ANALYTIC SHEAF COHOMOLOGY GROUPS OF
DIMENSION #n OF n-DIMENSIONAL COMPLEX SPACES

BY
YUM-TONG SIU(Y)

In this paper we prove the following:

MAIN THEOREM. Suppose & is a coherent analytic sheaf on a o-compact complex
space X (not necessarily reduced).

A If dim X = n and X has no compact n-dimensional branch,
(A then HY(X, #) = 0.

If dim X = n and X has only a finite number of compact
n-dimensional branches, then dim H™(X, #) < oo.

(B)n

(A), with the additional assumption that X is a manifold and & is locally free
was proved by Malgrange [12, p. 236, Probléme 1]. In [9] Komatsu proved the
following related result: if & is a coherent analytic sheaf on an r-dimensional
complex manifold U such that H*(U, ¥)=0, then H"(V, ¥)=0 for any open
subset ¥ of U (p. 83, Theorem 7). The author in [16] proved (A), with the additional
assumption that X is a manifold.

The paper is divided into five sections. In §I some Lemmas about Fréchet spaces
and LF-spaces are proved. In §II a duality concerning distributions with restricted
supports is established. In §III by partial normalizations and results of [13] the
proof of the Main Theorem is reduced to the proof of (A), with the additional
assumption that X is reduced and normal and % is torsion-free. In §IV we prove
by local resolutions of singularities that H"(G, #)=0 for G< < X and also obtain
a result on the approximation of (n— 1)-cocycles with coefficients in #. §V sews up
the proof of the Main Theorem.

All complex spaces here are o-compact and are in the sense of Grauert [3, p. 9,
Definition 2]. The structure sheaf of a complex space X is denoted by x@ unless
specified otherwise. The set of all singular points of X is denoted by o(X). The
inverse image [4, p. 410, Definition 8] and the gth direct image [4, p. 413, Definition
9] of an analytic sheaf # under a holomorphic map f of complex spaces are
denoted respectively by f~}(#) and RY(F). If ¢ is a subsheaf of # then R%f(¥)
is regarded as a subsheaf of R%(&). A covering U1 of a complex space X is called a
Stein covering if U is countable and every member of U is a Stein open subset.
If Y is an open subset of X, then 1| Y={U € U|U< Y} is called the restriction of U
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to Y. If B is a refinement of a subcollection of U under some map =: 8 — U and
Z is a sheaf on X, then 7 induces C?(11, ) — C?(B, F) and we call the image in
C?(B, ¥) of fe C?(11, F) the restriction of fto B and denote it by f|B. Whenever
we have a refinement B, we assume that a fixed suitable map = is chosen once for
all. The supports of sheaves, functions, distributions, etc. are denoted by Supp.
All locally convex (linear topological) spaces are over C. The dual of a locally
convex space E is denoted by E*. The boundary, interior, and closure of a subset
A of a topological space are denoted respectively by 04, A°, and 4~. Unless
specified otherwise, the boundary, the interior, and the closure are with respect to
the largest ambient topological space. Suppose B and C are subsets of a metric
space Y with metric d, x € Y, and £>0. Then

d(x, B) = ing d(x, ), dB,C) = inlt; d(y, C),
Ua(B) = {yE Yl d(y’ B) < s}, Ue(B) = {yE YI d(ys B) = s}.

N = the set of all natural numbers.

I. Suppose E and F are LF-spaces [8, p. 18, Definition 8(d)] and are respectively
the strict inductive limits of their closed Fréchet spaces {E,},.n and {F,},cn. Sup-
pose ¢: E— Fis a continuous linear map.

LeEMMA 1. If0<dim Coker ¢ < oo, then the transpose ¢*: F* — E* is not injective.

Proof. We first prove that #(E) is closed in F. Since dim Coker ¢ <co, F=
#(E) @ G for some finite dimensional subspace G of F. Define ¢: E @ G — F by
#a @ b)=¢(a)+b for ac E and be G. ¢ is a continuous linear surjection. Since
E @ G is an LF-space, ¢ is open [8, p. 44, Theorem 10]. Since E @ 0 is closed in
E®Gand "' $EQO)=E DO, $(E)=4(E @ 0) is closed in F.

Since dim Coker ¢ >0, there exists ¢ € F—¢(F). Since F is locally convex and
#(E) is closed, by the theorem of Hahn-Banach there exists fe F* such that
f(c)#0 and f=0 on ¢(E). fis a nonzero element of Ker ¢*. Q.E.D.

LeMMA 2. If ¢ is surjective, then for any k € N, there exists 1€ N such that
H(E)> Fy.

Proof. Suppose the lemma is not true. Fix k € N. Let G,=E, N ¢~ (F,). G, is
a Fréchet space. Let ¢,.: G, — F be induced by ¢. Since ¢,(G,) # Fy, $,(G,) is of
the first category in F; [8, p. 41, Corollary 6]. U,en ¥2(Go) =Unen $(G,)=Fy is of

the first category, contradicting that every Fréchet space is of the second category.
Q.E.D.

LemMa 3. Suppose for ne N

1 2
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is a commutative diagram of continuous linear maps and Fréchet spaces such that
E: and F{ are closed subspaces of E},, and F} ., respectively, 1<i<3, and (1), is
induced from (1),.1, n€ N. Suppose in the following diagram which is the direct
limit of (1), n € N, ¢ is surjective:

ol o?
E!'——> F? —— E®

) ﬂ lﬂ 2 ﬂ

Fl > F2 > F3
Assume that for every p € N there exists r 2 p such that,

3 if fe (ER)* and g € (F})* such that fo?o} = gét,
s then for some h € (F2)* we have fo? = hé2 on E2.

Let Zi=Ker ¢}, i=1,2,ne N. Then for every n€ N there exists m € N such that
(e®aX(Z3)) ™ 2 aX(ZD).

Proof. Fix ne N. There exists rzn satisfying (3),,. Since ¢' is surjective,
S (Ex)> F} for some mZr (Lemma 2). We claim that m satisfies the requirement.

