A LOWER BOUND FOR THE A-NIELSEN NUMBER

BY
ROBIN B. S. BROOKS(*) AND ROBERT F. BROWN(?)

Introduction. This paper is concerned with the number of solutions of three
kinds of equations. Let f, g: X — Y and 4: X — X be maps, and let y, € Y. The
equations we will study are (1) f(x)=g(x), (2) f(x)=y,, and (3) h(x)=x. In [2], the
first author defined a lower bound N for the number of solutions of these equations
which remains such a lower bound when f] g, and s are moved through homotopies.
The number N is called the A-Nielsen number of the equation.

It is not, in general, possible to compute the A-Nielsen number for particular
spaces and maps directly from its definition. An integer R which can be computed
algebraically just from a knowledge of the maps induced on the fundamental
groups was defined in [2], and it was proved that N < R. In some cases it could be
shown that N=R.

We will define a positive integer J, which is also easier to compute than N, and
which has the property that J < N. Bounding N between integers we know something
about improves our chances of determining N. Furthermore, J is of interest in
itself because it is also a lower bound (though a poorer one) for the number of
solutions. We will further prove that, under mild additional hypotheses, J divides
N, R, and an appropriately defined ““Lefschetz number” for the equation we are
considering.

In the case of the study of fixed points, that is, a solution to A(x)=x, there has
been a lower bound of this kind, N(h), the Nielsen number of A, for many years
[6], [8]. Unfortunately, N(h) is not, in general, the same as the A-Nielsen number
N, in fact N(h) < N. However, we are still able to prove that J< N(#) < R and that,
under an additional hypothesis, J divides both N(h) and the classical Lefschetz
number L(h).

In §II, we will introduce our basic assumptions and will summarize those
definitions and results that we will be using from [2]. The definition of J and the
proofs of the results indicated above occupy §III. §IV is devoted to applications of
these general theorems to the three kinds of equations.

II. Outline of coincidence theory. Throughout this paper f, g: X — Y will be
maps of a compact, connected, and locally path connected Hausdorff space X into
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a path connected semilocally simply connected Hausdorff space Y. Under these
hypotheses X is locally compact and regular so we may regard homotopies of maps
from X into Y as paths in Map (X, Y) (with the compact-open topology), and every
such path may be regarded as a homotopy [4, pp. 159-160]. We will assume that A
is a class of ordered pairs of paths in Map (X, Y) that is closed under pairwise
partitioning and multiplication, i.e., if (F, G)e A then (F}, Gi)e A for every
r, s € [0, 1]—where F(t)=F(r+t(s—r)) for each ¢t € [0, 1], and (F, G), (F', G')e A
implies (FF', GG') € A whenever (F(1), G(1))=(F'(0), G'(0)). The constant path
at a point x will be denoted by x. We assume that the constant pair (f, g) e A. If C
is a path, then [C] denotes the set of all paths that are fixed-endpoint homotopic
to C [4, p. 175]. For paths Fin Map (X, Y) and Cin X, let (F, C) be the pathin Y
defined by (F, C)> (t)=F()(C(¢))—so that, in particular, fo C={f, C). The
operation <-, -> behaves well with respect to multiplication, inversion, and fixed-
endpoint homotopy: (F, CY>XF', C'>=(FF', CC'y when (F(1), C(1))=(F'(0),
C'(0), <F,CY"1=(F~ C~1), and [(F, C)]=[KF', C')] when [F]=[F'] and
[C]=[C']. A point x € X is a coincidence of fand g iff f(x)=g(x); the set of all such
points is denoted by I'(f, g). If F and G are paths in Map (X, Y) then xe X is
F, G-related to x' € X (write x—F, G — x') iff there is a path C in X from x to x’
with [(F, C)]=[KG, C>]. If x, x' e I'(f, g) they are f, g-equivalent iff they are
f, g-related, i.e., iff there is a path C in X from x to x’ with [fo C]=[g o C]. The
f, g-equivalence is an equivalence relation on I'(f, g); the set of these equivalence
classes is denoted by I'(f, g). An F, G-relation induces a one-to-one relation from
['(F(0), G(0))into T'(F(1), G(1)),ac (F(0), G(0))is F, G-related to a’ € T'(F(1), G(1))
iff x—F, G— x’ for at least one (and hence every) xea and x’ €a’. In this
case we also write a—F, G — a’. A class a e I'(f, g) is A-essential iff whenever
(F,G)e A and (F(0), G(0))=(f, g), there is an a’ e ['(F(1), G(1)) such that
a—F,G—a'. An F, G-relation, (F, G) € A, then defines a one-to-one function
from the A-essential elements of T'(F(0), G(0)) onto those of ['(F(1), G(1)). The
number of A-essential elements of ['(f, g) is the A-Nielsen number of f and g and is
denoted by N(f, g, A). N(f, g, A) is finite and N(F(0), G(0), A)=N(F(1), G(1), A)
for every (F, G) € A.

