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A band is a semigroup in which every element is idempotent. A right congruence

t on a semigroup 5 is said to be modular if there exists an element e in S such that

(ex)TX for all x in S. The symmetric definition holds for left congruences, and a

two-sided congruence is said to be modular if it is modular both as a left and a

right congruence and hence has a two-sided identity.

Following Oehmke [7] (see also [3]) we define the radical Rr(Ru Rt) of a band S

to be the intersection of all the maximal, modular right (left, two-sided) congruences

on S. Sis said to be x-semisimple (x-radical) if the radical Rx is the identity relation

í (universal relation v) on S.

There are three distinct types of maximal, modular right congruences on a band.

This classification enables us to prove that a band is r-semisimple if and only if it

is a semilattice r of right zero semigroups Sy such that for x, y e Sy, x^v, the

principal left ideals Sx and Sy are disjoint.

A band has only one type of maximal, modular two-sided congruence, and this

is used to show that a band S is r-semisimple if and only if it is a semilattice.

Kimura [5, Lemma 1] has characterized a rectangular band as the cartesian

product of two sets with multiplication given by (a, b)(c, d) = (a, d). The structure

theory for arbitrary bands begins with the following result by McLean [6, Theorem

1].

Theorem 1. Let S be a band. Then there exists a unique two-sided congruence p

on S whose equivalence classes are rectangular bands and such that Sip. is a semi-

lattice. If a is any two-sided congruence on S such that S¡a is a semilattice, then

P = a-

It remains to determine what Clifford and Preston [1, p. 25] have called the

"fine structure" of an arbitrary band, that is, how the elements of the different

rectangular bands multiply together. Using the characterization given above we are

able to describe this internal structure of those bands which are r-semisimple. A

comparison is also made with some recent results by Howie [4]. Finally we char-

acterize those bands which are a semilattice of right (left) zero semigroups.

Let t be a right congruence on a semigroup S. For any a in F we define an

equivalence relation ra on 5 by x(ra)y if and only if (ax)r(ay). Then ra is a right

congruence on S and Oehmke has shown [7, Lemma 4] that arb implies Ta=rb.
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When there is no danger of ambiguity we will denote the equivalence class of a

fixed congruence t that contains an element a of S by Sa.

For completeness we include the following results of Oehmke [7].

Lemma 2 [7, Lemma 6]. Let S be a semigroup, r a right congruence on S and S*

the union of a set of equivalence classes of t. Define aob if and only if for every c in S

we have ac e S* if and only if be e S*. Then a is a right congruence on S such that

T^cr.

Lemma 3 [7, Lemma 7]. If a is a maximal right congruence and R any right ideal

of S, then either R is contained in an equivalence class of o (which is also a right ideal

of S) or R contains an element of each equivalence class.

Lemma 4 [7, Theorem 9]. If t is a maximal, modular right congruence on the

semigroup S, then either ra is a maximal, modular right congruence on S or Sa is a

right ideal and ra = v.

Since the results for left and right congruences are similar due to the symmetry

of the definitions, we consider only the latter. For definitions and terminology not

otherwise explained the reader is referred to [1 ] and [7].

This paper contains the results of the author's dissertation written at the Univer-

sity of Iowa. The author wishes to express his gratitude to Professor R. H. Oehmke

who directed this dissertation.

1. Congruences on bands. The proofs of the first six results are straightforward

and are omitted. The first is perhaps the most useful arising from the hypothesis

that x2 = x for all x in S.

Lemma 5.1fr is a right congruence on a band S, then the equivalence classes of t

are subbands of S.

It is easy to see that a is a left identity for the right congruence ra in a band S

and therefore ra is modular for all a in S. A natural question at this point is the

nature of re where e is a left identity for t, for which we have the following answer.

Lemma 6. Let a be an element of the band S with r a right congruence on S. Then

ra = r if and only if a is a left identity for r.

Thus for a right congruence r on a band S, the modularity of r is related to the

nature of the right congruences ra. We note that the "if" part of Lemma 6 holds

for an arbitrary semigroup.

