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In this paper we prove the following:

Main Theorem. Suppose & is a coherent analytic sheaf on a a-compact complex

space X (not necessarily reduced).

Z/dim X = n and X has no compact n-dimensional branch,

(   )n then Hn(X, &) = 0.

Z/dim X = n and X has only a finite number of compact

n-dimensional branches, then dim Hn(X, ¿F) < oo.

(A)n with the additional assumption that A' is a manifold and !F is locally free

was proved by Malgrange [12, p. 236, Problème 1]. In [9] Komatsu proved the

following related result: if Sf is a coherent analytic sheaf on an n-dimensional

complex manifold U such that Hn(U, Sf) = Q, then H\V, y)=0 for any open

subset F of U (p. 83, Theorem 7). The author in [16] proved (A)n with the additional

assumption that X is a manifold.

The paper is divided into five sections. In §1 some Lemmas about Fréchet spaces

and LF-spaces are proved. In §11 a duality concerning distributions with restricted

supports is established. In §111 by partial normalizations and results of [13] the

proof of the Main Theorem is reduced to the proof of (A)n with the additional

assumption that X is reduced and normal and F is torsion-free. In §IV we prove

by local resolutions of singularities that Hn(G, J^) = 0 for Gc ç x and also obtain

a result on the approximation of (n— l)-cocycles with coefficients in &. §V sews up

the proof of the Main Theorem.

All complex spaces here are a-compact and are in the sense of Grauert [3, p. 9,

Definition 2]. The structure sheaf of a complex space X is denoted by x<3 unless

specified otherwise. The set of all singular points of X is denoted by o(X). The

inverse image [4, p. 410, Definition 8] and the qth direct image [4, p. 413, Definition

9] of an analytic sheaf J5" under a holomorphic map / of complex spaces are

denoted respectively byf'XF) and R"f(3P). If S? is a subsheaf of F, then R°f(&)

is regarded as a subsheaf of R°f(F). A covering 11 of a complex space X is called a

Stein covering if It is countable and every member of U is a Stein open subset.

If Fis an open subset of X, then 111 Y={U e 111 £/<= Y} is called the restriction of 11
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to Y. If 33 is a refinement of a subcollection of U under some map r : S3 -> U and

& is a sheaf on A", then t induces CP(U, ¡F) -> Cp(33, J5") and we call the image in

C(», ^) of/e C(U, J^) the restriction off to 93 and denote it by/|S3. Whenever

we have a refinement S3, we assume that a fixed suitable map r is chosen once for

all. The supports of sheaves, functions, distributions, etc. are denoted by Supp.

All locally convex (linear topological) spaces are over C The dual of a locally

convex space F is denoted by F*. The boundary, interior, and closure of a subset

A of a topological space are denoted respectively by 8A, A°, and A~. Unless

specified otherwise, the boundary, the interior, and the closure are with respect to

the largest ambient topological space. Suppose B and C are subsets of a metric

space F with metric d, xe Y, and e > 0. Then

d(x, B) = infd(x, y), d(B, C) = inf d(y, C),
yeB ¡/eB

A(F) = {v g YI d(y, B) < e}, Üe(B) = {yeY\ d(y, B) ¿ e}.

A' = the set of all natural numbers.

I. Suppose F and Fare LF-spaces [8, p. 18, Definition 8(d)] and are respectively

the strict inductive limits of their closed Fréchet spaces {En}neN and {Fn}neN. Sup-

pose </>: F-^ F is a continuous linear map.

Lemma 1. IfO <dim Coker <j><co, then the transpose (p* : F* -> F* is not injective.

Proof. We first prove that <f>(E) is closed in F. Since dim Coker <p<co, F=

4>(E) © G for some finite dimensional subspace G of F. Define $: E © G -> F by

<J>(a © b) = 4>(a) + b for ae E and 6 e G. <f> is a continuous linear surjection. Since

F © G is an LF-space, <£ is open [8, p. 44, Theorem 10]. Since F © 0 is closed in

F © G and ¿" V(F © 0) = F © 0, <f>(E) = <f(E © 0) is closed in F.
Since dim Coker <f>>0, there exists ce F—<f>(E). Since F is locally convex and

<p(E) is closed, by the theorem of Hahn-Banach there exists fe F* such that

f(c)/O and/=0 on <j>(E)./is a nonzero element of Ker <f>*.    Q.E.D.

Lemma 2. If <f> is surjective, then for any k eN, there exists leN such that

<KE,)^Fk.

Proof. Suppose the lemma is not true. Fix k e N. Let Gn = Enn<f>~\Fk). Gn is

a Fréchet space. Let <pn: Gn^ Fk he induced by <j>. Since i>n(Gn) =£Fk, ipn(G„) is of

the first category in Fk [8, p. 41, Corollary 6]. UneN <l>n(Gn) = UneN <t>(Gn) = Fk is of

the first category, contradicting that every Fréchet space is of the second category.

Q.E.D.

Lemma 3. Suppose for ne N

(l)n
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15 a commutative diagram of continuous linear maps and Fréchet spaces such that

E'n and F^ are closed subspaces of E¡l + X and F}l + X respectively, l^i'^3, and (l)n is

induced from (l)n+i, neN. Suppose in the following diagram which is the direct

limit of(l)n, ne N, (j)1 is surjective:

E1-> E2-> E3

(2) <f>2 <t>3

ß1. L ß2-* F2 ——> F3

Assume that for every p e N there exists r^p such that,

iffe (E?)* and g e (F,1)* such that fa2 a) = gtf,

then for some h e (F2)* we have fa2 = h<f>2 on E$.

Let Z'n = Ker <f>'n, i=\,2,ne N. Then for every neN there exists me N such that

(a2a\Zl))-^a2(Z2).

Proof. Fix neN. There exists r^n satisfying (3)n>r. Since <px is surjective,

^1(Lm)=>Fr1 for some m^r (Lemma 2). We claim that m satisfies the requirement.

Suppose the contrary. By the theorem of Hahn-Banach there exists fe (E3)*

such that/is identically zero on (a2a1(Zm))~ and is not identically zero on a2(Z2).

Let G = E^ n (<f>1)~1(Fr) and </<: G-> F? be induced by fi1. Since <p is surjective,

tp is open [8, p. 41, Theorem 8]. fa2a1 is zero on Z^Kerip. Hence there exists

g e (F?)* such that fa2a1=g^1 on G=>E}. By (3)„,r there exists h e (F2)* such that

fix2 = h</>2 on E2. fa2(Z2) = h<f>2(Z2) = 0, contradicting that/is not identically zero

on a2(Zl).   Q.E.D.