Throughout this paper we assume that N(f, g, A)>0, choose a A-essential
a, € I'(f;, g), a coincidence x, € a,, and base the fundamental groups of X and Y at
X0 and yo=f(x,) =g(x,) respectively. These groups are denoted by =(X) and =(Y);
S, gg: 7(X) — 7(Y) are the homomorphisms induced by f and g. Two elements
o, B € n(Y) are said to be f, g-congruent (write o ~5 B if there is a y € m(X) such that
JSu(y)e=PBgu(y). The relation f, g-congruence is an equivalence relation on #(Y); the
£, g-congruence class containing « € m(Y) is denoted by oy; the set of such classes
is denoted by m(Y)/R; the number of such classes is denoted by R(f, g) and is called
the Reidemeister number of f and g. If =(Y) is abelian, then #(Y)/R is simply the
cokernel of fy—gu(m(Y)/image(fy—g4)), where (fy—g)(y)=fu(y)—guly). There
is a one-to-one function ¢: I'(f, g) — m(Y)/R defined as follows: for a € I'(f, g) let
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C be a path in X from x, to an x € a. The path (fo C)(g o C)~! represents an
element [(fo C)(g > C) 1€ n(Y) whose f, g-congruence class [(fo C)(g° C) ]
is independent of the choice of x € @ and the path C from x, to x. Let ¢(a)=
[(fo C)goC) YNrenm(Y)/R. Note that, since ¢ is one-to-one, then N(f, g, A)
SR g).

We will let A’ denote the set of all pairs (F, G) € A such that Fis a loop at fand
Gisaloop at g. If (F, G) € A’, then [{F, xo)][KG, x,>] ! € #(Y). The set of all such
elements is denoted by T(f, g, A). The set of all [{F, x,>] € #(Y) such that Fis a
loop at fin Map (X, Y) is denoted by T(f); the set of all [{H, yo>] € #(Y) such that
Hisaloopin Map (Y, Y) at the identity 1: ¥ — Y, is denoted by T(Y). We always
have T(Y)<=T(f).

A triple (f', g, A) is A-admissible if f', g': X — Y are maps, (f',g')e A, A< X,
and there is a closed set N< X with Cl A<Int N and I'(f", g') N (N— A) empty. A
function w from the A-admissible triples into an abelian group 4 is a A-index if it
satisfies the following two conditions:

1. (Additivity). If A< X, and {4;} is a finite indexed collection of subsets of A4
such that

@) (f', g, A) is A-admissible, and (f”, g/, A;) is A-admissible for each i, and

(i) (4—U: 4) N T(f', g') is empty,
then

o(f', g, 4) =2 olf', g, A).

i
2. (Homotopy). If (F, G) € A, A< X is open, and (F(¢), G(t), A) is A-admissible
for each ¢ € [0, 1], then

w(F(0), G(0), 4) = w(F(1), G(1), A).

Throughout the rest of the paper we will assume that w is a A-index with values in
an abelian group A. If ae ['(f, g), then (f, g, a) is A-admissible. Moreover,
w(F(0), G(0), a)=w(F(1), G(1),a’) whenever (F,G)e A and a—F,G—a. If
aeT(f,g) and w(f, g, a)#0 € A, then a is A-essential.