Suppose the contrary. By the theorem of Hahn-Banach there exists fe (E3)*
such that fis identically zero on («?«¢'(Z}))~ and is not identically zero on «?(Z2).
Let G=E; N (¢')"(F}) and ¢: G — F} be induced by #!. Since ¢ is surjective,
¢ is open [8, p. 41, Theorem 8]. fo2e! is zero on Z%>Ker . Hence there exists
g € (F1)* such that fo%a!=g¢! on G E}. By (3),,, there exists & € (F2)* such that
fe?=h¢? on E2. fo?(Z2)=h¢*(Z2)=0, contradicting that f is not identically zero
on o*(Z?). Q.E.D.

LeEMMA 4. Suppose G and H are Fréchet spaces and §: G — H is a continuous
linear surjection. Suppose {bg}.en is a sequence in H converging to b and a € G with
Y(a)=>b. Then there exists a sequence {a,},cn in G converging to a such that y(a;)=b,,
qgeN.

Proof. {b,—b},.n is a sequence in H converging to zero. Suppose we can find a
sequence {c.}env in G converging to zero such that ¢)(c,)=b,—b. Then a,=c,+a,
g € N, satisfies the requirement. So we can assume without loss of generality that
a=0 and =0.

Since ¢ is open, we can choose open neighborhood bases {V},n of 0 in G and:
{Waeen of 0 in H such that V< V,, W,,,<W,, and (V)2 W, qe N.

Since b, — 0, we can find a strictly increasing function p: N — N such that if
g€ N and k=p(q), then b,e W,. We are going to define {a,},cn. Fix ge N. If
g <p(1), choose any g such that y(a,)=b,. If = p(1), then there is a unique re N
such that p(r)<g<p(r+1). b, e W,. Choose a, € V, such that y(a,)=b,. a,— 0.
Q.E.D.

II.  Suppose B is a holomorphic vector bundle on an n-dimensional complex
manifold M. Let A or simple A™* denote the C* vector bundle of (r, s)-forms on
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M. B* denotes the dual of B (transition functions of B* are the inverse transpose
of those of B).

O(B)=the sheaf of germs of holomorphic sections of B.

&7%(B)=the sheaf of germs of C*® sections of B ® A",

92m5(B*)=the sheaf of germs of distribution sections of B* @ A™*,

Ds(B*)=T'(M, 975(B*)).

If A is a closed subset of M, then Ej°(B)=the Fréchet space of all global C®
sections of B ® A™* whose supports are contained in A.

Suppose A={A,},en is a sequence of closed subsets of M such that A,<Ag,
ke N, and M=), Ay Let E5(B, A)=Uyen ELJ(B) denote the strict inductive
limit of {Ex (B)}ken. E(B, A) is an LF-space. If in addition every A, is compact,
then denote E™5(B, A) by EL5(B). EL(B) is independent of the choice of A and
is the LF-space of all global C* sections of B ® A™* with compact supports. It is
well known that D"~""~5(B¥*) is canonically the dual of E(:i.(B) [15, p. 18,
Proposition 4].

Let A* denote {4 | 4 is a closed subset of M, 4 N A, is compact for k € N}.
Drs(B*, A¥) denotes the vector space of all distribution sections of B* @ A™*
whose supports are members of A*. Suppose T D*~""~$(B* A*)and ¢ € E"5(B, A).
Then Supp ¢<= A, for some k € V. Since A, N Supp T is compact, we can find a
C* function p on M with compact support such that p=1 on some neighborhood
of A, N Supp T. pp € E5S(B). Let T(pd) be the value of T at p¢ when T'is regarded
as an element of D"~ ""~5(B*)=EL%.(B)*. ¢ — T(ps) defines a continuous linear
functional on E™%(B, A), independent of the choices of k£ and p.

PROPOSITION 1. D"~""=S(B* A*) is the dual of E"5(B, A).

Proof. We have seen that every element of D"~""~5(B*, A*)defines a continuous
linear functional on E™(B, A). Since E&i.(B, A)=E™%(B, A), if an element of
Dr-rn=s(B* A*) defines the zero functional on E™%(B, A), then it must be
zero.

Conversely, suppose F is a continuous linear functional on E™$(B, A). Since
Dr-mn=s(B*) is the dual of EZi.(B), there exists Te D"~""~5(B*) such that T
defines the continuous linear functional F|Eg;:(B). Let A=Supp T. We claim that
A e A* If A n A, is noncompact for some k € N, then there exists a closed discrete
sequence of distinct points {x.},.»=A4 N A,. For every g € N take an open neigh-
borhood U, of x, in A§,, such that every compact subset of M intersects only a
finite number of U,, q € N. Since x, € 4, there exists ¢, € E;(B), g € N, such that
Supp ¢,< U, and F(¢,)=1. ¢,—0 in E™(B, A) as ¢ - 0. F(¢,) >0 as g — oo,
contradicting that F(¢,)=1 for all g € N. Hence T'e D™5(B*, A*). T defines a con-
tinuous linear functional on E™(B, A). Since this functional agrees with F on the
dense subset E}S.(B) of E™(B, A), it agrees with F on E™(B, A). Q.E.D.

Since B is a holomorphic vector bundle, the -operator mapping C® (r, s)-forms
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to C* (r, s+ 1)-forms induces a map d: §"%(B) — &™***(B). If i: O(B) — &°°(B)
denotes the inclusion map, then

) 0 —> 0(B) —> £9:9(B) %> £91(B) 2,2, &9"(B) —> 0

is exact [15, p. 14, Proposition 2].

For any open subset U of M let 3%: T(U, 2" ~""~5-1(B*)) — ['(U, 2"~ ""~3(B*))
be the transpose of 9: E55(B|U) — ELStY(B|U), where B|U denotes the restriction
of B to U. {33} induces a sheaf-homomorphism

g*: @n—r,n—s—l(B*) ___)@n—r.n—s(B*).
If i: O(B* ® A™%) — 2™°(B*) denotes the inclusion map, then

; o* o* o*
(5) 0—> O(B* ® A»°) ; D™O(B*) —> DVY(B¥) —> - - .—> D (B¥) —> 0
is exact [15, p. 14, Proposition 2]. Since E}%.(B) is dense in E™%(B, A) for g=s,
s+1,
6 0*: Dr-nmsT1(B* ) A¥) — DroTnoS(B*) A*) is the transpose of
©) 0: E™(B, A) — E"+(B, A),

where the first and second maps are induced by 0*: Q""" =5~ 1(B*) — Qr-Tn-5(B*)
and d: £75(B) — &5+ 1(B) respectively.