Lemma 4. Suppose G and H are Fréchet spaces and ip:G—>H is a continuous

linear surjection. Suppose {bq}qs¡v is a sequence in H converging to b and ae G with

<¡i(a) = b. Then there exists a sequence {a„}qeiv in G converging to a such that <p(aq) — b„,

qeN.

Proof. {bq — b}qsN is a sequence in ZZ converging to zero. Suppose we can find a

sequence {c„}qeN in G converging to zero such that i/>(cq) = bq — b. Then aq = cq + a,

qeN, satisfies the requirement. So we can assume without loss of generality that

a = 0and2> = 0.

Since >/> is open, we can choose open neighborhood bases {Vq}qeN of 0 in G and-

{Wq}qsN of 0 in H such that VQ+1<=v„, Wq+X<= Wq, and 0(F,)=> Wq, qe N.

Since bq-¡»0, we can find a strictly increasing function p: N^ N such that if

qeN and k^p(q), then bke Wq. We are going to define {aq}qeN. Fix qeN. If

q<p(l), choose any q such that tf>(aq) = bq. \f q^p(\), then there is a unique re N

such that p(r)^q<p(r+l). bqe Wr. Choose aqe Vr such that ip(aq) = bq. a„->0.

Q.E.D.

II. Suppose B is a holomorphic vector bundle on an «-dimensional complex

manifold M. Let Ar¿s or simple Ar-S denote the C™ vector bundle of (r, i)-forms on
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M. B* denotes the dual of B (transition functions of B* are the inverse transpose

of those of B).

(9(B) = the sheaf of germs of holomorphic sections of B.

Sr-s(B)=the sheaf of germs of C°° sections of F <g> Ar's.

3rr-^B*)=the sheaf of germs of distribution sections of B* ® Ar,s.
Dr's(B*) = T(M, @r-s(B*)).

If A is a closed subset of M, then E'A-\B) = the Fréchet space of all global C°°

sections of B ® Xr-S whose supports are contained in A.

Suppose A={Afc}fceA' is a sequence of closed subsets of M such that Afc<=A£ + 1,

keN, and M= \Jkex Ak. Let Er's(B, A)=(Jke!tfET^k(B) denote the strict inductive

limit of {Er^(B)}ke^. Er's(B, A) is an LF-space. If in addition every Ak is compact,

then denote Er-S(B, A) by Fcr¿sct(/?). Fcrj,sct(F) is independent of the choice of A and

is the LF-space of all global C00 sections of F ® Ar,swith compact supports. It is

well known that Dn-r-n-s(B*) is canonically the dual of Fcr¿sct(F) [15, p. 18,

Proposition 4].

Let A* denote {A \ A is a closed subset of M, A n Ak is compact for k e N}.

Drs(B*, A*) denotes the vector space of all distribution sections of B* ® Ar-S

whose supports are members of A*. Suppose Fg Dn ~r-n~s(B*, A*) and (f> e Er's(B, A).

Then Supp (pCLAk for some keN. Since Ak n Supp F is compact, we can find a

C° function p on M with compact support such that p= 1 on some neighborhood

of Ak n Supp F. pep g F0r¿sot(F). Let T(p<f>) he the value of F at p<j> when Fis regarded

as an element of Dn~r-n~s(B*) = ErQ^ct(B)*. <f> i-> T(p<p) defines a continuous linear

functional on Er-S(B, A), independent of the choices of k and p.

Proposition 1. Dn-r-n~s(B*, A*) is the dual of Er-S(B, A).

Proof. We have seen that every element of Dn~r,n~s(B*, A*) defines a continuous

linear functional on Fr,s(F, A). Since Fcr¿sct(F, A)^Er-s(B, A), if an element of

Dn~un's(B*, A*) defines the zero functional on Er,s(B, A), then it must be

zero.

Conversely, suppose F is a continuous linear functional on Er,s(B, A). Since

Dn-r-n~%B*) is the dual of Fcr¿sct(F), there exists Te Dn-r-n's(B*) such that F

defines the continuous linear functional F|Fcpsct(F). Let A = Supp F. We claim that

A e A*. If A n Ak is noncompact for some keN, then there exists a closed discrete

sequence of distinct points .{xq}qeN<= A n Ak. For every qe N take an open neigh-

borhood A °f xQ in Ag + 1 such that every compact subset of M intersects only a

finite number of Uq, qe N. Since xqe A, there exists (f>q e F£¿sct(F), q g N, such that

Supp 0a<= A and F(<pq)= 1. <f>„-^0 in EUS(B, A) as q ->- co. F(<^) -> 0 as # -> co,

contradicting that F(<j>q)= 1 for all ? g A/. Hence Fg Dr-S(B*, A*). F defines a con-

tinuous linear functional on Ers(B, A). Since this functional agrees with F on the

dense subset ETcbsct(B) of Er-S(B, A), it agrees with F on Er-S(B, A).    Q.E.D.

Since F is a holomorphic vector bundle, the ¿-operator mapping C°° (/*, 5)-forms



1969] ANALYTIC SHEAF COHOMOLOGY OF DIMENSION n 81

to C°° (r,s+l)-forms induces a map 8: Sr-S(B)^S'-S + 1(B). If i: G(B) ̂  <S°-°(B)

denotes the inclusion map, then

(4) 0 —> 6(B) -U S°-°(B) —> £°'\B) —>-> S°-n(B) —> 0

is exact [15, p. 14, Proposition 2].

For any open subset U of M let 8%: V(U, 2n-r-n-s-\B*))^Y(U,@n-r-n-s(B*))

be the transpose of 8: Lcr¿sct(ZÍ|í/) -> Ecps0t1(B\U), where B\U denotes the restriction

of B to U. {<?*} induces a sheaf-homomorphism

5* . Cy¡n-r,n-s-líQ*\ _> Cfyn -r,n -s( R*")

If i: G(B* (g) A"-0) -> @n-°(B*) denotes the inclusion map, then

(5) 0 —> 0(5* ® An-°) —> @n-°(B*) —> ^^(B*) —>-> S>n-n(B*) —> 0

is exact [15, p. 14, Proposition 2]. Since E^Qct(B) is dense in Er-"(B, A) for q = s,

i+1,

8*: Dn-r-n-s-1(B*, A*)^ Dn-r'n~s(B*, A*) is the transpose of

(' 3: Er-S(B, A) -> Er-S+1(B, A),

where the first and second maps are induced by 3* : 3>n~r,n~s~X(B*) ~^3in~r^~s(B*)

and 3: Sr-S(B)^ST'S + 1(B) respectively.