Another question of interest is the relation of a right congruence r to the ideal

structure of S, and again we find the answer related to the nature of the congruences

ra.

Theorem 7. If r is a right congruence on a band S, then an equivalence class Sa

of r is a right ideal of S if and only if for all b in Sa, rb = v.
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For a fixed congruence t we introduce the notation I=Iz = {ae S : ra = v}. Then

Theorem 7 states that an equivalence class Sa of t is a right ideal if and only if

5ac/. Similarly, we denote E=Er = {ae S : ra=r}, the set of left identities for t.

Either E or I may be empty.

Theorem 8. If t is a right congruence on a band S and an equivalence class Sa

of t is a two-sided ideal of S, then Sa = I.

Lemma 9. Let t be a modular right congruence on a band S. If xy is a left identity

for t then so is y.

We are now prepared to describe the maximal, modular right congruences on a

band.

Theorem 10. Let S be a band and t a modular right congruence on S. Let

E={a : ra = r}. The congruence r is a maximal modular right congruence if and only

if t has exactly two equivalence classes and one of the following three alternatives

holds :

1. S = E. In this case the congruence classes are both left ideals of S.

2. S^E and I={a : ra = v}^= 0. Then E and I are the congruence classes for r.

3. S^E and 1=0. In this case the congruence classes are E and the left ideal

T={a $ E : ae e E for some e e E}.

Proof. It is straightforward to show that either E=S or F is a congruence class

for t. Suppose E=S. Then each congruence class is a left ideal, and if t had more

than two congruence classes the equivalence relation formed by taking the union

of two of them would be a right congruence strictly larger than t.

Suppose now that F#5 so that F is a congruence class for t. Define Fas above

and let U=S— (E u F). If we assume /^ 0 then U^ 0, and using Lemma 9 and

Theorem 8 we conclude U=I is a congruence class for t which is a two-sided ideal.

For each ae S define Ra = {x : ax e I}. Each of these sets is a right ideal of S

containing /. Define an equivalence relation a on S by aob if and only if Ra = Rb.

By Lemma 2 a is a right congruence with t^o so o=t or o = i>. If o = v then since

there exists an a el we have S=Ra = Re = I for e in F, a contradiction. Thus

a = t and Ra = Rb if and only if arb. If S contains an element x not in F u / then

Sx n Fx= 0 and the right ideal Rx is contained in a congruence class for r by

Lemma 3. But I<=-Rx so Rx = I=Re for e in F, and xre, a contradiction. Thus

S=EvI.

It remains to consider the case where E^S and /= 0, so 5=Fu F. We first

prove the following lemma.

Lemma 11. Let r be a maximal, modular right congruence on a band S, then

(xyx)r(yx) for all x, y in S.

Proof. The conclusion is immediate for the first two types of congruences, so

assume S=E u T. For each a in S define Ea={x : axe E} and aob if and only if
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Ea = Eb. By Lemma 2 er is a right congruence with r^a. o=v implies r is of type 1

so we conclude a=r and Ea = Eb if and only if arb. From Lemma 9 Eyx<^Ex so

Eyx = Eyxyx<=Exyx<=Eyx implying (xyx)r(yx).

Returning to the proof of the theorem we want to show first that each equivalence

class in F is a left ideal. Let a s F and consider the congruence ra. By Lemmas 4

and 6 we know that ra is a maximal, modular right congruence different from t

so that the congruence r u ra = v. Thus [2, Lemma 1] for any y in S there is a finite

sequence xx,..., xn such that a(ra)xXTX2(ra)x3rxi ■ ■ ■ ry where we may select the

particular order of the congruences r and ra without loss of generality. Now

a(rd)xx implies ar(axx) which gives ar(axxa). By Lemma 11 we get ar(xxa), so

that ar(ax2a) or a(ra)x2a. But then a(ra)x3a and continuing in this manner we

obtain a(rd)ya so ar(aya). Using Lemma 11 again gives ar(ya) for all y in S so Sa

is a left ideal.

