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1. Introduction. Given a sequence of positive numbers Ax, A2,..., let F(An)

be the set of functions/= 2 anz" analytic in the disc D = {z : \z\ < 1} such that

(i) /<k) has a continuous extension to D~ for k = 0, 1,...,

(ii) {anAn} is a bounded sequence.

We call F(An) quasi-analytic if feF(An) and /*>(1)=0 (k=0,\,...) together

imply that/=0. The main purpose of this paper is to give a necessary and sufficient

condition on the sequence {An} for F(An) to be quasi-analytic (Theorem 3.4) and

to extend the results to functions analytic in the half-plane and functions of

several variables.

In §2 we prove a quasi-analytic theorem on a related class of functions. This

theorem is stated without proof by B. I. Korenbljum in [3] and [4]. §3 is devoted

to the main Theorem 3.4: If log An is convex in log «, then F(An) is quasi-analytic

if and only if 2? «~3,z log An diverges. Half of Theorem 3.4 is proven by a slightly

different method in [2, p. 331]. There Carleson shows that if log An is convex in

log « and 2? n~312 log An diverges then functions in F(An) can have only finitely

many zeros. The first step of his proof reduces this problem to showing that F(An)

must be quasi-analytic.

In §4 we give a half-plane analogue of Theorem 3.4 by looking at functions of the

form f(z)=$o f(t)eitz dt, where /(/) is a measurable function and f(t)A(t) is

bounded. In §5 we give one possible analogue of Theorem 3.4 to functions of

several variables. This result is obtained by applying the one variable theorem.

2. Functions with bounded derivatives. Since we make use of the following

computation throughout this paper, we state it here in the form of a lemma.

Lemma 2.1. Suppose that f is analytic in the unit disc D, f{k) has a continuous

extension to D~ and f(k)(l) = 0 for k = 0, I,...,«— 1. Then for k = 0, 1,...,«— 1

and z0 in D~,

f(k^) = (w_l_i)i [° (zo-zT-*-1^) dz.

Proof. Write fik)(z0)=$l°fik+1)(z) dz and integrate by parts.
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Given a sequence {Mn} of positive numbers, let C(AZn) be the set of functions /

analytic in the disc D = {z : \z\ < 1} such that for «=0, 1,...,

(i) fM has a continuous extension to D~ ;

(ii) \fin)(z)\ ¿BMn in D for some number B=B(f).

The class C(Mn) is said to be quasi-analytic if fe C(Mn) and /<n)(l)=0 (n=0, 1,

...) together imply that/=0.

Theorem 2.2 (Korenbljum). Let T(r) = sup„¿0r"Mñ1. The class C(Mn) is

quasi-analytic if and only i/{" r~312 log T(r) dr diverges.

Proof. Suppose that the integral converges. Then by Theorem 3 of [3] there is a

function F(w)^0 analytic in the right half-plane H such that FCn) has a continuous

extension to H~, \Fin\w)\^Mn in H and F(n)(0) = 0 for n = 0, 1,.... Let/(z) =

F(l -z). Then/is in C(Mn) and/<n)(l) = 0 for n = 0, 1,... ; but/^0. Hence C(Mn)

is not quasi-analytic.

Conversely, suppose that the integral diverges and/is a function in C(Mn) such

that/(n)(l) = 0, n = 0, 1,.... Computing the derivatives of F(w) =/((l -w)/(l + w))

gives an expression of the form

F™(w) = | aUl+w)-in+T°(\^-)

where the ank are real numbers. Differentiating this expression and comparing

coefficients, we obtain the formula

fln+ifc = -(n+k)ank-2ank_x,

ûnO  — ann+l  =  0, |flnn|   = 2".

Using the binomial expansion

(„+1)2<n + l-W = M2(n+1-/c)+2(n+1_^„2(n+l-W-l+...;

an induction argument on n shows that \ank\ ̂ 2nn2<n"k)j(n — k)I. ¥ork — Q,..., n—1

we have

/(W(zo) = {n_l_l}l J"° (Zo-zT-k-Vw(z) dz,

by Lemma 2.1. Hence

l/<W(zo)l ̂  („_!_!), 2n~kBMn.

