
HIERARCHIES OF EFFECTIVE DESCRIPTIVE

SET THEORY

BY

PETER G. HINMANO

1. Introduction and summary. The theory of hierarchies deals with the classi-

fication of objects according to some measure of their complexity. Such classifica-

tions have been fruitful in several areas of mathematics: analysis (descriptive set

theory), recursion theory, and the theory of models. Although much of the hier-

archy theory of each of these areas was developed independently of the others,

Addison, in the series of papers [Ad 1-6], has shown not only that there are

deep-seated analogies among these theories, but that indeed many of their results

can be derived from those of a general theory of hierarchies. Toward a further

consolidation of these theories, this paper will study the relationships and analogies

between certain classical hierarchies of descriptive set theory and their counter-

parts in recursion theory.

The roots of modern hierarchy theory lie in the investigations of Baire, Borel,

Lebesgue, and others around the turn of the century. As analysts with a concern

for the foundations of their subject, they felt that constructions effected by means

of the axiom of choice or the set of all countable ordinals were less secure than those

carried out by more elementary means. They sought to discover what role these

suspect constructions played in analysis and whether or not they could be avoided

altogether. Thus descriptive set theory arose with the goal of identifying, classi-

fying, and studying those sets (of real numbers) which were of interest for analysis

and for which an "explicit" construction could be given. Needless to say, there was

vigorous disagreement as to just what constituted an explicit construction.

The first large class of sets studied were the Borel sets. Since each Borel set can be

constructed by iteration of the elementary operations of countable union and

complementation over a countable well-ordering, it was in general agreed that

these sets are constructively defined. Lebesgue defined in 1905 [Le] a set outside of

the Borel classification, but although it avoided use of the axiom of choice, Le-

besgue's construction used the set of countable ordinals and hence was rejected

by some (see, for example, [Bo, p. 208]).

In 1917, Suslin discovered the operation sf (for analytic—see definition below)
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and showed that the class of sets (analytic sets) obtainable by a single application

of .5/to families of intervals properly included the class of Borel sets—in fact, that

the Borel sets comprise just those analytic sets whose complements are also

analytic. Suslin's discovery had also great methodological significance as it led

directly to the abstract notion of a set operation and the recognition that many such

operations are sufficiently "effective" to provide an explicit construction for each

member of the inductive closure of the class of intervals under the operation. In

particular, the sets obtained by closing under sé (C-sets or ensembles criblés) were

studied in detail by Selivanovskij [Se].

We now make some definitions in order to describe more precisely the plan of this

paper. Let A be the set of natural numbers and NN the set of functions from A into

A. As is customary in modern descriptive set theory we shall replace the reals by

NN (homeomorphic to the irrationals). Letters a, b,..., z will serve as variables over

A and a, ß,..., e as variables over A". For any set A, SP(A) is the power set of A.

A function Fe3?(A)N is called an indexed family of subsets of A. An (A-ary)

operation over A is a function T: 3?(A)N ->■ 3P(A). For example,

(a) i)(F) = {aßp[aeF(p))};

(b) s/(F) = {aßßVy[aeF(ß(y))]};

(c) lim inf (F) = {aßpVq[p < q -> a e F(q)]}.

Let J (the initial class) be any subset of SP(A). The inductive closure ofiJ under Y,

denoted by ^r(A, J), is the smallest class ^^^(A) such that:

(i) J<=,'€;
(ii) Fe'ëN->Y(F)e<ë;

(iii) Ce<ë^(A~C)e'ë.

When A = NN and J is the class of intervals, we write simply #r for ^V(A, J).

Then the class of Borel sets is ^u and the class of C-sets is <^s/.

Our first results were motivated by the similarities we noticed between this

definition and Kleene's definition of recursiveness relative to a (type-2) functional

[Kl 3]. The stage was set by two characterizations of the hyperarithmetic subsets of

A: as those recursive in the functional 2E [KI3, p. 48] and as those encompassed by

an "effective" version of the Borel hierarchy [Ad 1, 2]. In §2 we generalize Addi-

son's construction to define for each operation Y a class ^r (=#r(A, J)), the

effective inductive closure of the class of singletons under Y. Roughly, this is done by

assigning to each set C as it is generated an index i(C) and at each stage of the

inductive definition applying Y only to those families F such that Xp[i(F(p))] is

recursive in some set previously generated. Also with each r we associate a func-

tional gr (such that g u = 2E) and prove that for a large class of operations Y, ̂ r is

exactly the class of sets recursive in gr.

Since an analytic set is obtained by a single application of si, by analogy with a

common notation it seems natural to denote the class of analytic sets by Sf.
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Consistent use of this notation gives, for example, S^ for the open sets and II2U

for the Ga-sets. Then Suslin's theorem is: ^u = Af. In the 1920's (but not published

until later; see [Ka-Li]) Kolmogorov, abstracting from the relationship U :¿é,

defined the /?-operator, which maps operations to operations and satisfies R [} = £/,

and 9Hr = k\r was proposed as a generalization of Suslin's theorem. The history of

this conjecture is unclear, but its status seems to have been unknown until 1953 and

the publication of [Lj 1, 2]. In these papers, Ljapunov shows that the conjecture as

stated fails for a rather trivial reason (cf. the proof of 4.7 below), but that a closely

related operator R* satisfies: <#rçAfr. Ljapunov studied the sequence of opera-

tions ^v: ^°= U, ¡%v + 1 = R*â?\ and for limit A, StK is a "join" of {á?*/f < A}, and

showed that at every level above the first, (ëm" is a proper subset of A*v + \ Hence the

problem of finding a direct generalization of Suslin's theorem is still open.

We felt for a long time that the effective situation might well be different. The

proof that ^çAfr offers mainly combinatorial difficulty, and together with the

basic properties of R and R* is given in §§3, 4 below. Since R* U is equivalent to sé,

it follows from Addison's results and those of [Kl 2] that the converse inclusion

holds for T = U. We conjectured in [Hi] that this was so in general. Among other

reasons, it seemed to us that Ljapunov's proof depended essentially on the presence

of NN rather than Af as the base space and thus could not be carried over to the

effective case. An example of this phenomenon is studied in [Be], where it is shown

that although <€u (NN, Ef ) is a proper subset of £if [Ku], the corresponding

effective classes over N are equal. The conjecture is especially tempting in that the

properties of nfr are very similar to those of Uf ( = 11}). In particular, each set in

nj*r is a transfinite union of a sequence of sets (its constituents) which are de-

finable by an inductive procedure based on F. This is explained in §6.

The facts, however, are otherwise, and it turns out that this inductive procedure

differs in a subtle way from that used to define #r. In §5 we develop the theory of a

functional g$, which differs from gT in including in its domain some partial func-

tions from N into N. Under a suitable extension of Kleene's notion of recursiveness

to include functionals of this type, we show in §7 that Af'r is exactly the class of sets

recursive in g\t and that for F which are as powerful as sé—in particular, if F is

^v with v 2:1—this class includes sets not recursive in gr. Thus the proposed

generalization of Suslin's theorem fails in the effective case as well.

Finally in §8 we discuss briefly the theory of the effective hierarchies over NN.

We are not able to extend the results of §2 to this case. Not only does there seem to

be no natural definition for ^T(NN, J), but for no known definition does this class

exhaust the sets of functions recursive in gr. On the other hand, the relationship

between R*F and g\t remains the same when functions are allowed as arguments.

In particular, it follows that gR.r is of the same degree as the diagonalization or

superjump of g$.

These results leave open a number of interesting questions. It seems likely, for

example, that the result just mentioned could be extended to show that gf.r is also
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of the same degree as the superjump of gf, where " degree " is redefined to require

that all partial functions be admitted as arguments. In any case, R behaves much

like a jump operator on operations; the Si" correspond to Kleene's sets Ha (a e 0).

Appropriate restriction of the join operation at limit ordinals should lead to an

interesting class of operations. Plausible conjectures are that the sets generated by

these operations coincide with the ramified analytic sets or those recursive in the

(type-3) superjump functional.

Most of our notation will follow either [Kl 1] or [Kl 3] with which we assume

familiarity. In particular, our indices of partial recursive functions are those of

[Kl 3]. To assert that an index a defines a computation for some list of arguments 9Í

we write equivalently "{a}(91)| " or "9i6Dm{a}". The statement {a}(9t) g X

is true if and only if 91 g Dm {a} and the value (a}(9í) belongs to X. We shall

assume some fixed 1-1 correspondence between the set of finite sequences of natural

numbers and A, but we shall never indicate it explicitly. Thus <a0,..., am_i>

denotes both a sequence and its corresponding number. If s=(a0,..., am_!> and

t = <¿>0,..., *„_!>, then In (s) = m, s(p} = (a0, ...,am„x,p), (p)>s = (p, a0,..., am.x}

s * í = <a0» • • -, flrn-1, b0,..., 6n-i>, (s)i = (a(, if i<m; 0, otherwise), and s£r if and

only if mfkn and for i<m, ai = bi. We often write {a}(s) to mean {a}(a0,..., am_i).

For i^ln(s), s\i=(a0,..., Of_i>. s\0 = 0, the empty sequence.

