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1. Introduction. In this paper we consider linear differential systems of the

form

(i.l) /(*) = P(z)y(z),

where y(z) is the column vector [yi(z),..., yn(z)] and P(z) is the «x« matrix

[pik(z)]l, where the «2 analytic functions pik(z) are regular in the bounded simply-

connected domain D. Following Schwarz [8], we shall say that (1.1) is disconjugate

in D if for every choice of n (not necessarily distinct) points zu z2,..., zn in D, the

only solution of (1.1), which satisfies _yj(z¡) = 0, i= 1,2,...,«, is the trivial one

y(z) = 0.

Various aspects and applications of systems disconjugacy were considered by

Nehari [6], Schwarz [8], London and Schwarz [3], and Kim [1]. Considering

disfocality of second-order differential equations Nehari pointed out the following

principle [6, Theorem 1.1], which we state here as a necessary and sufficient con-

dition for disconjugacy of the differential system

(F2) vi = p(z)y2,      y2 = q(z)yu

where p(z) and q(z) are regular functions in the domain D.

Let

(F3) f(z) = Ul(z)lVl(z),       g(z) = u2(z)lv2(z);

where u = (uuu2) and v = (vuv2) are linearly independent solutions of (1.2). The

system (1.2) is disconjugate in D if and only iff(z) and g(z) are "relatively schlicht"

in D; i.e. if

(1.4) f(zO * g(z2)

for every choice ofzu z2 e D.

If « and v are replaced by a different set of two linearly independent solutions of

(1.2), then, according to (1.3),/and g are replaced by F/and Tg, where Fis given by

(1.5) Tf = (Af+ B)l(Cf+ D),       AD-BC* 0.
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It is therefore necessary, that any relation between the coefficients p(z) and q(z)

of (1.2) and the functions/(z) and g(z) will remain invariant under the mapping

/-> Tf g -> Tg. Two combinations of/ and g with this invariance property are

0.6) ®[f,g] =f'g'l(f-g)2,

and

(1-7) VU,g]=fy-8j,-'2y¡^1-

The relations between the coefficients p(z) and q(z) of (1.2) and the functions

0[/ g] and W\f, g] are given by

1.8) -P(z)q(z) = ®[f,g]

and

(1 -9) p'(z)\p(z)-q'(z)\q(z) = Y[f, g].

Now, for functions/(z) and g(z) which are "relatively schlicht" in |z| < 1 it is

known [5, p. 281, 6, Theorem 7.1] that

(i.io)       m,g]\ = \mm[^jyJm,   |Z,<i.

Utilizing this result one obtains the following necessary condition. If (1.2) is

disconjugate in \z\ < 1, then

(1.11) \p(z)q(z)\ Ú 1/(1 -|z|2)2,        |z| < 1.

Our principal aim in this paper is to generalize these results of Nehari to differen-

tial systems with n 3:3. The ideas are also related to a recent paper by the author

[2], where some function-theoretic aspects of disconjugacy of nth order linear

differential equations were considered.

2. Mappings onto domains with empty intersection. Let yk(z) = [yXk(z), y2k(z),

■ ■ -, ynk(z)], k=l, 2,..., n, he n linearly independent solutions of (1.1), then the

matrix Y(z)=[yik(z)]x is a fundamental solution of the matrix differential equation

(2.1) Y'(z) = P(z)Y(z)

corresponding to (1.1); i.e. the determinant det [v„c(z)]î#0 for all ze D. Without

loss of generality we may assume that yin(z)^0, i'= 1, 2,..., n, and define the

functions

(2.2) fik(z) = yik(z)lyln(z),       i, k = 1, 2,..., n,

which are meromorphic in D. Furthermore,

(2.3) det [ yik(z)fx = f\ *»(*) det [fik(z)fx.
i=i

Hence, det [fik(z)]l¥=0 for all zeD.
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Let

n-l

(2.4) w = Hi(z;a±, ...,a»-J = ^akfík(z),       i = 1,2,...,«,

and denote by A(«i,..., an_ i) the image of D in the w plane given by

Hi(z;au..., an_i).

We state now

Theorem 1. (1.1) is disconjugate in D if and only if for every choice of finite

complex constants alt..., a»_i, not all zero, the domains Dt(au ..., ö„_i), /= 1, 2,

...,«, «aye «o common point, i.e.

(2.5) H A(fli,...,«»-i)= 0-

As pointed out by Schwarz [8, Theorem 3], disconjugacy of (1.1) in D is equiva-

lent to the fact that for any fundamental solution [yifc(z)]" of (2.1), we have

det [.Vifcizi)]" ^ 0 for every choice of « (not necessarily distinct) points zu z2,...,

zne D. According to (2.3) it follows now that disconjugacy of (1.1) in D is

equivalent to

fl yin(zf) det [/,(zf)]i # 0
i=l

for every choice of zu ..., zne D. Thus, if yin(z)^0, /"= 1,2,...,«, for all z e D,

the functions fik(z) defined by (2.2) are regular in D, and Theorem 1 follows from

[8, Theorem 3]. But if we do not assume that yln(z)#0 the result does not follow

immediately, and it is exactly the zeros of yln(z) that cause the difficulty in the

proof of Theorem 1. To handle this we shall require the following two lemmas.

Lemma 1. Given a set of npoints zu z2,..., zn of D, there always exists a solution

y(z) o/(l.l) such that yt(z^)^0, i= 1, 2,..., «.

Proof. By the existence theorem there exists a solution u(z) such that Mi(Zi) = 1.

Suppose u2(z2) = 0, then by the same argument there exists a solution v(z) such that

d2(z2)=1. If v1(z1) = 0, then y(z) = u(z) + tv(z), ?/0, is a solution of (1.1) which

satisfies Vi(z!)^0, v2(z2)^0. Assume now that u(z) and v(z) are solutions of (1.1)

which satisfy Ui(zl) = ai^0, i=l, 2,. ..,j<n, ui+1(zj+1) = 0, u1(z1) = 0, vi(zl) = ßij=0,

í=l,2,...,/+1. If t^-aißi1, i=2,...,j+l, then y(z)=u(z) + tv(z) will be a

solution of (1.1) which satisfies y{(z^=^0, i= 1,2,.. .,y'+1.