III. PROPOSITION 2. Suppose A is an analytic subvariety of codimension 21 ina
reduced complex space (X, 0). Then there exist, uniquely up to isomorphism, a
reduced complex space X' and a proper nowhere degenerate holomorphic map
m: X' — X such that

(i) = induces a biholomorphic map X' —n~Y(A)x X— A4,

(ii) for every open subset U of X' the following holds: if f is a weakly holomorphic
function on U and for every x € U—=m~(A) f is (strongly) holomorphic at x, then f is
a (strongly) holomorphic function on U.

Proof. Let ¥ be the sheaf of germs of weakly holomorphic functions on X
which are (strongly) holomorphic outside 4. We need only prove that # is coherent.
Then the construction and uniqueness of X' and = follows the same line as §4,
pp. 118-122 of [10].

To prove the coherence of %, we can assume without loss of generality the
following:

(i) X is a complex subspace of an open subset G of C" such that 0= (c0/#)| X
for some coherent ideal-sheaf .# on G and X={xe G | £,#0,}.

(ii) There is a holomorphic function #’ on G such that u=u'| X is a universal
denominator on X.

Let @' be the sheaf of germs of weakly holomorphic functions on X. Let  be
the gap-sheaf of uc0 +.# with A as the exceptional subvariety [17, p. 381, Definition
10]. Let A: @' — 0 be the sheaf-monomorphism defined by multiplication by w.
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&L =x"Yu0' N (J|F)|X). Since I is coherent on G [17, p. 392, Satz 9], & is
coherent. Q.E.D.
DEFINITION 1. X' is called the partial normalization of X with respect to A.

PROPOSITION 3. Suppose (X, ) is a complex space and (X, 0) is its reduction.
Suppose p € N. If H?(X, #)=0 for every coherent analytic sheaf # on (X, 0), then
H?(X, 9)=0 for every coherent analytic sheaf % on (X, ).

Proof. The proof of Satz 3, p. 17 of [3], with trivial modifications yields this
result. Q.E.D.

We introduce the following statements (where # is a coherent analytic sheaf on
a complex space X):
(A)* If dim X=n and X is reduced and has no compact n-dimensional

" branch, then H™(X, #)=0.
If dim X=n and X is reduced and has only a finite number of

(B)F compact n-dimensional branches, then dim H*(X, #)<oo.

(AL If dim X=n and X is reduced and normal and has no compact
" n-dimensional branch, then H"(X, #)=0.

(A If dim X=nand Xis reduced, normal, connected, and noncompact

and & is torsion-free, then H"(X, #)=0.
LemMMA 5. (A)F and (B)¥ = (A), and (B),.

Proof. (A), follows from Proposition 3. To prove (B),, suppose (X, 5#) is an
n-dimensional complex space having only a finite number of compact n-dimen-
sional branches whose union is K and suppose % is a coherent analytic sheaf on X.
Let £ be the subsheaf of all nilpotent elements of 5. Since K is compact, there
exists m € N such that #™=0 on K. Let Y=Supp X ™#. Y is a subvariety disjoint
from K. By Satz 2, p. 275 of [13], and (A),, H™(X, A "F)=H"(Y, A "F)=0.
The short exact sequences

0> A" FIH HF > F|AF > F|AF -0, 1=rsm-1,
yield exact sequences

HYX, A" F|ATF)—> HY(X, F|A T F)—> H (X, F|A"F),
1=sr=m-1.

Since A"F|ATHF, 1Sr<m—1, and F|HAF can be regarded as coherent
analytic sheaves on the reduction (X, 0) of (X, 5), by (B)¥ and by induction on r
we obtain dim HY(X, F|A"F)<oo for 1=r<m. From the exact sequence
0=H"(X, A"F)—> H (X, F)— H'(X, F|A™F), we conclude that

dim H*(X, #) < 0. Q.E.D.

LEMMA 6. (A),_, and (A)}= (A), and (B),.
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Proof. By Lemma 5, we need only prove (A)¥ and (B)}. Let & be a coherent
analytic sheaf on an n-dimensional reduced complex space (X, @). Let B=o(X).
(i) Assume that B has no compact (n— 1)-dimensional branch. Let #: ¥ — X be
the normalization of X. Since = is proper and nowhere degenerate, R (7w~ 1(%))=0
for g=1. Hence
H"(X, Roa(n~Y(F))) ~ HY(Y, n~Y(F))

[4, p. 418, Satz 6]. There is a natural sheaf-homomorphism A: F — Ron(n~Y&F))
[4, p. 418, Satz 7(b)] inducing a sheaf-isomorphism on the restrictions to X — B.
Let A" =Ker A, £=Im ), and 2=Coker \. Supp £ <B and Supp 2<B. By
(A), -, and Satz 2, p. 275 of [13]), H?(X, 2)=H?(Supp 2, 2)=0 for p=n—1, n,
and H?(X, A )=H?(Supp A, #)=0 for p=n, n+1. The short exact sequences
0O>H >F —>F—>0and 0> &% — Ron(z~YF)) - 2 — 0 yield

HYX, F) ~ HY(X, &) ~ H(X, Ron(x~Y(F))).

By (A), and [5, p. 245, VIIL.A.19], H(X, #)x H(Y, =~ Y(¥))=0 if X has no
compact n-dimensional branch, and H™(X, #)x H(Y, =~ Y(¥)) is finite-dimen-
sional if X has only a finite number of compact n-dimensional branches.