III. Proposition 2. Suppose A is an analytic subvariety of codimension 2:1 in a

reduced complex space (X, &). Then there exist, uniquely up to isomorphism, a

reduced complex -pace X' and a proper nowhere degenerate holomorphic map

n: X' -> X such that

(i) n induces a biholomorphic map X' — n~\A)~ X— A,

(ii) for every open subset U of X' the following holds: iff is a weakly holomorphic

function on U and for every x e U—n~1(A)fis (strongly) holomorphic at x, then fis

a (strongly) holomorphic function on U.

Proof. Let ¡f be the sheaf of germs of weakly holomorphic functions on X

which are (strongly) holomorphic outside A. We need only prove that Of is coherent.

Then the construction and uniqueness of X' and n follows the same line as §4,

pp. 118-122 of [10].

To prove the coherence of SP, we can assume without loss of generality the

following:

(i) X is a complex subspace of an open subset G of C such that 0^(G(9\J)\X

for some coherent ideal-sheaf J2' on G and X={x e G | JX^0X}.

(ii) There is a holomorphic function u' on G such that u = u'\ X is a universal

denominator on X.

Let <9' be the sheaf of germs of weakly holomorphic functions on X. Let &~ be

the gap-sheaf of u'a0 + J with A as the exceptional subvariety [17, p. 381, Definition

10]. Let A: (P'-»-.0 be the sheaf-monomorphism defined by multiplication by u.
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£f = X-\u<9' n (F\J)\X). Since F is coherent on G [17, p. 392, Satz 9], Sf is

coherent.    Q.E.D.

Definition 1. A" is called the partial normalization of A" with respect to A.

Proposition 3. Suppose (X, 3f) is a complex space and (X, <S) is its reduction.

Suppose p e N. If HP(X, &r) = 0for every coherent analytic sheaf ' 3F on (X, <9), then

HV(X, &) = 0for every coherent analytic sheaf & on (X, 3f).

Proof. The proof of Satz 3, p. 17 of [3], with trivial modifications yields this

result.    Q.E.D.

We introduce the following statements (where J*" is a coherent analytic sheaf on

a complex space A"):

If dim X=n and X is reduced and has no compact «-dimensional

(  'n      branch, then Hn(X, 3F) = 0.

._.„      If dim X=n and X is reduced and has only a finite number of
(B)

compact «-dimensional branches, then dim Hn(X, &)<co.

,. ,t      If dim A"=« and X is reduced and normal and has no compact

«-dimensional branch, then Hn(X, !F) = 0.

#      If dim X= « and X is reduced, normal, connected, and noncompact

(   'n      and JF is torsion-free, then Hn(X, 3F) = 0.

Lemma 5. (A)* a«¿ (B)* => (A)n and (B)„.

Proof. (A)n follows from Proposition 3. To prove (B)n, suppose (A", 3?) is an

«-dimensional complex space having only a finite number of compact «-dimen-

sional branches whose union is K and suppose & is a coherent analytic sheaf on X.

Let 3f be the subsheaf of all nilpotent elements of 3?. Since K is compact, there

exists me N such that 3fm = 0 on K. Let F=Supp 3fmáF. Fis a subvariety disjoint

from K. By Satz 2, p. 275 of [13], and (A)n, Hn(X, 3fm^) = Hn(Y, 3fmS?) = 0.

The short exact sequences

o-> jrrj¡r/jrr+1Jsr^j?'/jfr+1J5'->Jír/jrr#'^o,     i ¿ r ¿ m-i,

yield exact sequences

Hn(X, 3fr3¡rl3fr+1¿r) -» Hn(X, ^r/3fr+1ßr) -> Hn(X, &\Jir,3r),

1 ¿ r ¿ «2-1.

Since ¿fr.F/jfr+1J*\ l¿r¿m-l, and 3P\3TSF can be regarded as coherent

analytic sheaves on the reduction (X, 6) of (A", 3?), by (B)* and by induction on r

we obtain dim Hn(X, ^r¡3fr^r)<ao for l¿r¿m. From the exact sequence

0 = Hn(X, 3fmjr) -*- Hn(X, &) -» Hn(X, ¿F/Jf m,F), we conclude that

dim Hn(X, &) < co. Q.E.D.

Lemma 6. (A)n _ x and (A)\ => (A)n and (B)n.
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Proof. By Lemma 5, we need only prove (A)*, and (B)*. Let F be a coherent

analytic sheaf on an n-dimensional reduced complex space (X, (9). Let B=o(X).

(i) Assume that B has no compact (n— l)-dimensional branch. Let n: F—> A'be

the normalization of X. Since n is proper and nowhere degenerate, R"n(n ~ \F))=0

for q ä 1. Hence

H"(X, R°n(n-\SF))) X Hn(Y, n-\&))

[4, p. 418, Satz 6]. There is a natural sheaf-homomorphism A: F -y R0n(n_1(F))

[4, p. 418, Satz 7(b)] inducing a sheaf-isomorphism on the restrictions to X—B.

Let Jf = KerA, Se = \mX, and j2 = CokerA. Supp 3f<=B and Suppl<=B. By

(A)B_! and Satz 2, p. 275 of [13], HP(X, l) = H"(Supp 1,1) = 0 forp = n-l, n,

and H"(X, 3f) = Hp(Supp 3f, 3f) = 0 for p=n, n+l. The short exact sequences

O-^Jf-^^-^áC-^OandO^^C^ R°n(n ~ \F)) -> J -* 0 yield

ZZn(A", J*") « Zï"^, JS?) « ZÍ-'ÍA', Z?0^1^)))-

By (A)+„ and [5, p. 245, VIII.A.19], Hn(X, F)xHn(Y, n-\F)) = 0 if X has no

compact n-dimensional branch, and Hn(X, F)xHn(Y, n~\F)) is finite-dimen-

sional if X has only a finite number of compact n-dimensional branches.

(ii) The general case. Let A be the union of all compact (n— l)-dimensional

branches of B. Let n: X' -» X he the partial normalization of A" with respect to A.

0* = R°n(x£) is precisely the sheaf of germs of all weakly holomorphic functions

on X which are (strongly) holomorphic outside A. o(X') has no compact (n— 1)-

dimensional branch, because any compact (n- l)-dimensional branch K of o(X')

is contained in n~l(A) and hence A" is normal at any point x of K that is a regular

point of o(X'), which implies that dim K^dimx o(X')^n-2 [10, p. 115, Lemma

3]. Let Ja ß he the ideal-sheaf of A and J'=n~x(J). Let <€ be the ideal-sheaf on

A" defined by <<i* = {.y e c\ | 50*«=^} for x e X. <€ is coherent and

{x e X | if* ^ f*} c /4.