Lemma 2. If (l.l) is not disconjugate in D, and if yin(z)^0, i= 1, 2,.... «, then

there e. ¡si n points zf, z%,..., z* of D, and a nontrivial solution y*(z) f (1.1),

such that ;,'fzi*) = 0 andyin(z*)¥=0, i= 1, 2,..., n.

Proof. Since (1.1) is not disconjugate in D, there exists a nontrivial solution

y(z), such that v¡(zí)=0 for z¡ g D, ¿=1,2,...,«. If vin(^)=0 for some 1 ¿y'¿«,
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then apply a perturbation ys(z) =y(z) + eu(z), where u(z) is a solution of (1.1)

which satisfies w¡(z¿)^0, i=l,2,..., n, and £ is a complex parameter. By making a

proper choice of e, say e = e*, we obtain y*(z)=y£.(z), and by Rouché's theorem

y*(z*) = 0, where z,* e D, i= 1, 2,.. .n. Furthermore, e* is chosen in such a way to

guarantee that yin(zf) =£ 0.

We are ready now to prove Theorem 1.

Proof of Theorem 1.

(i) Suppose b £ n?=i A(fli» • • •> tfn-i) for some choice of finite constants

ax,..., an_i, not all zero. Then there exist n points zx, z2,..., zne D such that

71-1

Hi(zt; ax,..., an_i) = 2 a*/i*(zi) = ft>       i=l,2,...,n.
k=l

If b = cc, then l,,n(z,) = 0, i= 1,..., n, and (1.1) is not disconjugate. If b=£oo, then

n- 1

ttfo) = 2 flfc>'ifc(zi)-*Fin(^) = 0,       i = 1, 2,..., n.
k=i

Indeed, if j3n(zj)#0 for l^jSn, then clearly >>;(z,) = 0, and if yjn(zJ) = 0, then it

follows from b^ao that 2ï=î ßfcFyjcfo) = 0 and we have again y}(z,) = 0. Hence,

disconjugacy of (1.1) in D implies (2.5).

(ii) Assume (1.1) is not disconjugate in D; i.e., there exists a nontrivial solution

of (1.1), jr*(z)«2S-i akyk(z), such that >f (z,*) = 0 for z,* e D, i= 1, 2,..., n. By

Lemma 2 we may assume that yin(zf)^0. Hence

Z^M =  2 akfik(z?) + an = 0,       1=1,...,«,
yin\zi )        k = x

and -an £ Hr=i A(«i> •• ..ûn-i). This completes the proof of Theorem 1.

3. Relations between the coefficients pik(z) and the functions/it(z). Replacement

of yk(z), k=l,2,...,n,by another set of fundamental solutions wk(z), k= 1, 2,...,

n, results in a transformation

(3.1) /,(z) -* Fik(z) = !£© = g=i^,g)        ;, ¿ = ], 2,..., n, det K]ï * 0
win(z) 2jj = 1 «jnJiAZ)

applied to the matrix [fik(z)]l. Hence, any relation between the entries of the

matrices [pik(z)]x and [fik(z)]x must remain invariant under mappings of the type

(3.1).
Without loss of generality we may assume that

(3.2) pti(z) = 0,       i=l,2,...,«,

since this can be achieved by means of a transformation [8, p. 489]

(3.3)   j,(z) = Tt(z)Ui(z),       t,(z) = c, exp      pti(0 d£,
Jz0

i = 1,2,...,«,
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which leaves fik(z) unchanged. Assuming (3.2), it is still possible to apply (3.3)

with Tj(z) = c¡#0, where ct are arbitrary constants. This results in

(3.4) u'(z) = R(z)u(z),       R(z) = [rik(z)]\,

where

(3.5) rlk(z) = pik(z)(cklci),       i,k=l,2,...,n.

Therefore, the coefficients p¡k(z) can be determined by the functions fik(z) up to a

relation of the type (3.5). It is easily verified by (3.5) that

(3.6) ffi;(z) = pépite),       i j= j,    i,j = 1, 2,..., n

and

(3.7) Vij(z) = p'ilzypilz),       i ¿j,    i,j = 1, 2,..., «

are independent of the constants c¡. Next we prove that ^¡(z) and r¡ti(z) can be

expressed in terms of the functions fik(z), and therefore remain invariant under

the group of transformations of the type (3.1). According to (2.2) we have yik(z)

=fik(z)yin(z). Differentiating and using (1.1) we obtain

(3.8) i/^lfWttWii,       fc=l,2,...,«-l.
1=1 y in

Thus for every fixed l¿/¿«, we have («-1) linear equations for the («-1)

unknown Pij(yjnlyln), j¥=i, y'=l, 2,..., «. The («-l)x(«-l) matrix mjk(i, z)

=f,k(z)-fik(z),j=l,2,..., i-l, i+l,...,«, k=l,2,.. .,n-l, satisfies

det [mjk(i, z)] = (-iy + ' det [/sí(z)R * 0

for all z e D. Solving (3.8) we get

n en „  y*      det [hst(i,j,z)]1

(19) P^r    det [fst(z)]l   '       '*•>'   hJ-1.2....,*,
where

hst(i,j, z) = ft(z),   S ¿j,\   5, t = 1, 2,..., «

hftiUj, z) = fit(z) J   j+ i,   i,j = 1,2,..., n.

