets.

Proof. Let F(xn, F0, x°) be a formula of ¿?*(F0, Fx,...) whose only ^¡-symbol

is F0. Let .4£co be such that for all m^n,

p*((xn) ~ [F(xn, Fo, in) & F(xn, Fo, ñ)]\F0 = A) = l.
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Let (A) = (,4, Ai, T2,...). Then

2 v?a(xaF(xa, F0, «)) = J^p*(F(Fx, F0, ñ)\FQ = A)
n n

= p*((Ex°)F(Fx, F0, x°) \F0 = A)

= pl(xn(Ex°)F(xn, F0, x0)).

The countable additivity of pi for almost all (A) = (A„, TX,T2,...) now follows

from 4.20 and Fubini's theorem.

We establish the translation-invariance of p.1 for almost all (A) by a variation of

the argument of 4.24. Let F(xn, F0) be a formula of ¡e*(F0, Fx,...) whose only

^¡-symbol is F0, and let c(F0, Fx) be an co-constant whose only ^-symbols are

F0 and Fx. Then

pc = pl(xnF(xn + c(F0, Fx), F0))

= p*(F(F2 + c(F0, Fx), F0)\Fi = Ti, i g 1)

for all (A) = (A0, Tx,...); and

c, = pl(xnF(xn, F0)) = p*(F(F2, F0)\Ft = Af, / g 1)

for almost all (A) by 4.20 and Fubini's theorem. By 4.22 (b) and 4.19,

p*(F(F2 + c(F0, Fx), F0)\Fi = Ti, i g 2)

= p*(F(F2, F0)\Fi = Ti, iSl,F2 = T2 + c(T0, Tx))

for almost all (A). But then by Fubini's theorem pc = p. for almost all A.

For almost all (A), pi agrees with Lebesgue measure on all Lebesgue-measurable

sets because pi is countably additive and agrees with Lebesgue measure on all basic

open subsets of 2N. (Of course we are using the fact that every countably additive

measure on 2N is regular (Halmos [10]); this fact requires the countable axiom of

choice in its proof; fortunately, 4.21 provides us with the countable axiom of

choice for almost all (A).)

Theorem 4.26 (Solovay [29], [30]). If ZFis consistent, then ZF+" there exists a

countably additive, translation-invariant extension of Lebesgue measure to all sets of

reals" + "dependent axiom of choice" is consistent.

Proof. By 4.21, 4.24 and 4.25, Jt*(T0, Tx, T2,...) is the desired model with

probability one.

Scott and Solovay [25], [26] have devised a very valuable way of viewing forcing

arguments in terms of homomorphisms of Boolean algebras. Consider what

happens from their point of view when a Cohen-generic A£A/ is added to Jt.

Cohen [1] defined a forcing relation, q Y F, where a is a finite set of conditions on A

and F is a sentence of ¿¿(F). Suppose a is interpreted as a basic open subset of 2N.

Then

<f>(F)={J{q\qY~~F}
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defines a map from the sentences of 3?(F~) into RO, the Boolean algebra of regular

open subsets of 2N. RO is a complete, Boolean algebra, and <j> is a homomorphism

in the sense of complete Boolean algebras. By that we mean, ¡f>(Fx v F2) = <f>(Fx)

V<f>(F2). j>(~F) = interior of 2N-</>(F), and <f>((Exa)F(xa)) = \J {<f>(c) | ce?(a)}.

Cohen's key lemma is : for each « 2:0, the map <f>, restricted to sentences having at

most « unranked quantifiers, is ^-definable. The ^-definability of <j>, together with

the fact that $ is a homomorphism in the sense of complete Boolean algebras, is all

that is used to show <¡>(F)= 1 for each instance F of the replacement axiom.

Our probability function p(F) is a map from the sentences of &(F) into the

usual linear ordering of the reals in [0, 1]. Now p is not a homomorphism, since

p(Fx v F2) need not equal

max (p(F1),p(F2)).

But/? is a "near-homomorphism"; it preserves negations and monotonie unions:

p(~F)=l-p(F), and p((Exa)F(xa)) = least upper bound of {p(F(c0) v • • •

V F(cn)) | c¡ e ?(<*)}. The fact that p is not a homomorphism is exactly the reason

that prenex normal form was exploited so heavily in the proof (Lemma 4.1) of the

^■-definability of p. The ^-definability of <f>, together with the fact that p is a

"near-homomorphism", was enough to show (Lemmas 4.2 and 4.3) thatp(F)= 1

for each instance F of the replacement axiom. Thus the measure-theoretic uni-

formity approach seems to suggest that the Scott-Solovay Boolean-valued model

point of view can be generalized still further, possibly by dropping homomorphisms

in favor of "near-homomorphisms".

Solovay [29] significantly extended Cohen's forcing method by using closed

subsets of 2N of positive measure as forcing conditions. His forcing relation,

a II- F, is identical with Cohen's save that a is a set of natural numbers of Jt which

encodes a closed subset of 2N of positive measure. The proof of Solovay's Theorem

(4.26) is based on this notion of forcing. Call A£ N Solovay-generic if it is generic

in his sense of forcing. Call A fundamental if for all sentences F of ZF, p(F)

= l<-+Jt(T) Y F (By Corollary 4.17, p(F)=l or 0 if F has no ^-symbols.)

Solovay has observed that A is fundamental if and only if A has the same

degree of nonconstructibility as some Solovay-generic A'. (In this case, A and A'

have the same degree if each is constructible from the other via the ordinals of Jt.)

Thus the transition described in the previous paragraph from homomorphisms to

"near-homomorphisms" might correspond to a transition from sets to degrees

of sets.
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