Let {^(}i6/ be the set of all branches of A. Since At, i e I, is compact, the Hubert

Nullstellensatz [5, p. 97, III.A.7] implies that there exists p:I->N such that

^»c^ for xeA, and i el. Let J^tt"1^) and F" = R°nÇF'). We have a

natural map A: F -> F". It is easily verified that

(7) X(FX) 3 R"n((J')"»W)x

for xe Ai and ¡' g I.

Let./( <= 0 be the ideal-sheaf of At, i e I. <é¡=]~li£l ,/f(i) is a coherent ideal-sheaf on

X. Let 9' = ir-\9). By (7) X(Fx)^R°n(<g'F')x for jtel-a(4 Let <S" = X($F)
n RtiriV'P'). Then

Supp (R°v(9'&r')l9') e a(^).

ZZr(A", Z?°7r(^,jr')/^") = 0 for r = n-1, n. The cohomology sequence of

0 -> âT -* R°n(TF') -» R0n(T^')l^" -+ 0
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yields

(8) Hn(X, ST) « Hn(X, R°7t(^'^')).

Let 3f = Ker A. Let X: J^/Jf -> J^" be the sheaf-monomorphism induced by A and

let A^Ä-1!^"'. Let á = Coker A. Since outside A X is isomorphic and CS"=^",

Supp £><=A. Hn(X, ü) = 0. The cohomology sequence of

V

0 —> <S" —> ¿F/Jf —> J2 —> 0

yields

(9) dim Hn(X, &\3f) ¿ dim Hn(X, <$").

Since SuppJr<=/4, Hr(X, 3f) = 0 for r = «, «+1. The cohomology sequence of

0 -> 3f -> J^ -> J^/JT -^ 0 yields

(10) //"(A", iF) « //"(A", -F/Jf).

Since 7T is proper and nowhere degenerate,

(11) Hn(X, RP-nC^'^')) x Hn(X', <$'&').

From (8), (9), (10), and (11), we conclude that dim Hn(X, ^)¿dim //"(A", <3'&').

Since a(X') has no compact («— l)-dimensional branch, the result follows from

(i).   Q.E.D.

Proposition 4. (A)f, 1 ¿át¿« => (A)n and (B)n.

Proof. By Lemma 6 and by induction on «, we conclude that it suffices to prove

that (A)# => (A)t.

Suppose J5" is a coherent analytic sheaf on an «-dimensional reduced normal

complex space X having no compact «-dimensional branch. We need only prove

that Hn(X, ^) = 0. We can assume without loss of generality that A-is connected.

Let &" be the torsion-subsheaf of !F. Then &~ is coherent, !F\!7~ is torsion-free,

and dimSupp^"<« [1, pp. 14-15, Propositions 6, 7]. Hn(X,T) = 0. By (A)*

Hn(X, &\y) = 0. The cohomology sequence of 0 -> 3~ -> & -> &\$~ -> 0 yields

Hn(X,&) = 0.    Q.E.D.

IV. Lemma 7. Suppose f: X'-*■ Y is a monoidal transformation with center

Fcct(F) [l,p. 315, Definition 1], where X and Y are n-dimensional reduced complex

spaces. Suppose there is a holomorphic function u on Y vanishing identically on no

branch of Y but vanishing identically on o( Y). If, for some relatively compact open

subset Q ofYHn(f-\Q), xO) = 0, then Hn(Q, YG) = 0.

Proof. By replacing u by its sufficiently high power, we can assume without loss

of generality that u\Q is a section of the ideal-sheaf of the complex subspace D and

u is a universal denominator on Q. Let J he the ideal-sheaf of the complex subspace

f-\D) on X. Letv = uof Since dim Supp (Jk\vk xO)<n, Hn(f-\Q), Jk\vk X0) = O
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for keN. The cohomology sequence of 0 -»■ XG i-> Jk -> Jk\vk X<S -> 0, where g

is defined by multiplication by vk, yields Hn(f~ï(Q), Jk) = 0, keN. For some

keN, R«f(Jrk)\Q = 0forq^l [7, p. 317, Lemma 2].

Hn(Q, R°f(Jk)) X Hn(f-\Q),Jk) = 0.

uR°f(Jk)^Ye> on Q. Since dim Supp (Y&¡uR°f(Jk))<n,

Hn(Q, Y&luR0f(Jk)) = 0.

The cohomology sequence of

0 —> R°f(Jk) —>Y(9 —> Y&luR°f(.fk) —> 0,

where h is defined by multiplication by u, yields H"(Q, YO) = 0.    Q.E.D.

Suppose (X, (9) is a connected, reduced, normal, noncompact complex space of

dimension «ä 1. Suppose J^ is a torsion-free coherent analytic sheaf on A". Let

Z = a(X) u {x g X | J^ is not free over <PX}.

Z is a subvariety of A" [1, p. 15, Proposition 8]. Let F be the holomorphic vector

bundle on A"-Zsuch that &(B)xJ^ on X-Z. Let 0 -> & -> S?0 _^ ^ _^v • • be a

flabby sheaf resolution of J^ on A". Let J?, = Ker <pq, qe N. Let d he a metric on X

defining the topology of X.

We introduce the following notation: if G is an open subset of A", then O(G)

= {A | ,4 is a closed subset of G and A n Z= 0} and *F(G) = {.4 | A is a closed subset

of G and ¿L4, Z) > 0}. 0(G) and Y(G) are (paracompactifying) families of supports

for G-Z [13, p. 273, Definition 1].

Lemma 8. For every xe X there exists an open neighborhood U of x in X such

that for every open subset W of U Hn(W, 3P) = 0.

Proof. Fix x e X. By Main Theorem F, p. 151 of [6], there exist an open neigh-

borhood F of x in A" and a finite succession of monoidal transformations/: Vi+1

-> V, with centers Dt for 0¿¡'</- and V0=V such that ACct(Fí) and v(Vr) = 0.

Let ¡(5 be the structure sheaf of Vt, 0¿/¿r. 0G = C). Choose two Stein open neigh-

borhoods A F' of x such that t/c <= £/'<= Fand on £/ we have a sheaf-epimorphism

g: &" -> &. Since A is Stein, we can find a holomorphic function u on A which

vanishes identically on ct([/') but does not vanish identically on any branch of U'.

We claim that U satisfies the requirement. Take an open subset W of U. Let

Wi = (f0o- ■ of^J-^W) for 1 ¿/¿r and let W0= W. Then Hn(W„ r&) = 0 ([12,

p. 236, Problème 1]; or [16, Theorem]). By Lemma 7 and backward induction on /',

wehave//n(IFi,i(9) = 0, 0¿/¿r. Hence Hn(W,0") = 0. Let 3f = Kerg. Hn + 1(W,3f)

= 0. The cohomology sequence ofO->Jf-^0p-*-.F-»O yields Hn(W, <F) = 0.