Setting now

(3.10) Bu(z) = 0,       Biiz) = ̂ ¿fj^ffi       i * F    U =1,2,...,«,

it follows from (3.9) that

°n(z) = Pij(z)Pn(z) = Ba(z)Bñ(z)

(3.11) det[«st(/,y,z)]det[«s¡(y,/,z)]

(det [fst(z)])2

and

(3.12) Vii(z) =áM = ^M+ J [Bik(z)-Bik(z)l       i * j,    i,j = 1,..., «.

i¥"j,   i,j = 1,2,...,«,
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By Theorem 1, any condition for the functions fk(z), i, k= 1, 2,..., n, to satisfy

(2.5), which may be expressed in terms of aiy(z) and 7)„(z), is equivalent to conditions

for disconjugacy of (1.1). For n = 2, a known result in the theory of functions,

namely inequality (1.10), was applied to yield the necessary condition for dis-

conjugacy (1.11). Yet, for n > 2, we do not know of any necessary condition for the

functions fik(z) to satisfy (2.5). In §7 a condition of this type will be deduced from

necessary conditions for disconjugacy obtained in Theorem 5.

4. A family of "relatively schlicht" functions. Another way of generalizing

Nehari's principle [6, Theorem 1.1] is to generate a family of "relatively schlicht"

functions.

Given n points (not necessarily distinct) zx, z2,..., zn in D, let u=[ux, ...,«„]

and v = [vx,..., vn] be linearly independent solutions of (1.1), which satisfy

(4.1) h,(z,) = r,,(z,) = 0,       i = 1, 2,..., n,   i */,k,   j * k,    1 ¿¿ * j n.

Evidently, there always exist at least two linearly independent solutions of (1.1)

which satisfy (4.1). (This is an immediate consequence of the existence of a funda-

mental set of n linearly independent solutions.) Moreover, if z¡ = ae D, i—l, 2,

..., n, i'#7, k, then there exist exactly two linearly independent solutions which

satisfy (4.1). But in the general case, where some of the z, may be distinct, it does

not follow from the existence theorem that any three solutions of (1.1) which satisfy

j,(z,) = 0, i'=l,..., n, iVy, k, are linearly dependent. In Lemma 3 we discuss this

situation.

We assume now that m,(z) and vt(z), t=j, k, (where « and v are linearly indepen-

dent solutions of (1.1) satisfying (4.1)) are not both identically zero, and we

define the functions

(4.2) gt(z) = ulz)lvAz),       t = 7, k,   j^k,    1 ̂  7, k Ú n.

In case us(z) = vs(z) = 0, 1 ̂ s^n, we do not define gs(z)- We state now

Theorem 2. Let gAz) and gk(z) be defined by (4.2), where u and v are two linearly

independent solutions o/(l.l) which satisfy (4.1). In order that the system (1.1) be

disconjugate in D, it is necessary and sufficient that for every choice of n points (not

necessarily distinct) zx, z2,..., z„ in D, and every pair of functions gAz) and gk(z),

j¥=k,j,k=l,2,...,n,

(4.3) gAz i) ¥= gk(Zk),      j # k,   j, k = 1, 2,..., n

holds; i.e. disconjugacy of (I.I) is equivalent to the "relatively schlichtness" of all

pairs of functions gAz) and gk(z),j^k,j, k=\,2,...,n.

For the proof of Theorem 2 we require some preliminary prepositions which we

state as a lemma.
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Lemma 3. Suppose there exist three linearly independent solutions of (I.I), y(z),

v(z), and w(z), which satisfy yi(zi) = v(zi) = wi(zi) = 0, z, e D, i'= 1, 2,..., n —2, then

(i) (1.1) is not disconjugate in D.

(ii) There exists a pair of functions gAz) and gk(z),j¥zk, which are not relatively

schlicht in D; i.e., gAQ=gk(ik)for some i¡, {k e D.

Proof, (i) Let zn_1; z„ e D. There always exists a nontrivial solution u(z) = axy(z)

+ a2v(z) + a3w(z) which satisfies Mn_1(zn_1) = wn(zn) = 0. Hence (1.1) is not dis-

conjugate in A since w,(z,) = 0, i'= 1, 2,..., n.

(ii) We first make the following remark. Since y(z) and v(z) are linearly indepen-

dent solutions, then at least one component of each solution, say yAz) and vm(z),

lès, men, s^m, is not identically zero. Hence, we may assume that at least two

components of v(z) are not identically zero. Suppose now that

(4.4) »»-i(z)É0,       t;„(z)^0,       zeA

and let £„-i, £„ £ D he such that fn-iij-n-O^O and i;n(£„)^0, then the functions

gn-x(z) and gn(z), where gt(z) = m((z)/ü((z), t = n— 1, n, are not relatively schlicht in D

Since gn-Sn-l) = gnttn) = 0.

In case (4.4) is false and yn-x(z) = vn-x(z)=wn_x(z) = 0, we assume that vx(z)^0,

vn(z)jéO. Let £x, t,ne D he such that Ui(£i)#0, vn(£,n)=£0. Proceeding as before,

there exists a nontrivial solution u(z) = axy(z) + a2v(z) + a3w(z) such that ux(Cx) = 0,

w,(z,) = 0, i'=2, ..., n-2, Hn_i(z) = 0, w„(£„) = 0, and gx(ix)=gn(ín) = 0. If yAz) =

t;((z) = wi(z) = 0 for t = n— 1, n, we may assume that t^fz^O, v2(z)^0 and proceed

as before.

Proof of Theorem 2. (i) Necessary. Suppose g,(z;)=gJc(zfc)=j8a_1, then y(z)

= au(z)—ßv(z) satisfies ^¡(z,) = 0, i'= 1, 2,..., n.