(ii)) The general case. Let 4 be the union of all compact (n— 1)-dimensional
branches of B. Let #: X’ — X be the partial normalization of X with respect to 4.
0* = R°(4.0) is precisely the sheaf of germs of all weakly holomorphic functions
on X which are (strongly) holomorphic outside 4. ¢(X”’) has no compact (n—1)-
dimensional branch, because any compact (n— 1)-dimensional branch K of o(X")
is contained in #~1(4) and hence X’ is normal at any point x of K that is a regular
point of o(X’), which implies that dim K<dim, ¢(X")<n—2 [10, p. 115, Lemma
3]. Let £ <0 be the ideal-sheaf of 4 and J#'=="1(F). Let € be the ideal-sheaf on
X defined by €,={s€ 0, | s0¥<0,} for x € X. € is coherent and

{xeX|¥, # 0} < A

Let {4}, be the set of all branches of 4. Since A4,, i € I, is compact, the Hilbert
Nullstellensatz [5, p. 97, III.A.7] implies that there exists p: I — N such that
S, for xe A, and iel. Let F'=="Y(F) and F"=R°=(¥'). We have a
natural map A: & — F”. It is easily verified that
Q)] N&F) = Roa((F)POF),
forxeAd;and iel

Let #,< 0 be the ideal-sheaf of 4, i€ I. ¥=T1;.; #7® is a coherent ideal-sheaf on
X. Let ¥'=n"Y(¥9). By (7) M&,)>R#(9'F"), for x € X—o(A). Let ¥"=NF)
N R7(9'#"). Then

Supp (R°#(G'F")|9") < o(A).
H'(X, R°n(9'#")[|%")=0 for r=n—1, n. The cohomology sequence of
0> % — Rn(9'F')—> Rn(9'F")|9"—0
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®) HY(X, 9") ~ HY(X, R°n(9'F")).

Let # =Ker A. Let A: /A — F" be the éheaf-monomorphism induced by A and

let X'=A"1¥". Let 2=Coker A. Since outside 4 X is isomorphic and ¥"=%",
Supp 2= 4. H(X, 2)=0. The cohomology sequence of

0_>g"_'\_>32:/9{_>,@__>0
yields
&) dim HY(X, #|XA) £ dim HY(X, 9").

Since Supp # <A, H'(X, #)=0 for r=n, n+1. The cohomology sequence of
0—>AH —>F —>F|A —0 yields

(10) HYX, F) x HY(X, F|X).
Since 7 is proper and nowhere degenerate,
(11) HY(X, R°n(9'F') ~ H(X', 9'F").
From (8), (9), (10), and (11), we conclude that dim H*(X, #)<dim H" (X', ¥'#").
Since o(X’) has no compact (n— 1)-dimensional branch, the result follows from
(i). Q.E.D.

PROPOSITION 4. (A)Y, 1Sk<n = (A), and (B),.

Proof. By Lemma 6 and by induction on n, we conclude that it suffices to prove
that (A)Y = (A)}.

Suppose & is a coherent analytic sheaf on an n-dimensional reduced normal
complex space X having no compact n-dimensional branch. We need only prove
that H"(X, #)=0. We can assume without loss of generality that X is connected.
Let J be the torsion-subsheaf of &#. Then J is coherent, & /|7 is torsion-free,
and dim Supp Z <n [l, pp. 14-15, Propositions 6, 7]. H*(X, 7)=0. By A
H™YX, #|7)=0. The cohomology sequence of 0 -7 — F —F[J — 0 yields
HY(X, #)=0. Q.E.D.

IV. LeMMA 7. Suppose f: X — Y is a monoidal transformation with center
D<o(Y) [, p. 315, Definition 1], where X and Y are n-dimensional reduced complex
spaces. Suppose there is a holomorphic function u on Y vanishing identically on no
branch of Y but vanishing identically on o(Y). If, for some relatively compact open
subset Q of Y H(f ~(Q), x0)=0, then H*(Q, y0)=0.

Proof. By replacing u by its sufficiently high power, we can assume without loss
of generality that u|Q is a section of the ideal-sheaf of the complex subspace D and
u is a universal denominator on Q. Let .# be the ideal-sheaf of the complex subspace
f~XD) on X. Let v=u o f. Since dim Supp (F*/v* xO) <n, H*(f~(Q), F*[v* x0)=0
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for k € N. The cohomology sequence of 0 — 30 %> F* — F¥[v* .0 — 0, where g
is defined by multiplication by o*, yields H*(f~*(Q), #¥)=0, k€ N. For some
k€N, RY¥(F*)|Q=0forgz1[7, p. 317, Lemma 2].

H™Q, Rf(F*) = H(f~(Q), #*) = 0.
uR%%(F*)<,0 on Q. Since dim Supp (yO/uR’f(F*))<n,
H™Q, yO[uRf(S%)) = 0.

The cohomology sequence of

0 — RY%(S") —h—> y0 —> yOJuR°f(S*) — 0,

where 4 is defined by multiplication by u, yields H*(Q, y¢)=0. Q.E.D.
Suppose (X, 0) is a connected, reduced, normal, noncompact complex space of
dimension #2 1. Suppose'# is a torsion-free coherent analytic sheaf on X. Let

Z = o(X) U {xe X | %, is not free over 0,}.

Z is a subvariety of X [1, p. 15, Proposition 8]. Let B be the holomorphic vector
bundle on X—Z such that O(B)xF on X—Z. Let0 > F — S %0, F %1, ... bea
flabby sheaf resolution of # on X. Let Z,=Ker ¢,, g € N. Let d be a metric on X
defining the topology of X.

We introduce the following notation: if G is an open subset of X, then ®(G)
={A | Aisaclosed subset of Gand 4 N Z= @} and ¥(G)={4 | 4 is a closed subset
of G and d(4, Z) > 0}. ®(G) and ¥'(G) are (paracompactifying) families of supports
for G—Z [13, p. 273, Definition 1].

LEMMA 8. For every x € X there exists an open neighborhood U of x in X such
that for every open subset W of U H™(W, #)=0.

Proof. Fix x € X. By Main Theorem I', p. 151 of [6], there exist an open neigh-
borhood ¥ of x in X and a finite succession of monoidal transformations f;: V;, ;
— V; with centers D; for 0=i<r and V=V such that D,<o(V;) and o(V,)=o.
Let ;0 be the structure sheaf of V;, 0<i<r. ,@=0. Choose two Stein open neigh-
borhoods U, U’ of x such that U< < U’< V and on U we have a sheaf-epimorphism
g: 0" — Z, Since U’ is Stein, we can find a holomorphic function # on U’ which
vanishes identically on o(U’) but does not vanish identically on any branch of U’.
We claim that U satisfies the requirement. Take an open subset W of U. Let
Wi=(foo---ofic1) (W) for 1=i=rand let Wy=W. Then HYW,, ,0)=0 ([12,
p. 236, Probléme 1]; or [16, Theorem]). By Lemma 7 and backward induction on i,
we have H(W,, 0)=0,0<i<r. Hence HY(W, 0")=0. Let ¥ =Ker g. H**Y(W, X")
=0. The cohomology sequence of 0 — A" — O? —~ F — 0 yields HY(W, #)=0.
Q.E.D.