2. The effective hierarchies.

Definition 2.1. For any A'-ary operation Y over A:

(a) /r is the smallest set such that for any a, m, u, and v:

(i) <0,w>G/r;

(ii) ueF and Vp[{a}lu:n(p) e F] -> <1, u, a) e F;

(iii) veF-^Q., v}eF;

(b) for any m and any <1, u, a} and <2, v) e F:

[<0,m>;r] = {«/« = m};
[<l,u,ay;Y] = Y(Xp[{ay«"(p);Y]);

K2,v>; Y] = N~[v;Y];

(c) ^ = {[M;r]/MG/r};

(d) for ueF, \u\r is an ordinal as follows:

|<0,w>|r = 0;

|<l,»,a>|r=max{|«|r + l,suPp{|{arrV)r+l}};
|<2,i>>|r=Mr;

(e) for any ordinal v, I^ = {uju e F and |«|r^v}, and

^ = {[<l,M,a>;r]/<l,M,a>£/vr};

nT = {[<2, <1, u, a»; T]/<1, u, a> e /vr};

Definition 2.2. For any set A and any A-ary operation Y over A, Y is analytic

if and only if for any F, G e 3P(Äf and any a, be A, if V/?(a g F(p) <-> b e G(p)),

then ae Y(F)^be Y(G).   |
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The examples of §1 are all analytic. An example of a nonanalytic operation

over N is :

F(F) = {m/Vpn(n < m A me F(p) -»■ n e F(p))}.

Intuitively, the distinguishing feature of an analytic operation is that the question

of whether or not a e F(F) depends only on {p\a e F(p)} and not on any conditions

involving any ¿? different from a. This principle is formalized in the second con-

clusion of the following lemma.

Lemma 2.3. For any sets A and C and any analytic N-ary operation F over A, let

A ¿?e the N-ary operation over C defined as follows. For any G e é?(C)n, any ceC,

andanyp e N, let Gc(p) = (A, ifc e G(p); 0, otherwise) and set A(G) = {c | F(GC)=A}.

Then A is analytic over C. In particular, if A = C, then A = F so for any G e 2P(AY

and any a,

a e F(G) *-> r(Ga) = A.

Proof. Suppose Gx and G2 in 0>(C)N are such that V/?(c e Gx(p) *^>de G2(p)).

Then G\ = G\, so

c e A(Gi) <-> r(Gï) = A <-> F(Gá2) = A<-+de A(G2).

Hence A is analytic. For the second part, let G be in 3P(A)N and a e A. Then for any

be A, V/?(a £ G(/?) <-> ¿> e Ga(/?)), and hence by the analyticity of F, aeF(G)

<-> ¿? e F(Ga). Since then ¿» is independent of a, a e F(G) <-> F(Ga) = A <-> a e A(G). |

Henceforth we shall use the same symbol F to denote an analytic operation

together with all its extensions defined as in the lemma. Then the defining property

of 2.2 holds also when F and G are families over different sets.

Definition 2.4. For any analytic operation F, any a e NN, and any p e N, let

Ga(p) = (N, if a(/?) = 0; 0, otherwise).

gr(a) = 0,   ifF(Ga) = N;

= 1,   otherwise.     |

Examples, g u (a)=0 <-> 3p(a(p)=0) ; g^(a)=0 <-> 3ßVx(a(ß(x))=0).

Lemma 2.5. For any analytic operation F:

(a) for any F e ¿?(N)N, any me N, and any a e NN, if V/?(a(/?) = 0«me F(p)),

then gr(a) = 0«itiE F(F);

(b) if for all ue Ir we define by recursion a function \[u; F]\ by:

[[<0, m>; rj = An (0, if m = n; 1, otherwise);

Kl, u, a}; rn = Xm(gr(Xp\[{a}lu-rKp); IK«)));

[<2,t»>;ri = Am(l-Q>;Il(m));

then [[«; rj is the characteristic function of[u; F].

Proof. If F, m and a satisfy the hypothesis of (a), then Ga = Fm, that is, V>(Ga(/?)

— N^->me F(p)). It follows by Lemma 2.3 that

m e F(F) <->• r(Ga) = N<-+gr(cc) = 0.
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Part (b) follows immediately by induction over /r.    |

Corollary 2.6. For any analytic operation Y, "^Çjsc (gr). In fact, there exists

a primitive recursive function tt such that for all u e F, \[u; rj = Xm{n(u)}(gr, m).

Proof. Let </> be a partial recursive function defined by cases as follows : for any

functional / and any m, n, a, e, u, v,

(i) <j>(f, <0, m), n, e) = (0, if n—m; 1, otherwise);

(ii) <p(f, <1, u, a}, m, e)^f(Xp{e}(f, {ajww.-.«^), rn));

(iii) <p(f, <2, p>, m, e)s 1 -{e}(/ v, m);

(iv) <f>(f, u, m, e) is undefined otherwise.

By the recursion theorem there exists an index e0 such that

</>(f, u, m, e0)^{e0}(fi u, m).

Let tt(u) be an index for Xfm{e0}(f, u, m)—that is,

Wu)}(fim)^{e0}(f,u,m).

Then it is routine to check by induction on /r that tt has the required property.

The first statement of the corollary then follows immediately by 2.5.    |

The converse of Corollary 2.6 is certainly not true for every analytic Y. For

example, if Y(F)= 0 for all F, then ^r consists only of A, 0, the singletons, and

their complements, while iSC (gr) is the set of recursive sets. Even for less trivial

operations it is by no means obvious that #r is closed under "recursive in".

Roughly, the difficulty is that too much is concentrated in the main inductive

clause of Definition 2.1(b). Recursions in previously generated sets, diagonalization,

and application of Y are all accomplished at one fell swoop. While this seems

appropriate as an effective counterpart of the inductive clause in the definition of

<ër, it may generate pathologies for certain operations.

The following definition and theorem were motivated by these considerations

and some closely related results of Moschovakis [Mo 1]. They will greatly facilitate

the proof of Theorem 2.10 below and may also be of some independent interest.

Definition 2.7. For any functional /:

(a) Jf is the smallest set such that for any a and v:

(0 <3>g/';
(ii) vej< and Dm {af-^ = A -> <4, v, dyej!;

(iii) Vw(Ii>;/I](m) G/0 -> <5, v} ej<;
(iv) veJr^(6,v}eJf;

(b) for any <4, v, a), <5, v), and <6, v) ejf:

[<3>;/J = A/n(0, if m = 0; 1, otherwise);

K4,v,a};f]\ = {ar-n;

Œ<5, o>;/T]=Ai»[nr»;/]](m);/]](»i);
K6,vy;f\] = Xmf(lv;fJ\);

(c) 3< = {lv;f^lveJ'}.
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Theorem 2.8. For any functional f 2' = xsc(f). In fact, there exist primitive

recursive functions p and a such that:

(a) for any veJ', lv;f]\ = {p(v)Y;

(b) for any a such that Dm {a}f = N, a(a) ejf and {a}f — \[a(a);f]\.

Proof. The construction of p is very similar to that of n in the proof of Corollary

2.6 and will be omitted. For (b) we construct a partial recursive function <p such

that:

(b') x e Dm {a}! -+ <J>(a, x)eJ'   and   \[ip(a, x) ;fj = Xz{a}'(x).

Given such a </<, we define a from it as follows. Since/is fixed, we write simply

\[v]\ for [[t?;/]]. Let o1 be a primitive recursive function such that for any a, {a1(a)}a(x)

= ifi(a, x), and take a(a) = <5, <4, <3>, ^(a)». Then for any a such that Dm {a}f=N,

Mà)D(x) = ŒK4, <3>, ffl(a)>I*)]](x)

= IW&W^KxMx) = U(a, xMx) = {aY(x).

We define >j> via the recursion theorem and a partial recursive function </> defined

by cases. If e0 is an index such that <p(a, x, e0)^{e0}(a, x) and i/j={e0}, then it is easy

to prove by induction on computations [Kl 3, 3.8] that tp has the property (b').

We give parts of this proof along with the definition of <j>.

(i) If (a)o = 0, let a2 be a primitive recursive function such that for any a, x, e,

and y,

{a2(a, x, e)}a(y) ~ {e}((a)3, (y}x),

and set <p(a, x, <?) = <6, <5, <4, <3>, a2(a, x, e)>».

Ma, x)]\(z) = U(.a, x, e0M.z)

= /(A>M<4, <3>, o2(a, x, e0)}l\(y)My))

= mi{°2(a,x,e0)r^(ymy))
-fiWK(')»<y>xmy))
= f(ty{(a)3}f('\y)x))   (Induction hypothesis)

= {a}'(x).

(ii) If (a)0= 1, 2, or 3, let a3 be a primitive recursive function such that for any

a, x, and z,

{a3(a, x)Y(z) s {aY(x),

and set 4>(a, x, e) = <4, <3>, o3(a, x)>.

(iii) If (a)0=4, let ct4 be a primitive recursive function such that for any a, x, e,

and z,

K(a, x, e)r(z) s 0?X(a)a, <«(z)>x),
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and set <f>(a, x, e)£<5, <4, {e}((a)3, x), <74(a, x, e)>>.

U(a, x)J(z) = U(a, x, eMz)

= Œtt<4, {eQ}((a)3, x), a,(a, x, e0)>l(z)](z)

= [[{a4(fl, x, e0)r^-x\z)J(z)

= ŒftO)* <Œ0((a)s, *)3(^)>Jc)l](z)
= {(^/'«{(û^FC*))*)   (Induction hypothesis)
= WO).

(iv) If (a)0 = 5, the treatment is similar to (iii).

(v) If (a)0 = 6, let x' be the prescribed rearrangement of the components of x

and set <j>(a, x, e)^<j>((a)i, x', e).

(vi) If (û)0 = 9, let b, y, and / be such that x={b}y * y' and {a}r(x)^{by(y),

and set <£(a, je, e) s <£(£, J, <?)•    |

Definition 2.9. For any analytic operations Y and A, A subsumes Y if and only

if there exists a primitive recursive function a such that for any family F,

Y(F) = A(XpF(a(p))).

Examples.   U (F) = s/(XPF((p)0)). n (F) = ^(ApFfln (/>))).