(ii) Sufficient. Suppose there exists a solution u(z) such that m,(z,)=0, i'=1,2,

..., n, z, £ D. Let v(z) be a solution of (1.1), which is linearly independent of

u(z) and satisfies d,(z,) = 0, i'= 1, 2,..., n —2. If

(4.5) tV-i(zn-i) ¿ 0,       vn(zn) Ï 0,

then gn-i(zn-i)=gn(zn) = 0. So suppose (4.5) is false and r„_1(zn_1) = 0. Assume

now that un(z) and vn(z) are not both identically zero. Denote by Sn the set of

common zeros in D of un(z) and vn(z), and let £n £ Sn, £n e D. There exists a non-

trivial solution y(z) = axu(z) + a2v(z), such that yn(in) = 0 and 7,(z,) = 0, i = 1, 2,...,

n — 1. Moreover, there exists another solution w(z), which is linearly independent

of y(z) and satisfies h>,(z,)=0, i=3, 4,..., n-1, wn(Cn) = 0. We claim now that

wAzt)¥=0, 1 = 1,2. Because if w2(z2) = 0, then m,(z,) = i;,(z,) = h',(z,)=0, ¡'=1,2,...,

n—1, and by Lemma 3 it follows from the relatively schlichtness in D of every

pair of functions g;(z) and gk(z) that w(z) = ßxu(z) + ß2v(z). But since w(z) and y(z)

are linearly independent, it follows now from wn((,n)=yn(r,n)=0 that «„(£„) = i>»(£„)

=0, which contradicts our assumption that £n $ Sn. So, w2(z2)^0, and similarly
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Witzj^O. Considering now the functions gt(z)=yt(z)lwt(z), t=l,2, it follows that

gi(zi) = g2(z2) = 0. In case un(z) = vn(z) = 0 (Sn = D), we may assume that ur(z) and

vr(z) are not both identically zero for some r, 1 ¿ r ¿ « — 1, and proceed as before.

5. Quantities invariant under the mapping/-» Tf, g —>■ Tg. Our next goal is to

establish relations between the coefficients pik(z) of the system (1.1) and the func-

tions gj(z) and gk(z) defined by (4.2). As has become by now a standard procedure,

we have to find out first what kind of transformations may be applied to g¡ and gk

without affecting their relations with the coefficients/^. If u(z) and v(z) are replaced

by the linearly independent solutions Au(z) + Bv(z) and Cu(z) + Dv(z) respectively,

then according to (4.2), g, and gk are replaced by Tg¡ and Tgk, where Fis the linear

transformation (1.5). Therefore any relation between the coefficients pik and the

functions g¡ and gk should be expressed by quantities which remain invariant

under the transformation gt -> Tgt, t=j, k.

This brings up the following question. Given two meromorphic functions, f(z)

and g(z), in a domain D, what combinations of/(z) and g(z), and their derivatives

remain invariant under the transformation/^ Tf, g-> Tg. Two combinations of

this type were given by Nehari, namely Of/, g] and W[f g] which are defined by

(1.6) and (1.7). By differentiating <i>[fi g] and W[f, g], it is possible to derive more

quantities with this invariance property. One combination of this type which will

be of interest later is

(5-1) 61/.,l=f-^l-I[^+W.4
In the following theorem we shall prove that with some restrictions on the

functions/(z) and g(z), every combination of/(z) and g(z) with the desired invari-

ance property can be derived from $>[fi g] and Q[f,g].

Denote by RC(D) the restricted class in D (see [7, p. 159]), namely the class of

functions/(z) which are meromorphic in D with simple poles at most and which

satisfy f'(z)^0 for all zeD. Note that iff belongs to RC(D) so does Tf.

Theorem 3. Let f(z) e RC(D), and let g(z) be a meromorphic function in D such

that

(5.2) f(z)^g(z),       zeD.

Let E[f(z),g(z)] = E[f(z),.. .,fM(z),g(z),. ..,g(n\z)] be a combination of f(z) and

g(z) and their derivatives up to order n. If E[f(z), g(z)] remains invariant under the

transformation /-> Tf g-> Tg, i.e.,

(5.3) E[Tf(z), Tg(z)} = E[f(z), g(z)] = I(z),

where T is defined by (1.5), then E[f(z), g(z)] may be derived from $>[f(z), g(z)] = <f>(z)

andQ[f(z),g(z)] = 8(z),and

(5.4) I(z) = E[f(z), g(z)] = E*[<f>(z), 8(z)]

where E* is a combination of <pis)(z), 5 = 0, 1,...,«— 1, and 0(r)(z), r = 0, 1,...,«—2.
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Proof. Let z0 g D. Without loss of generality we may assume that

(5.5) /(z0) = 1,       g(z0) = 0,      f'(z0) = 1,

since this situation may be achieved by means of a transformation/^ Tf, g^Tg

which, according to (5.3), leaves I(z) unchanged. Setting now z = z0 in (1.6) and

(5.1), it follows from (5.5) that

(5.6) g'(zQ) = <p(z0),      f"(z0) = 2 + 8(z0).

Differentiation of (1.6) and (5.1) gives us

(5 7) ¿«,z) = g{m+1)W(z)   Mm[f(z),g(z)] m = 0l2
V'f> *   {Z)      [f(z)-g(z)]2+[f(z)-g(z)T + 2        m     U'1'2'-'-'

and

(•58)    8im)(z) = —_—-I_NmU\z\ g(z)i- «1 = 012

where Mm and Am are polynomials of the arguments f(z),f'(z),.. .,fm + 1(z) and

g(z),g'(z),...,g{m)(z). By elimination and induction it follows now from (5.5),

(5.6), (5.7) and (5.8) that

(5.9) s(m + 1,(z0) = ¿<B,(zo) + *»-ifo(z), 0(z)L = 2„,       m = 1, 2,...,

and

(5.10) /(m + 2,(z0) = *m>(zo)+£»-i[#z), Ö(z)L.20,        m = 1, 2,...,

where Rm-X and Fm_! are polynomials of the arguments <pm(z) and 8a\z), 1 = 0, 1,

..., «j-1. Insertion of (5.5), (5.6), (5.9) and (5.10) in E[f(z),g(z)] leads us to

E[f(z0),...,f-\z0),g(z0),...,g^(z0)]

= F[l, 1, 0(zo) + 2,.. ., 0<»-2>(zo) + Fm_3, 0, ¿(z0),. .., ¿<»-»(z0) + £m_a]

= E*[<f>(z0),.. .,f»-»(Zo), 0(zo), • - -, ö<«-2'(z0)].

