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Introduction. This paper is concerned with the number of solutions of three

kinds of equations. Let/ g: X^ Y and «: X^ X be maps, and let y0 e Y. The

equations we will study are (l)f(x)=g(x), (2)f(x)=y0, and (3) h(x) = x. In [2], the

first author defined a lower bound A for the number of solutions of these equations

which remains such a lower bound when/ g, and « are moved through homotopies.

The number A is called the A-Nielsen number of the equation.

It is not, in general, possible to compute the A-Nielsen number for particular

spaces and maps directly from its definition. An integer F which can be computed

algebraically just from a knowledge of the maps induced on the fundamental

groups was defined in [2], and it was proved that NSR. In some cases it could be

shown that N=R.

We will define a positive integer /, which is also easier to compute than N, and

which has the property that /¿ N. Bounding A between integers we know something

about improves our chances of determining A. Furthermore, J is of interest in

itself because it is also a lower bound (though a poorer one) for the number of

solutions. We will further prove that, under mild additional hypotheses, J divides

A, F, and an appropriately defined "Lefschetz number" for the equation we are

considering.

In the case of the study of fixed points, that is, a solution to h(x)=x, there has

been a lower bound of this kind, A(«), the Nielsen number of «, for many years

[6], [8]. Unfortunately, N(h) is not, in general, the same as the A-Nielsen number

A, in fact A(«) á A. However, we are still able to prove that JS N(h) ^ F and that,

under an additional hypothesis, J divides both N(h) and the classical Lefschetz

number L(h).

In §11, we will introduce our basic assumptions and will summarize those

definitions and results that we will be using from [2]. The definition of / and the

proofs of the results indicated above occupy §111. §IV is devoted to applications of

these general theorems to the three kinds of equations.

II. Outline of coincidence theory. Throughout this paper/ g: X^- Y will be

maps of a compact, connected, and locally path connected Hausdorff space X into
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a path connected semilocally simply connected Hausdorff space Y. Under these

hypotheses X is locally compact and regular so we may regard homotopies of maps

from Zinto Fas paths in Map (X, Y) (with the compact-open topology), and every

such path may be regarded as a homotopy [4, pp. 159-160]. We will assume that A

is a class of ordered pairs of paths in Map (X, Y) that is closed under pairwise

partitioning and multiplication, i.e., if (F, G)e A then (Frs, Gf) e A for every

r,se [0, 1]—where Frs(t) = F(r+t(s-r)) for each t e [0, 1], and (F, G), (F', G') e A

implies (FF', GG') e A whenever (F(l), G(1))=(F'(0), G'(0)). The constant path

at a point x will be denoted by x. We assume that the constant pair (fi, g) e A. If C

is a path, then [C] denotes the set of all paths that are fixed-endpoint homotopic

to C [4, p. 175]. For paths Fin Map (X, Y) and C in X, let <F, C> be the path in F

defined by <F, C> (t)=F(t)(C(t))—so that, in particular, /° C=</, C>. The

operation < •, • > behaves well with respect to multiplication, inversion, and fixed-

endpoint homotopy: <F, C}<.F', C") = (FF', CC'} when (F(l), C(1)) = (F'(0),

C'(0)), <F,C>-1 = <F"1,C-1>, and [<F, C>] = [<F', C'>] when [F]=[F'] and

[C] = [C']. A point x e X is a coincidence of fand g iff/(x)=g(x); the set of all such

points is denoted by T(f, g). If F and G are paths in Map (X, Y) then x e X is

F, G-related to x' e X (write x—F, G -> x') iff there is a path C in X from x to x'

with [(F, C)] = KG, C}]. If x, x'eY(f,g) they are fig-equivalent iff they are

/, g-related, i.e., iff there is a path C in X from x to x' with [/<> C] = [g ° C]. The