Theorem 2.10. For any analytic operation Y, if Y subsumes U, /Aen ̂ r = !sc (gr).

In fact there exists a primitive recursive function r such that for any v eJ9r, T(v) e F

and[r(v);Y] = {ml\[v;grJ¡(m) = 0}.

Proof. The second statement together with 2.6 and 2.8 implies the first. Let a be a

recursive function by which Y subsumes U. We shall construct a partial .recursive

function <(i such that for any v ej'r, i/i(v) e F and

M»)! F] = {<m, rí)Hv; gr]\(m) = «}.

Given such a <p, we define t from it as follows. Let b and c be indices such that for

any set A, {b}A enumerates {<0, m)¡(m, 0> g A} and {c}A = Xp{b}A(a(p)). Let rx be a

primitive recursive function such that for any v, q, and A, {rx(v)}A(q) = < 1, <p(v), c>,

and set t(d) = <1, <0, 0>, tx(v)}. Since T is fixed, we write [u] for [u; Y]. For t; e7\

[r(v)] = Y(Xq[{rx(v)y«>-°>Xq)]) = r(A9[{ri(t;)}t<0-0>'(a(9))])

= U (A9[<l,^),c>]) = [<l,^),c>]

= Y(Xp[{cY^(p)]) =  U(Ap[{or»»0)])
= U {[<0, m>]/<m, 0> g [¿(v)]} = {«/[[t; ; gr]\(m) = 0}.

As usual, tfi is defined via the recursion theorem as {e0}, where <f>(v, e0)^{e0}(v)

and <£ is defined by cases as follows,

(i) ¿«3>,e) = <0,0>.

(ii) If f = <4, w, a}, let b and c be indices such that for any set A, {b}A enumerates

{<0, (jn, n}yi{a}A(m)^n} and {c}A = Xp{b}A(a(p)), and set
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<p(v,e)^(l,{e}(w),cy.

[m] = [<u{e0m,c>] = n*p[{c}mw)\p)])
=  U {[<0, <m, ny>]l{a}mm(m) £ n}

= «m, n}l{a}lw[gr\m) = n}   (Induction hypothesis)

= {<m,n)llv;gr]\(m) = n}.

(iii) If v = (5, w}, let t2—t5 be primitive recursive functions such that for any sets

A and B, and any p, q,

{-r20)}B enumerates «0, </?, «»/</?, ri) e B};

{r3(p)Y(q) = {r2(j?)}B(«(<?));

{u(e)Y(p) S <1, W(least r : </?, r> e ¿), r30?)>;

{T5(e)}^(^ S {t4(^(«(/?));

and set <f>(v, e)s<l, M(w), T5(e)>.

WP)] = [<1, ft"), t5(^o)>] = r(A^[{r5(e0)}"'<^(/?)])

= U (A/?[<1, ¿(least r : </?, r> e [0f»D, r3(/?)>])

=  U(A^r(A9[{T3(^)}i^^3(P»](9)]))

= U (Xp u {[<0, </?, »»Mm»; SrHOOKp) - »})
= {<P,n>Hv;gr]\(p) = n}.

(iv) If t? = <6, w>, choose u0 and «j e /r such that [u0] = N and [ux]= 0, and let

a, b, and c be indices such that for any A, B, p, and m,

{a}A(p) = (u0, if </?, 0> e A; uu otherwise);

{¿>}B(m) = «0, <m, 0», if 0 e B; <0, <m, 1», otherwise);

{cY(m) = {¿»}B(«(m)).

Set^(t;,e)s<l,<l,M(w),a>,C>.

[<l,0(w),a>] = r(A^[H^<^(/?)]) = r(Gl»*"l)

= (N, ifgr(lw,grD = 0; 0 otherwise).

[4>(v)] = r(A»i[{c}I<1-*<">-a>](»i)])

= («m, 0>/m e N}, if gr(lw; gr]\) = 0; «m, l>/m e AT}, otherwise)

= Km, gr(lw; gAYIm e N} = {<m, »>/[T»; ^rJ(m) = «}.    |

3. Comparisons of effective hierarchies. We have given one criterion for

comparison of two operations: if A subsumes F, then certainly ifr£#A, and in-

tuitively, A is at least as powerful as F. In this section we establish sufficient

conditions to ensure a stronger relationship: ^sA^.

Definition 3.1. For any analytic operations F and A:

(a) A absorbs F if and only if there exists a primitive recursive function ß such

that for any family F,

F(XpA(XqF«p,q}))) = A(XrF(ß(r)));

(b) A is normal if and only if it absorbs itself.
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Examples. U and n are normal with ß any function which enumerates pairs.

si absorbs U via the function ß = Xp(((p)0,(p)0}), where «w0, mx,..., mn})°

= (rnx,..., mny. si also absorbs n and is normal.

Lemma 3.2. For any analytic operations Y, YQ, A, and A0:

(a) if A absorbs Y and Y subsumes ro, then A absorbs T0 ;

(b) if A absorbs Y, A0 subsumes A, and A subsumes A0, then A0 absorbs Y.

Proof. Let A absorb Y via ß, Y subsume F0 via a, A0 subsume A via y, and A

subsume A0 via S. Let F be any family.

(a) Let G=A/-F««((/)0), (r)x>). Then

Y0(XpA(XqF((p,q»)) = Y(XpA(XqF((a(p),q})))

= Y(XpA(XqG«p,qy))) = A(XrG(ß(r)))

= A(XrF((a((ß(r))0), (ß(r))x})).

(b) Let H=XrF(((r)0, o((r)x))). Then

r(ApA0(Aç/l«/,,?»)) = Y(XpA(XqF((p, o(q)))))
= Y(XpA(XqH«p,qy)))

= A(XrH(ß(r))) = A0(XrH(y(ß(r))))

= A0(XrF(((y(ß(r)))o, o((y(ß(r)))i)»).

Lemma 3.3. For any analytic operation A, any family F over A, and any a,

a~\A(F)) = A(Xp(a-i(F(p)))).

Proof. Let G = Xp(a'1(F(p))). Then for any m,p, Falm\p) = N ^-> a(m) e F(p)

<^>me G(p) *-> Gm(p) = A, hence a(m) e A(F) ^ A(Fa(m)) = A <-> A(Gm) = N<^>m

eA(G).    |

The following technical lemma establishes some closure properties of 2f\ The

hypothesis on A is stronger than necessary for some parts of the lemma, but our

applications in the next section do not require the stronger results. If u = < 1, v, a} e I£,

we call u a Sf-index (for [u; A]).

Lemma 3.4. For any analytic operations Y and A such that A is normal and sub-

sumes Y, u , and n :

(a) 2^ contains all recursively enumerable sets; precisely, there exists a partial

recursive function 6X such that for any e, 6x(e) is a ?,x-index for {w/{e}(m) = 0};

(b) 2£ is closed under recursive counter-image; precisely, there exists a partial

recursive function 82 such that for any {e} e NN and any Y<x-index u, 62(e, u) is a

I.t-indexfor {ej-'du; A]);

(c) 2f is closed under application of Y to recursively enumerated families; pre-

cisely, there exists a partial recursive function 63 such that for any e, if {e}(p) is a

^-indexfor allp, then 63(e) is a Zf-indexfor Y(Xp[{e}(p); A]);

(d) X£ ¿s closed under finite union and intersection ; precisely, there exist partial

recursive functions 04 and d5 such that for any ^-indices u and v, dt(u, v) is a S^-

index for [u; A] U [v ; A], and 65(u, v) is a 1,^-index for [u; A] n [v; A];
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(e) 2A is closed under "F-projection"; precisely, there exists a partial recursive

function 96 such that for any Y^-index u, 66(u) is a Y^-indexfor

F(Xn{ml(m, n)e[u; A]}).

Proof, (a) follows by the method of definition of t in the proof of 2.10. For (b),

let u=(l, v, a}. Since u e /A, vel§ so we may assume {a}lvM={a}. Using succes-

sively 3.3, (a), and the normality of A, indices ¿» and c may be computed such that

{e}-\[u; A]) = A(Xp{e}-\[{a}(p); A]))

= A(A/?A(A?[{¿?}(/>,<7);A]))
= A(Ar[{c}(r);A]) = [<l,<0,0>,c>;A].

Thus it suffices to take 82(e, w) = <l, <0, 0>, c>. For (c), let {e}(/?) = <l, vp, a„>. By

3.2 and the hypothesis, A absorbs F. Hence indices ¿> and c may be computed

such that

F(Xp[{e}(p); A]) = F(XpA(Xq[{ap}(q); A]))

= F(XpA(Xq[{b}(p,q); A])) = A(Xr[{c}(r); A]).

Hence again we may take 63(e, w) = <l, <0, 0>, c>. Part (d) follows easily from (c)

with T replaced by U and n. For (e) choose e such that for all m and n,

{{e}(n)}(m) = <m, ri).

Then

{m\(jn, n}e[u; A]} = [62(u, {e}(n)); A]

and 66 is easily defined from this and 63.

Theorem 3.5. For any analytic operation A such that A is normal and subsumes

U  and n, AA is closed under "recursive in"; precisely, there exists a partial re-

cursive function 07 such that for any A, B^N and any a, u, and v such that u and v are

^-indices for A and N~A, respectively, and{a}A is the characteristic function of B,

07(w, v, a) is a Yf-index for B.

Proof. We first observe that the second part implies the first; N~B is also

recursive in A and another value of 07 yields a 2A-index for N~B. Let R be a

recursive relation such that

meB-h->3s(R(s,m) A V/zn<ln(s)[(« e A A (s)n = 0) v (n <£ A A (s)n = 1)]).