Hence

(5.11) /(z0) = £[/(z), g(z)]2_ao = E*[<p(z), ö(z)]2 = 20.

Since (5.11) holds for every z0 g D, it implies the identity (5.4).

Remark. It is easily confirmed that for/(z) and g(z) satisfying the assumptions

of Theorem 3, <j>(z) = <i>[f(z), g(z)] and 8(z)=@[f(z),g(z)] are regular functions in

D. Moreover, </>(z)/0 for z e D, if and only if in addition to the assumptions of

the theorem we have g(z) e RC(D).

For functions/(z) and g(z) which belong to RC(D) and satisfy (5.2), the function

>fi(z) = x¥[f(z), g(z)], defined by (1.7), is also regular in D, and by (5.1)

(5.12) 8(z) = |[f(#(z) + f(z)]

holds. By inserting (5.12) in E*[<p(z), 8(z)] we obtain

F[/-(z),g(z)] = E*[j>(z), 8(z)} = E**[<p(z),Jj(z)],
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where E** is a combination of <pis\z), s = 0, 1,..., n— 1, and </><r)(z), r = 0, 1,...,

n —2. Hence, for f(z), g(z) e RC(D) satisfying (5.2), we can replace &[f(z), g(z)]

in Theorem 3 by T[/(z), g(z)].

6. A subfamily of relatively schlicht functions. For the applications it is useful

to consider only a subfamily of functions of the type (4.2). Let ae D, and let u

and v be linearly independent solutions of (1.1) satisfying

(6.1) uAa) = vAa) = 0,       ¿=1,2,...,«,   i*j,k,   j Í k,    l Ú j, k è n.

Similarly to (4.2), we set

(6.2) gAz, a) = wi(z)/i;i(z),       t = j, k,   j + k,    1 S j, ken.

Before we consider the problem of establishing relations between the functions

(6.2) and the coefficients pik(z) of (1.1), we first make the following remarks.

(i) As already discussed in §4, there exist exactly two linearly independent

solutions which satisfy (6.1). Therefore, any solution of (1.1) satisfying yAa) = 0,

i'= 1, 2,..., n, iftj, k, is a linear combination of« and v. It follows that replacement

of u and v in (6.2), by a different set of two linearly independent solutions y and w

satisfying j,(a) = w,(a)=0, i—\,2,...,«, i¥=j,k, results in a transformation

gAz, a) -*■ TgAz, a), t=j, k, where Fis defined by (1.5). Hence, the relations between

the functions (6.2) and the coefficients pik(z) must stay invariant under the trans-

formation gt -> Tgt, 1=7, k.

(ii) Since the transformation (3.3) leaves the functions (6.2) unchanged, we may

assume that /?„(z) = 0, i'= 1, 2,..., n. In this case the coefficients pik(z) can be

determined by the functions (6.2) only up to a relation of the type (3.5).

Theorem 4. Let plk(z), i, k= 1, 2,..., n be regular functions in D and assume

(3.2) PiAz) = 0,       ¿=1,2,...,».

Let the functions gAz, a) and gk(z, a) be defined by (6.2), where u and v are linearly

independent solutions of (l.l) satisfying (6.1). If

(6.3) <pjk(z, a) = HgAz, a), gk(z, a)] = *&/(& -gk)2

and

(6.4) 6jk(z, a) = 0[g/z, a), gk(z, a)] = ¿¡¡g',-2g'¡¡(gj-gk)

where gl = d[gAz, a)]\dz, t=j, k, then

(6.5) <f>jk(a, a) = -pik(a)pM(a),      j # k,   j, k = 1, 2,..., n,   a e D,

and ifpjk(a) ¥= 0, then

(f.K\    a f- ^ - P'i*(a) . If=iPÂa)Pik(a) ...      -,       ,, „    ni=n(6.6) fl,k(a,fl)__+-——-,       jïk,   j,k=l,2,...,n,   aeD.
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Proof. Let u(z) and v(z) satisfy

(6.7) ut(a) = 8ik,       vAa) = 8ih      j ¥= k,    i = 1,2,..., «,    1 Ú j, k è n.

According to (1.1) and (6.2) we have

«■ „x „Y, „\      2"= i Pijz^ujz^Az) - uAz)vjz)]
(6.8) gAz, a) =--2^-

Therefore,

(6-9) MZ> a) =-[ufk-u.vA2-

and (6.5) follows now from (6.9) and (6.7). By setting t=j and z — ain (6.8) we

obtain g'Aa, a) =pjk(a). Hence ifpjk(a)^OforaeD, gAz, a) belongs to the restricted

class of functions in some neighborhood N(a)cD of the point a. Clearly, both

gAz, a) and gk(z, a) are meromorphic functions in D. So, we conclude now that

0jk(z, a) is regular in N(a). By differentiating (6.8) and using (6.7) we obtain (6.6).

Since any solution of (1.1) which satisfies yt(a) = 0, ij^j,k, ¿=1,2,...,«, is a linear

combination of the normalized solutions u(z) and v(z) defined by (6.7), a different

choice of the two solutions would replace gt by Tgt, (t=j, k) where Fis of the form

(1.5). But <f>(z, a) and 6(z, a) are not affected by this transformation, hence (6.5)

and (6.6) hold for any choice of the solutions u(z) and v(z) regardless of the

normalization (6.7).

Remarks, (i) Note that (6.5) holds even without the assumption (3.3), but in

this casePn(z), ¿= 1, 2,..., n, are not determined by the functions (6.2).

(ii) \fpjk(z)=£0 for all z e D,j^k,j, k=\,2,...,n, then (6.5) and (6.6) are the

"fundamental relations" between the functions gAz, a) and gk(z, a) and the

coefficients pik(z) of (1.1).