/ g-equivalence is an equivalence relation on T(f, g); the set of these equivalence

classes is denoted by f (/ g). An F, G-relation induces a one-to-one relation from

f (F(0), G(0))into f(F(l), G(l)),ae f (F(0), G(0))isF, G-related to a' e f (F(l), G(l))

iff x—F, G-*■x' for at least one (and hence every) xea and x' ea'. In this

case we also write a—F, G-> a'. A class a e f (/ g) is A-essential iff whenever

(F, G)eA and (F(0), G(0)) = (/ g), there is an a' e f (F(l), G(l)) such that

a—F, G -> a'. An F, G-relation, (F, G) e A, then defines a one-to-one function

from the A-essential elements of f (F(0), G(0)) onto those of f (F(l), G(l)). The

number of A-essential elements of f (/ g) is the A-Nielsen number off and g and is

denoted by N(f, g, A). N(f g, A) is finite and A(F(0), G(0), A) = A(F(1), G(l), A)

for every (F, G) £ A.

Throughout this paper we assume that N(f, g, A) > 0, choose a A-essential

a0 e f(/ g), a coincidence x0 e a0, and base the fundamental groups of Zand Fat

x0 and yo=f(x0)=g(xo) respectively. These groups are denoted by -n(X) and w(F);

/#, g# : it(X) ->■ 7r( F) are the homomorphisms induced by/and g. Two elements

a,ßetr( Y) are said to be/ g-congruent (write a ~Bß if there is a y e w(A') such that

f#(y)a=ßg#(y). The relation/ g-congruence is an equivalence relation on tt(Y); the

/ g-congruence class containing a e 77(F) is denoted by aB; the set of such classes

is denoted by tt(Y)JR; the number of such classes is denoted by R(f, g) and is called

the Reidemeister number off and g. If 77(F) is abelian, then -n(Y)jR is simply the

cokernel of /#-g#(77(F)/image(/#-g#)), where (/#-g#)(y)=/#(y)-g#(y). There

is a one-to-one function ci : f(/ g) -> 77(F)//? defined as follows: for a e f(/ g) let
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C be a path in X from x0 to an x e a. The path (/° C)(g ° C)"1 represents an

element [(f° C)(g ° C)"1] e -n(Y) whose / g-congruence class [(/° C)(g ° C)~1]R

is independent of the choice of x e a and the path C from x0 to x. Let cf>(a) =

[(/° C)(g° C)-1]«6tt(F)/F. Note that, since <f> is one-to-one, then N(f,g,A)

tiR(f,g).
We will let A' denote the set of all pairs (F, G) e A such that Fis a loop at/and

G is a loop atg. If (F, G) e A', then [<F, x0>][<G, Xq)]"1 e tt(Y). The set of all such

elements is denoted by T(f, g, A). The set of all [<F, x0>] e n( Y) such that F is a

loop at/in Map (X, Y) is denoted by T(f); the set of all [<77, >><,>] e tt-(F) such that

77is a loop in Map (F, F) at the identity 1 : F^ F, is denoted by T(Y). We always

have T(Y)<=T(f).

A triple (/', g', A) is a-admissible iff, g':X^ F are maps, (/', g') eMcJ,

and there is a closed set N<= X with Cl A<=Int N and T(/', g') n (N-A) empty. A

function w from the A-admissible triples into an abelian group A is a A-index if it

satisfies the following two conditions :

1. (Additivity). If A <= X, and {^4,} is a finite indexed collection of subsets of A

such that

(i) (/', g', /Í) is A-admissible, and (/', g', Az) is A-admissible for each /, and

(ii) (A-{JiAi)r\Y(f',g') is empty,

then

<4/',¿rW) = 2<°</'»ír',4).i
2. (Homotopy). If (F, G) e A, A^Xis open, and (F(/), G(/), A) is A-admissible

for each 7 e [0, 1 ], then

co(F(0), G(0), A) = co(F(l), G (I), A).

Throughout the rest of the paper we will assume that œ is a A-index with values in

an abelian group A. If a e f (/ g), then (f,g,a) is A-admissible. Moreover,

w(F(0), G(0), a) = co(F(\), G(l), a') whenever (F,6)eA and a—F,G-*a'. If

a e f(/ g) and oi(f g,a)^0e A, then a is A-essential.