Using (a) and (d) of the previous lemma, a SA-index w may be computed so that

[w; A] = {«m, s), n}¡R(s, m) a [(« 2: In (s)) y (ne A A (j)n = 0)

V (n i A A (s)n = 1)]}.

Then if d\ and 92 are as in 3.4(e) for F= U and T= n, respectively,

B =  U (Xs{mKm, s) e (] (Xn{p¡{p, n)e[w; A]})})

= U (Xs{mKm, s} e [62e(w); A}}) = [0¿(06»); A].

Lemma 3.6. For any analytic operations F and A such that A is normal and sub-

sumes F, U, and n, 2A is closed under application of F to families recursively

enumerated relative to AA sets; precisely, there exists a partial recursive function 68
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such that for any A^N, any u, v which are ^-indices for A and N~A, respectively,

and any e such that for all p, {e}A(p) is a ~L^-index, 68(e, u, v) is a Z^-index for

nW{e}A(p); A]).

Proof. Let

B = {{m,p, n, q)ßwa({e}A(p) = <1, w, a} A {a}tvM(q) = <0, m»}.

For e and A which satisfy the hypothesis, w will be in 1$ and thus B is easily seen

to be recursive in A. Hence, by the previous theorem, from u and v we can compute

a S^-index for B. The desired set is obtained from B by successive "projections"

under Y, u, and Y, and thus a 2^-index for it may be computed by 3.4(e).    |

Since #r is closed under complementation, ^r£A£ follows from fé^el^. Of

course, in general ~LX is not closed under complementation so a straightforward

induction over F to establish the latter inclusion would seem to be blocked. Use

of the operation r° dual to Y, enables us to avoid complementation in generating

Definition 3.7. For any operation Y and any Fe3^(N)N:

Y°(F) - A ~ Y(Xp(N ~ F(p))).

It is easy to check that if Y is analytic, so is Y°, and that for any <1, u, a> e /r,

[<2, <l,u,a»; T] - r°(Ap[<2, {ap"(/>)>; Y]).

Examples,   u °= n , (lim inf)° = lim sup, and

si°(F) = {mlVßlx(m e F(ß(x)))}.

Theorem 3.8. For any analytic operations Y and A such that A is normal and

subsumes Y, Y°, U, and n :

<êv S At

In fact, there exists a partial recursive function </< such that for all u e F, xj>(u) is a

Yii-indexfor [u; Y].

Proof. We define i/j via the recursion theorem as {e0}, where {e0}(u) s </>(", eo) and

j> is defined by cases as follows.

(i) If h=<0, ni) or <2, <0, m», <¡>(u, e) is defined using 3.4(a).

(ii) If m=<1, v, a}, let ax and <r2 be primitive recursive functions such that

{ax(u, e)}A(p) ^ {e}({a}A(p)),

<j2(u, e) = ((v)x, if (f)o = 2; <2, t>>, otherwise),

and set <j>(u, e)^68(crx(u, e), {e}(v), {e}(a2(u, e))).

[0(«); A] = [ftu, e0); A] = Y(Xp[{ax(u, e0)}^™(p); A])

= Y(Xp[i({ay^(p); A)])

= Y(Xp[{a}lKr\p); Y])   (Induction hypothesis)

= [«; n
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(iii) If u = <2, <1, v, a», we use the remark following 3.7 and proceed as in (ii).

(iv) If u = <2, <2, t?», <p(u, e) s <¡>(v, e).   |

4. The /^-operator. Although the discovery of the operator R is generally

ascribed to Kolmogorov (cf. [Ka-Li, II, p. 82]), he seems never to have published

any account of it. Much of its elementary theory was developed first in [Ka-Li, II],

and further results obtained in [Lj 1, 2]. Much of the material of this section is

adapted from these sources. Definition 4.2 is due to Hausdorff [Ha, p. 103].

Definition 4.1. For any analytic operation F :

(a) F is isotone if and only if for any families fand G such that V/»(F(/?)£G(j?)),

ateo F(F)<^F(G);
(b) T is positive if and only if F is isotone and nontrivial—that is, for some

families fand G, F(F)^F(G).

Definition 4.2. For any M^NN, AM is the operation defined by:

AM(F) = {m/3ft,eMVx(m 6 Hß{x)))}.

M is called a base of AM.

Examples. If M={Xx(p)/p e N}, then AM= u . If M={ßlß e NN}, AM=sé.

Note that if MsM' and for every y e M' there is a ß e M such that Vx3y(ß(x)

=y(y)), then AM = AM-, The largest set M' for which this is true is called the canon-

ical base for AM.

Lemma 4.3. For any operation F, F is positive analytic if and only if for some

nonempty M^NN, T = AM.

Proof. It is obvious that every AM is analytic and isotone. If M¥= 0, AM(Xp(0))

= 0, while AM(Xp(N)) = N, so AM is nontrivial, hence positive analytic. Conversely,

suppose T is positive analytic and let

M = {ßlVFe&(N)N[()(XpF(ß(p))) s F(F)]}.

Then T = AM.

Definition 4.4. For any P e ^(NN)N and any S£ N:

(a) S is a P-fan if and only if

(i) 0 e S,

(ii) Vst(s S / eS^seS), and

(iii) VsseS3ßßeP{s)Vx(s<ß(x)} e S);

(b) RP={y/range (y) is a P-fan}.

Definition 4.5. For any family XsFs of positive analytic operations, let, for

each s, P(s) be the canonical base for Fs. Then R(XsFs) = ARP.   |

In many of our applications of the last two definitions, Vs(Fs = F = AM), and in

this case we write simply RF = ARM, where RM=R(XsM). We defined R(XsFs) via

the canonical bases for Fs to ensure independence of choice of base, but it is easy to

check that if for each s, Q(s) is another base for Fs, then R(XsFs) = ARQ.

Examples. For any m and F, me RF(F) if and only if {p\m e F(p)} includes

some M-fan, where F = AM. If M={Xx(p)jp e N}, an Af-fan is any set of the form
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{ß(x)/xeN}. Thus Ru = ABM=si. If M={Xx(x)}, N itself is the only M-fan, so

nn=n.

Lemma 4.6. For any positive analytic operations Y and Yx:

(a) RY subsumes Y ;

(b) RY absorbs Y ;

(c) if Y subsumes Yx, then RY subsumes RYX.

Proof. Let M be the canonical base for Y.

(a) We claim Y(F) = RY(XpF((p)0)), for any F. Suppose first m is in the right-hand

side. Then for some Af-fan S, VsseS(m e F((s)0)). Since 0 e S, for some ß e M,

Vx((ß(x)} g S) and thus Vx(m e F(ß(x))). Hence m e Y(F). The converse inclusion

is obvious.

(b) Let «w0, mx,..., m„))° = (mx,..., mn} for any m¡. Then it is easy to check

that for any F,

Y(XpRY(XqF«p,q»)) = RY(XrF«(r)0, (r)0»).

(c) Let a be a primitive recursive function by which Y subsumes Yx and define ß

by

ß((m0,. ..,mny) = <«(«!„), • • -, a(»»n)>-

Then RYx(F) = RY(Xp(ß(p))).    |

The second example above demonstrates that RY may in general be no more

powerful than Y itself. In particular, to apply Theorem 3.8 we need an operation

A which subsumes both Y and r°, and is normal. The first requirement is satisfied

by

T*(F) - Y(XpY°(XqF«p,qy))),

since Y(F) = Y*(XrF((r)0)) and Y°(F) = Y*(XrF((r)x)). Normality is achieved by

applying R:

Lemma 4.7. For any positive analytic operation Y, RY is normal.

We defer briefly the proof. Let R*Y = RY*.

Theorem 4.8. For any positive analytic operation Y which subsumes U:

1T c Afr.

Proof. If T subsumes u, then Y° subsumes U°= n, hence all four are subsumed

by R*Y. The theorem follows by 3.8 and 4.7.    |

The proof of 4.7 is a mass of combinatorial detail and we recommend that all

but the stoutest of heart take it on faith. Since by 4.6, RRY absorbs RY, it suffices

by 3.2 to show that RY subsumes RRY. For any s, let t=ln (s)-1 and for a < In (r)

and b-¿(t)a, let

<f>(s, a, b) = (s)(i|axi,>>

</j(s, a) = <¿(í, a, I),..., <f>(s, a, (i)a)>,

6(s) = <^i, 0), Ms, 1),..., fts, In (0 - 1)>.
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Then we shall show that for any family F,

RRF(F) = RF(XpF(6(p))).

Let M be the canonical base for F. Then RM is a base for RF and RRM for

RRF. It will suffice to show:

(a) for any M-fan S, 9*(S) = {9(s)¡s e S} is an RM-fan;

(b) for any RM-fan T, 9-\T) includes an M-fan.

A few auxiliary formulas will make the proof easier. Let s and s0 be arbitrary,

r = ln (s)— 1, and /0 = ln (s0) — 1. We show first:

(c) ln(fl(j))=ln(0;

(d) 9(s0)^9(s)^t0st;

(e) s0<=sAt0^t^9(sQ) = 9(s)\ln(t0);

(f) 9(s) = 9(s0)(.w} -> t = /0<ln (»> ;

(g) s0 £ s A / = t0(m) -> 9(s) = 9(s0)(w} for some w such that In (w) = m.

Furthermore, for any r<m, if r2 = i<'-> and s2=s\(t2 + l), then 9(s2) = 9(s0Yw\r),

Formula (c) is obvious by inspection. Let/? = ln (/)— 1 and p0 = ln (t0)— I ', then

0(s) = <0(s, 0), fts, l),...,^s,/?)>,

and

0(s0) = <4<(so, 0), <A(s0, 1),..., </r(s0, /»o)>.