Q.E.D.

Proposition 5. If G is a relatively compact open subset of X, then there exists

a relatively compact open neighborhood G of G~ in X such that for any open
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neighborhood D of G in G the restriction map Hn(G, F) -*■ Hn(D, F) is surjective.

Consequently dim Hn(G, F) < oo.

Proof. Let 11 = {Í7Í}Í"=1 be a finite Stein covering of some neighborhood of G"

such that (i) U~, lèiUm, is compact, and (ii) for any open subset W of t/„

l^i'^w, H\W, F) = 0. We claim that G=U!"=i Ut satisfies the requirement.

Let D be an open neighborhood of G in G. Define inductively D0 = D and

A= U¡ U Z)¡-i> 1 = ' = m- The following portions of Mayor-Vietoris sequences are

exact :

ZZn(A, F) -> Hn(Uh F) © ZZ"(A-i, &) -> Hn(Ut n A-i, ^),

l^i'^w [2, p. 236, §17(a)]. Hn(Ux n A-i, &) = 0 implies that Hn(Dt,F)-+

ZZn(A-i, ^) is surjective, l^i^w. The surjectivity of Hn(G, &) ->■ Hn(D, F)

follows from G = Dm. In particular, Hn(G, SF) -» Hn(G, F) is surjective.

dim Hn(G, F) < oo

(cf. proof of Theorem 11, p. 239 of [2]).   Q.E.D.

Lemma 9. dim Z^n — 2.

Proof. Suppose dim Zän — 1. Since o(X)^n — 2, we can take a connected Stein

open subset W of X—a(X) such that dim (Wn Z)^n— 1. Take a holomorphic

function/^0 on IF vanishing on W <~\Z. Since J5" is torsion-free, fx is not a zero-

divisor for J^ for x e W. V={xe W\ homological codimension of (Fr\fiF)x is

Sn — 2} is a subvariety of dimension ^n —2 in IF [14, p. 81, Satz 5]. There exists

xeZ n IF— F. J^ is free over Gx, contradicting xeZ.    Q.E.D.

Proposition 6. If G is a relatively compact open subset of X, then

dim ZZ^(G)(G-Z, J5") < oo.

Proof. By Proposition 5 there exists a relatively compact open neighborhood G

of G- in A" such that Hn(G, áF) -> Hn(D, ¡F) is surjective for any open neighbor-

hood D of G in G. Since dim Z^n —2 (Lemma 9),

Hn(G, J5") X HlalG-Z, -F)   and    Hn(D, &) « Hl(m(D-Z, F)

[13, p. 273, Satz 3]. Hence

the restriction map H%iGl(G -Z, &)■-> ZZ5(D)(Z) - Z, J27)

is surjective for any open neighborhood D of G in G.

dim ZZ£(G)(G-Z, J^) = dim ZZn(G", .F) <oo (Proposition 5). H$(G)(G-Z,^) is

generated by the cohomology classes defined by a finite number of elements

tx,...,tke rt(G)(G"-Z, &n). Let5i = í¡|G-Z, 1 ̂ i^.ThenSuppSiCG- nSuppí¡,

l^i^k. Since G" n Supp í¡ is compact and disjoint from Z, d(Supp s¡,Z)>0,

l^¡i¿k. sxZ .., sk e rT(G)(G—Z, £Pn). We claim that the cohomology classes

defined by sx,..., sk generate H$ia)(G-Z, F).
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Take u e FT(G)(G-Z, &n). Let 8 = ¿(Supp u, Z)>0. Let D = G u (A(Z) n (7).

Define Se T(D—Z, £Pn) by setting w=w on G—Z and m=0 on UÔ(Z) n G—Z.

Since Supp w g O(Z)), by (12) there exist ¿5 e r4(D)(/)—Z, Sr\_¿) and ch . .., ck e C

such that ü—<pn-i(v) = 2f= i Ci(tx\D-Z). Let v = v\G-Z. Thenh - <x>„ _¿v) = 2?«i CjS(-

Let /i=Supp t>. To complete the proof, we need only show that d(A,Z)>0. Let

,4 = Supp ¡3. Ä= An D for some closed subset Â of A". Take 0<^<8. Suppose

d(A, Z) = 0. Then d(A n ZJn(Z), Z)=0.

Än VIZ) nG~ = An Dn Ü„(Z) nG~ = An Ün(Z) n G~,

because Ü„(Z) n G~czij6(Z) nG^D. An Ün(Z) n G~ is therefore compact.

AnZ=0 impliesd(Än Ü„(Z) n G-,Z)>O.SinceA n Üv(Z)c:Än Uv(Z)nG-,

d(A n U„(Z),Z)>0. Contradiction. Q.E.D.

Lemma 10. If G is a nonempty relatively compact open subset ofX, then G — Ullk(Z)

is noncompact for some keN.

Proof. Suppose G—Ullk(Z) is compact for all keN. We claim that 8G<=Z.

Suppose x e 8G-Z. Then d(x, Z)>l\k for some keN. xe 8(G- U1/k(Z)). Being

compact, G-U1/k(Z) is closed. xeG—Ullk(Z)^G = G°, contradicting xedG.

Hence 8G^Z. G~^GuZ. G-Z=G~Z. Therefore G-Z is both open and

closed in A"-Z. Since G-Z+ 0 and X-Z is connected, G-Z= X-Z. (G-Z)~

= (X—Z)~ = X is compact, contradicting that X is noncompact.    Q.E.D.

Proposition 1. If G is a relatively compact open subset of X, then

A?(G)(G-Z,^) = 0.

Proof. We can assume without loss of generality that G is connected and non-

empty. Let M=G-Z and F=B\M. Let Ak = {G- Ullk(Z) \ k e A'} and A={Ak}keN.

Then

Er-S(B, A) = rV(G)(M, £>-%B)).

By (4) A?(«(Af, -F) is isomorphic to the cokernel of 8: E°-n-\B, A) -> E°-n(B, A).

Suppose H^G)(M,^)^0. Then by Proposition 6 and Lemma 1 d*: Dn-°(B*, A*)

-> Dnl(B*, A*) is not injective. There exists/G Dn-°(B*, A*) such that 8*f=0 and

Supp f± 0. By (5)/g Y(M, G(B <g) A^0)). Since/is a holomorphic section of the

holomorphic vector bundle B ® A^° and M is connected, Supp/=M. Hence

Me A*, contradicting Lemma 10.    Q.E.D.