Examples of A are the following: A,(X, Y)—the class of all pairs (F, G) of
paths Fand G in Map (X, Y); Ay(X, Y, yo)—the class of all pairs (F, G) € A,(X, Y)
such that G(¢)(x)=y, for all € [0, 1] and all x € X; and Az(X)—the class of all
pairs (F, G) € A,(X, X) such that G(¢)(x)=x for all € [0, 1] and all x € X. We will
denote these classes by A;, A,, and Aj respectively. A, is appropriate for studying
coincidences of fand g when both fand g are arbitrary; A, may be used for studying
roots of the equation f(x)=y, for an arbitrary map f: X — Y; A; is for studying
fixed points of an arbitrary map f: X — X. In these three cases, we have T(f, g, A,)
=T(T(g), T(f, g A)=T(f), and T(f, g, A3)=T(f). There is a A, index w, with
values in Hom (H*(Yx Y, Yx Y— D), H*(X)) where H*(Z) is the total coho-
mology (arbitrary coefficients) ring of Z, and D is the diagonal in Y x Y. For this
index, w,(f, g, X) is the cohomology homomorphism induced by the map
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h: X —(Yx Y, Yx Y— D) defined by h(x)=(f(x), g(x)). When Y is an orientable
closed n-manifold there is a A; index A with values in H™(X). If rational co-
efficients are used, then A(f, g, X) is the Lefschetz coincidence cocycle of f and g.
If X is also a compact, orientable, closed #n-manifold, then there is a A,-index A’
with values in the integers. In this case A'(f, g, X) is the Lefschetz coincidence
number of f and g. For the class A,, we have a A,-index w, with values in
Hom (H*(Y, Y—y,), H*(X)). For this index, wy(f, g, X) is the homomorphism
induced by the composition XZ» Y<(Y, Y—y,). Any A;-index is automatically a
A, index. When X and Y are both closed, orientable n-manifolds then A'(f, g, X) is
simply the degree of f. Finally, when X is an ANR, there is a A; index w; with values
in the integers such that wy(f, g, X)=L(f), the Lefschetz number of f.

III. The lower bound. Let T(f, g, A)/R be the set of all classes 7, € #(Y)/R
with a representative in T(f, g, A). We define the Jiang number of f and g to be the
cardinality of T'(f, g, A)/R, and denote it by J(f, g, A). Our main result is the
following

THeoreM 1. J(f, g, A)SN(f, g, A).

The proof is a consequence of Propositions 1-6 and Theorem 2 below.

Under somewhat stronger hypotheses than those introduced thus far, we will
also establish the divisibility of R(f, g), N(f, g, A), and w(f, g, X) by J(f, g,4)
(Theorem 4 below).

If a, b e ['(f, g) and a—F, G — b for some (pairs of loops) (F, G) € A’, then we
say that a and b are Jiang equivalent and write a ~; b.

PROPOSITION 1. ~; is an equivalence relation on I'(f, g).

Proof. Let a, b, ce ['(f, g) and (F, G), (F’,G')e A". Then f,ge A", (F~, G )
€A, and (FF',GG')e A’. Also [2,p.20), a—f, g—a, a—F, G—b implies
b—F-', G !-—a, and a—F, G - b—F’', G’ — ¢ implies a—FF’, GG’ — ¢. Thus
a~;a,a~;bimplies b~;a,and a~; b~; cimpliesa~;c.

The Jiang equivalence class containing a € ['(f, g) is denoted by a;,. The set of all
such classes is denoted by I['(f, g)/J. From the discussion in the previous section we
easily have

PROPOSITION 2. If a, be I\(f,g) and a ~; b, then o(f, g, a)=w(f, g, b), and a is
A-essential iff b is.

We define a relation on #(Y) that is also denoted by ~; and called Jiang equiva-
lence. If «, B € m(Y) then « ~; B if there is a loop C in X at x, and a pair (F, G) € A’
such that [{F, C)>le=B[(G, C>].