Examples of A are the following: Ax(X, F)—the class of all pairs (F, G) of

paths Fand G in Map (X, Y); \2(X, Y, y0)—the class of all pairs (F, G) e A^X, F)

such that G(/)(x)=>>0 for all 7 g [0, 1] and all x e X; and A3(X)—the class of all

pairs (F, G) e A^X, X) such that G(t)(x) = x for all 7 e [0, 1] and all x e X. We will

denote these classes by Al5 A2, and A3 respectively. Ax is appropriate for studying

coincidences of/and g when both/and g are arbitrary ; A2 may be used for studying

roots of the equation f(x)=y0 for an arbitrary map/: X-»- Y; A3 is for studying

fixed points of an arbitrary map/: X -^ X. In these three cases, we have T(f g, Aj)

= T(f)T(g), T(f, g, A2) = T(f), and T(f, g, A3) = T(f). There is a Ai index ̂  with
values in Hom(77*(Fx Y, Yx Y-D), H*(X)) where 77*(Z) is the total coho-

mology (arbitrary coefficients) ring of Z, and D is the diagonal in Yx Y. For this

index,  o>x(f, g, X)  is  the  cohomology  homomorphism  induced  by the map
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h: X->(YxY, YxY-D) defined by h(x) = (f(x),g(x)). When Fis an orientable

closed n-manifold there is a Ax index A with values in Hn(X). If rational co-

efficients are used, then X(f, g, X) is the Lefschetz coincidence cocycle off and g.

If X is also a compact, orientable, closed n-manifold, then there is a Ai-index A'

with values in the integers. In this case X'(f, g, X) is the Lefschetz coincidence

number of / and g. For the class A2, we have a A2-index cu2 with values in

Horn (H*(Y, Y—y0), H*(X)). For this index, a>2(f,g, X) is the homomorphism

induced by the composition X-^ Y<=(Y, Y—y0). Any A^index is automatically a

A2 index. When A"and Fare both closed, orientable n-manifolds then A'(/ g, X) is

simply the degree off. Finally, when Xis an ANR, there is a A3 index to3 with values

in the integers such that a>3(f, g, X)=L(f), the Lefschetz number off.

III. The lower bound. Let T(f,g, A)//? be the set of all classes TRen(Y)jR

with a representative in T(f, g, A). We define the Jiang number offand g to be the

cardinality of T(f g, A)jR, and denote it by J(f, g, A). Our main result is the

following

Theorem 1. J(f,g, A)^N(fi,g, A).

The proof is a consequence of Propositions 1-6 and Theorem 2 below.

Under somewhat stronger hypotheses than those introduced thus far, we will

also establish the divisibility of R(f, g), N(f, g, A), and w(f, g, X) by J(f, g,A)
(Theorem 4 below).

If a, be f (/ g) and a—F, G -> b for some (pairs of loops) (F, G) e A', then we

say that a and b are Jiang equivalent and write a ~} b.

Proposition 1. ~¡ is an equivalence relation on T(fi, g).

Proof. Let a, b, c e t(f, g) and (F, G), (F', G') e A'. Then/ g e A', (F"\ G -1)

£ A', and (FF',GG')e A'. Also [2, p. 20], a—fg-^a, a—F,G^b implies

b—F-\ G -1 -> a, and a—F, G -> b—F', G' ->c implies a—FF', GG' -> c. Thus

a~j a, a~jb implies b ~} a, and a~]b~¡ c implies a ~, c.

The Jiang equivalence class containing a e f (/ g) is denoted by a¡. The set of all

such classes is denoted by f (/, g)jJ. From the discussion in the previous section we

easily have

Proposition 2. If a, be f (/ g) and a ~¡ b, then a>(f, g, a) = oj(f, g, b), and a is

A-essential iff b is.

We define a relation on 7r( Y) that is also denoted by ~j and called Jiang equiva-

lence. lfa,ße 77(F) then a~}ß if there is a loop C in X at x0 and a pair (F,G)e A'

such that [<F, C>]«=/3[<G, C>].