And

\f™m\ < y_—_I n4l~w\ I

n-1 „2(n-W nn-fc
<    >   2n —--- RM +2nBM
= ¿I     («-*)! (»-Jfc-1)!B n"
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Now the first term is bounded by

V*1 „2(1-k) »=a „2/C + 2

4nBMn y jj—!-.—^-7=2 = 4nBMn > -£rKr

So we conclude that

|F(n)(w)| ¿ 4nFA/n«2 2 (in)   = 4nBMnn2(en)2.

Again referring to Theorem 3 of [3] we conclude that F=0 and hence /=0.

We define a class of functions similar to C(Mn) as follows. If/ is analytic in D

and has a continuous extension to D~, denote the boundary values hyf(9)=f(ew).

Let C(Mn) be the set of functions analytic on D such that for each « = 0, 1,...,

(i) /<n) has a continuous extension to D' ;

(ii) |/<»>(0)|¿FM„on[O,27r].

The class C(Mn) is said to be quasi-analytic iffe C(Mn) andf(n)(0) = 0 (« = 0,1,... )

together imply that/=0. Estimates similar to those in the proof of Theorem 2.2

show that C(Mn) is quasi-analytic if and only if C(Mn) is.

3. Functions with small Taylor coefficients. Mandelbrojt [6] has shown that if

g(e) = I-oo anein0 is infinitely differentiable, {anAw}1 ¿ is bounded, and g(n>(0) = 0

(«=0, 1,...), then a necessary and sufficient condition to conclude that g=0 is

that 2"=i n~2 log An = co. The main theorem of this section, Theorem 3.4, says

that if g(0) comes from the boundary values of an analytic function, then the

appropriate condition is that 2£°=i n~312 log ^4n = co. Thus by making an additional

assumption on the functions, we can relax the condition on the sequence {An}.

The methods we use are much the same as the methods Mandelbrojt uses.

In this section, Au A2,... will be a sequence of positive numbers such that

log An is convex in log «, i.e.

= log/tn+1-log^n

n      log (« + 1)-log«

is a nondecreasing sequence. We let F(An) be the set of functions f(z) = 2™= 0 ̂ kz>c

analytic in D such that fin)(z) has a continuous extension to D~ (« = 0,1,...)

and such that {Akak} is bounded. We call F(An) quasi-analytic if fe F(An) and

/<n)(l) = 0 (« = 0, 1,...) together imply that/=0.

We begin by proving some properties of the sequence {An}.

Lemma 3.1. If limn^x sn = oo, then for each nonnegative integer k, {nkAñx} is a

bounded sequence.

Proof. Fix k and choose «0 so that sno ̂  k. Then for « ä «0,

log An+ j - log An = 5n(log (n +1) - log «)

è ¿(log («+1)-log«).

Hence nkAñ1 ̂  (« + l)kAñ+i ; and nkAñ1 is nonincreasing for n ̂  «0.
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This lemma allows us to state the following proposition which is crucial in

relating F(An) to a class of functions of the type C(Mn).

Proposition 3.2. Suppose that sn^0 an<Z limn^œ ín = oo. Let c(n) = supk¿x knAkx

and let d(t) = supn ¡ x t nc(n) ~1. Then for n = 1, 2,..., d(n) úAn-¿. nd(n). Furthermore,

given n0, there exists a number tno such that for í^í„0, d(t) = supnÉno í"c(n)_1.

Proof. By the previous lemma c(n) is finite, so that the definition of d(t) is

meaningful. For fixed n and for each k, An^nkc(k)~l. Hence An^d(n).

To prove the second inequality, fix n and let k he the integer such that k^sn

<k+1. An argument similar to the proof of Lemma 3.1 shows that forjan,

jkAjx Ú nkA~^ < nk + 1A-\

While, for l£j<n,

\ogAJ+x-logAj = jXlog(7+l)-log7')

<(Ar+l)(log(7+l)-log7).