PROPOSITION 3. ~; is an equivalence relation on =(y).

Proof. Since (f,g)e A’ and [{f;, xopla=a=0[{g, X,»] for all a en(Y), ~; is
reflexive. If «, B € m(Y) and [(F, C>la=B[{G, C)] for some (F, G) € A’ and some
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loop C at x,, then [(F~!, C~)B=[(F, CO] " B=¢c[{G, C>] *=a[KG 1, C~ 1]
so, since (F~1, G 1) e A’, « ~; B implies B ~; «. Similarly we use the fact that
[KF, CYIKF’', C">]1=I[KFF', CC">] to show that ~; is transitive.

The Jiang equivalence class containing « € #(Y) is denoted by «;, the set of such

classes by m(Y)/J. According to the next proposition, ~; induces an equivalence on
m(Y)/R.

PROPOSITION 4. Suppose o, ', B, B €en(Y)and a ~p o' ~; B’ ~5 B. Then « ~, B.

Proof. By hypothesis there are loops C, D, and E at x, in X and a pair (F, G)
€ A’ such that [foCle=d'[go Cl, [KF, D)le'=B'[KG, D)), and [fo E]f =
Blg ° E]. Thus [(F,EDC)le=[foEIKF, D)][fo Cle=[f° EIKF, D)le'[g-C]=
[f- EJB'[KG, D)]lg - C1=Blg ° EIKG, D>][g > C]1=BIKG, EDC3}], 50 « ~; B.

From this proposition, if « ~; B, for «, B € w(Y), then o’ ~; B’ for every o' € ap
and B’ € Bg. In this event we write « ~; B and say that o« is Jiang-equivalent to
Bg. If ap € m(Y)/R, its Jiang-equivalence class is denoted by ajy;. The set of such
equivalence classes is denoted by #(Y)/RJ. Note that for « € #(Y), the union of all
o' € ag; is simply o;.

PROPOSITION 5. T(f, g, A)/R=[yo]z;-

Proof. Suppose first that 7, € T(f, g, A)/R. Then for some pair (F, G) € A’ we
have [(F, xo>][{G, xo>]~! € 5. Now [{F, xo)1[¥o]l=([<F, xo)1KG, X001~ )G, x0)],
$0 [yo] ~; [KF, xo)1[KG, xo>]~! whence [yo]g ~; 75 Thus T(f, g, A)/R<[polrs.
Conversely, suppose [yo]z ~; « for some « € #(Y). Then there is a loop Cin X at
x, and a pair (F, G) € A’ such that [{F, C>][yo]=¢[(G, C>]. Thus «=[{F, C>]
: [<G, C>]—1= [f° C][<F’ x0>][<Ga x0>]_1[g ° C]—l, SO o ~p [<F’ x0>][<G’ x0>]—1
e T(f, g, A). Therefore oy € T(f, g, A)/R.

The following theorem establishes the connection between the structures we have

built on ['(f, g) and #(Y)/R. We refer to the one-to-one function ¢ of the previous
section,

THEOREM 2. ¢(a,)<=($(a)); for each acT\(f,g), and $(a;)=(¢(a));, when a is
A-essential.