Finally let a and b be elements of F. Ea is easily shown to be a congruence class

for the maximal, modular right congruence ra, and since it is not the class of left

identities, Ea is a left ideal. Thus for e in Ea we have be(ra)e which implies

(abe)r(ae)re so Ea<=Eab. But Eab<=Eb by Lemma 9 implying Ea<^Eb. By symmetry

Eb<=^Ea so arb and Fis a congruence class for t. The converse is obvious, concluding

the proof of the theorem.

Theorem 12. Let S be a band. A congruence r on S is a maximal, modular two-

sided congruence if and only if r has exactly two equivalence classes, E={a : ra = r}

and I = {a : ra = v).

Proof. Let t be a maximal, modular two-sided congruence. If t ^ o where o is a

maximal, modular right congruence, then a is not of type 1 since it could not have

a two-sided identity. Suppose a is of type 3 and let a e T. Then r = o n aa by [7,

Lemmas 2, 3 and 5] so xcry if and only if xry and x(ra)y, implying that F=E—Ea,

Ea and Fare the congruence classes for r. Moreover F must be the class of identities

for t so that FEa<^Ea. Let V=E u Ea and p. be the equivalence relation given by

S=Fu V. Then p. is a modular two-sided congruence strictly greater than r, a

contradiction. Thus a is of type 2 and r = o.

On the other hand, if r is not contained in a maximal, modular right congruence

then as we shall see in Theorem 15, S/r is a left zero semigroup. But S/r has an

identity so it must have only one element, contradicting the maximality of r.

2. The radical of a band. We now want to characterize those bands for which

Rr or Rt is the universal relation v. Oehmke has shown that in general these radicals

are two-sided congruences [7, Lemma 19] and that the semigroup modulo the

radical has a trivial radical i [7, Theorem 21]. Moreover it follows from the proof

of Theorem 12 that Rr^Rt.

Lemma 13. Let S be a band, then abRtbafor all a, b in S.
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Proof. Let t be any maximal modular two-sided congruence on S, and a,beS.

Since t induces a decomposition S = E u /, it follows directly by case considerations

that abrba and therefore abRtba.

Theorem 14. Let S be a band, then Rt = v if and only if S is rectangular.

Proof. Suppose S is rectangular, S=A x B, and (a, b), (c, d) e S. Then (a, b) =

(a, y)(x, b) and by Lemma 13 (a, y)(x, b)Rt(x, b)(a, y) = (x, y). Similarly (x, y)Rt(c, d)

so (a, b)Rt(c, d) and Ft = v. Conversely suppose that Rt = v. If the congruence p. of

Theorem 1 equals v then we are finished; so suppose not, and let Sa and Sb be

distinct congruence classes of p. By the way the multiplication of S behaves

(Theorem 1) it is easy to see that any congruence on the underlying semilattice

generates a congruence on S. But as we shall see in the proof of Theorem 16 this

means there exists a maximal modular two-sided congruence separating Sa and S„

so we cannot have aRtb, a contradiction. Therefore p = v and we are done.

Finally we characterize those bands for which the right radical is equal to v.

Theorem 15. Let S be a band, then Rr = v if and only if S is a left zero semigroup.

Proof. If S is a left zero semigroup it has no proper left ideals. On the other

hand, any maximal modular right congruence has at least one equivalence class

which is a left ideal so we must have Fr = v. Conversely if Rr = v then F( = v and by

Theorem 14 S is a rectangular band A x B. If B has more than one element then

the disjoint subsets A x{b} and A x(B—{b}) form a maximal modular right con-

gruence contradicting Rr = v. Thus B={b} and S is a left zero semigroup.

3. Semisimple bands.    We are now ready to characterize the semisimple bands.

Theorem 16. Let S be a band, then S is t-semisimple if and only if S is a semilattice.

Proof. Suppose S is i-semisimple. By Lemma 13 for all a, bin S we have abRtba

so that Ft = t implies ab = ba and 5 is a semilattice.