Proposition 3. ~j is an equivalence relation on -n(y).

Proof. Since (f, g) e A' and [</, x0>]ot = a = a[<g, x0>] for all a e 77(F), ~j is

reflexive. If a, ß e 77(F) and [<F, C)]a = ß[\G, C>] for some (F, G) e A' and some
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loop C at x0, then [<F"\ C"1>]iS=[<F, C>]"1iS = a[<G, CXT^a^G"1, C"1)]

so, since (F'1, G'1) e A', a ~3 ß implies ß ~, a. Similarly we use the fact that

[<F, C}][(F', C'}] = [(FF', CC'}] to show that ~7 is transitive.

The Jiang equivalence class containing a e tr(Y) is denoted by a,, the set of such

classes by tt(Y)¡J. According to the next proposition, ~} induces an equivalence on

7t(F)/F.

Proposition 4. Suppose a, a', ß, ß' e n( Y) and a ~R a' ~} ß' ~R ß. Then a~}ß.

Proof. By hypothesis there are loops C, D, and F at x0 in X and a pair (F, G)

6 A' such that [/° C]a = a'[g o C], [<F,D}]a'=ß'KG,D}], and [/°F]S' =

ß[goE]. Thus [<F,FFC>]a=[/oF][<F,F>][/oC]a=L^F][<F,F>]a'[goC] =

IfoEWKG, D}][g o C] = ß[go E][(G, D}][g o C] = ßKG, EDC}], so a ~,ß.

From this proposition, if a ~j ß, for a,ße-n( Y), then a' ~¡ ß' for every a e aR

and ß' e ßB. In this event we write aR ~3 ßR and say that aR is Jiang-equivalent to

ßR. If aR e ir( Y)/R, its Jiang-equivalence class is denoted by aRJ. The set of such

equivalence classes is denoted by tr( Y)/RJ. Note that for ae-n( Y), the union of all

«'« e aRj is simply a¡.

Propositions. T(f, g, A)\R = [y0]Rj.

Proof. Suppose first that tr e T(f, g, A)/F. Then for some pair (F, G)e A' we

have [<F, x0>][<G, x«,)]"1 e r«. Now [<F, x0>][>>o] = ([<F, x0>][<G, Xo)]"1)^, x0>],

so [yo]~j[<F,x0y][<G,x0y]-1 whence [j0]B ~, rR. Thus F(/ g, A)/7?<z [>>0]B/.

Conversely, suppose [j0]K ~j aR for some a e tt(Y). Then there is a loop C in A' at

x0 and a pair (F, G) e A' such that [<F, C>][70] = a[<G, C>]. Thus a=[(F, C>]

• [<G, C>]"1 = [/o C][(F, x0>][<G, xo}]-1^ »C]"1, so « ~s [<F, x0>][<G, Xo)]"1

e T(f, g, A). Therefore aR e T(f, g, A)/7?.

The following theorem establishes the connection between the structures we have

built on V(f, g) and -n(Y)¡R. We refer to the one-to-one function <f> of the previous

section.

Theorem 2. <f>(aj)^(<f>(a))j for each a e f (/ g), and <t>(aJ) = (4>(a))] when a is

A-essential.

Proof. To prove the inclusion suppose a, a' e F(f, g) and a ~, a'. We must show

that <f>(a) ~j <f>(a'). Since a ~7 a', there is a path D in A'from an x in a to an x' e a'

and a pair (F, G) e A' such that [<F, 7J>>] = [<G, £>>]. Let C be a path in X from x0

to x. Then [/° C][g ° C]"1 e<¿(a) and [/o C7J>][g o CD]"1 ec4(a'). Moreover

[<F,x0>][/c CD][go C^-^KFC^feo CDJ-^I/o C][<F,F>][goCF]-1

= [/o C][<G, 7)>][g o C^-^t/o C][<G, C"1>] = [/o C][g o C]-1««?, *o>], so

[/oCF][goCF]-1~/[/oC][goC]"1 and therefore <j>(a') ~y (a). Conversely,

suppose a e f(/, g) is A-essential, and aR ~} <f>(a) for some a e tt(Y). We must show

that a e <f>(a') for some a' e f (/, g). Let C be a path in X from x0 to an x e a, so

[/° C][g o C]"1 e c¿(a). Since aB ~¡ <f>(a) we have ce ~} [/° C][g ° C]"1 so there is

a loop F in A"at x0 and a pair (F, G) e A' with [<F, 7)>]a= [/o C][g o C]'1^, F»>].
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Thus «=[<F-\ D-^)][fo C][g o C]-i[(G, Z)>] = [<F-1,_F)-1C>][<G, C^D}].