Proof. To prove the inclusion suppose a, @’ € I'(f, g) and a ~, a’. We must show
that ¢(a) ~, ¢#(a’). Since a ~; a’, there is a path D in X froman xinatoan x' €a’
and a pair (F, G) € A’ such that [{F, D}]=[{G, D)]. Let C be a path in X from x,
to x. Then [foC]lgoC] *ed(a) and [fo CD](go CD] e d(a’). Moreover
[KF, xo)1lf o CD][g o CD]~*=[<F, CD)][g - CD]"*=[f = C][KF, D)][g > CD]*
=[f° CIKG, D)][g > CD]"*=[f° CIKG, CH]=[f> Cllg - C]"*[KG, xo)], s0
[foCD]goCD]™* ~;[foCligoC]™* and therefore ¢(a’) ~;(a). Conversely,
suppose a € ['(f, g) is A-essential, and ay ~, ¢(a) for some « € =(Y). We must show
that o € ¢(a’) for some a’ € I'(f, g). Let C be a path in X from x, to an x € a, s0
[foCllg e C] ! € ¢(a). Since ap ~; $(a) we have « ~; [fo C]lg > C]~? so there is
aloop Din X at x, and a pair (F, G) € A’ with [(F, D)]e=[f° Cl(g - C]" G, D>].
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Thus o=[CF~%, D™H][f Cllg - C17'KG, DY]=[KF™}, D7'CH]KG, C~'D)].
Now a is A-essential and is therefore F, G related to an a’ € I'(f, g). Let E be a path
from x to an x’ € a’ such that [{F, E)]=[{G, E)]. Then

[fe Dla = [fe DIKF~1,D*CO)KG, C~*D)]
= [KF™1, O)IKG, C~1D)]
= KF~1, OIKG, E)IKG, E)]7'KG, C~'D)]
= [(F1, OOIKF, EYIKG 7%, E~D]KG, C~1D)]
= [foCEl[ge E-*C~*][g~ D]
= (f> CE][g > CE]"))[g > D].

Thus e ~; [fo CE][g o CE]! € ¢(a’), s0 azp=¢(a’).

If in the definition of ¢ we let C be the constant path at x,, we see that ¢(a,)
=([fo Cllgo Cl Yr=[yolz. Now a, is A-essential; Theorem 2, therefore, gives
us ¢(ao;)=1[yolzs;. Hence, since ¢ is one-to-one, Proposition 5 yields

PROPOSITION 6. ¢(ao,)=T(f, g, A)/R and Card ay;=J(f, g, A).

From Proposition 2 it follows that a is A-essential for each a € ay;. Thus Card a,;
= N(f, g, A). Theorem 1 therefore follows from Proposition 6. We now turn to
divisibility results.

THEOREM 3. For every o € n(Y) we have Card ap;=J(f, g, A), provided that one
of the following conditions is satisfied:

1. #(Y) is abelian,

2. A=A,,

3. A=Ay, and fy(n(X)) is abelian.

Proof. Let « € #(Y) and define a function ¥': T(f, g, A) > =(Y) by ¥(7)=ra. It
suffices to show that ¥ induces a one-to-one function ¥': T(f, g, A)/R — =(Y)/R
whose image is ag;. To see that ¥ induces ¥, let 7, 7' € T(f, g, A), and suppose that
T ~5 7. We must show that ¥(7) ~; ¥(+'). Since 7 ~5 7’ there is a y € #n(X) with
Se(y)r=7'gs(y). When #(Y) is abelian (case 1), this yields fuy)¥(7)=fu(y)r
=7'gu(y)a=1"0gu(y) =¥ (") gu(y), so ¥(r) ~5 ¥('). In case 2, g4 is trivial (g is
the constant map into y,), so fu(y)¥(7)=fu(y)ra=7"gs(y)e=1"a="F(r")
=¥(")gu(x), so ¥(7) ~5 ¥(+'). Finally in case 3, fu(=(Y)) is abelian and gy is
the identity so fi(e ™ ye)¥(7)=fu(y)¥(v) =fu(y)re=7'gs(y)a=7"ya=7"0a(a" lya)=
V(') gu(e~1ya), s0 ¥(r) ~x #(='). Thus ¥ induces a function ¥: T(f, g, A)/R
— m(Y)/R defined by W(rg)=(¥(r)z. To see that ¥ is one-to-one suppose
Y¥(7) ~p ¥('), for some =, 7' € T(f, g, A). We must show that 7~j 7. Since
Y(7) ~5 ¥(7') there is a y € m(X) with fu(y)¥ ()= (7')gs(y). In case 1 we then
have fy(y) =¥ (D! =W () gu(y)a 1 =¥ (v )a"gu(y)=7'g4(y), so 7~p 7"
In case 2, gz is trivial so fu(y)r=fu(y)¥(7)e =¥ () gs(y)e =¥ ()" =1
=17'gu(y), whence 7 ~; 7. Finally, in case 3, where fy(=(X)) is abelian and g4 the
identity, fy(aya™)7=Ff()¥(1)e ! =W (7)gy(y)a™ 1 =¥ (" )ya "t =¥(r")a " (aya™")
=1'gylaya1), s0 7 ~ 7. Thus ¥ is one-to-one. To see that ¥ (T(f, g, A)/R) ;s
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it suffices to show that ¥(T'(f, g, A)) <«,. Suppose therefore that = € T(f, g, A), so
that 7=[<F, xo)][KG, x,>] ! for some (F, G) € A’. In case 1 #(Y) is abelian, and in
case 2 and 3 G is a constant homotopy so [{G, xo>]=[yo].- Thus, in any case,
[KG, xo»] commutes with «, so [{F ™!, x,)1¥(7)=[{F 1, xol[KF, xo0][KG, xo>] e
=a[{G "%, xo»]. Therefore, since (F~1, G 1) e A, ¥(z) ~; . Finally, to see that
W(T(f, g, A))> agy, suppose that o € ap, for some o € n( Y). We must show that
ap="P(+3) for some 7’ € T(f, g, A). Since af ~; az, @’ ~; e, so that there is a loop
Cin X at x, and a pair (F, G) € A’ with [{F, C)la=«'[{G, C)]. Let ' =[{F, xoy]
[KG, xop]7 %, 50 [fo CI¥()=[f CIKF, xo>][{G, x0p] = [{F, C]G, xo>] *e.
Again [{G, x,>]"! commutes with «, so [fo C]¥'(s)=[{F, CDJe[G, xop] 1=
«'[KG, CYIKG, xod] 1 =a'[g o C]. Thus, ¥(+') ~5 o, 50 ¥(75) =ct}.

An element ¢ of an abelian group G is divisible by an integer n, if £=n{ for some
{eG@.

THEOREM 4. Suppose J(f, g, A)=Card og; for every o € n(Y)—as it will if any of
the conditions of Theorem 3 are met. Then

1. J(f, g, A) divides R(f, g).

2. J(f, g, D) divides N(f, g, A).

3. J(f, g, D) divides Card {« € ['(f, g) | «(f, g, a) € A} for any subset A< A—O0.

4. J(f, g, Q) divides o(f, g, X).

Proof. Since #(Y)/RJ partitions #(Y)/R into sets «p; each with cardinality
J(f, g, A) we have R(f, g)=Card =(Y)/R=J(f, g, A)-Card #»(Y)/RJ. This proves 1.
According to Proposition 2, if a € I'(f, g) is A-essential then &’ is for every a’ € a,.
Thus {a, € I'(f, g)/J |ais A-essential} is a partition of the set of A-essential a € I'(f, g).
Since ¢ is one-to-one, Theorem 2 says that Card a,=Card ¢(a),=J(f, g, A) when-
ever a € ['(f, g) is A-essential. Thus N(f, g, A)=Card {a € I'(f, g) | ais A-essential}
=J(f, g)-Card {a, € I'(f, g)/J |a is A-essential}. This proves 2. Now suppose that
A<A—-0. Then

Card {a e I'(f, 8) | o(f, g, a) € A} = > Card{a € ['(f, g) | w(f, g, @) = &

Eed

= z Z Card {a' e a;| w(f, g, a) = &},

teA aJel'(f,9)17
so it suffices to show that Card {a’ € a;|w(f, g, a)=¢} is divisible by J(f, g, A)
whenever a e I'(f, g) and ¢ e 4, £#0. By Proposition 2, w(f,g, a)=w(f,g, a)
for every a’ €a;, hence Card {a’ € a;|w(f, g, a)=¢} is either 0 or Card a,. Of
course, 0 is divisible by J(f, g, A). In the second case w(f, g, a)=¢#0 so a is
A-essential, hence, by Theorem 2, Card a;=Card ¢(a),=J(f, g, A), which completes
the proof of 3. Finally, by additivity of » we have

w(f,8,X) = > o(f,g,a)= 2 (Card{acl(fg)|w(f,g a) = &)-¢

ael'(f,9) ted-o0

which together with 3 proves 4.
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IV. Consequences of the main theorems. In this section, we will present some
results based on Theorems 1, 3, and 4. We state the results first for the general
coincidence problem (g arbitrary, A=A,), and then give the analogous results for
fixed points and for solutions to the equation f(x)=y,.