Conversely suppose S is a semilattice. If S has only one element it is i-semi-

simple; so suppose there exist a, b in S with a#F Define an equivalence relation

t0 on S as follows. Let E(a) = {x : xa = a} and 1(a) = S—E(a). Then E(a) is a subband

and 1(a) is an ideal so by Theorem 12 ra is a maximal, modular two-sided con-

gruence if both E(a) and 1(a) are not empty. If b e 1(a) that condition is satisfied

and the congruence ra separates a and b. On the other hand, if b e E(a) then the

corresponding congruence rb separates a and b so 5 must be /-semisimple.

Corollary 17. Let S be a band, then the congruence Rt on S is equal to the

congruence p of Theorem 1.

Theorem 18. Let S be a band. By Theorem 1, S=\J {Sy : y e F, a semilattice},

where each Sy is a rectangular band. Then S is r-semisimple if and only if each Sy

is a right zero semigroup such that if x,ye Sy, x+y, then Sx C\Sy=0.
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Proof. Suppose S is r-semisimple and write each rectangular band Sy = AyxBy.

Suppose further that for some y e T there exist a, a! in Ay with a#a'. Since Rr = i

there exists maximal modular right congruence t such that (a, b)^(a', b) (mod r).

By Lemma 11 (a,b) = (a,b)(a',b)(a,b)r(a',b)(a,b) = (a',b), a contradiction. We

conclude that Ay contains only one element for all y e Y, and Sy is a right zero

semigroup.

Now suppose that x, y are in some Sy with x#_y so there exists a maximal

modular right congruence r on S such that x^y(mod r). Then r cannot be of

type 2, and if t is of type 1 the conclusion follows immediately. Assume r has the

form S=E u F with xin Fand^ in T.lf Sx n Sy=/= 0, then there exists an element

z such that (zx)ry holds. Thus (yzx)ry by Lemma 5 so that zx(ry)y. Applying

Lemma 9 to the congruence ry we have x(ry)y which gives (yx)ry. But yx = x

giving a contradiction, so Sx C\ Sy= 0 implying Sx n Sy= 0 in this case also.

Conversely, if x and y are distinct elements of S we want to exhibit a maximal,

modular right congruence separating them. From the proof of Theorem 16 we may

assume that x and y are in the same Sy. Let Lx be the union over all subsets of S

of the form Sz such that Sz n 5x# 0. Both Lx and its complement L2 are non-

empty left ideals which gives us the desired congruence and S must be r-semisimple.

Corollary 19. A right zero semigroup is r-semisimple.

The above corollary together with the fact that a left zero semigroup has Rr = v

might lead one to suspect that the condition Sx n Sy— 0 for x^y in the same Sy

is redundant. The following example shows that this is not the case. Let T = {0, 1}

with the usual multiplication and let Sx= {a, b) and 5,0 = {c, d} he right zero semi-

groups. Define ac = ca = bc = cb = c, ad=bd=d, and da — db — c. One may verify

that the multiplication is associative so that S = S0*J Sx is a band. Moreover

Sa = {a, c} while Sb = {b, c} so that Sa n S7_># 0. Thus the r-semisimplicity of S

depends not only on the fact that S is a semilattice T of right zero semigroups Sy,

but also on how the elements of the different Sy multiply together. It is this problem

that we consider next.

4. /--semisimple bands with simply ordered semilattice.    If the band

S = {J {Sv : yeF, a semilattice}

then the partial ordering on T gives a partial ordering on the collection of right

zero semigroups Sy. Thus we will write Sy =ï Sô when y S: S for y, 8 e T. If Sy and Sô

are ordered this way and xe Sy, y e Sd then it is clear from Theorem 1 that xy and

vx both lie in Sd. In fact Dean and Oehmke [2, p. 1195] have shown that we always

have xy=y.

Our objective now is to determine the possibilities for constructing r-semisimple

bands out of right zero semigroups. In the discussion and results that follow it will

be convenient to drop the subscript notation Sy and use the letters A, B, C,... to
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denote the right zero semigroups of the band S. We will first determine the con-

struction of semisimple bands whose semilattice V is simply ordered, and then the

general case.