So that
jk + 1A[1 < (j+\)k + 1A~+\ ú nk + 1Añ\

We therefore have c(k) = sup,iXjkAj1^nk + 1A^\ So that An^nk + xc(k)~l ánd(n).

Finally, given n0 choose i„0 ̂  1 so that tnoc(n) > c(n0) for each n less than n0.

Now fix I ä íno. For n < n0,

tnoc(n) ^ tn + 1c(n) ¡> tntnoc(n) > tnc(n0).

Thus í noc(n0) -1 > t nc(n) "1. And hence for í ^ ino,

d(t) = supinc(«)_1 =  sup tnc(n)-x.

Before proving the main theorem of this section, we prove the following special

case which contains the crux of the argument.

Theorem 3.3. Suppose that sn^0 and lim,,,,,*, j„ = co. Then a necessary and

sufficient condition for F(An) to be quasi-analytic is that

(1) ¿n-3'2log^

diverge.

Proof. Sufficiency. We first show that F(An) is contained in C(Mn) where

M„ = c(n+2). Suppose/is in F(An). Then f(z) = 2". 0 anzn where \an\^BA^ for

some constant B. Now/(0) = 2"=o aneine. So for k-l, 2,...,

\f™m = 2 ak(in)ke™   Ú % \an\nk

oo cu

Ú 2 n~2nk + 2BA-1 ̂  Bc(k + 2) 2 »'

Hence/e ¿"(A/J where Afn = c(n + 2).
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Therefore it is enough to show that the divergence of (1) implies that C(Mn) is

quasi-analytic, i.e. that J™ r'312 log T(r) diverges. Now

T(r) = suprkc(k + 2)~1 = r~2 sup rk + 2c(k + 2).

So for r^t2, T(r) = r~2 d(r). By Proposition 3.2 the divergence of (1) is equivalent

to the divergence of 2? n~312 log d(n) and hence to the divergence of

j" r~312 log T(r).

Necessity. Let M0 = l and Mk = c(k-1) for k = 1, 2,_We first show that the

convergence of (1) implies that C(Mn) is not quasi-analytic. Let T(r) = supfc È 0 rkMk^.

Then for r^Mj,

T(r) = supr^Mfc1 = r sup rk-1c(k-iy1 = rd(r).
kèO kël

By an argument similar to the above, the convergence of the series (1) implies that

r°° r-3/2 i0g y^-j converges and therefore C(Mn) is not quasi-analytic.

Hence there is a function/in C(Mn) such that/(n)(0)=0 (« = 0, 1,...) but/^0.

The proof of the theorem will be complete if we show that/is also in F(An). Fix

« ^ 1. Integrating by parts we find that

i      i"2a 1      f2it / ]\k

a» = lL me~inede—=ih f(kHrn) e~in9de-

And

/l\fc      F   1 B
\an\ < BMk{-\   i"~S-f
1 n| -        k\n)       « ¿(«)      An

Therefore {|an|/in} is bounded and/is in F(An).

Theorem 3.3 can be improved to give the main result of this section.

Theorem 3.4. If log An is a convex sequence in log «, then a necessary and sufficient

condition for F(An) to be quasi-analytic is that

co

(1) ^n-3'2logAn
n = l

diverge.

Proof. First suppose that lim,,..» 5n = co. If 5n^0 («=1,2,...), then Theorem

3.3 applies. If not, then since limn_oo 5n = oo, there is an integer «0 such that 5„ïï0

for all « ̂  «0. Let

In = Ano   if n ¿ «o,

= An     if « ^ n0.

Then

5n = 0      if « < «o,

= 5n      if «  ^ «o»
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where

= log In + X-logÂn

n     log(n+l)-logn'

Hence log An is convex in log n, sn^0 and lim,!..«, s„ = oo. So Theorem 3.3 applies

to F(An). But F(An) = F(An) and 2f «~3/2 log An diverges if and only if (1) diverges.