PROPOSITION 5. If G is a relatively compact open subset of X, then there exists
a relatively compact open neighborhood G of G~ in X such that for any open
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neighborhood D of G in G the restriction map H(G, ) — H™(D, F) is surjective.
Consequently dim H(G, #) <.

Proof. Let U={U;}", be a finite Stein covering of some neighborhood of G-
such that (i) U7, 1<i<m, is compact, and (ii) for any open subset W of U,
1gism, H*(W, #)=0. We claim that G=\Up, U, satisfies the requirement.
Let D be an open neighborhood of G in G. Define inductively D,=D and
D,=U; U D;_,, 1 =i<m. The following portions of Mayor-Vietoris sequences are
exact:

Hn(Di, y) - Hn(Ui’ g;) @ Hn(Di—l, ‘g_) - Hn(U{ N Di—la ’?—),
1Zism [2, p. 236, §17(a)]l. H™(U; n D,_,, #)=0 implies that H"(D,;, F) —
H™(D;_,, ¥) is surjective, 1 £i<m. The surjectivity of H G, F)— H™(D, F)
follows from G= D,,. In particular, H*G, #) — H™(G, &) is surjective.
dim HY(G, #) < ©
(cf. proof of Theorem 11, p. 239 of [2]). Q.E.D.

LEMMA 9. dimZ=<n—-2.

Proof. Suppose dim Z=n— 1. Since o(X)=n—2, we can take a connected Stein
open subset W of X—o(X) such that dim (W N Z)=n—1. Take a holomorphic
function f#0 on W vanishing on W N Z. Since & is torsion-free, f is not a zero-
divisor for &, for xe W. V={x € W | homological codimension of (¥ [f¥), is
<n-—2} is a subvariety of dimension £n—2 in W [14, p. 81, Satz 5]. There exists
xeZn W-V. %, is free over 0., contradicting xe Z. Q.E.D.

PROPOSITION 6. If G is a relatively compact open subset of X, then
dim H(G—Z, F) < .

Proof. By Proposition 5 there exists a relatively compact open neighborhood G
of G- in X such that HY(G, #) — H™(D, &) is surjective for any open neighbor-
hood D of G in G. Since dim Z<n—2 (Lemma 9),

H"(G, ‘9.) X Hg(G.)(G_Z: f) and Hn(D, ﬂ-) ~ HS(D)(D—Z’ f)
[13, p. 273, Satz 3]. Hence

the restriction map Hle(G—Z, F) — Hip(D—Z, F)
is surjective for any open neighborhood D of G in G.

dim Hze(G—Z, #)=dim HG, F)<oo (Proposition 5). Hie(G—Z, F) is
generated by the cohomology classes defined by a finite number of elements
oo te € Toe(G—2Z, Z,). Lets,=1|G—Z,1<i<k. Then Supp s,<G~ N Supp ¢,
1<i<k. Since G- N Supp ¢; is compact and disjoint from Z, d(Supp s;, Z) >0,
1<igk. 51~ ..,85.€Py(G—Z, Z,). We claim that the cohomology classes
defined by s, ..., s, generate Hg(G—Z, F).

(12)



1969] ANALYTIC SHEAF COHOMOLOGY OF DIMENSION n 87

Take u € Dy (G—2Z, Z,). Let =d(Supp u, Z)>0. Let D=G U (Uy(Z) N G).
Define #e T(D—2Z, Z,) by setting i=u on G—Z and #=0 on Uy(Z) N G-Z.
Since Supp i € ®(D), by (12) there exist § € I'op(D—Z, &, ;) and ¢y,...,c,€C
such that i—¢, _(®)=>F 1 ci(tl D—Z). Letv=0|G—Z. Thenu—¢,_,(v) =%, ¢:s;.
Let A=Supp v. To complete the proof, we need only show that d(4, Z)>0. Let
A=Supp . A=A N D for some closed subset 4 of X. Take 0<7<3. Suppose
d(4,Z)=0. Then d(4 n U (Z), Z)=0.

AnTZ)NG =AnDNUZ)NG =4AnTZ)NnG-,

because U (Z) NG <U(Z)NnG=D. An U (Z)N G~ is therefore compact.
AN Z=g impliesd AN U(Z) N G~,Z)>0.Since A N U(Z)cANT(Z)NG~,
d(4 n U(Z), Z)>0. Contradiction. Q.E.D.

LeMMA 10. If G is a nonempty relatively compact open subset of X, then G — U, ,(Z)
is noncompact for some k € N.

Proof. Suppose G— U,,(Z) is compact for all k € N. We claim that 0G<Z.
Suppose x € 90G—Z. Then d(x, Z)> 1/k for some k € N. x € 0(G — U,;(Z)). Being
compact, G—U,,(Z) is closed. x € G—U,,(Z)=G=G", contradicting x € 9G.
Hence 0G<Z. G- <GUZ. G- —Z=G—Z. Therefore G—Z is both open and
closed in X—Z. Since G—Z# & and X—Z is connected, G—Z=X—-Z. (G—Z)~
=(X—Z)~ =X is compact, contradicting that X is noncompact. Q.E.D.

PROPOSITION 7. If G is a relatively compact open subset of X, then
H@(G)(G“Z, 5’) = 0.

Proof. We can assume without loss of generality that G is connected and non-
empty. Let M=G—Z and B=B|M. Let A, ={G—U,,(Z) | k€ N}and A ={A}en.
Then

Er's(Ea A) = Ty(M, & rs(B’))

By (4) H}(M, %) is isomorphic to the cokernel of : E®"~1(B, A) — E®*(B, A).
Suppose Hi (M, #)#0. Then by Proposition 6 and Lemma 1 J*: D*°(B*, A¥)
— D™Y(B*, A*) is not injective. There exists fe D™°(B*, A*) such that *f=0 and
Supp f# @. By (5) fe T(M, O(B ® X34°)). Since f is a holomorphic section of the
holomorphic vector bundle B ® A3° and M is connected, Supp f=M. Hence
M € A*, contradicting Lemma 10. Q.E.D.