Proposition 8. If G is a relatively compact open subset of X, then

Hn(G, SF) = 0.

Proof. By Proposition 5 there exists a relatively compact open neighborhood G

of G" in A" such that Hn(G, 3F) -> Hn(G, &) is surjective. Take 5gT(G, &n).

There exist a g T(G, SPn_¿ and teT(G, &n) such that i|G = 5-</>n_1(a). Since

m^(G-Z,^r)KHn(G,^r), there exist beY(G,£^n.1) and u e Y^G)(G-Z, &n)
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= r,*(G)((j» JfJ such that t — <pn-.x(b) = u on G. Let t' = w|G—Z. Then ¿/(Supp v, Z)

^d(G~ n Supp u,Z)>0. p é rï(C)(6-Z, â',). By Proposition 7 there exists

c e rY(G)(G—Z, •F„-x) = Y1!m(G, ¿Fn-X) such that ^n_!(c) = D on G—Z.

s = <pn.x(a + (b\G) + c). Q.E.D.

Definition 2. If ,4 is a subset of A" and X—A=(\Jle¡ B¡) u (UJe/ Q) is the

decomposition into topological components, where Bf, i el, is compact, and

Cj~, j ej, is noncompact, then A u (\Jie, Z?¡), denoted by Envx (A), is called the

envelope of .4.

Lemma 11. Suppose K and L are compact subsets of X and Y is an open subset of

X such that K<^ Y^L, and Envx (K) = K. If e>0, then there exist 0<8<e and a

compact subset K in Y containing K such that, if s is a global holomorphic section of

a holomorphic vector bundle on X—K—UJZ) and s is identically zero on X—L

— UÓ(Z), then s is identically zero on Y—K— Ue(Z).

Proof. Let Z? be a compact neighborhood of K in Y. Let X— K= {jie! Z?t be the

decomposition into topological components. B¡^L, i el. J={iel\ Z?t n 8L^= 0}

is finite, because 8L is compact, 8L<^\JieIBu and BiC\Bj=0 for i-£j. For

iel—J, BinL=0, because BKC\8L= 0, B^L and Z?¡ is connected. Hence

L — Zv<= \JieJ B¡. Take x¡ e Bt-L — Z, ieJ. For i'eZ and ?7>0, Ait„={x e S¡—Z | x

can be joined to x¡ by a path y in B¡ — Z such that d(y, Z)>t¡} is an open con-

nected subset of B¡—Z. Z?¡—Z=(Ju>o Ai¡v for i'eZ. Ai¡(<= Ai¡vfor ieJ and 0<7¡<$.

Since Bi n(L — K°— Ue(Z)) is a compact subset of B¡ — Z for ieJ and / is finite,

there exists 0<S<£ such that d(xhZ)>8 and B¡ n (L-K°- Ue(Z))<=Ai¡ó for

i e J. We claim that Z? and 8 satisfy the requirement. Suppose í is a global holo-

morphic section of a holomorphic vector bundle on X—K— UÔ(Z) and s is identi-

cally zero on X—L—Ub(Z). Since for ieJ Au6 is a connected open subset of

X—K—U6(Z) and xieAiiôn(X—L—U6(Z))^0, s is identically zero on Ait6.

The result follows from

Y-K- Ue(Z) c= L-K- UE(Z) c (j Bi n (L-£°- US(Z)) c IJ ¿M.    Q.E.D.
is/ ieJ

Lemma 12. Suppose A is a subset of X—Z such that A— Uxlk(Z) is compact for

k e N. Then A is a closed subset of X—Z.

Proof. Suppose {xq}qeN<^A is a sequence approaching xeX—Z as a limit.

Since K={x) U (\JqsN{xq}) is a compact subset of X—Z, d(K, Z)> \jk for some

keN. {xq}qeN<^A-UXik(Z). xeA-Uxlk<=A, because A-Uxlk(Z) is compact.

Q.E.D.

Proposition 9. Suppose A"¡, 1 ̂ ¡^3, are o/?en subsets of Xsuch that A"3CC A"2

<=A"1<=<=A" erne/ Envx (A,3_)<= A"2. Suppose e>0. Then there exists S>0 satisfying
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the following: if a e T(X2-Z, ê0-n-\B)) such that 8a = 0 and ¿(Supp a, Z)^e, then

there exists a sequence {ak}keN<^Y(X1—Z, S0,n'1(B)) such that 8ak = 0 and

¿(Supp ak, Z) ä S

for keNandak\X3-Z-^a\X3-Z in Y(X3-Z, S^-^B)).

Proof. For p e N and 1 ¿ / ¿ 3, let E¡,= the Fréchet space

{b e Y(Xt-Z, S°-n-\B)) | ¿(Supp b, Z) ^ l/p}

and F¿ = the Fréchet space {b e Y(XX-Z, <f°-n(F)) | ¿(Supp b,Z)^ l¡p}. Let

4>v: E'p -> FÍ be induced by 8. Then we have (l)p for p e N, where ap, ßp, i= 1, 2,

are the restriction maps. We obtain (2) as the direct limit of (l)p, p e N. By

Proposition 7 and Lemma 3, we need only prove that, for every pe N, there exists

r^p such that (3)„,r holds.

Fix p e N. Set K=Envx(X3~), L = X{, Y=X2, and e=l/4p. K is compact (cf.

Lemma 1, p. 333 of [11]). We can find a compact subset F of F containing K and

0<S<£ satisfying the requirement of Lemma 11. Choose l/8<reN. We claim

that (3)p>r holds.

Suppose fe (Fr3)* and g e (F,1)* such that

(13) faWr  = gtf.

fand g can be extended respectively to/G(F3)* and ge(F1)*. By Proposition 1

/and g are represented respectively by

feY(X3-Z, 9n-\B*))   and   g e Y(X1-Z, 3)n-°(B*))

such that Supp/— UV(Z) and Supp g— UV(Z) are compact for -q > 0. By Lemma 12,

Supp/and Supp g are closed subsets of X—Z.f and g can respectively be extended

trivially to /' g r(A--Z, Si^B*)) and g' e Y(X-Z, @n-°(B*)) such that Supp/'

= Supp/and Supp g' = Supp g. (13) and (6) imply that 8~*g' =/' on A\ —Z— Ullr(Z).

Hence 8*g'=f on A"-Z-A,r(Z). Since Supp/'^Fand Supp g'^L, by (5) g' is

a holomorphic section of the holomorphic vector bundle B* ® Xx-°z on X—K

— U6(Z) and is identically zero on X—L—UÓ(Z). Hence g' is identically zero on

Y-K- US(Z) = X2-Envx (X3)- U1/ip(Z). Let p be a C°° function on X2-Z such

that p = 0 on UV3p(Z) and p=l on X— Ull2p(Z). Let

g" = p(g'\X2-Z) e Y(X2-Z, 3*-\B*)).