7. Necessary conditions for disconjugacy in the unit disk.

Theorem 5. Let pjk(z), j, k= 1, 2,..., n be regular for \z\ < 1. If the system (1.1)

is disconjugate in \z\ < 1, then

(7.1) \Pm(z)PkAz)\ è 1/(1-|z|2)2,        |z| < 1,   j*k.

Proof. By Theorem 2 disconjugacy of (1.1) in |z| < 1 implies the "relatively

schlichtness" in |z| < 1 of every pair of functions g,(z) and gk(z) defined by (4.2).

In particular gAz, a) and gk(z, a) defined by (6.2) are relatively schlicht. Applying

(1.10), it follows that

(l-|z|2)2

holds for every j, k=l, 2,...,n, j^k, and any |a| < 1. Setting z = a in (7.2), we

obtain by (6.5) and by remark (i) of the last section

(7.2) |^k(z, a)\ = |0[g,(z, a), gk(z, a)]\ è n    ,,|3.3.        |z| < 1

\p¡k(a)PkAa)\ = \<t>jAß, a)\ = n|a|2)2'       IaI < !»   J * k.

We add the following remarks.
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(i) As regards the function 8jk(z, a) defined by (6.4), it is clear that there cannot

exist an upper bound unless an assumption is made which bounds |g,'(z, a)\ away

from zero. Therefore, (6.6) does not yield a necessary condition for disconjugacy

of (1.1). Furthermore, in order to utilize Nehari's result [6, Theorem 7.2] and

obtain an upper bound for *¥[gj(z, a), gk(z, a)], one has to assume that both

gj(z, a) and gk(z, a) are univalent in \z\ < 1, besides being relatively schlicht there.

(ii) Let Trik(Ç), i, k = 1, 2,..., «, be regular in the domain A, and consider the

differential system

(7.3) u>'(0 = n(0<o(0

where w(0 = K(0, tu2(0, ..., ojJX)\ and Ll(l)={nik(i)]l. If A is conformally

equivalent to D, i.e., if there exists a one-to-one regular function £(z) which

maps D onto A, then (7.3) may be transformed by yj(z) = wj[(,(z)], j=l,..., n,

into the system (1.1), and

(7.4) Pik(z)Pki(z) = ^[£(z)K-[£(z)](¿£/¿z)2

holds. Furthermore, (7.3) is disconjugate in A if and only if the transformed system

(1.1) is disconjugate in D. Thus, in view of (7.4), Theorem 5 yields a necessary

condition for disconjugacy in any simply-connected domain A having more than

one boundary point and such that co £ A.

We < include this section with the following corollary.

Fer fik(z), i, k= 1, 2,..., n, be regular functions in the unit disk D, such that

fin(z)=l, i=l,2,...,/t, and det [fik(z)]n^0 for zeD. Let h- = //¡(z; au ..., an^1)

be defined as in (2.4), a«¿ denote by Dt(au • • •» ö»-i) the image of D in the w plane

given by Ht(z; alt..., a„_i). If for every choice of finite complex constants, a1;...,

an_1; not all zero, the domains A(«i> ■ • -, an-i), i—\, 2,..., «, have no common

point, i.e.

(2.5) H A(ûi,..,a»-i)= 0,

then

(7.5) |Fiy(z)F;i(z)| ¿ (1_|z|2)2'       t+J,    i,j=l,-..,n,    \z\ < 1,

where Btí(z) are defined by (3.10).

Proof. Since the functions fik(z) are regular in \z\ < 1 and det [fik(z)]ï =£0, we

may set

(7.6) Y(z) = [fik(z)fu

where Y(z) is a fundamental solution of the matrix equation (2.1), and P(z) is

given by P(z)= Y'(z)Y~\z). By Theorem 1, (2.5) implies the disconjugacy of the

corresponding system (1.1). In view of (3.11) and (7.1) the result follows.
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Remarks, (i) (7.5) is a generalization of (1.10) for the case n>2.

(ii) The last result can be extended to functions fik(z), i, k = 1, 2,..., n, which

are meromorphic in the unit disk D, provided there exist n polynomials j,(z),

¿=1,2,...,«, such that i,(z)/k(z), ¿, k=1, 2,...,«, are regular for |z| < 1, and

det [st(z)fik(z)rx = fl sAz) det [fk(z)] # 0,        |z| < 1.

In this case we replace (7.6) by

(7.6') Y(z) = [sl(z)fk(z)]\

and proceed as before.

8. Disfocality of nth order differential equations.

0        1        0

0

(8.1) P(z) =

1

0 1   0

0        0

L-?n      -<7n-l

In the special case where

0

0

0

■92

0

0

1

-?lJ

the column vector y(z)=[yx(z),...,yn(z)] of (1.1) becomes [w(z), w'(z),...,

w{n ~ 1)(z)], and (1.1) is equivalent to the differential equation

(8.2) wM(z)+qx(z)win-1\z)+ ■ ■ ■ +qn(z)w(z) = 0.

In this case disconjugacy of (1.1) in D is equivalent to disfocality of (8.2) in the

same domain D. (8.2) is called disfocal in D if for every choice of n (not necessarily

distinct) points zx,..., zn of D, the only solution of (8.2) satisfying w(zx) = w'(z2)

= ... =w(n-1)(zn)=0, ¿s the trivial one w(z)ee0 (see [6]).

Let qk(z), k=l, 2,...,n, he regular functions in |z| < 1. If (8.2) is disfocal in

|z| < 1, it follows from (7.1) and (8.1) that

(8.3) |?a(z)| è 1/(1 -|z|2)2, |z| < 1.

But (7.1) does not yield bounds for the other coefficients of (8.2), since by (8.1)

pin(z) = 0 for i'=l, 2,..., n —2. Yet, such bounds may be obtained by slight

modifications of Theorems 4 and 5.