For (d), suppose 0(s)£0(so). Hence p0úp and for q^p0, ip(s,q) = <Jj(s0,q). Hence

(t0)q = ln (ip(s0, q)) = ln(ip(s, q)) = (t)Q and t0^t. For (e), suppose s0Ss and í0=í-

Then s0=s|(i0 + l). For a^p0 and b<(t0)a, (t0\a)(b)<t0, so <f>(s0, a, ¿?) = (s0)(io|a)<b>

= (.s)ao\aKb> = (s\t\aKb> = <p(s,a,b). Since also (t0)a = (t)a, <p(s0,a) = >p(s,a), and

0(so)=0(s)|ln (f0) follows immediately. For (f), if 9(s) = 9(s0)(w}, it follows from

(c) and (d) that / = i0<m> for some m. But

w = j,(s,p) = (4>(s,p, 1),. ..,<p(s,p, (0P)>

and In (w) = (r)„ = m. For (g), if s0 S s and t = t0(m), it follows by (c), (e), and (f) that

0(s) = 0(so)<w> for some wsuch that In (w) = m. \fr<m, t2 = t(r}, ands2 = s|(i2+l),

then for a<p, i/>(s, a) = >p(s2, a), and </<(s2,i?) = !/'(s,/?)|(i2)p = H'|r.

To prove (a), let S be any M-fan and T= 9*(S). We must show that T is an

RM-fan. (i) Since 0 e S and 9(0)= 0, 0 eT (ii) Suppose u= 9(s) e T and rs».

Then setting i=ln(s)—1, t0 = t\ln(v), and s0 = s|(i0+l), it follows from (e) that

0(so) = t>. Since s0^seS, s0eS and thus veT. (iii) Suppose «=S(j)£r and

W={w¡u(w} e T}. We must show that W is an M-fan. (1) Since S is an M-fan,

there exists an s1eS such that í£íj and if i = In(s)-l and t1 = t<fly, then t1

= ln (sO^ 1. Then by (g), ö(s1) = ö(s)<0> = m<0> e T. Hence 0 eW. (2) Suppose

vçwe W; then for some sx e S, 9(s1) = u(w}. Leti1 = ln(s1)- 1. By (f), /1 = i<ln(H')>.

Let r=ln(v), t2 = t(r}, and s2=s1|(/2 + l). By (g), 0(s2) = w<w|r> = zi<z;>. Since

s2Ç.s1e S, u(v} e Tand veW. (3) Suppose weW, 9(s1) = u(w}, and t1=ln (si)- 1
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= r<ln (w)}. Let s3 be a member of S such that sx^s3 and In (s3) = r<ln (w) + l>.

Then by (g), for any m, if/>=ln (t),

6(s3<m}) = u(w(<p(s3<jn),p, In (w) + l)>> = «<w<m».

Since S is an M-fan, there exists a ß e M such that Vx(s3(ß(x)y g S). Hence,

Vx(m<w</S(x)>> g T) and Vx(w<(8(x)> g IF).

To prove (b), let T be any RM-fan and

S = {í/VMiíSs(0(«)gF)}.

Then 5£ 0_1(F) and it suffices to show that S is an M-fan. Trivially, 0 e 5" and

íSíeS-^jeS. Suppose se S and /=In (s ). Assuming t ̂  0 (a slight modification

is required in this case), there exists t0 and m such that t=tQ{m). Let 50=j|(/04-1).

Then by (g), for every n there exists a w„ such that d(s(ri)) = 0(so)(wn}. If m=0,

wn=0 for all n so Vh(o(î<«>) g F) and any j8 e M is such that Vjc(j<^(x)> e F).

If m > 0 there exists a u such that for all n

wn = v(<t>(s<,n}, In (?) - 1, m)> = i><«>.

By the second part of (g), if t2 = t0(jn— 1>, and s2=j|(r2 + l), then 0(s2) = 0(io)<t;>.

Since saS3 e S, 6(s2) e T. Since T is an RM-fan, {u | 0(îo)<h> g F} is an M-fan.

Thus there exists ß e M such that V*(0(jo)<t><j8(jO» e F). Hence, Vjc(0(í<|8(jc)» g F)

and Vx(j<)3(x)> g 5).

5. Extended functionals. The remainder of this paper is devoted to showing

that the inclusion of Theorem 4.8 may be proper and obtaining concurrently a

recursion-theoretic characterization of Af'r.

According to Kleene's schema 58 (or SO) [Kl 3, 3.7], a computation of the form

f(Xx<p(f, x)) is defined just in case Dm (Xx¡¡>(f, x)) = A. Since Dm (/) = A", this is

equivalent to : Xx<j>(f, x) e Dm (/). Let /# be a function with range included in A

and domain included in the set of partial functions from A into A, and suppose/*

is consistent—i.e., if <f> e Dm (/#) and <p extends <f>, then/#(£)=/#0A). Then 51-59,

with 58 altered to require Xx<j>(f#, x) e Dm (/#), define a notion of recursive

computation relative to fi# which coincides with the usual notion when Dm (/#)

=A".

Of course, we cannot expect that all of the standard theorems will go through

for this expanded notion. For example, the representation theorems [Kl 3, XXVI

and XXVIII] almost certainly will not hold in the same form. On the other hand

many of the simpler results such as the recursion theorem and the substitution

theorem [Kl 3, XXII] are not affected by this alteration and continue to hold.

Definition 5.1. For any positive analytic operation Y with canonical base M

and any partial function </>: N^ A:

(a) gftQ) s 0 <-> 3ßeeMVx(<f>(ß(x)) = 0) ;

(b) fftfls 1 *-» V/W(M3(*))~ 1);
(c) otherwise, <j> 4 Dm (g$).
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Since the condition for 9 e Dm (gff) is a requirement that "sufficiently many"

values of <p have a certain value, gf is consistent. The next definition and several

of the theorems about it were inspired by Moschovakis' [Mo 2]. Throughout the

remainder of this section F denotes a positive analytic operation with canonical

base M, and PRI is the set of indices of primitive recursive functions.

Definition 5.2. Kr is the smallest subset of N such that for any a e PRI :

(a) OeKr;

(b) 3ßßsMM{a}(ß(y)) eKr]-><l,a)eKr;

(c) Vßtelßy[{amy)) 6 *r] -* <2, «> e Kr.

Lemma 5.3. If F subsumes U , there exist primitive recursive functions tta, itv, tt3,

and 7TV such that for any u and v and any a e PRI :

(a) ue Kv and v e Kr <-» rrh(u, v)e Kr;

(b) u e Kr or v e Kr <-> wv(«, t») e ^r;

(c) ]4{#)6F]^7r3(fl)ei:r;

(d) Vx[{a}(x) e Kr] <-» 7rv(a) e £r.

Furthermore, in the natural well-ordering of Kr induced by its inductive definition,

if u, v e Kr then they precede 7rA(w, v), if one of u, v belongs to Kr then it precedes

ttv(u, v), etc.

Proof. Let n1 be a primitive recursive function so that {n1(u,v)}(0) = u and

{■n^u, v)}(m+l) = v. Then we may take

7ta(h, v)=Trw(iry(u, v)) and ttv(u, v) = tt^tt^u, v)),

so it suffices to establish (c) and (d). Let a be the primitive recursive function by

which T subsumes U and 7r2 a primitive recursive function such that {7r2(a)}

= Xx{a}(a(x)) for any a e PRI. Then

3x[{a}(x) e Kr] <-> 3j8i6MVjr[{a}(«fj3(>»))) 6 Kr]

^<l,7r2(a)>e/s:r.

Hence 7r3(a) = <l, 7r2(a)> will do. Likewise, 7rv(a) = <2,772(a)>.

Theorem 5.4. If F subsumes U, Kr is complete for computations in gf; pre-

cisely, there exists a primitive recursive function p such that for any a, s, and n,

{a}(g$, s) s n <-> p(a, s, n) e Kr.

Proof. We define p by the recursion theorem in terms of its own index r. It will

be clear at the end that p so defined is in fact primitive recursive. The proofs that p

has the desired properties are by straight forward inductions over computations

and over Kr, respectively, and aside from indications given during the construction

of p, will be left to the reader. The definition is by cases determined by which

schema S (a)0 applies. Note that 1 £ A^r.

(a)0 = l, 2, or 3: p(a, s, n) = (0, if {a}(gf, s) = n; 1, otherwise).

(a)o = 4 : Let /?x be a primitive recursive function such that

{Pl(r, a, s, n)} £ 7rA({r}((a)3, s,p), {r}((a)2, s(p}, «)).
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Then since

{a}(g#, s) £ ««-> M{(fl)sKg$, ') S /> A {(a)2}(^, <P» = n],

it suffices to set p(a, s, n) = 7Tj(px(r, a, s, n)).

(a)0 = 5 : In this case

{a}(gf, s(m}) ~ n <->

3/>[(w = 0 A {(a)a}(^f, j) £ «) V (w > 0 A {a}(g?, s(m-l}) £ />

A {(a)3}tóU</>>) = «)]-

Hence the techniques of the previous case lead to the appropriate value for p(a, s, n).

(a)0 = 6: Let s' be the prescribed rearrangement of s so that

{flKrf,*)S{(a)*Krf,0

and let p2 be a primitive recursive function such that

{p2(r, a, s, n)}(p) £ {r}((a)4, s', n).

Then set p(a, j, n) = rr3(p2(r, a, s, n)).

(a)o = 7: does not arise.

(a)0 = 8: Let p3(n, i) = (0, if n = i; 1, otherwise), and

{/>4(r, a, 5, /)}(/>) £ {r}((a)3, s(p), i).

Set p(a, s, n) = Trv(TtA(p3(n, 0), <1, p4(r, a, s, 0)», trA(p3(n, 1), <2, />4(r, a, s, 1)»).