Hence the theorem is true whenever limn-,«, sn = co.

Now suppose that it is not the case that lim,,.,«, ín = oo. Then, since {in} is a

nondecreasing sequence, we must have sn^b for some number b. In this case we

show (1) converges and F(An) is not quasi-analytic. Since

log/ln+1-log/in = jB(log(« + l)-logn)

^ ¿(log(n+l)-logn),

we have

^lS A(-i)' s,..l(Ä)'(»±i)'s...s.l(„+1,.

And

oo

2«~3/2iogv4n ^ 2n~3,2o°s^i+* i°g") < c°-
1 1

To show F(An) is not quasi-analytic we exhibit a non-quasi-analytic class F(An)

which is contained in F(An). Let Ä~n = Axnbloen. Since ^„^^n6^.?,, for n^3,

F(An) is contained in F(^4n). And since

= l08^1"1"8^ = ¿>(log(n + l) + logn),
log(n+l)-logn

we may apply Theorem 3.3 to F(An). But

CO 00

2 «~3'2 log An = 2 «"3,2(log /4i + ¿(log «)2) < ».
i i

So F(An) is not quasi-analytic.

A number of comments on Theorem 3.4 should be made. The first is that if the

series (1) diverges, then any function f(z) = 2? okzk, such that {akAk} is bounded,

is already in F(An), i.e. f<n)(z) has a continuous extension to D~ for n=0, 1,....

For as we have seen, the divergence of (1) implies that lim,,^ í„ = qo. Thus, by

Lemma 3.1, {nk + 2A;x} is bounded for each k. Hence fik)(z) = 2™= k ¿V" "kn !/(n - k) !

converges uniformly on D~, since

ÇP^|a»| ú nk\an\ Ú n~2nk + 2BA^ Ú n~2Bx.

Secondly, one might want to study the classes Fp(An) (0<p<cd), where F"(An)

is the set of functions/(z) = 2? akzk analytic in D such that/(n) has a continuous
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extension to D~ («=0, 1,...) and 2? \ak\pAk<oo. The following theorem shows,

however, that the problem reduces to considering F(An).

Theorem 3.5. F(«2/^/p)cFp04n)cFL4i/p); and hence Fp(An) is quasi-analytic

if and only if (I) diverges.

The proof of this theorem is straightforward and is left to the reader.

4. An analogue in the half-plane. The class F(An) has a "continuous analogue"

in the following sense. Given a real-valued function A(t) defined on the open

interval (0, co), let F(A(t)) he the set of all functions /analytic in the upper half-

plane H={z : Im (z)>0} such that

(i) /<n) has a continuous extension to H~ («=0, 1,...),

(ii) /is of the form /(z)=J™ eiuf(t) dt, where f(t) is a measurable function and

\f(t)\A(t) is bounded.

We call F(A(t)) quasi-analytic iffe F(A(t)) and/<n)(0)=0 (n = 0, 1,...) together

imply/=0.

Thus, looking at the boundary values of functions in F(A(t)) and F(An), functions

in F(A(t)) have Fourier transforms which vanish on the negative real line and go

rapidly to zero on the positive real line, while the negative Fourier coefficients of

functions in F(An) vanish and the positive Fourier coefficients go rapidly to zero.

We restrict our attention to functions A(t) for which log A(t) is a convex

function of log t, A(t) is bounded below by 1, and A(t) is bounded on the interval

(0, 1]. Such a function has the following properties:

(i) For t0<t1<t2,

log A(h) - log A(t0) ^ log^(f2)-log^(?0)

log ?! - log t0      =       log t2 - log t0

^ log A(t2)-log A(h)

l0gí2-l0gÍ!

(ii) For « > 0,

log^(f + «)-log/f(Q
JKf,n) log(t + h)-logt

is a decreasing function of h.

(iii) 5(?) = limft_0+ /(;; h) exists and is a nondecreasing function of t.