Now a is A-essential and is therefore F, G related to an a' e f (f, g). Let F be a path

from x to an x' e a' such that [<F, F>] = [<G, £>]. Then

[f° D]a = [/o D]KF-\D-*Cy]KG, C-^D)]
= KP-1, C)][(G, C-iD)]

= KP'1, 0][<G, F>][<G, Eyr^CC-^D}]
= [<F-x,c>]KF,E>]KG-í,E-íy][(G,c-íDy]

= [f°CE][goE-iC-i][g°D]

= ([/°CF][goCF]-1)[goZ)].

Thus « ~B [/o CE][g o CE]-1 e <f>(a'), so aB = <f>(a').

If in the definition of </> we let C he the constant path at x0, we see that <p(a0)

~{[f° C][g° C]_1)b = [>'o]b- Now a0 is A-essential; Theorem 2, therefore, gives

us (f>(a0j) = [yo]Rj- Hence, since <f> is one-to-one, Proposition 5 yields

Proposition 6. <f>(a0J) = T(f, g, A)/R and Card a0J=J(f, g, A).

From Proposition 2 it follows that a is A-essential for each a e a0J. Thus Card a0J

= N(f> g, A). Theorem 1 therefore follows from Proposition 6. We now turn to

divisibility results.

Theorem 3. For every a £ 77(F) we have Card aRJ=J(fi, g, A), provided that one

of the following conditions is satisfied:

1. tt(F) is abelian,

2. A = A2,

3. A = A3, and f#(tr(X)) is abelian.

Proof. Let a £ 77(F) and define a function Y: T(f, g, A) -> 77(F) by Y(t)=t«. It

suffices to show that Y induces a one-to-one function Y : T(f, g, A)jR -> 77( Y)jR

whose image is aR]. To see that Y induces Y, let t, t' £ F(/ g, A), and suppose that

t ~B t'. We must show that Y(t) ~r Y(t'). Since t ~b t' there is a y e 77(Z) with

f#(y)T = T'g#(y)- When 77(F) is abelian (case 1), this yields /#(y)Y(r) =f#(y)ra

= r'g#(y)a=T'ag#(y) = x¥(T')g#(y), so Y(t) ~b Y(t'). In case 2, g# is trivial (g is

the constant map into y0), so /#(y)Y(T)=/#(y)Ta = T'g#(y)a = T'a = Y(r')

=Y(r')g#(a), so Y(t) ~b Y(t'). Finally in case 3, f#(ir(Y)) is abelian and g# is

the identity  SO f#(a-1ya)W(r)=fy(y)W(r)=fi(y)Ta = r'g#(y)a = T,ya = T'a(a-\a) =

^0-'k#(<*_V), so Y(t) ~s 0(t'). Thus Y induces a function Y: F(/ g, A)jR

-* 77( F)/Z? defined by Y(tb) = (Y(t))b. To see that Y is one-to-one suppose

Y(t) ~b Y(t'), for some r, V e T(f, g, A). We must show that r ~B F. Since

Y(t)~b Y(t') there is a Yen(X) with /#(y)Y(r)=Y(T')g#(y). In case 1 we then

have  /#(y)r=/#(y)Y(r)cc-1 = Y(T')g#(y)a-1=Y(T')a-1g#(y)=r'g#(y),    SO

In case 2, g#  is  trivial  so f^yy^fÁyW^a-^Y^g^a-^'V^a-^r'