(a)0 = 9: Let t be the subsequence of j such that

{a}(gí, s) s {(s)0)(g$, 0,

choose p5 primitive recursive such that

{p5(r, a, s, n)}(p) s {r}((s)0, t, n),

and set p(a, s, n) = Tr3(p5(r, a, s, «)). Otherwise: Set p(a, s,n)=l.

It is clear that any function recursive in gr is also recursive in g§—in fact, if

sg (x) = (0, if x=0; 1, otherwise), then gr(a)=gr(^x sg (&(x))). We state this

formally in the following equivalent (by 2.10) form. The proof is by an obvious

construction and is omitted.

Lemma 5.5. There exists a primitive recursive function a such that for all u andm,

ueF -> Xm{a(u)}(gf, m) is the characteristic function of [u; Y].

The goal of the rest of this section is to show that if Y subsumes si, then jsc (g$)

is properly greater than jSc (gr). A simple diagonal argument shows that /r is not

recursive in gr. Our plan is to show that both /r and N~F are recursively enumer-

able in gf and that from this we can conclude that /r is recursive in g$. We begin by

reducing F to Kr.
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Lemma 5.6. If F subsumes U, there exists a primitive recursive function r such

that ueF<^> t(u) e Kr.

Proof. As usual we describe a construction for r in terms of its own index and

leave to the reader the proof by induction that t has the required property. Set

T«0,m»=0. Recall that

<1, u, a) e F <-> u e F A Vp({a}lKr\p) e F).

From the previous three lemmas it follows that for ueF

m e [u; F] <-> p(o(u), m, 0) g Kr.

Hence

<l,u,a)eF <r^ueF A V/?3sVz"1<ln(s)(p(<x(«), z, (s)¡) g Kr

A T(s,a,p) A U(ln(s))eF).

Now an appropriate definition for t can be found using the functions of 5.3. We

could set t«2, v}) = t(v), but to simplify the right-to-left induction it is expedient

to set t«2, v}) = < 1, ¿?> where Vx[{b}(x) = r(v)].    |

Our main tool in obtaining the result of this section is the ordinal comparison

technique introduced by Gandy [Ga] and developed further by Moschovakis

[Mo 1, 2]. We shall assign ordinals to members of Kr in a slightly unorthodox way.

Let SC be any set (not necessarily of integers) and F any function from 3C into the

ordinals. Then we define

SUp+ F(w) = SUP {F(a>)+l¡a> G 3£}
xzSC

and

inf+ F(v) = inf {F(z>)+ \ja> e SC}.

If u $ Kr, let |z<|r = Q. For ue Kr we assign ordinals recursively on the structure

of/T:

|<1, d>\r = inf+ sup+ \{a}(ß(y))\r;       |<2, a}\r = sup+ inf+ \{a}(ß(y))\r;
ßeM      yeN ßeM      yeN

and Kr = sup {\u\r¡u e Kr}.

For reference in the proof of the following theorem we note some easily derived

formulas. All quantifiers, inf+, and sup+ are over 3C.

(A) inf + F^ inf + G <-> 3¿1f(F(x) ^ G(y)) ;

(B) sup + Fé sup + G <-» Vac^/fc) S Gl») ;

(C) inf+ G<inf+ F<^>\/cc3f(G(y)<F(cc));

(D) sup + G < sup + F «-+ 3xi^(G(¥) < F(x)) ;

(E) sup + F^ inf+ G <-> va»V|<F(aO = G(y)) ;

(F) inf + Fá sup + G <-> 3v3¥(F(<¿) g G(y)) ;

(G) inf+ G<sup+ F^3v3p(G(zf)<F(cc));

(H) sup + G < inf+ F <-» V;z%(G(j*) < FfV)).



130 P. G. HINMAN [August

Theorem 5.7. There exists a partial recursive function r¡ such that for any u and v,

(a) u e Kr and \u\r^ \v\r -+ y(gr, u, r)£0;

(b) \v\r<\u\r^v(g#,u,v)^l.

Proof. We define r¡ by cases as follows. As usual, the recursion theorem is

needed to untangle the recursive definition. We shall omit g$ as an explicit argu-

ment of r¡. Let hf = X<p(l ^g?(Xx[l -</>(*)]))•

(1) r¡(0, p)£0, for all v;

(2) i?(«+l,0)£l, for alla;

(3) r](u+l, t> + l)£0, if P+l is not of the form <l,a> or <2, a) with a g PRI;

(4) 7)(u+l, <l,fl»£T?(M+l,<2, a»£l, if M+l is not of the form <1,¿>> or

<2, by withè g PRI;

(5) ,«1, a), <1, b»^g$(Xm h#(Xn V({a}(m), {b}(n))));

(6) ,«2, a}, <1, by)^h#(Xm h#(Xn r¡({a}(m), {b}(n))));

(7) ,«1, ay, <2, è»£gF"(A™ gf^(A« i?({a}(#n), {*}(«))));

(8) ,«2, a>, <2, Z>»£A#(Am g#(An ,({fl}M, {¿}(n)))).

We show that r¡ has the desired property by induction on min (|w|r, |u|r). If any

of cases (l)-(4) apply, the result is obvious. Suppose case (5) applies so m=<1, a>,

v = (l,by, and a, b e PRI.

First if u e Kr and \u\r ^ \v|r, then

inf+ sup+ \{a}(a(x))\r Ú inf+ sup+ \{b}(ß(y))\r.
aeM     xeN ßeM     yeN

By (A) and (B) applied successively,

3«„6«V)Si6MV^[|{a}(«(*))|r =£ |{ô}0SW)|r A {«K«W)6^1.

Then by the induction hypothesis and permutation of similar quantifiers,

3«aeMVxV/?ÄeM3^({a}(«(x)), {b}(ß(y))) £ 0],

and thus r¡(u, v) £ 0.

If, on the other hand, |t>|r< |«|r, then using (C) and (D),

VccaeM3ßßeMixW\{b}(ß(y))\r < |{«X«(*))lr],

so by the induction hypothesis and permutation of quantifiers,

^asM3x3ße^y[v({a}(a(x)),{b}(ß(y))) £ 1],

and it is easy to check that this implies r¡(u, v) £ 1.

Suppose next that case (6) applies, so w = <2, a>, v=(l, by, and a, be PRI. If,

first, ue Kr and |w|r^ \v\r, then

sup+ inf+ |W(a(x))|r ^ inf+ sup+ \{b}(ß(y))\r.
aeM    xeN BeM     yew

Applying first formula (E), we have

V<*aeMV/W[inf+ \{a}(«(x))\r ^ sup+ \{b}(ß(y))\n.
I xeN yeN
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For any fixed a g M, let x0 be chosen to minimize |{a}(a(x0))|r. Then

V/Wp}(a(x0))|r * ™g+ \{b}(ß(y))\r A {a}(a(x0))eKrj.

Then using formula (F),

V«aeM3xVßSeM3y[\{aMx))\r S \{b}(ß(y))\r A {a}(a(x)) e Kr],

and from the definition of 77 and the induction hypothesis, r¡(u, v)^0.

If case (6) applies and |f|r< |«|r, then by (G) and (H),

3«,eIßßleIiWy[\Mß(y))\r < |{fl}(«W)n-

Then the middle two quantifiers can be interchanged by a rule of logic and the

same methods as above yield r¡(u, z?) = 1.

The cases (7) and (8) are handled by the same straightforward techniques and

we therefore omit the remainder of the proof.

Corollary 5.8. If F subsumes {J, then a necessary and sufficient condition that a

set A^N be recursive in gf is that both A and N~ A be recursively enumerable in g$.

Proof. That the condition is necessary is obvious. By 5.4 we may assume that

for some a and ¿?,

A = {ml{a}(g?, m) ~ 0} = {m¡P(a, m, 0) g Kr}

N~A = {m¡{b}(g?, m) s 0} = {m¡P(b, m, 0) g Kr}.

With t? as in the preceding theorem, let

<l>(m) S v(gr, p(a, m, 0), p(b, m, 0)).

Then

m g A -> P(a, m, 0) e Kr A p(b, m, 0) £ Kr

-* P(a, m, 0) g Kr A \P(a, m, 0)|r Ú \P(b, m, 0)|r

-^ tp(m) S 0.

Similarly, m e N~A -> <p(m)^ 1. Thus ip is the characteristic function of A and is

clearly recursive in gf.

Corollary 5.9. If F subsumes  U, then Kr and F are recursively enumerable

ingf.

Proof. The result for /r follows from that for Kr by 5.6. Let

D(a) <-> {a}(g?, a) s 0   and   Pl(a) = P(a, a, 0),

so D(a) <-* px(a) e Kr. Let v = sup {\p1(a)\rID(a)}. Suppose v<Kr, so for some

u e Kr, \u\r=v. Then by Theorem 5.7,

D(a)-±Pl(a)eKr A \Pl(a)\r g \u\r ^v(g#, Pl(d),u) ~ 0;

—,/>(«)-> |w|r < \Pi(a)\r = Q-*,(gf¥, Pl(a), «) S 1.
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Thus D would be recursive in g$, a situation which is easily seen by a standard

diagonal argument to be impossible. Hence v = kv and

KF = {ußa[D(a) A r,(g#, u, Px(o)) £ 0]} = {ußa[ligf, «, a) £ 0]}

for an appropriate partial recursive <p. If a is the primitive recursive function by

which T subsumes U,

Kr = {uléiM <p(g$, U, a(a))) £ 0}.    I

Theorem 5.10. If Y subsumes si, then N~F is recursively enumerable in g$.