(iv) For t < t0,

logA(t0)-logA(t)

log/o-log?       = S{to)-

Properties (i) and (ii) are statements about slopes of chords of the graph of

log A(t) vs. log t and are clear when viewed geometrically. The function s(t)

measures the slope of the graph at (log t, log A(t)). The corresponding properties

for convex functions are known [3, §3.18], so we omit a proof of the above

properties.
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Lemma 4.1. If limt^œ s(t) = co, then for each nonnegative integer k, tkA(t) 1 is

bounded.

Proposition 4.2. Supposes(t)^0 andlim^œ s(t) = oo. Let c(n) = sup¡ixtnA(t)~1

and í/(í) = supBÈ0 ínc(n)_1. Then for f£l, d(t)^A(t)St d(t). Furthermore, given n0

there exists a number t%0 such that for t^tno, d(t) = supBÈno tnc(n)~1.

The proofs of the lemma and proposition follow the corresponding proofs given

in the previous section. It is interesting to note that if we let c(r) = sup(È1 iM(í)-1

(0^r<oo) and d(t) = supr±0 trc(r)-\ then d(t) = A(t).

Theorem 4.3. Suppose that s(t)^0 and lim^,*, s(i) = oo. Then a necessary and

sufficient condition for F(A(t)) to be quasi-analytic is that

(2) r t~312 log A(t)dt

diverge.

Proof. Sufficiency. Suppose that / is in F(A(t)) and/<n>(0) = 0, 1,.... Since

tn + 2A(t)~1^c(n+2) for 1^1, the integral

/<«)(z) = r (itfeiUf(t)dt
Jo

converges uniformly for Im (z) ^ 0. In fact,

|/(n)(z)| ú i" tnBA(t)~xdt

(3) g B+r t~2tn+2BA(t)-1dt

^ B + Bc(n + 2) f    t'2dt

for n=0, 1, — If we let

T(r) = suprnc(n + 2)"1 - r"2 sup rn + 2c(n + 2)"1,
n62

then T(r) = r~2 d(r)^r'3A(r) for r~èt2. Hence the divergence of (2) implies that

J" i-3/2 log T(r) dr diverges. Hence by Theorem 3 of [3],/=0.

Necessity. Let Af0 = l and Mn = e~nc(n-l), «=1,2,— As in the proof of

Theorem 3.3, the convergence of (2) implies that ¡x r'312 log T(r) dr diverges,

where F(F) = supng0 rnM~1. Hence by Theorem 3 of [3] there is a function/^0

analytic in the upper half-plane H such that/(n) has a continuous extension to H~,

|/<n)| ̂ Mn and /(n)(0)=0 for n = 0, 1,.... Let g(z) = (z+i)-2/(z) then g has the

same properties as/ The proof will be complete if we show that g is in F(A(t)).

e\z)= 2 CB,J-<«-»(z)(z + ,)-<2 + «(-lr-(A:+l)!.
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By Lemma 2.1

/(n_W(z) = (khy. ¡I C*-*)*"1/"^) dw.

Hence

l/(n-w(z)l ^ 7¿y] zkBM»>       k = !> 2.

And

", 1
Z, c-.k TTTTTTf lzr5M*:(*-D!

|z + i|-(2+w(Ä:+l)!].Wn\z)\ ¿cn>0|/(n^)lk+''|-2+

Since the second term is less than

2 Cn,kBMn\z + i\-2(k+l)k,

we have

|g(n)(z)| ¿ F^Mnlz + zl"2.

In particular, g is in the class H2 of the upper half-plane. Therefore by the Paley-

Wiener theorem, the Fourier transform g(t) vanishes for t < 0. For t > 0,

2tt¿(/) = f      e~itxg(x) dx = [     (-it)-nginKx)eitx dx.
J — 00 J - 00

|2tt#(0| ¿ t'nBenMn i"   |x + /|-2¿;c.
J - 00

So that

g(t) ¿ B1 inf t-nenMn = FV"1 inf ?-"c(«)
nSl nSO

Hence for /^l,

#(0

¿ Fjí-^O)-1 ¿ F2^(0_1.