= r'gf(y), whence t ~r t'. Finally, in case 3, where f#(n(X)) is abelian and g# the

identity,  f#(aya- !)r =/#(y)Y(r)cc" » = Y(r')g#(y)cc" » = Y(r')y«"1 = Y(t>" \aya" *)

= T'g#(ay« -1), so r ~B t'. Thus Y is one-to-one. To see that Y(F(/, g, A)jR) c aBJ,
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it suffices to show that Y(F(/, g, A)) c aj. Suppose therefore that r e T(f, g, A), so

that t = [(F, x0>][<G, x0>]_1 for some (F, G) e A'. In case 1 tt(F) is abelian, and in

case 2 and 3 G is a constant homotopy so [<G, x0>] = [j0]. Thus, in any case,

[<G, x0>] commutes with a, so [<F"\ x0>]xF(t) = [<F-1, x0>][<F, x0>][<G, *0>]_1«

= ce[<G~1, x0>]. Therefore, since (F_1, G_1) 6 A', T(t) ~7 a. Finally, to see that

W(T(f, g, A)) => ceB/, suppose that a'R e aRJ for some a' e 7r( Y). We must show that

oî'r = '^(tr) for some t' e T(f, g, A). Since ceB ~t ceB, a' ~7 ce, so that there is a loop

C in Z at x0 and a pair (F, G) e A' with [<F, C>]a = ce'[<G, C>]. Let r' = [(F, x0>]

-[<G, xo)]"1, so i/o C]T(t') = [/o C][<F, x0>][<G, x0>]-1«=[<F, C>][<<?, Xo)]"1«.

Again [<G, Xo)]"1 commutes with a, so [/° CPF(t') = [<F, C>]ce[<G, x0>]_1 =

«'[<G, C>][<G, X0>]"1 = a'[g o C]. Thus, Y(t') ~B ce', SO Y (rB) = aB.

An element £ of an abelian group G is divisible by an integer «, if £=«£ for some

leG.

Theorem 4. Suppose J(f, g, A) = Card aR,for every a e -n(Y)—as it will if any of

the conditions of Theorem 3 are met. Then

1. J(f, g, A) divides R(f, g).

2.J(f,g,A)dividesN(f,g,A)._
3. J(f, g, A) divides Card {a e f(/ g) | co(f, g, a) e A) for any subset A^A—0.

4.J(fig,A)dividesco(f,g,X).

Proof. Since tt(Y)¡RJ partitions tt(Y)¡R into sets aRJ each with cardinality

J(f, g, A) we have R(f, g) = Card n( Y)¡R=J(f, g, A) • Card -n( Y)¡RJ. This proves 1.

According to Proposition 2, if a e f (/ g) is A-essential then a' is for every a' e a,.

Thus {a} e f (/ g)//|ais A-essential} is a partition of the set of A-essential a e F(fi g).

Since <f> is one-to-one, Theorem 2 says that Card a., = Card <¡>(a)j=J(f, g, A) when-

ever a e f(/ g) is A-essential. Thus N(f, g, A) = Card {a e f (/ g) | a is A-essential}

=J(f, g)• Card {a¡ e L(f,g)\J\a is A-essential}. This proves 2. Now suppose that

,4 <= ,4-0. Then

Card {a e f (/ g) | œ(f, g,a)eA} = 2 Card {a e f (/ g) | co(f, g, a) = 0

= 2   2   Card fa'e a> i "'C/i £'a)= &
ïe.4   aJehf.sW

so it suffices to show that Card {a' e a, \ co(f g, a) = ¿¡} is divisible by J(f,g, A)

whenever aeV(fg) and ¿¡ e A, f/0. By Proposition 2, co(fi g,a') = co(f,g, a)

for every a' e a¡, hence Card {a' e a} \ co(f g, a) = i} is either 0 or Card a,. Of

course, 0 is divisible by J(f,g, A). In the second case cü(f,g,a) = £^=0 so a is

A-essential, hence, by Theorem 2, Card a,=Card </>(a)j=J(f, g, A), which completes

the proof of 3. Finally, by additivity of w we have

-(/ g, x) = 2 «>(/. g> «) = 2 (Card fae íU s) i «(/; ̂ > «) = ö) ■ í,

which together with 3 proves 4.
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IV. Consequences of the main theorems. In this section, we will present some

results based on Theorems 1, 3, and 4. We state the results first for the general

coincidence problem (g arbitrary, A = Ai), and then give the analogous results for

fixed points and for solutions to the equation f(x)= y0.