Proof. To each w g A we shall associate a sequence tree Tu, which is recursively

enumerable in gf and well-ordered just in case u e F. Suppose this is done and <p

is a partial recursive function such that

Tu(s) *■* <p(g$, u, s) £ 0.

Let a be the primitive recursive function by which Y subsumes si. Then

u e N ~ F «-> 3yVzFu(y(z)) <-» 3ßßeMVyTu(a(ß(y))) «-* g#(Xx 9(g#, u, a(x))) £ 0.

Toward the construction of Tu, let Px(u, v) be the disjunction of (i)—(iv) below and

P2(u, v, 8) the disjunction of (v) and (vi).

For legibility we write w for (u)x and a for (u)2.

(i) w=<0, w> andv = u;

(ii) u = (l,w,dyandv=w;

(iii) m = <2, w> andv — w;

(iv) u is of none of these forms and v = 0;

(v) u = < 1, w, ay and Dm ({a}6) = A and 3p [v = {a}6(p)] ;

(vi) u = < 1, w, ay and Dm ({a}0) # A a«c/ f = 0.

Let a be the primitive recursive function of 5.5 and let 4>w = Xm{o(w)}(g$, m).

Set

Q(u, v) <-> Pí(m, 0)   or    [Dm (i/^) = A   and   P2(u, v, <fiw)].

Since T subsumes si it also subsumes u , so by the method of proof of 5.2, Q is

recursively enumerable in g#. Finally,

Tu(s) <-> s = 0

V [(5)0 = w A Vi,<in(,)J.1ß((i)i, (s)i+x) A Vw((.s)in<S)-i 7e <0, my)].

Then Fu is recursively enumerable in gf and we claim

(*) u e F <-* Vy3z -, ru(j?(z)).

The proof from left to right is a straightforward induction over /r. Suppose

first u = (0, my. Then —iFu(y(l)) for any y. Suppose u = (l, w, a} e F but for some

y, VzTu(y(z)); that is, y(0) — u and Vz(2(y(z), y(z+ I)). Since w e F, >jjw is the char-

acteristic function of [w; Y] and thus since Q(u,y(l)), y(l)elr and precedes u.
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Then y1 = Xxy(x+l) is such that VzTy^y^z)), which contradicts the induction

hypothesis. The case m = <2, w> is similar but easier.

For the proof in the other direction we use bar induction in a form, which differs

only slightly from that of [Kl-Ve, p. 52] : for any predicates T and S, if

(a) Vy3z -, T(y(z)),

and for all s, /,

(b) 7Ys) A t S s -> T(t),       (c) -nT(s) -> S(s),       (d) V»j[S(s<d»] -* S(s),

then

(e) Vs[5(s)].

We apply this with T=TU and S=SU, where

Su(s) <-> ([(s)o = u A V/,<in(,)*1ô((s)1)(s)1+1)]->(s)jn{s)^16/r).

It is easy to check (using (i)) that (b) and (c) hold for all Tu and Su. Assume for the

moment that (d) does also. Then for any u such that the right side of (*) holds,

(a) is true of Tu and we conclude Vst-S^s)]. In particular, Su((u}) which implies

ZZG/r.

To establish (d) for Su, let s=t(w} and suppose Vf[Su(j<t?»], (s)0 = w, and

V/,<in<s)-iß((s)i> COi+i)- From this it follows that for any v, Q(w,v)-^-veF. It

suffices to show w e F. If w = <0, m> we are done. Suppose vv = <l, z, a}. Since by

(ii), Pí(w, z), hence Q(w, z), so z e F. Hence 4>z is the characteristic function of

[z; T] and in particular Dm (4>2) = N. If Dm ({a}**)ïN, then by (vi), P2(w, 0, </.,), so

Q(w, 0) and 0 e F, which is false. Hence {a}*= is a total function and by (v), for all

p, Q(w, {aYz(p)), so {aY'(p) e F. Thus w e F. The case w = <2, z> is similar but

easier. Finally w must be one of these forms, as, if not, Q(w, 0) by (iv) and hence

again 0 e /r.

Corollary 5.11. If F subsumes sé:

(a) /r is recursive in g$ ;

(b) iSC (gr) c xsc (gf ) and jSC (gr) =fi xsc (g#).

Proof, (a) is immediate from 5.8-5.10. (b) then follows from 5.5 and the remark

following it.

6. Set derivatives and the /î-operator. In this section we give a second character-

ization of sets of the form R(XsAP(s))(F) in terms of a set derivative based on P. A

consequence is that each set of this form can be expressed as an Q-intersection of

simpler sets. In the case P(s) = {Xx(p)¡p e N} when AP(S)= u and R(XsAP{s))=sé, the

derivative is essentially the same as the ordinary topological derivative on NN under

the Baire topology, and the corresponding representation is that of analytic sets

as the intersection of their constituents (cf. [Kur, pp. 150-151], [Ba, II. D], and [Lu]).
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These results seem to be due to Ljapunov and can be found in quite a different

form in [Lj 1].

Definition 6.1. For any P e 3?(NN)N, any 5£ A, and any ordinal v.

(a) DP(S) = {s¡seS A 3ßBeP(s)Vx(s(ß(x)y e S)};

(b) DP(S) = S, D$XS)=i){W.S)l(<v}, Dl(S) = DP(Dp(S)).

Lemma 6.2. For any P e 3*(NN)N and any 5, Fs A:

(a) DP(S)<=S;

(b) S^T^DP(S)ZDP(T);

(c) 3Vv<QV£t>v(DP(S)=DP(S)).

Proof, (a) and (b) are trivial, (c) follows simply from the denumerability of 5

and the obvious fact that if ever DP(S) = DPV)(S), then D(P(S) = DVP(S) for all

É£v.    |
As in §4, when P=Xs(M), we shall write DM and, if M is the canonical base for Y,

also DT for DM(My

Lemma 6.3. For any Pe3"(NN)N, any 5sA, and any s e N, let Ps=XtP(s * t).

Then the following are equivalent:

(a) seDPXS);

(b) {t/s * t e 5} includes a Ps-fan ;

(c) 0 g Wftttls * t e 5}).

Proof. The equivalence of (b) and (c) follows from that of (a) and (b) via the

substitutions of 0 for s, Ps for P, and {t/s * t e 5} for 5. Suppose first (a) j g D(P\S).

We shall define by induction sets Fms{i/j * t e D(P\S)} such that F= u {TJmeN}

is a Fyfan. Since D(p\S)s5, this implies (b). Let T0— 0 and assume Fm defined.

By the previous lemma there exists an ordinal v such that DP(S) = D(P\S). Then by

the induction hypothesis, Tm^{t¡s * t e DP+1(S)}, that is,

W[r g Tm -► 3ßeePsmVx(s * t<ß(xy> e DP(S))].

For each t e Tm, let ßt be such a function (axiom of choice) and set

Tm+i = {Kßt(x)y/teTm A xeN}.

Then Fm+1£{//s * < e DP(S)} = {t/s * t e D^S)}. It is obvious that F is a Fs-fan.

Conversely, suppose {t/s * t e 5} includes a Ps-fan T. We show by transfinite

induction that for all v

T £ {r/s * t g F»K5)}.

Then since 0 e F it follows that s g D(p\S). The case v = 0 holds by hypothesis.

Suppose v>0 and t e T. There exists a ße Ps(t) such that Vx(i<|S(x)> g F). By the

induction hypothesis,

V*(i * t<ß(x)> e Dp(S))

and thus s* te DP(S).
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Corollary 6.4. For any P e &>(NNY and any family F,

R(XsAPW)(F) = {m/0 eD?X{tlmeF(t)})}.

Proof. Obvious.

The representation of R(Xs AP(S))(.F) as an intersection follows immediately :

R(XsAP(s))(F) =  C\{{ml0eDP({tlmeF(t)})}lv < Q}.

7. Culmination. We are now almost ready to put together results of the

preceding sections to obtain our main result—that if F subsumes U , then Afr is

the class of sets recursive in gf and if F subsumes sé, then Afr properly includes

(€v. The intuitive content of our first lemma is that if AM subsumes AP(S) uniformly

in s, then ABM subsumes ABP.

Lemma 7.1. For any P e ^N")", any Ms A", and any function n such that for all

AzN and all s,

3ßßePwVx(ß(x) eA)<^> 3yreM\/y(n(s, y(y)) e A),

there exists a function xp primitive recursive in n such that for any A,

3ßßeRPVx(ß(x) eA)^ 3yysBMVy(í(y(y)) e A).

Proof. We define </< recursively from w by the equations :

i(0) = 0,   0(/<»» = mwm, »»•
It will suffice to show :

(a) for any P-fan S, ip'1^) includes an M-fan;

(b) for any M-fan T, ip*(T) is a P-fan.

The following chain of equivalences uses only the definition of n :

3aaep(S)Vx(s<a(x)> eS)<-> 3aaeP(s)Vx(a(x) e {«/s<n> e S})

*-> BS^mVv^s, 8(y)) g {«/s<«> g S})

^ 3SôeM\/y(s<.n(s, 8(y))> e S).

Suppose first that S is a P-fan and let T= >p~1(S). Since 0 e S and <p(0)=0, also

0 e T. Suppose t e T and s=>p(t) e S. Since S is a P-fan,

3«aeP(S)Vx(s<a(x)> e S),

and by the equivalence above,

3SáeMV>>(s<7r(s,S(yO)>GS),

hence 38„eMVj#('<S(.v)» e S), and 38ieMVy(t<:8(y)y e T). Thus T includes an

M-fan.

Conversely, if Tis an M-fan and S=i/j*(T), it is easy to check (and we leave it to

the diligent reader to do so) that 0 e S and Sj £ s2 e S -> sx g S. The argument that

S satisfies condition (iii) proceeds in reverse order up the above chain of state-

ments.
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Now let r be a fixed positive analytic operation with canonical base M. Let

M* = {y/3aaeMVxVft,eM3j[<a(*), ß(y)y e range y]}.