Andfor0<r<l,

|g(í)| ¿ B1M0 ¿ F^O)-1,

since A(t) is bounded on the interval (0, 1). Thus g is in F(A(t)).

As before, we immediately improve Theorem 4.3 to obtain the main result.

Theorem 4.4. Suppose that A(t) is defined and bounded below by 1 on the interval

[0, co). Suppose further that A(t) is bounded on (0, 1) a«¿ that log A(t) is a convex

function of log /. Then a necessary and sufficient condition for F(A(t)) to be quasi-

analytic is that

(2) í°°í-3'2log^(0¿í

diverge.
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Proof. If lim^oo s(/) = co, the proof proceeds as in the previous section. If not,

then let a = sup0StSe A(t) and choose b so that b^s(t) for all t. Let

2(f) = atbloet   for t ^ e,

= ae" for t ^ e.

Then as in the previous section F(A(t)) is contained in F(A(t)) and F(^4(0) is not

quasi-analytic. Hence F(A(t)) is not quasi-analytic. On the other hand (2) converges.

We again observe that if (2) diverges, then any function / analytic in the upper

half-plane H and of the form /(z)=J™ f(t)eitz dt where f(t)A(t) is bounded, is

already in F(A(t)). For the divergence of (2) implies that lim^o, s(0 = oo and hence

(3) shows that

fin)(z) = P f(t)(itye^ dt

converges uniformly on H~. Hence/(n)(z) has a continuous extension to H~.

5. Functions of several variables. Since we will be working in the space of n

complex variables Cn, we wish to make use of multi-indices of nonnegative

integers m = (mx,..., mn). If m and / are multi-indices, r is an «-tuple of real or

complex numbers, and a and b are real numbers, then

|m| = mx+m2+ ■ ■ ■ +mn;

m + a = (mx+a, m2 + a,..., mn + a);

n

rm = \~[rp;

n

(m + af = ~[~[ (mj + af;   and

m ^ / means m¡ ^ ljt j = 1,2,..., n.

We also make use of the following notation: if/is a function of r = (rx,..., r„),

then

fl|m|
fCn)(r\ - -Ï- f(r)
J    KJ      8r^---8r^jyrh

and

jf(r)dr = jf(r)dridr2---drn.

Theorem 5.1. Suppose that /=2m ¿V" is analytic in the poly disc

D = {zeCn: \z,\ < l;j = 1_n},

that {2imi=/c \am\2Y'2 = Ak for z in D (k = 0, 1,...), and that for each multi-index m

(i) /(m) has a continuous extension to D~ ;

(ii)/<""(!,..., 1)=0.
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Then a necessary and sufficient condition to conclude that /=0 is that

(4) %k~3>2logAk
fc=i

diverge.

The following two lemmas contain some of the computations used repeatedly

in the proof of Theorem 5.1.

Lemma 5.2. If ¿i\m\ik'Zi¿m x(m, I) is a convergent series of nonnegative terms,

then

2    2 *(w' OS   II x(m, I).
\Häk    m~ë,l \m\ik ¡Sm

Proof.

2 2 <m> o = 2   2   <m> o
|I| = fc    mil m    \l\-k,l£m

=   2        2      ̂ .OS   I   I  x(m, I).
\m\ik    \l\ = k,l£m \m\ik Urn

Lemma 5.3. IfE\mi=j \am\2^Af2 (j= 1, 2,...) and (4) diverges, then for k=l, 2,

... and b^ 1/n

2    2   \am\2(m + iy Ú cknb+2Ak2
i = k  \m\ = i

for some constant c.

Proof. If |«i|=/äl, («í-rT)1,n¿ (/+«)/« by the inequality of the arithmetic and

geometric means. Hence (m+l)bfí(j¡n+l)nbíí(2j)nb and

2   |am|2(«z + l)b¿(2/r  2   \am\2ú(2jTAj2.
\m\=i \m\=i

Thus it suffices to prove that

2 Jn"Ar2 è cknb + 2Ak2       (k = I, 2,...).
i = k

Since (4) diverges, it follows that lim*..,«, 5^ = 00 (as in the proof of Theorem 3.4).