If/#=g#: n(X) - 77(F), then for (F, G), (F\ G')e A'x, [<F, x0>][<G, x«)]"1 ~B

[<F', x0>][<G', x0>]_1 means that for some loop C in X at x0 we have [fo C]

■KF', x0>][<G', XoXF^KF, x0>][<G, Xo)]"1^ o C], so [<F', x0>][<G', *o>]_1 =

[fio C^KF, x0>][<G, xo)]"1^ o C] = KF, C"1)]!«?"1, C}] = KF, x0>][/o C"1]

• [g = C][(G, x0>]_1 = [<*", x0>][<G, x0>]-\ and so /#=g# implies that J(f, g, Ax)

is just the cardinality of the set F(/ g, Ax) = F(/)F(g). Thus, from Theorem 1

(1) Ift#=g#: *(X) -> 77(F), then Card T(f)T(g)^N(f, g, AJ.

•In other words, for any /' homotopic to / and g' homotopic to g, there are at

least Card T(f)T(g) solutions to the equation/'(x)=g'(x).

We now assume that 77(F) is abelian. Therefore R(f, g) = Order Coker (fy —g§).

If R(f g) is prime and J(f, g, AX)>1, then J(f, g, Ax) = R(f, g) by Theorem 4. By

Theorem 1, J(f, g, Ax)^N(fi, g, Ax)^R(fi, g), so

(2) If J (fig, Ax)> 1 andR(fg) is prime, then N(fg, Ax) = Order Coker (/#-g#).

Suppose co is a A^index. If w(f, g, X)e A is divisible by only ± 1, then we can

say quite a bit about the set T(f)T(g). From Theorem 4 we conclude that

J(f,g,Ax)=l and so t ~B F for all r, F £ T(f)T(g) and in particular t~b0.

Therefore

(3) Ifw(f, g, X) is divisible by only ± 1, then T(f)T(g)<=lmage (f#-g#). If, in
addition,fy=g#, then T(f)T(g) = 0.

If X and Y are closed, orientable, n-manifolds, then we have the integer-valued

Arindex A' for which X'(f,g,X)=L(f,g), the classical Lefschetz coincidence

number off and g. In this case, if J(f g, AJ>1 and L(f,g) is a prime, then

J(f, g, Ax)= \L(f, g)\ by Theorem 4, so by Theorem 1,

(4) If X and Y are closed, orientable, n-manifolds, J(fi g, Ax) > I, and L(f, g) is

prime, then N(fi g, Ax)^ \L(f, g)\.

Now let us turn to the fixed-point problem, where A = A3, F= X is a compact

ANR, and g: X-> X is the identity map. Then we have the A3-index a>3 for which

°>3(f, g, X)=L(f), the Lefschetz number off. To simplify notation, write R(f) for

R(f, g), Jif) for J(f, g, A3). T(f, g, A3) = T(f), which is a subgroup of tt(X). Let

N(f) be the classical Nielsen number off, i.e., the number of a £ f (/, g) such that

"»aC/*» £> a)t^0- Assume L(f)^0, and that a0ef(/>^) has been chosen so that

íü3(/, g, c70)^0. Then by Propositions 2 and 5 A(/)SCard a0J=J(f). We also have

N(f)úR(f). Write 1:77(^)^77^) for the identity isomorphism. When/#=1,

then J(f) is just the order of the group F(/). Therefore, corresponding to (1) above,

we have

(1 ') Iffy = 1 : tt(X) -+ n(X) and L(f) f 0, then Order T(fi) Í N(f).
When/: X^ X is the identity map, then L(f) = x(X), the Euler characteristic of

X. Since all fixed points of the identity map are / g-equivalent (see §11), then
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A(/)^ 1. Since/#= 1, then by (F), Order T(f)= 1. Thus we have a new proof of

the following result

(5) (Gottlieb [3]). Ifx(X)¿0, then T(X) is trivial.