Referring to 3.7 and the definition of Y* following 4.6, it is immediate that M* is

the canonical base for Y*.

Lemma 7.2. There exists a P e 3?(NN)N, a recursive function it, and a recursive set

B such that for any s, t, u, and any A^N:

(a) h g Ar <-> t(uy <£ Df\B);

(b) 3Söei,(s)Vz[8(z) g A] ^ 3yyeM.VzM>, y(z)) e A].

Proof. Let K? denote the part of KT constructed by the vth stage and Kfn

= U {Af /£ < v}. We shall define P, tt, and B to satisfy (b) and prove by induction

on v that for all t and u,

(c) w g Avr <-> /<«> i D\(B).

Let

rr(s, w) = {a}((w)x), if S = i«l, fl» A ae PRI;

= {a}((w)0), if s = f«2, a» A a g PRI;

= 1, otherwise.

For each s, P(s) = {Xz tt(s, y(z))¡y e M*}.

Then (b) is automatically satisfied. Let /?={i/Vr(i^r<0»}, so (c) is satisfied for

v = 0. Suppose v>0 and assume as induction hypothesis that for all t and u,

ue^h Kuy i D(PV\B).

Suppose first « = <1, a> with a e PRI and s=/<«>. Then,

u e AT <-> 3ß8eMVy[{aMy)) 6 A(rv)]

^^V^eM3j;[{«}08(j))^A/v)]

«-♦ -.ay^VzKaKCKz))!)^ AS,]
<-> —i3y,eM'Vz[7r(i, y(z)) <£ A&]

<-* -n38deP(s)Vz[i<8(z)> g DP(B)]

<^>s$ Dp(B).

The proof for m = <2, a> is almost identical. If u is of neither of these forms and

s=t<uy, then P(s)={Xx-l}. Since 1 <ßK[v), s(iy e D{p(B), hence

3W)VzKS(z)> g /)£>(/?)]•

Therefore s£ -£>£(#)<-> J £ -Dj»v><-> « e A^,<->«e A^, as these are all true just in

case w=0.

Theorem 7.3. Ar g nfr.

Proof. Let B, P, and v be as in the preceding lemma, and for each u set Pu

= XsP((u)s). Then by Lemmas 7.2 and 6.3,

u e Kr <-> <m> 0 J0g»(Ä) <-> -i3S¿6BP,Vz[<«>8(z) g J].
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Define tp as in the proof of 7.1, but uniformly for the families Pu:

<Ku, 0) = 0,       4>(u, K«>) = í(u, í)<7t«m>0(m, 0, »)>.

Then by 7.2, for any s, u and A,

3Só6p„(s)Vz[S(z) g A] <-> 3yyeM.Vz[7r«M>s, y(z)) e A].

Thus if F(p) = {uKu}ip(u, p) g B},

Kr = N ~ /?*r(F) g nfr.

Theorem 7.4. 7/T subsumes u , then for any A = N, Ae nf'r -> ,4 z's recursively

enumerable in gf.

Proof. Let F be a primitive recursive family such that A=N~R*F(F), and set

L = Km,s)ls e /)&'({//m g F(t)})}.

It is easy to check from the definition of DM. (6.1) that L is the set defined in-

ductively by the clauses:

(i) m $ F(s) -*■ im, s> g L;

(ii) VyyeM.3z[<m, s<y(z)>> el]^ <m, s> GL.

Since by 6.4, m e A <-> (jn, 0> eL, it suffices by 5.9 to define a primitive recursive

function p such that <m, s> g L <->• p(m, s) g Kr. Using the recursion theorem, set

p(m, s) = 0 if m ^ ^(s), otherwise p(m, s) = <2, ¿>>, where ¿» is a primitive recursive

index such that {¿»}(h) = < 1, au> and au is a primitive recursive index such that

{au}(v) = p(m, s«w, t?>».

The basis of the proof by induction that p is as required is obvious. The induction

step is essentially the same in both directions :

p(m, i)eirH VaasM3x[<l, aa(x)} e Kr]

<-» ^aeM3x3ßßeMyy[P(m, s«a(x), ß(y)}}) g Kr]

<-> VyyeM.3z[p(m, s<y(z)>) g Kr]

<-> VyyeM.3z[<m, s<y(z)>> g L]

<-> (m,s} eL.

Corollary 7.5. If F subsumes u , then for any A^N,

(a) yi g nf*r <-^ ̂ 4 is recursively enumerable in g$;

(b) A g Af'r <-> A is recursive in g$.

Proof, (a) is immediate from 5.4, 7.3, and 7.4. Then (b) follows from (a) by 5.8.

Corollary 7.6. If F subsumes sé, then

i?r c Afr   and   <gT # Afr.

Proof. ^,r = 1sc(gr)<=1sc(g^)=Afr by 2.10 and 7.5. The inclusion is strict

by 5.11.

8. On sets of functions. As we indicated in §1, one point of departure for the

research reported in this paper was Addison's study of the effective Borel hierarchy.

Addison's definition of the hierarchy differs from our 2.1, specialized to T= u,
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mainly in that u is applied only to (absolutely) recursively enumerated families.

Thus the set of indices is independent of the kind of sets indexed, so that effective

Borel hierarchies over A, A", or any other separable space may be obtained by

assigning sets of the corresponding basis to the indices <0, my. In fact, Addison's

primary concern was with the hierarchy over A".

Unfortunately, for operations Y more powerful than U, recursive enumeration

does not suffice to generate all of xsc (gr) and we were forced to adopt the more

complicated schema 2.1. Although this definition no longer makes sense over an

arbitrary space, since we need a theory of recursion relative to subsets of the space,

it can be applied to A" by assigning to <0, m> the set

WVlt<in(m)(a(i) = (m)i)}-

The resulting hierarchy has, however, some rather unnatural aspects. First, among

the sets generated at least by the second level is Y(Xp{ala(p) = 0}), whose character-

istic function is exactly gr. Since certainly the scope of the hierarchy is included in

2sc (gr), all enumerating functions are already available by the third level, and we

might just as well admit from the beginning all enumerating functions recursive

in gr. This does not imply that the hierarchy is degenerate. Indeed, because of

[Ad 3, p. 133] it probably is not. Still, one feels that arbitrary recursions in gr, even

if only with free number variables, are out of place in the early stages of a hierarchy

for 2sc (gr). We considered in [Hi] a version not subject to this criticism: at level v

of the hierarchy over NN we admit enumerations recursive in sets which appear at

some level f, $<v, of the hierarchy over A. Both of these constructions have,

however, a more serious fault : if Y subsumes si, they comprehend only a proper

subset of 2sc (gr) (cf. [Hi, 111.43]).

Another possibility for an effective T-hierarchy over AN is suggested by Moscho-

vakis' definition of a hyperanalytic hierarchy [Mo 1]. For each a e NN define F(a),

and for each u e F(a) a set [u; Y, a]ç A, just as in 2.1 except that enumerations are

relative to a as well as to some previously constructed set. Then for any ordinal v

which is (the order-type of a well-ordering of A) recursive in gv,

[u; Y]2 = {a¡u e /£,(«) A 0 g [u; Y, a]}

is easily seen to be recursive in gr. We do not know if such sets exhaust 2sc (gr), but

we conjecture that they do. While possibly of interest as an alternative to Moscho-

vakis' "skeletal" hierarchies, this construction seems too remote from its classical

model to be considered its effective analogue.

Although there may be no natural extension of Theorem 2.10 to sets of functions,

Corollary 7.5 can easily be extended to this case, and we sketch briefly how this is

done. For each a e NN, let Ar(a) be the set defined as in 5.2 with "{a}" replaced by

"{a}"" and other appropriate notational changes, and set

¿fr = {<«, a>/w G Ar(a)}.
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Theorems 5.4 and 5.7 can be uniformly relativized to a to yield functions p and -q

such that :

(5.4.1) {a}(g#, a, ä) £ » +-> P(a, s, n) e Kr(a);

(5.7.1) u e Kr(a) a \u\ra ^ \v\ra -> v(g#, a, u, v) s 0,

\v\ï < |«|o -»■ v(gr> a> M> v) = !•

Essentially nothing new is needed for 5.7.1, and in proving 5.4.1 there is one

additional case to consider:

(a)0 = 7: {a}(g$, a, <m>i)£a(m). Choose o g PRI such that {b}a(x) = (0, if a(m)

=n; 1, otherwise) and set p(a, <m>s, n)=Tr3(b).

Then 5.8 holds for A^NN and we can prove similarly

(5.9.1) JTr is recursively enumerable in gfi.

In the proofs of 7.2-3, define tt"(s, w) by replacing "{a}" by "{a}"", and 0" and

Pa from tt" as before. Then

(7.3.1) (u,ay eJTr^ue KT(a) <-> <w> £ £»^(5)

<-> ^3yyeBM.Vz[<M>0a(M, y(z)) G B],

which implies that Jfr is definable in nf*r form. The extended version of 7.4

follows easily from 5.9.1 and hence we have 7.5 for all A^NN.

A corollary is that for Y which subsume u, gR-r is of the same degree as

Xea[{e}(g#, a) \. ],

the superjump of g$. We would like to know (i) is gB r of the same degree as the

superjump of any (nonextended) functional/? (ii) Does there exist an operation A

such that gA is of the same degree as the superjump of gr ? If, as we believe, the

answer to (i) is no, then Friedberg's theorem [Sa, p. 77], that a jdegree d is the

(ordinary) jump of another just in case d^O', does not extend to type-2.
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