Hence there exists an integer k0 ̂  1 such that for k ä k0, sk ̂  \nb +1. So for j>k ^ k0,

log^-log^

logy-log k

And AkAj-1¿(kj-1)(nb + 2yi2. So that

co / 00 \

2 jnbAf2 = Ak2iknb +   2   A2kAj2jA
j=k \ j=k+l I

¿ Ak2knb+2J^ j~2.
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This proves the lemma for k ^ k0. By choosing c large enough we see that the lemma

is true for k ä 1.

Proof of Theorem 5.1. First suppose that (4) converges. Then by Theorem 3.4

there is a function g(w) ̂  0 of one complex variable such that g is in F(Ak) and

g(k)(l) = 0 for k = 0, 1,.... Let f(z)=g(zx) for z = (zu ..., zn) in the polydisc D.

Then {2imi=k \am\2}m^Ak for z in D (k = 0, 1,...) and/satisfies (i) and (ii) but

/^0.
Now suppose that (4) diverges. We wish to show that/=0. Notice that since/is

analytic in each variable separately, it is enough to show that/(/•) = 0 for all

r=(fx,..., rn) with 0<rf<l,j—l,..., n. Fix such an r and define a function of

one complex variable by

<p(w) = ((l-r^w + r,,..., (l-rn)w + rn).

Then <f> maps the open unit disc into D (and the closed unit disc into D~), <f>(l)

= (l,..., l)and<f>(0)=r. Let

g(w) = f(<f,(w)) = 2 bkwk.
k = 0

Then g is analytic in the open unit disc,

g(kw = 2 fmxm)rm
\m\ = k

has a continuous extension to D~ and gw(l)=0 for k=0, 1,.... We will show

later that \bk\ ̂ ckn+1Ak1 for k = 0, 1,.... Assuming that this has been done, we

let Ak = Akk~in + 1\ ¿=1,2,_Then {bkAk} is bounded and g is in F(Ak). Now

log Ak = logAk — («+1) log k is convex in log A: and J,k = i k~3l2logAk diverges

since (4) diverges. It follows that F(Ak) is quasi-analytic and g = 0. In particular

f(r)=f(<p(0))=g(0) = 0.
Thus it suffices to show that \bk\ ■¿ckn + 1Ak1. To simplify notation, let

n

x(l,m) = Y\Cmi,ll(l-riy>rfrU.

Notice that 2ism x(l, m) = l. Furthermore

*(ho = 2a- 2 *c> m>w = 22 «»*('. «v1

00

= 222 "mx(l,m)wk.
fc = 0 |l| = fc mSl

Thus we conclude that

b* =   2 2 fl^(A >")•
|l| = fc mil

Finally

r 11/2 f ^-^   x— 11/2

N=    2   2 x(l,m)(m + l)-2\      2   2  KIM/^X^ + l)2^   •
l|J| = k mil J       ll¡l = k mè! J
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So by Lemma 5.2

1/2 (    _      _ "N 1/2

N=i   2   2 x(l,m)(m+\)-2\   {   2   2   \am\2x(l,m)(m + \)

f 1 1/2 ( ~\ 1/2

=      2   <™+l)-2 2   K\2(m+l)2\

= ̂ 2 2 ki>+d2
U=k   |m| = i

And by Lemma 5.3

\bk\ á c^2"*8^8}1'2 = cxkn+1Ak1.

We conclude this paper by observing that, as in the one variable case, if f(z)

= 2mamzmis analytic in D, 2|mi-* |am|2^fc2 (k=l, 2,...) and (4) diverges, then

fm already has a continuous extension to D~ for all /. To see this

(5) r(z) = 2 -amzm-'
kid"-iv. m

and

ml2      m ' x~*
n6i(^Ö!K|-?|aJ(W+iy

which is finite by computations similar to those above. Thus (5) converges uniformly

on D-.
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