Lemma 20. Let the band S be a semilattice of right zero semigroups as in Theorem

I. If A and B are two of these right zero semigroups with A> B, then A induces a

two-sided congruence tab on B.

Proof. We remark that any equivalence relation on a right zero semigroup is a

two-sided congruence and any mapping of one right zero semigroup into another is

a homomorphism. Thus the mapping b->ba induces a two-sided congruence ra

on B for every a in A. Furthermore it is straightforward to show that ra = Ta, for

all a, a' in A and we denote this congruence by tab.

Theorem 21. Let S be a simply ordered semilattice of right zero semigroups.

Then S is an r-semisimple band if and only if the following hold.

(1) For each pair of right zero semigroups A> B in S we have a two-sided con-

gruence tab on B with congruence classes U^A, B), i in some index set.

(2) For each i we have a monomorphism <f>¡(A, B): A^ U¡(A, B) with multiplication

given by ab = b andba = aj>i(A, B)for ae A, be U¡(A, B).

(3) For A>B>C, tac^tbc and for each pair Uj(B, C), Ut(A, B) there exists a

Uk(A, C)<= Uj(B, C) such that U¡(B, C)Ut(A, B)<=Uk(A, C), and for this triple of

indices, <f>t(A, B)<f>¡(B, C) = <f>k(A, C).

Proof. Suppose £• is r-semisimple. (1) and (2) follow in an obvious way from

Lemma 20. The fact that <f>i(A, B) is one-to-one is a consequence of the r-semi-

simplicity of S by Theorem 18. tacStbc may be shown directly without the

hypothesis that S is r-semisimple and the rest of (3) comes from the associative law

as follows. Let cxbx, c2b2e Uj(B, C)U¡(A, B). Then for a in A we have (c^^a

= (c2b1)a = c2(b1a) = c2(b2a) = (c2b2)a so (c^Jt^c^) and c^, c2b2e Uk(A, C)

for some k. Also a<f>i(A, B)^(B, C) = (ba)<pj(B, C) for b e Ut(A, B), and (ba)<p¡(B, C)

= c(ba) for c e Uj(B, C). Since cb e Uk(A, C) we have c(ba) = (cb)a = a<f>k(A, C).

To prove the converse we need to show first that all possible products are

associative and then, using the condition of Theorem 18, that S is r-semisimple.

Consider the product xyz of three elements of S, assuming first that all three are in

A and B. If either y or z is in B it is clearly associative, so consider baa', where

be B and a,a'eA. be Ut(A, B) for some /', thus (ba)a' = (a(f>i(A, B))a' and since

a<pi(A, B) e U¡(A, B), (a<f>¡(A, B))a' = a'<f>t(A, B) = ba' = b(aa'). Now suppose that x, y

and z are in A u B U C. Associativity is immediate if either y or z is in C. Consider

cab. c(ab) = cb = b<p,(B,C) where ceü¡(B,C). Also c e Uk(A, C)<=Uj(B, C) for

some k so (ca)b = (a<f>k(A, C))b = b<j>j(B, C). Consider cba. There exist y, i such that

c e Uj(B, C) and b e U^A, B) and associated with this pair is the unique set

Uk(A, C) of the hypotheses. Thus cb = b$j(B, C)eUk(A, C) and so (cb)a = a<j>k(A, C).

On the other hand, c(ba) = c(a<pi(A, B))=a<pi(A, B)<f>¡(B, C) and associativity follows.
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That S is semisimple is a straightforward consequence of the fact that the multi-

plication mappings are one-to-one.

From this theorem we see that the right zero semigroups of S which are "above"

a particular one, say C, in the semilattice, can be realized in terms of successively

finer congruences on C. Thus starting with the congruence C=U U,(B, C), each

U¡ contains an isomorphic copy of B, namely B(f>j(B, C). B (and its copies in the U,)

contains the congruence B=\J U¡(A, B), and in turn each of these equivalence

classes contains an isomorphic copy of A. The congruence rAC is obtained as an

" extension " of the congruence induced isomorphically on each B<pj(B, C) c U¡(B, C)

by breaking up Uf(B, C) — B<f>j(B, C) into additional equivalence classes Uk(A, C).