Theorem 6. Let qk(z), k=l, 2,..., n, be regular in the domain D, and let u(z)

and v(z) be linearly independent solutions o/(8.2) which satisfy

(8.4)

Let

(8.5)

u{s\a) = v(s\a) = 0, s = 0, l,...,n-l,   sjtj-l,j,    lijèn-l,

aeD.

gAz>a) = ,(/-!),
>(z)

gj+x(z,a) =
uU)(z)

t/»(z)'
1 újún-\.
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//

(8.6)   <piJ+1(z,a) = <b[g¿z,a),gj+1{z,a)] = f/ig'+1 ,a>      J= 1,2.»-1,
\gi~ gi+i)

and

gn-l 2g'n-l
(8.7) 0„-i,„(z, a) = 0[^„_i(z, a), gn(z, a)]

gn - 1      gn - 1      on

then

(8.8) ¿w+ ^fl, a) = <p'u, + ̂ a, a) = • • • = $#» 2>(a, a) = 0,

y= 1,2,...,«-1
(8.9) 4>Ï.T&*\a,a) = q«-,+ i(fi),

a«¿

(8.10) e»-i.,(«, «) - -ïi(a).

^4// derivatives are with respect to z.

Proof. Since (8.6) and (8.7) remain invariant under the transformation gt -»> Fg(,

t=j,j+l, where Fis given by (1.5), we may assume that

(8.11) u(z) = w/z),       r(z) = wj+1(z),       1 ¿ y ¿ n-1,

where w¡(z), /= 1, 2,..., n, is a fundamental set of solutions of (8.2) which satisfy

(8.12) wr1'(a) = Ss(,       s,t= 1,2,..., n.

This assumption results in simplification of the calculations. According to (8.5)

and (8.11) we obtain now

wf(z)w^\z) - wy-"(z)wf+ ,(z) Lt(z)
g'i(z, a) =

g'i + i(z>a) =

WWW " Ñ5V?W
<+1T>KIi^-^Xi1^) _      TO

Kii(z)]2 Kii(z)]2

Hence

(8.13) ¿w+1(z,a) = F;(z)/F;(z).

By (8.12) we obtain for z = a

Lia) = - 1,       K,(a) = Aft«) = • • • = K?''- 2)(a) = 0,
(8.14)

j=l,2,...,n-l,

and

(8.15) Kf->-»(a) = <>(¿) = -qn-j+1(a),      y = 1, 2,...,«-1.

(8.8) and (8.9) follow now from (8.13), (8.14) and (8.15).

In a similar way, it is easily verified that

ön.1,n(z,a) = F;_1(z)/Fn_1(z).

Setting z=a, (8.10) follows.
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We apply now Theorem 6 in order to obtain necessary conditions for disfocality

of (8.2) in the unit disk.

Theorem 7. Let qk(z), k = 1, 2,..., n, be regular functions in the unit disk. If

equation (8.2) is disfocal in \z\ < 1, then

(8.16) |?k(z)| á Akl(l - \z\2f,       k = 2,3,...,n,    |z| < 1,

where

k+2\2lk + 2Yk-2»2
(8.17)    A2 = l,   Ak = (k-2)\^j (|±|) k = 3, 4,..., n.

We require the following elementary result for the proof of Theorem 7.

Lemma 4. Let hk(z), k= 1, 2,..., be a regular function in \z\ < 1. If

(8.18) |Afc(z)| è l/(l-|z|2)\       |z| < 1,

then

(8.19) \hf(z)\ è C(s, k)l(l - \z\2y + k,       |z| < 1,   s - 1, 2,...,

wnere C(j, &) are constants depending only on s and k.

Proof. Let hk(z) = 2f= o bjZ', then by the Cauchy inequality

\bj\ è r~JM(r),       M(r) =   max   |nfc(z)|.
|z| = r<l

By (8.18), M(r)è(l-r2Yk. Therefore,

,,,   .       .       _.Y,       2-,-k f M      (2k+j\k(2k+j\íl2
\bj\ è   min r '(l-r2)  k = m(j, k) =     -■    1   —r-H    »

(8.20) 0<r<l w \  2fc  / \    j    )

7= 1,2,....

Set

(8.21) Vk(í) = hk[z(Q](^jk,       z(0 = f±jg    \a\ < 1.

z(£) is a mapping of |£| < 1 onto |z| < 1, and therefore Vk(ö = lT=o ßjV is regular

in |£| < 1. Moreover, since

\dz/dí\ =(l-|z|2)/(l-|C|2),

it follows from (8.18) that

(8.22) \r,k(Q\ ¿ 1/(1 -KIT,       |Ï|<1.

Consequently,

(8.23) \ß,\timU,k),      y = 1,2,....

Differentiation of (8.21) leads us to

(8.24) h'k(z) = v'SMIdzf + » + kr,k(t)(dlldzf - \d2i\dz2).
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It is easily confirmed that

l"(a) = 2ä!(l-\a\2)2,        \z\ < 1,

and by setting now z = a in (8.24) we obtain

(8 ?Sï       WtnW < bi(0)l+2*|a|M0)| < m(l,k) + 2k C(l,k)
K      '       lk(-){ = (l-|a|2)fc + 1        = (l-|fl|2f + 1 ~ (l-|a|2f + 1'

To obtain a bound for |«£(z)|, one can either apply (8.19) to h'k(z) or differentiate

(8.21) twice. Higher derivatives may be obtained in a similar way.

Remark. If

(8.26) hk(a) = h'k(a) =■■■ = tf-"(a) = 0,       5=1,2,...,

then for z = a we have

(8.27) \hf(a)\ = hif(0)|/(l - \a\2)s + k ¿ slm(s, k)l(l - \a\2)s + k.