PRrOPOSITION 8. If G is a relatively compact open subset of X, then
HYG, %) = 0.

Proof. By Proposition 5 there exists a relatively compact open neighborhood G
of G~ in X such that H™G, ) — H™(G, ¥) is surjective. Take s e ['(G, Z,,).
There exist ae I'(G, %,_,) and te (G, Z,) such that t|G=s—¢,_,(a). Since
Hie(G—Z, F)x HY(G, #F), there exist be (G, #,_,) and ue Toe(G—-2Z, Z,)
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=Te(G, Z,) such that t—¢,_,(b)=u on G. Let v=u|G—Z. Then d(Supp v, Z)
2d(G- N Suppu,Z)>0. velye(G-Z, Z,). By Proposition 7 there exists
c€lye(G—Z, &-1)=Tywe(G, % 1) such that ¢, _,(c)=v on G—Z.

s = ¢p_1(a+(b|G)+0). Q.E.D.

DerFiNITION 2. If A is a subset of X and X—A=(Uie; B) Y (Ujes C)) is the
decomposition into topological components, where B,”, i€ I, is compact, and
Cj, jeJ, is noncompact, then 4 U (U, B;), denoted by Envy (4), is called the
envelope of A.

LeMMA 11. Suppose K and L are compact subsets of X and Y is an open subset of
X such that K< Y<L, and Envy (K)=K. If ¢>0, then there exist 0<8<¢ and a
compact subset K in Y containing K such that, if s is a global holomorphic section of
a holomorphic vector bundle on X—K—U(Z) and s is identically zero on X—L
—UJ(Z), then s is identically zero on Y—K—U(Z).

Proof. Let K be a compact neighborhood of K in Y. Let X— K= B; be the
decomposition into topological components. Bi¢L, ie . J={ieI| B, 0L+ &}
is finite, because oL is compact, 0L< |, B;, and B, B;=g for i#j. For
iel-J, BN L=y, because B, L= @, B+ L and B; is connected. Hence
L—K<ie; B.. Take x,€ B.—L—2Z,ieJ. ForieJ and >0, 4, ,={xe B—Z | x
can be joined to x; by a path y in B;—Z such that d(y, Z) >} is an open con-
nected subset of B;—Z. B;—Z=\J,>0 Ai,forieJ. A; ;< A; ,forieJand 0<n<é.
Since B, N (L—K°—U,(Z)) is a compact subset of B,—Z for i e J and J is finite,
there exists 0<d<e such that d(x, Z)>8 and B, N (L—K°—Uy(Z))<4;,; for
ieJ. We claim that K and § satisfy the requirement. Suppose s is a global holo-
morphic section of a holomorphic vector bundle on X — K— U,(Z) and s is identi-
cally zero on X—L—UyZ). Since for ieJ 4,, is a connected open subset of
X—K-UyZ) and x;€ 4, N (X—L—-Ux2))# @, s is identically zero on A, ,.
The result follows from

Y-R-UZ)<c L-K-UyZ) < H BN (L-K°—Uy2)) < .U, Ais. Q.E.D.

LEMMA 12. Suppose A is a subset of X—Z such that A— U,;(Z) is compact for
ke N. Then A is a closed subset of X—Z.

Proof. Suppose {x,},.n=A is a sequence approaching xe X—Z as a limit.
Since K={x} U (Uen {xg}) is a compact subset of X—Z, d(K, Z)>1/k for some
keN. {x}en<A—Uy(Z). xe A—U, <A, because 4—U,,(Z) is compact.
Q.E.D.

PROPOSITION 9. Suppose X;, 1 Si<3, are open subsets of X such that X;< < X,
cX,<<X and Envy (X5)< X,. Suppose ¢>0. Then there exists 8>0 satisfying
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the following: if a € T'(Xy—Z, £%"~Y(B)) such that da=0 and d(Supp a, Z) = ¢, then
there exists a sequence {a,}.en<U'(X,—Z, £%"~Y(B)) such that da,=0 and

dSuppa,, Z) = &
for ke Nand a|Xs—Z — a|X3—Z in I'(X5—Z, §°"~Y(B)).
Proof. For pe Nand 1<i<3, let Ei=the Fréchet space
{beT(Xi—Z, 6*X(B)) | d(Supp b, Z) 2 1/p}

and F}=the Fréchet space {beI'(X;—Z, £°™(B))|d(Supp b,Z)=1/p}. Let
¢, EL — F} be induced by J. Then we have (1), for p € N, where o, B,, i=1, 2,
are the restriction maps. We obtain (2) as the direct limit of (1),, pe N. By
Proposition 7 and Lemma 3, we need only prove that, for every p € N, there exists
r=p such that (3), , holds.

Fix pe N. Set K=Envy (X5), L=X7, Y=X,, and e=1/4p. K is compact (cf.
Lemma 1, p. 333 of [11]). We can find a compact subset K of Y containing K and
0 < 8 <& satisfying the requirement of Lemma 11. Choose 1/8 <r e N. We claim
that (3),,, holds.

Suppose f€ (E2)* and g € (F})* such that

(13) Joter = gér.

fand g can be extended respectively to f€ (E%)* and g € (F1)*. By Proposition 1
fand § are represented respectively by

feT(X;—Z, 2~ (B*)) and §e I'(X,—Z, 2™°(B¥))

such that Supp f— U,(Z) and Supp §— U,(Z) are compact for 5>0. By Lemma 12,
Supp £ and Supp £ are closed subsets of X—Z. fand g can respectively be extended
trivially to f' € I'(X—Z, 2™(B*)) and g’ € I'(X—Z, 2™°(B*)) such that Supp f’
=Supp fand Supp g’=Supp g. (13) and (6) imply that I*g'=f" on X, —Z— U, (Z).
Hence d*g'=f" on X—Z—U,,(Z). Since Supp f'<K and Supp g'<L, by (5) g’ is
a holomorphic section of the holomorphic vector bundle B* ® A¥%, on X—K
—Uy(Z) and is identically zero on X—L— U,(Z). Hence g’ is identically zero on
Y—K—Uy(Z)= X,—Envy (X5)— U,,4p(Z). Let p be a C* function on X,—Z such
that p=0 on U,3,(Z) and p=1 on X— U, ;5,(Z). Let

g" = p(g'| Xo—2Z) e I'( Xy —Z, D™°(B*)).
Supp g"<Envy (X5)— Uy3,(Z). Hence Supp g” is compact. By Proposition 1 g”
defines & € (F2)*. Let h="h|F2. Since d*g"=0*g'=f" on X,— U,,3,(Z), fol=he?
on EZ. Q.E.D.