Suppg"<=:Envx (A"3~) — A/3p(Z). Hence Suppg" is compact. By Proposition 1 g"

defines h~ e (F2)*. Let h=h\F2. Since 8*g" = d*g'=f on X2-Ull2p(Z), fix2=h<p2

on E2.   Q.E.D.

Proposition 10. Assume «^2. Suppose A"¡, i = l,2, are o/>e« subsets of X such

that X^ <^ X2<= <= X. Let Vibe a Stein covering of X2. Then for anyfe Zn'\\X, J5"),

there exists ge Cn~2(U,¿F) such that, for some -q>0 the restriction off+8g to

Vt\X1 n UV(Z) is zero.



90 YUM-TONG SIU [September

Proof. Since HliX\iX2-Z, &) -* Hn~\X2, &) is surjective, [13, p. 278, Satz 3],

there exists se Y9(X2)(X2, 2£n-x) defining the same cohomology class as/ Since

Ar1c<=A'2, d(Xx n Supp s,Z) = 7) >0. Consider the following commutative

diagram :

0 0

Í
o -    -> r(a-2, s® ̂  F(x2, f>x) ÍU

0 —► C°(U, 3F) -A* C°(U, ̂ o) "^ C°(U, Sr\) Aj

Í8 A
8 8

^0     „,„,    ~,,  4>\
o —> chu, •*") ■—► cx(u, ̂ o) -^ chu, ^i) ■

!8      Is      Is

All rows except the first and all columns except the first are exact. Since Supp s n Xx

n Un(Z)=0, we can choose by diagram-chasing sJ=C(U, 5Q for 0^i',y^n-l,

i+7 = n —1, n-2, and heZn~iQX,^r) such that (i) ii_!=/xi, sij + 1=<pjsij and

jj+1 = 8ij for Oái'^n —2 and i+j=n — 2, and í3_1 = An, (ii) the restrictions of s)

(0^i,j^n—l,i+j=n-l,n — 2) and n to 11^ n i7„(Z) are zero. By diagram-

chasing, we can find g e Cn_1(U, !F) such that h—f=8g.    Q.E.D.

Proposition 11. Suppose Xx <= X2 are open subsets of X. Suppose 112 is a Stein

covering of X2 such that UX = U2\XX covers Xx. Suppose p e N and a eZp(ll!, ¡F).

Let SS2 be a Stein refinement ofll2 such that 9S1 = SS2| Xx covers Xx and refines Ux.

In the following commutative diagram C*( ,F) = @qeNC~1( ,1F) and px, p2, a,

and ß denote the restriction maps :

C*(U2, &) -^> C*(»a, &)

Í- lß
C*(UX,^)-^C*(^X,^).

If ß(K) ~> Pí(a) in ZP(^S3X,3F) for some {bq}qsN^Zp(^2,^), then a(aq)^a in

Zp(Ku ?)for some {aq}qEN<=Zp(U2, F).

Proof. Since <f>: C"1^, F) ©ZP(VLX, 3F)->ZP(W>X, F) defined by <f>(u@v)

= 8u + px(v) is surjective, by Lemma 4 there exist cq e CP~1('H$X, !F) and

dqeZp(\\x,&),       qeN,

such that

(14) °~cq + Pxdq = ßbq,
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and cq -> 0 and dq -»- a. Since H*(U2, ^)xH"(fß2, &), there exist eq e C1"1^, J5")

and/, g ZP(U2, J*"), q e N, such that

(15) 8eq + p2fq = bq.

From (14) and (15) we have p1(dq-afq) = 8(ßeq-cq) q e N. Since //"(U^J^)

»//"(»!, ^), for some ^eC" 1(tt1, J5"), ¿„-«/, = 8gg, q e N. gq can be extended

trivially to gqeCp-\VL2,&) such that «|,=g„ ?eiV. dq=a(fq + 8gq), qeN. Set

aq=fq + 8gq, qeN. Then a, gZ'(U2, S^),qeN and a(a,) -► a.    Q.E.D.

Proposition 12. Assume «^2. Suppose Xu X2, and X3 are open subsets of X

such that I^c^cjjccj and Envx (Af )c A^. Suppose 11 fa a Sie/« covering

of X3 whose restrictions to X2 and Xx cover X'2 and X1 respectively. Let

a: Zn-1(\X, ^r)^Zn-1(U\X1, &)

and

ß:Zn-1(U\X2\,&r)-+Zn-1(U\X1,ßr)

be the restriction maps. Then Im ß^(lm a)'.

Proof. Let X2 he a relatively compact open neighborhood of Envx (Af) in X2.

Let Rk=U2-« + i(Z)-Ü2-«-i(Z), keN and R0=X-Ü1I2(Z). By Proposition 11

we can suppose without loss of generality that U|X2 covers X2, VL\XX—Z covers

Xi-Z, 1¿¡¿3,

(16) VL\X2-Z=  (J H\X2nRk,
fcao

and

(17) U| A, n Um(Z) covers X, n Z for k e N and i = 1, 3.

¥ixfeZn-1(U\X2,^r). We have to prove that there exists {/,},6Ar<=ZB-1(U,^)

such that cc(fq)-y ß(f). By Proposition 10 there exists ge Cn~2(Vi\Xi, 3F) such

that for some k e Nf+ 8g is zero when restricted to U| U2-"(Z) n X2. Suppose we

have found {fq}qsNcZn'\\\,3^) such that a(fq)->ß(f+8g). Let ge Cn-2(U,^)

he the trivial extension of g. Then a(fq—8g) -> ß(f). Hence we can assume without

loss of generality that the restriction off to U| U2-"(Z) n X2 is zero. Let Uj = U| A",

-Z, l¿/¿3. Let«=/|U2.

Suppose U2 = {A}v6;- Let {pv}ve, he a partition of unity subordinate to U2. For

p g Wand 0¿9¿« define

4>p,q: C(Ua, g°>\B)) -> C»-\U2, i°-"(B))

as follows: if s={sy.0...Vp} e CP(U2,£°-"(B)), then set (^,,(j))yo... Vp_, = 2ve/ i„

where ?v is the trivial extension of pvsVVo...Vp_, to A0 n' '-n Ap_i-

(18) S^p,9 is the identity map on ZP(U2, S0-"(B)).



92 YUM-TONG SIU [September

From (16) we conclude that

if u e CP(U2, £°-q(B)) and the restriction of u to lt2| U2-'(Z) n X2-Z

(19)   is zero for some r e N, then the restriction of (f>p,q(u) to

^■2\U2-'~1(Z) o X2—Z is zero.