Barnier [1] has worked out a number of examples that show that the inequalities

J(f) â N(f) g R(f) permit the computation of At/) for many maps for which such

computation was previously impossible. We will outline one such example; the

reader may refer to [1, pp. 83-84] for the details. The point of the example is that,

previously, the best techniques for such computations (based on the results of

Jiang [6]) required that T(f) = tr(X), while in this example T(f)^n(X).

Let X he the closed orientable 2-manifold of genus 5, then tt(X) is presented by

generators ce1; a2, ßx, ß2, e and a single relation a1ßxa{1ßx1a2ß2a21ß21e2 = l. It can

be proved, using [5], that there exists a map f:X->X such that y#(cti)=cej,

/#(a2) =f#(ßi) =/#0S2) =fy(E) — I• We will assume n^l. By means of the Hurewicz

homomorphism, one finds that L(f) = 1 -«/0. By [1, p. 54], T(f) is the centralizer

of a? which, by [7], is the proper subgroup of-n(X) generated by ax. Direct computa-

tion proves that al ~B a\ if and only if p=q mod («—1), so J(f)=\n—l\. Further-

more; if ay e -rr(X), then y ~R a\ for some k so R(f)=\n—l\ also. Therefore the

inequalities tell us that N(f) = \n-l\.

Let us assume that f#(ir(X)) is abelian. If J(f) > 1 and R(f) is prime, then, by

Theorem 4, J(f) = R(f) and we have:

(2') IfL(f)¥=0, J(f)> 1 andR(f) is prime, then N(f) = R(f).
Since 1 âJ(f)S \L(f)\ by Theorem 4, then \L(f)\ = 1 implies that all elements of

T(f) are / g-congruent, which proves

(3') If |F(/)| = 1, then T(f)^h(tr(X)), where h:-n(X)-^-tr(X) is defined by

h(a)=fy(a)a-\

By Theorem 4, J(f) divides L(f), so we have our final result concerning fixed

points.

(4') 7//(/)>l andL(f) is prime, then |F(/)|^A(/).

We now turn briefly to the class A2 where N(f, g, A2) is a lower bound for the

number of solutions to /(x)=j"o, g is the constant map of X to y0, and

F(/g,A2) = F(/).

By Theorem 3, we may apply the conclusions of Theorem 4 without further

restrictions on/ X, or F. The analogues of (l)-(4) hold by essentially the same

arguments used above, so we just list them here.

(1") 7//# = 0, then Order T(f)^N(f,g, A2).

(2") IfJ(f, g, A2)> 1 and R(f, g) is prime then N(f, g, A2) = R(f, g).
(3") Ifco2(fi g, X) is divisible only by ±1, then T(f)^f#(tr(X)).
(4") If both X and Y are closed, orientable, n-manifolds, J(f, g, A2)> 1, and the

degree off is prime, then |deg (f)\ úN(f, g, A2).

One might well ask whether, for actual spaces and maps, it is possible to obtain

enough information to apply the results of this section. The computation of

A(7, g, X),  X(f, g, X), oj2(f, g, X), and w3(f, g, X) is straightforward from a
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knowledge of the cohomology homomorphisms induced by / and g. In the re-

maining case, where A = Aj and Y is not a manifold, nothing is known. For

R(f, g), the computation problem is purely algebraic. The extent of the difficulty

depends upon how complicated 7t( F) is. The complete determination of T(f, g, A)

seems quite difficult. Fortunately, (2) and (4) only require that we find a single

element in T(f, g, A) that is not Reidemeister equivalent to the unit; the results of

[1] suggest that this is a much easier problem. For the application of (1), we can

only observe that the identification of any nontrivial subset of T(f, g, A) will

produce a nontrivial lower bound for the number of solutions of/(x)=g(x).
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