PRrOPOSITION 10. Assume n=2. Suppose X;, i=1, 2, are open subsets of X such
that X,< < X,<= < X. Let U be a Stein covering of X,. Then for any fe Z*~(1, %),
there exists ge C*~2(U, F) such tha:, for some n>0 the restriction of f+8g to
U| X, N Uy(Z) is zero.
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Proof. Since Hyxl(X.—Z, ) — H"~!(X,, &) is surjective, [13, p. 278, Satz 3],
there exists s € Lox,) (X2, Z,-1) defining the same cohomology class as f. Since
X;c<X, d(XyNSupps,Z)=n>0. Consider the following commutative
diagram:

0— I(x, %) 2% T(x,, %) s

© ©
0 A 0 ¢0 0 ¢1
0— C°(1, #) — C°(, &) — C°(U, &) —>- - -
ls ) $
1 A 1 ¢0 1 ¢1
0—C'(U, #)— C'(U, K — C'U, FH) —>- -
la ) F)

All rows except the first and all columns except the first are exact. Since Supp s N X;
N U(Z)= o, we can choose by diagram-chasing sj=C'(ll, &) for 0=i, j<n—1,
i+j=n—1, n—2, and heZ""'(1, #) such that (i) s0_,=ups, si,,=¢;si and
si*1=28s! for 0<i<n—2 and i+j=n—2, and s3~* =M, (ii) the restrictions of s}
(0=i,jSn—1,i+j=n—1,n—2) and h to U|X; N U,(Z) are zero. By diagram-
chasing, we can find g e C™*~ (U, &) such that hi—f=8g. Q.E.D.

PROPOSITION 11. Suppose X,< X, are open subsets of X. Suppose W, is a Stein
covering of X, such that W, =U,|X; covers X,. Suppose p € N and a € Z*(1,, F).
Let B, be a Stein refinement of \1, such that B,=2B,| X, covers X, and refines 1,.
In the following commutative diagram C*( , F)= @~ C*"Y( , F) and p,, ps, o,
and B denote the restriction maps:

C*(uy, F) P25 (B, #)
| e
cru,, #) 2 cx (B, #).

If B(b)— pi(@) in ZP(B,, F) for some {b},eNnZ"(By, F), then ofa,) —a in
Z*(y, F) for some {a},en<=Z*(Uy, F).

Proof. Since ¢: C?~4(B,, ¥) @ Z*(1,, F) - Z*(B,, ¥) defined by é(u ® v)
=du+ p,(v) is surjective, by Lemma 4 there exist ¢, € C?~}(%B;, #) and

d,eZ*(1,, %), qgeN,
such that

(14) dcg+pidy = ﬁbq’
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and ¢, — 0 and d; — a. Since H?(Il,, F)x H?(B,, F), there exist e, € C? (B, F)
and f, € Z?(1,, ¥), q € N, such that

(15) 3eq+p2f; = bq.

From (14) and (15) we have p,(d,—of;)=8(Be,—c,) q€ N. Since H*(U,, ¥)
~H?(B,, #),forsome g, e C?~ (N, ¥), d,—of,=38g,,q¢€ N.g,can be extended
trivially to g, e C?~(U,, &) such that «g,=g,, g€ N. d,=o(f,+8§,), g€ N. Set
a,=f,+8g, q€ N. Then a, € Z*(1,, ), q € N and «(a,) >a. Q.E.D.

PROPOSITION 12. Assume n=2. Suppose X, X,, and X; are open subsets of X
such that X,< < X,< X3< < X and Envy (X7)< X,. Suppose 1 is a Stein covering
of X; whose restrictions to X and X, cover X; and X, respectively. Let

o Z" Y0, F) - Z* (0| Xy, F)
and
B:Z" (| Xz, F)— Z" YN X1, F)
be the restriction maps. Then Im f<(Im «)~.

Proof. Let X, be a relatively compact open neighborhood of Envy (X7) in Xj.
Let R,=U,-++1(Z)—U,-+-1(Z), ke N and Ry=X—U,;5(Z). By Proposition 11
we can suppose without loss of generality that U| X, covers X,, 1| X;—Z covers
Xi—Z,1=5i53,

K
and
amn U|X; N Uy(Z) covers X,nZforkeNandi =1, 3.

Fix fe Z»~'(U| X, #). We have to prove that there exists {f},en=Z"~ (U, F)
such that o(f;) - B(f). By Proposition 10 there exists ge C"~%(U| X3, #) such
that for some k € V f+ 8g is zero when restricted to | U,-#(Z) N X,. Suppose we
have found {fj},en=Z™~ (11, &) such that «(f;) = B(f+8g). Let §e C"~3(, F)
be the trivial extension of g. Then a(f,— 8&) — B(f). Hence we can assume without
loss of generality that the restriction of f'to | U,-+(Z) N X, is zero. Let U,=1|X;
—Z, 1Zi53. Let h=f|Uu,.