Consider the following commutative diagram:

0 0

0 —> T(X2-Z, S°-°(B)) -^ Y(X2-Z, £°-\B)) -^- • •

1 H \p.

0 —* C°(ll2, 0(B)) —> C°(ll2, S°-°(B)) —► C°(ll2, S°-\B))

|S 8 8
0 —■* C^ll,, 0(*)) -^-> C^U,, é°-°(B)) -^-> CHU2, <f ̂(Z?)) ■

By induction on; we can define h)eCiQX2,S°-i(B)), O^i, j^n-l, i+j=n-l,

n-2 such that ng-1 = An, n5 = ^i+i,,«' + 1 and hii + x = 8hij for O^i'^n-2 and f+y

= n-2. It is easily verified by induction on; that h\ eZ'(ll2, <f0,;f(Ä)), O^i'J^n-1,

i+j=n— 1. Hence we can find a unique s e T(A2—Z, ^"-"^(Zi)) such that n(s) =

h°_x. 8s=0. By (18) we have

hr1 = Xh,

M+1 = Sty
(20) ; (0<ii^ n-2, i+7' = n-2).

AS-l = K*)
By (19) we have:

the restrictions of nj (0 ^ i',7 = n— 1, ¡'+7 = n— 1, n —2) to

U2|^2-k-"(Z) n Za-Zarezeroand^Suppi, Z) ^ 2-*_".

By Proposition 9 there exist l^k + n and {i(m)Ucr(A,3-Z,r',-1(fi)) such

that  &(m)=0,   í/(Suppí(m),Z)^2-¡,   meN,   and  5(w)|ATX-Z^-^|A\-Z  in

r(xx-z,é">-n-1(B)).

Let Cg(Ui( ̂ 0'5(ß)) = {aeCi'(lli, S'°-"(B))\ the restriction of a to U(\U2-<(Z)

n A¡-Z is zero}, i = l,3. Cg(U¡, é>0'Q(B)) is a Fréchet space. Since the exact

sequence

Pi si

Q(U3, S°-<>-\B)) —► Cg(ll3, ê°-"(B)) —> Cg(U3, £°-« + \B))

is the direct sum of

8 8
CP0(UX, S0-"-1^)) —> CP0(UX, £°-"(B)) —> Cp(\lx, £°-" + 1(B))
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and another exact sequence, by Lemma 4 we have the following:

if K}m6/v c C?(ll3, £°-«(B)),    a e CP0(UX, £°-"(B)), and

b e CE(UX, S0-"-^)) satisfy 8b = a, 8am = 0, meN,

and am\\Xx -> a, then there exists {bm}meN <= CP(lt3, S°-q-\B))

such that <9èm = am, meN, and ¿„111! ->è.

Let v4 = A"3— t/2-'(Z). Consider the following commutative diagram:

(22)

El-\B X3-Z)-> El-\B X3-Z) -> El-HB

I*

X3-Z)

(i) (0 í i í n-2, i'+7 = n-2)   meN,

0--> C0°(U3, 0(B))-► Cg(ll3, <?°-°(B))-> C0°(U3, ¿""(¿O)-> Cg(ll3, <?°'2CB)) —► • • •

8 8 la lo

0-► Ch(VL3, 0{B)) -^-> Cl(U3, g°-a(B)) —> C¿(U3, ¿"^(Ä)) -^-> Câ(U3, ê^(B)) -?-+■ ■ ■

I8           A I' g- i8 |8
0-► Cg(U3, (5(5))-> C?(U3, <?°'°(.B)) -^U C02(U3, ê"-\B)) -^ C02(ll3, <f°'2CB)) —»• • •

Is       Ia        Ia       !!

The composites of any two consecutive horizontal maps or any two consecutive

vertical maps are zero. All the rows except the first are exact. By (20), (21), and

(22) we can find {s(m)%eN^C<0(VL3, «?°';'(5)), 0£i,j£n-l, i+j=n-l, n-2, and

{gmUN^CZ-1^, 6(B)) such that

s(m)n-i = M™)

s(™)Ui = Mm)]

s(m))+1 = 8s(my}

i(iw)S_1 = Xgm,

and (ii) s(m))\VLx ^ h)\Ux for Oil, jSn-l, i+j=n-l, n-2. It follows that

8gm = 0, meNand gm\Vtx -+h\llx in CT^x, 0(B)). Let

», = It, u (111(72-1-^)0 A"0,   1=1,3.

By (17) SSt is a Stein refinement for U|A"¡, i=l, 3. Define {fm}meiw'=Zn-1(ïï33, F)

by setting fm=gm on U3 and /m = 0 o,n lt|i/2-i-i(Z) n A3. Then /„I*! ->/!«!.

The result follows from Proposition 11.    Q.E.D.

V. Proof of the Main Theorem. By Proposition 4 we need only prove (A)* for

ne N. The case n= 1 is well known [5, p. 270, IX.B.10]. Suppose ¡F isa torsion-

free coherent analytic sheaf on a connected, reduced, normal, noncompact complex

space A" with 2^dim X=n. We have to show that Hn(X, ^)=0.

Take a sequence of relatively compact open subsets {Am}me/v of X such that

Envx(A^)cAm+1 for me N and \Jm£N Xm = X. Take a Stein covering 11 of A"

such that llm = ll|A'm covers Xm for meNand 11 = [JmeNllm.

Take/eZ"(11, J5"). By Proposition 8 there exists gm e Cn~1(Um, 3?) such that

/|Um = Sgm, meN.
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Take a sequence of seminorms {|| • ||pm)}pew on Cn~1(VLm,^r), meN, such that

(0 ill ■ ll(pm)W defines the Fréchet space topology of C""1^,^), meN, (ii)
Ii . Il(m> < II . Il<m)     anH   II . Il(m) < I! . ||0>i + l)    n   m c IVlr ||p   = II   ||p + i ana lr ||p   S|r ||p       ,p,mei\.

We are going to construct by induction on m «m g Cn~1(VLm, !F) such that

8«m=/|Um and ||(«m+2-«m+1)|Uj|^<2-m, meN. Set hm=gm for m=l,2.

Suppose «j,..., «m are found for some m^2. Since S(«m-gm+1) = 0 on Um, by

Proposition 12 there exists s eZn~1(\lm+1, J5") such that

||(«m-^+1-^)|Um_1l|Lm--l1><2- + 1.

Set hm+1=gm+i+s. The construction is complete.  Define heCn~iQX,ßr) by

setting «|Um = limvïm «v|Um. h is well defined and 8«=/   Q.E.D.
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