This process may be continued, either indefinitely or until the congruence i is

reached on C. Alternately, a congruence may be inserted between two given ones.

The procedure can be extended in the other direction by isomorphically imbedding

C (and its congruences) in the equivalence classes of a congruence on a larger right

zero semigroup D. It is easy to see that that part of the original semilattice in S

which lies above C can be homomorphically mapped onto this semilattice of con-

gruences on C. The mapping may not be an isomorphism because of the possibility

that rAC = rBC, and when this happens we have the following result.

Theorem 22. Let S be an r-semisimple band with right zero semigroups A>B>C,

then rAC = rBC implies rAB = v.

Proof. rAC = rBC implies Uk(A, C) is equal to the U¡(B, C) containing it, and for

any i, U¡(B, C)U(A, B)^Uk(A, C). But by Theorem 18, distinct U¡(A, B) would

have to go into distinct Uk(A, C) under this multiplication so there can be only

one equivalence class and rAB = v.

In a recent paper Howie [4] has determined the structure of all bands which are

naturally ordered. A band is said to be naturally ordered if e^f and gfih together

imply eg^fh, where S is the natural partial ordering on the band. The following

theorem indicates how these naturally ordered bands fit into our present work.

Theorem 23. Let S be an r-semisimple naturally ordered band. If A and B are any

two right zero semigroups of S with A> B, then rAB = v.

Proof. In his paper Howie has shown [4, p. 57] that for any a in A there exists

exactly one b in B such that b^a, that is ba = ab = b. This implies Ba = {b} since S

is r-semisimple. But |Z?a| is exactly the number of equivalence classes of rAB so

that rAB = v.

5. The general case. We now want to consider the general case where the

r-semisimple band S is a semilattice Y of right zero semigroups A, B,C,... and

where Y is not necessarily simply ordered. If A and B are not comparable under the

induced partial ordering, then there exists a right zero semigroup C such that

AB, BA^C. It is the possibilities for the products ab and ba in C that determine

how the "branches" fit together and this is what we want to describe. We recall
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that for A > C in the semilattice we have the congruence rAC of Lemma 20 with

equivalence classes Uk(A, C), k in some index set, and multiplication mappings

a$k(A, C) = cae Uk(A, C) for any a in A and c in Uk(A, C). Since Lemma 20

holds for an arbitrary semilattice of right zero semigroups, it will be convenient to

drop the hypothesis of r-semisimplicity at first.

Theorem 24. Let S be the union of a semilattice Y of right zero semigroups such

that each simply ordered chain of right zero semigroups in S forms a band. Then S

is a band if and only if for each distinct triple A, B, C of right zero semigroups with

AB, BA c C we have the following conditions satisfied:

(1) For each ae A there exists a U¡(B, C) such that Ca<= U¡(B, C).

(2) For each beB there exists a Uk(A, C) such that Cb^ Uk(A, C). When (1) and

(2) are satisfied we define ab = b<j>}(B, C) and ba = a<f>k(A, C).

Proof. If 5 is a band and ae A, beB, then (Ca)b = {ab) so Ca is contained in

some Uj(B, C). It is easy to see that ab is that unique element of U¡(B, C) which is

fixed by right multiplication by b, that is ab = b<¡>¡(B, C). Similarly for Cb and ba.

For the converse we need only show associativity of products from A, B and C

as given. Moreover the product xyz is obviously associative if either y or z is in C.

Consider products of the form cab and cba. We have (ca)b = b<f>j(B, C) = ab = c(ab).

Similarly, (cb)a = c(ba). For products xyz where none of these are in C all are

trivial except the types aba' and baa'. Since ab e Uk(A, C), (ab)a'=a'<pk(A, C) = ba'

= a(ba'); and since a<j>k(A, C)e Uk(A, C), (ba)a' = (a<pk(A, C))a' = a'<pk(A, C) = ba'

= b(aa') so S must be associative.