Suppose U, ={U,},c;. Let {p,},e; be a partition of unity subordinate to U,. For
peNand 0=g=n define

$p.0° C?(Uy, E%B)) > C?~}(U,, £4B))

as follows: if s={s,, ,,}€ C?(Uy, &7YB)), then set ($y,o()p...vp- 1= 2ver b
where ¢, is the trivial extension of p,s,,, . toU,N---NU,

< Vp-1 Vp-1°

(18) 8¢, o is the identity map on Z?(U,, £°9B)).
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From (16) we conclude that

if ue C?(N,, £°B)) and the restriction of u to U,|U,-((Z) N X,—Z
(19) is zero for some r € NV, then the restriction of ¢, ,(u) to
U,|Uz-r-1(Z) N X;—Z is zero.
Consider the following commutative diagram:
0 0
l J l d
0 — I'(X,—Z, £>%B)) —> [(X;—Z, &>(B)) —> - -
A ’ d d
0 —> C°(U1z, O(B)) —> C°(U, &°%(B)) —> C(Uy, £%(B)) —> - -
8 8 8
A d d
0 —> C(U, O(B)) —> C*(Ug, §%B)) —> C*(Uy, £>4(B)) —> - -
8 8 8

By induction on j we can define ke C'(Uy, £°/(B)), 0=i, j<n—1, i+j=n—1,
n—2 such that A}~'=Mh, hi=¢,,, H** and ki, ,=0h! for 0<i<n—2 and i+j
=n-—2. It is easily verified by induction on j that A € Z(1,, £°¥(B)), 0<i,j<n—1,
i+j=n—1. Hence we can find a unique s € I'(X;—Z, £°"~1(B)) such that u(s)=
hS_,. ds=0. By (18) we have

hg—l = M,
(20) = 0 sign-2iti=n-2)
Sign=-2i+j=n=-2).

Hyr = ghg'

hY_1 = p(s)

By (19) we have:

21) the restrictions of 4 (0 < i,j < n—1,i+j=n—1,n—-2) to
( U,|Uy--+(Z) N X,—Z are zero and d(Supp s, Z) = 277%™,

By Proposition 9 there exist /Zk+n and {s(m)},.n=T'(X3—Z, £>"~1(B)) such
that ds(m)=0, d(Supp s(m),Z)227', meN, and s(m)|X;—Z—>s|X;—Z in
I'(X,-Z, £°"~1(B)).

Let C3(U,, £>YB))={a e C*(1;, £>%(B)) | the restriction of a to W;|U,-(Z)
N X;—Z is zero}, i=1,3. C§(1;, £>%B)) is a Fréchet space. Since the exact
sequence

CB(Ug, E90-1(B)) > CR(lLy, £9(B)) ~—> CB(L,, £94+1(B))
is the direct sum of

cy(u,, 6°4-1(B)) 2, cy(u,, €°4B)) RN Cs(1,, €°2*%(B))
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and another exact sequence, by Lemma 4 we have the following:

if {animen = C8(Us, £°%B)), a e CE(1,, £°(B)), and

be C3(1,, &%~ Y(B)) satisfy db = a, da,, = 0, me N,

and a, |1, — a, then there exists {b,}nev = C(115, £°971(B))
such that db,, = a,,, me N, and b,|1l; — b.

Let A= X;— U;-(Z). Consider the following commutative diagram:

(22)

P ] o
EQO(B| Xa—Z) ——> E3X(B|Xa—2Z) ——> EQ¥B|XamZ) —> --
lﬂ' lu p
by d E} d
0 —> CY(Ua, OB)) ——> C3(U, E%(B)) —— CY(lly, 81(B)) ——> CY(l, E%%(B)) ——> - .-
b o b b

F b b
0 —> Ci(Us, O(B)) L> Ci(Us, 6°°(B)) —> C3(Us, €°1(B)) —> Ci(Us, 6>%(B)) —>- - -
s 8 b} E)

0—> cz(u:1 oB) 2> cg(ua,fww)) s can,, ’f"’-lw» 2 cz(us,lww)) L

) 8 ) 8
The composites of any two consecutive horizontal maps or any two consecutive
vertical maps are zero. All the rows except the first are exact. By (20), (21), and
(22) we can find {s(m)!}~v< Ci(1g, £°9(B)), 0=i, jSn—1, i+j=n—1, n—2, and
{gmtmen< C2~ (U3, O(B)) such that
s(m)a-1 = ps(m)
s(m)j1 = ds(m)j
s(m)i*t = ds(m);
s(m)g~t = Agm,
and (i) s(m){|U, — AU, for 0<i, j<n—1, i+j=n—1, n—2. It follows that
8g,=0, me N and g,|11, — A|U1, in CZ~1(U,, O(B)). Let

B, =W, UU|U;--u(Z)N X)), i=1,3.

By (17) B, is a Stein refinement for U|X;, i=1, 3. Define {f,}nen=Z" (B3, F)
by setting f,,=g, on Uz and f,,=0 on U|U,-:-1(Z) N X;. Then f,|B, —f|B,.
The result follows from Proposition 11. Q.E.D.

@) O0O=isn-2,i+j=n-2) meN,

V. Proof of the Main Theorem. By Proposition 4 we need only prove (A)# for
ne N. The case n=1 is well known [5, p. 270, IX.B.10]. Suppose £ is a torsion-
free coherent analytic sheaf on a connected, reduced, normal, noncompact complex
space X with 2<dim X=n. We have to show that H"(X, %)=0.

Take a sequence of relatively compact open subsets {X,}nenv of X such that
Envy (X;)= Xy, for me N and Upen Xn=X. Take a Stein covering U of X
such that U, =1| X,, covers X, for me N and U= Jpn U,,.

Take fe Z™(U, #). By Proposition 8 there exists g,, € C*~*(11,, &) such that
flu,=8g,, meN.
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Take a sequence of seminorms {| - |[{™},exy on C*~*(U,, F), me N, such that
@ |- |$™},en defines the Fréchet space topology of C"~Y(U,, #), me N, (ii)
-5 =1 15% and |- [E° <[ I5**, p, me N.

We are going to construct by induction on m h, e C""}(1,, #) such that
Shy=f1,, and |(hnso—hne)|Unlls’<2"™, meN. Set h,=g, for m=1,2.
Suppose hy, ..., h, are found for some m=2. Since §(h,—gn.1)=0 on U,, by
Proposition 12 there exists s€ Z"~!(11,,,,, &) such that

[ —gms 1 —$)| W 7 < 2771

Set hp,1=gns+1+s. The construction is complete. Define he C*~ (11, #) by
setting A|U,,=lim, >, h,|U,. h is well defined and 8h=f. Q.E.D.
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