If fu=gy: m(X) - =(Y), then for (F, G), (F’, G') € A}, [{F, xo0][G, xo>]7 1 ~¢
[KF', xo»][<G’, xop] ! means that for some loop C in X at x, we have [fo C]
I[KF', %02]KG', %0917 =[KF, %0)1KG, x6017*[g © C], s0 [KF', xp0l[KG', xo0]71 =
[f o CI7'KF, x)lKG, %0217 [g o C1=[KF, C~HIKG ™}, COI=[KF, xp][f o C 7]
-[g ° CIKG, xo>] " = [KF, xo)1KG, x0>]—1’ and so fi‘ﬁf:g# implies that J(f; & A1)
is just the cardinality of the set T(f, g, A,)=T(f)T(g). Thus, from Theorem 1

(1) If ta=gu: m(X) — w(Y), then Card T(/)T(g)SN(/, g, A)).

In other words, for any f’ homotopic to f and g’ homotopic to g, there are at
least Card T(f)T(g) solutions to the equation f'(x)=g’(x).

We now assume that #(Y) is abelian. Therefore R(f, g)=Order Coker (fx—gs).
If R(f, g) is prime and J(f, g, A;)>1, then J(f, g, A;)=R(f, g) by Theorem 4. By
Theorem 1, J(f, g, A)SN(f, g, A) S R(f, g), so

) IfJ(f, g, A1) > 1 and R(f, g) is prime, then N(f, g, A,;)=Order Coker (fx— g#).

Suppose w is a A;-index. If w(f, g, X) € 4 is divisible by only + 1, then we can
say quite a bit about the set T(f)T(g). From Theorem 4 we conclude that
J(f, g A))=1 and so 7~ 7 for all =, 7 € T(f)T(g) and in particular 7 ~;0.
Therefore

) If »(f, g, X) is divisible by only +1, then T(f)T(g)<Image (fx—gu). If, in
addition, fy=gy, then T(f)T(g)=0.

If X and Y are closed, orientable, n-manifolds, then we have the integer-valued
Aj-index X' for which XN'(f, g, X)=L(f, g), the classical Lefschetz coincidence
number of f and g. In this case, if J(f, g, A;)>1 and L(f, g) is a prime, then
J(f, g A)=|L(f, g)| by Theorem 4, so by Theorem 1,

@) If X and Y are closed, orientable, n-manifolds, J(f, g, A;)> 1, and L(f, g) is
prime, then N(f, g, &) Z|L(f, g)|-

Now let us turn to the fixed-point problem, where A=A;, Y=X is a compact
ANR, and g: X — X is the identity map. Then we have the Ag-index wg for which
wy(f, g, X)=L(f), the Lefschetz number of f. To simplify notation, write R(f) for
R(f, g), J(f) for J(f, g, A3). T(f, g, As)=T(f), which is a subgroup of #(X). Let
N(f) be the classical Nielsen number of £, i.e., the number of a € T'(f, g) such that
wy(f, g, a)#0. Assume L(f)#0, and that a, € I'(f, g) has been chosen so that
ws(f, g, ao) #0. Then by Propositions 2 and 5 N(f) = Card a,,=J(f). We also have
N(f)ZR(f). Write 1: 7(X)— =(X) for the identity isomorphism. When fx=1,
then J(f) is just the order of the group T'(f). Therefore, corresponding to (1) above,
we have

1) If fy=1: n(X) — m(X) and L(f)#0, then Order T(f) < N(f).