Theorem 25. Let S be a band. By Theorem 1 S is a semilattice of rectangular

bands. Then S is r-semisimple if and only if every simply ordered chain of rectangular

bands in S is r-semisimple.

Proof. We observe first that the hypothesis of r-semisimplicity implies that each

of the rectangular bands is in fact a right semigroup. The only if part is obvious so

let A and B be two right zero semigroups in S which do not lie in some simply

ordered chain. We continue the notation of Theorem 24 and define an equivalence

relation on A by A¡ = {a e A : Ca<=U}(B, C)}. If A¡+ 0 then A,b n Afi'=0 for

b^b'. Moreover Afi^U^B, C); so if j #7" then A,b n Arb'=0 for any b, b' e B.

Thus Ab n Ab' = 0 for b^b', and since A was arbitrary, Sb n Sb'= 0 so S is

semisimple.

We conclude that to construct an arbitrary r-semisimple band from r-semisimple

bands whose semilattice is simply ordered, we need only be concerned with

preserving associativity as in Theorem 24.

It is clear that an r-semisimple band is determined by the underlying semilattice,

the right zero semigroups, the congruences rAB and the multiplication mappings.

To make this somewhat more explicit we "conclude with the following theorem.
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Theorem 26. Let S and S' be r-semisimple bands with 8: S-+ S' one-to-one and

onto. We use primes to denote the image of both elements and subsets of S. Then 6

is an isomorphism if and only if the following hold:

(1) The induced mapping on the semilattices and the restrictions to the right zero

semigroups are isomorphisms.

(2) For any pair A>C of right zero semigroups in S and any index k, we have

Uk(A, C)'=Uk.(A', C) and<pk(A, C)8 = 8<pk.(A'\ C).

Proof. Suppose 8 satisfies the given conditions. On any simply ordered chain of

right zero semigroups the fact that d is a homomorphism follows directly from (2).

Suppose A, B, C are right zero semigroups of S with AB, BA c C as in Theorem 24,

and let a e A, b e B. By Theorem 24 there exists a C/;(F, C) such that Cae u¡(B, C)

and a U„(B', C) such that C'a'^Ujif(B', C). Then C'a' = (Cd)' c U¡(B, C)' so

that Ur(B', C')=Uj(B, C)'=Uj3f(B', C). Thus (ab)'= (b<Pi(B, C))'= b'<i>r(B', C)

= a'b' and 8 is a homomorphism on S. We omit the proof of the converse.

6. Semilattices of right zero semigroups.

Theorem 27. Let S be a simply ordered semilattice of right zero semigroups. Then

S is a band if and only if the following hold:

(1) For each pair A>B of right zero semigroups in S we have an equivalence

relation tab on B with equivalence classes Ui(A, B), i in some index set.

(2) For each i we have a mapping <f>¡(A, B): A^» U¡(A, B) with multiplication

given by ab = b and ba = a<px(A, B)for ae A, b e Ui(A, B).

(3) If A>B>C, then tac^tbc, and for each pair Uj(B, C), t/¡(/f, B) there exists

a Uk(A, C)cUj(B, C) such that U¡(B, C)Ut(A, B)^Uk(A, C). Moreover for this

triple of indices <j>t(A, B)<pt(B, C) = <pk(A, C).

Proof. The proof is essentially the same as that of Theorem 21. The main thing

to observe is that in (2) the mappings are not necessarily one-to-one if S is a band,

and furthermore that condition is sufficient to determine the multiplication for an

arbitrary band of this type.

This theorem for a simply ordered semilattice together with Theorem 24 gives a

characterization for an arbitrary semilattice of right zero semigroups. Finally we

remark that the underlying semilattice, the right zero semigroups, the equivalence

relations and the multiplication mappings determine these bands up to isomorphism.

In this connection Theorem 26 carries over verbatim for any band which is a

semilattice of rectangular bands.
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