Proof of Theorem 7. Since (8.2) is disfocal in \z\ < 1, it follows from Theorem 2

(and may easily be verified directly) that for every l¿y'¿«— 1 and any |a|<l,

the functions g¡(z, a) and gj+1(z, a), defined by (8.5), are "relatively schlicht" in

\z\ < 1. Consequently,

(8.28) \<j>u+1(z,a)\ = mgi(z,a),gj+1(z,a)]\ ¿ (1_|z|2)2'        \z\ < 1.

We utilize now the relations between the functions <f>¡j+i and the coefficients

tfn_i+1, established in Theorem 6. Fory'=«-l, it follows immediately from (8.9)

and (8.28) that

\q2(a)\ = \4>n-Ua,a)\ ¿ 1/(1 - |a|2)2,        |a| < 1.

For l¿y¿« —2 we apply Lemma 4 to 4>i.i+i(z,ti) with k = 2 and s = n— j— 1. By

(8.9) and (8.19) we conclude that

|?B-,+1(a)| = Wj-J^Xa, a)\ ¿ (1_^i, + 1,      j = 1, 2,..., «-2.

Moreover, according to (8.8) and to the remark following Lemma 4,

An.j+1 ¿ («-y-l)!m(«-y-l,2) = (n-y-l)!l—J—j \n-j-l)

which completes the proof of the theorem.

We add the following remarks:

(i) (8.10) cannot be utilized to yield a bound for |<7i(z)|, since a bound for

|0n-i,„(z, a)\ may be obtained only if gn_i(z, a) is univalent in |z|<l, which is

more than we can conclude from our assumptions.

(ii) The technique of differentiating the functions </>, may also be applied in the

general case when the matrix P(z) does not take the special form (8.1). Assume now
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that (1.1) is disconjugate in |z|<l and that (3.3) holds. By differentiating (6.9)

once and setting z = a, we obtain

<l>'Jk(a,a) = -p'jk(a)pkAa)-plk(a)p'kAa)

(8.29) «,
- Z [PÂa)Pik{a)PkAa) +PiÁa)PiAa)P¡k(a)l

:=1

According to (7.1) and (7.2) we may apply Lemma 4 to pjk(z)pkAz) as well as to

<f>jk(z, a). It follows now from (8.19) that

l#*(«.«)l ̂ (T^aW3' \a\ < 1

C(l 2)
' \p'ik(a)PkAa)+Pik(a)p'kAa)\ = n^Unü'       \a\ < 1

which by (8.29) yields

2C(1,2)
(8.30) 2 [PÁa)Pik(a)PkAa) +Pu(ä)plAa)pik(a)]

(l-|a|2)3
lai < 1.

For n = 3,7=l, k = 2 (8.30) reduces to

\det [P(a)]\ è2C(l,2)l(l-\a\2)3,       \a\ < 1.

By taking the second derivative of (6.9) at the point z = a,it is possible to obtain

sums of products of 4 coefficients of the matrix P(z) (n^4), and similar results for

higher derivatives. The actual calculation is somewhat cumbersome.

We end with the following corollary for second-order equations.

Ifq2(z) is regular in \z\ < 1 and if the differential equation

(8.31) w"(z)+q2(z)w(z) = 0

¿j disfocal in \z\ < 1, then it is also disconjugate in \z\ < 1. We recall that a second-

order differential equation is called disconjugate in a domain D, if the only solution

that vanishes twice in D is the trivial one. As for the proof of the corollary, since

(8.31) is disfocal in |z| < 1, it follows from (8.16) that

|ía(z)| Ú 1/(1 -\z\2)2,        \z\ < 1

which is sufficient to guarantee the disconjugacy of (8.31) in |z| < 1 (see [4]).

We note that this result holds only if qx(z) = 0 and is not true in the general case

of second-order differential equations of the type (8.2). Considering the differential

equation

/'(z)-(m+l)v'(z) + my(z) = fj,       m > 1

London and Schwarz [3] showed that, in general, disfocality neither implies

disconjugacy nor is implied by it.

In view of the fact that disconjugacy of (8.31) is equivalent to univalence of

f(z) — wx(z)¡w2(z), where wx(z) and vf2(z) are linearly independent solutions of

(8.31), our last corollary may be stated as a univalence criterion.
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Theorem 8. Denote by D the disk \z-b\<R, 0<F<oo, and let f(z) be a

meromorphic function in D. If

(8.32) /(Zl) - 2[/'(z1)]2//"(z1) * f(z2)

for every pair of points (not necessarily distinct) z1; z2 g D, then f(z) is univalent in

D and

|{/(z),z}| ¿2/(F2-|z-Z>|2)2, zeD,

where

{/(z), z} =/"(z)//'(z)-(3/2)[/"(z)//'(z)]2

is the Schwarzian derivative.

Proof. Without loss of generality we may assume that D is the unit disk, since

this situation may be achieved by means of a transformation l(z) = (z-b)¡R,

which does not violate (8.32).

Consider now the second-order differential equation

(8.33) w"(z)+qi(z)w'(z) +q2(z)w(z) = 0.

According to (8.9) and (8.10) we have

-?1(z) = Q[f(z), g(z)],       q2(z) = 0[/(z), g(z)],

where

(8.34) f(z) = Wl(z)lw2(z),       g(z) = w[(z)lw'2(z),

and Wi(z) and w2(z) are linearly independent solutions of (8.33). If oi(z)=0, it

follows from (5.1) that

(8.35) g(z) = f(z) - 2[/'(z)]2//"(z)

and

®lf(z),g(z)] = líñz),z}.

In view of (8.35), formula (8.32) takes the form g(z^f(z2), which by (8.34) is

equivalent to the disfocality of the differential equation

(8.36) w"(z) + M/(z),z}w(z) = 0.

By Theorem 6, disfocality of (8.36) in the unit disk implies

(8.37) |{/(z),z}| ¿2/(l-|z|2)2,        |z| < 1,

which is a sufficient condition for disconjugacy of (8.36) in \z\ < 1. Since discon-

jugacy of (8.36) is equivalent to the univalence of/(z) [4], this completes the proof.
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advice offered during many discussions.
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