When f: X — X is the identity map, then L(f)=x(X), the Euler characteristic of
X. Since all fixed points of the identity map are f, g-equivalent (see §II), then
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N(f)£1. Since fy=1, then by (1'), Order T(f)=1. Thus we have a new proof of
the following result

(5) (Gottlieb [3]). If x(X)#0, then T(X) is trivial.

Barnier [1] has worked out a number of examples that show that the inequalities
J(f)SN(f)= R(f) permit the computation of N(f) for many maps for which such
computation was previously impossible. We will outline one such example; the
reader may refer to [1, pp. 83-84] for the details. The point of the example is that,
previously, the best techniques for such computations (based on the results of
Jiang [6]) required that T(f)=m(X), while in this example T(f)#=(X).

Let X be the closed orientable 2-manifold of genus 5, then #(X) is presented by
generators a;, oy, 81, B3, € and a single relation «; 8,07 187 tagBees 1Bz te?=1. It can
be proved, using [5], that there exists a map f: X — X such that fu(e;)=qf,
Silog) =f4(B1) =f(Bz) =fu(e)=1. We will assume n#1. By means of the Hurewicz
homomorphism, one finds that L(f)=1-—n#0. By [1, p. 54], T(f) is the centralizer
of o} which, by [7], is the proper subgroup of =(X) generated by «,. Direct computa-
tion proves that «f ~ «f if and only if p=¢ mod (n—1), so J(f)=|n—1|. Further-
more; if ay € #(X), then y ~j of for some k so R(f)=|n—1| also. Therefore the
inequalities tell us that N(f)=|n—1]|.

Let us assume that fy(m(X)) is abelian. If J(f)>1 and R(f) is prime, then, by
Theorem 4, J(f)=R(f) and we have:

(2) IfL(f)#0, J(f)> | and R(f) is prime, then N(f)=R(f).

Since 1 =J(f) <|L(f)| by Theorem 4, then |L(f)| =1 implies that all elements of
T(f) are f, g-congruent, which proves

(3) If |L(N)|=1, then T(f)sh(n(X)), where h:n(X)—>n(X) is defined by
h(e)=fu(e)a 2.

By Theorem 4, J(f) divides L(f), so we have our final result concerning fixed
points.

@) If J(f)>1 and L(f) is prime, then |L(f)| S N(f).

We now turn briefly to the class A, where N(f, g, A,) is a lower bound for the
number of solutions to f(x)=y, g is the constant map of X to y, and
T(f, & A)=T(f).

By Theorem 3, we may apply the conclusions of Theorem 4 without further
restrictions on f, X, or Y. The analogues of (1)-(4) hold by essentially the same
arguments used above, so we just list them here.

(1") If f4=0, then Order T(f) S N(f, g, A,).

2") IfJ(f, g, A;)>1 and R(f, g) is prime then N(f, g, A)=R(f, g).

(3") If wy(f, g, X) is divisible only by + 1, then T(f)<fy(=(X)).

(4") If both X and Y are closed, orientable, n-manifolds, J(f, g, A;)> 1, and the
degree of f is prime, then |deg (f)| S N(f, g, A,).

One might well ask whether, for actual spaces and maps, it is possible to obtain
enough information to apply the results of this section. The computation of
Mf, g X), X(f, 8 X), wi(f, g X), and wy(f, g, X) is straightforward from a
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knowledge of the cohomology homomorphisms induced by f and g. In the re-
maining case, where A=A, and Y is not a manifold, nothing is known. For
R(f, g), the computation problem is purely algebraic. The extent of the difficulty
depends upon how complicated =(Y) is. The complete determination of 7T'(f, g, A)
seems quite difficult. Fortunately, (2) and (4) only require that we find a single
element in T(f, g, A) that is not Reidemeister equivalent to the unit; the results of
[1] suggest that this is a much easier problem. For the application of (1), we can
only observe that the identification of any nontrivial subset of T'(f, g, A) will
produce a nontrivial lower bound for the number of solutions of f(x)=g(x).
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