ANALYTIC FUNCTIONS WITH QUASI-ANALYTIC
BOUNDARY VALUES()

BY
WILLIAM A. GROENING

1. Introduction. Given a sequence of positive numbers A4,, 4,, ..., let F(A4,)
be the set of functions f=> a,z" analytic in the disc D={z : |Z| <1} such that

(i) f® has a continuous extension to D~ for k=0, 1,...,

(ii) {a,A4,} is a bounded sequence.

We call F(A4,) quasi-analytic if fe F(A,) and f®(1)=0 (k=0, 1,...) together
imply that f=0. The main purpose of this paper is to give a necessary and sufficient
condition on the sequence {A4,} for F(4,) to be quasi-analytic (Theorem 3.4) and
to extend the results to functions analytic in the half-plane and functions of
several variables.

In §2 we prove a quasi-analytic theorem on a related class of functions. This
theorem is stated without proof by B. I. Korenbljum in [3] and [4]. §3 is devoted
to the main Theorem 3.4: If log A4, is convex in log n, then F(A,) is quasi-analytic
if and only if > n=%2 log A4, diverges. Half of Theorem 3.4 is proven by a slightly
different method in [2, p. 331]. There Carleson shows that if log 4, is convex in
logn and 3§ n=%2log A, diverges then functions in F(A4,) can have only finitely
many zeros. The first step of his proof reduces this problem to showing that F(4,)
must be quasi-analytic.

In §4 we give a half-plane analogue of Theorem 3.4 by looking at functions of the
form f(z)=[g f(t)e"* dt, where f(t) is a measurable function and f(r)4(¢) is
bounded. In §5 we give one possible analogue of Theorem 3.4 to functions of
several variables. This result is obtained by applying the one variable theorem.

2. Functions with bounded derivatives. Since we make use of the following
computation throughout this paper, we state it here in the form of a lemma.

LeMMA 2.1. Suppose that f is analytic in the unit disc D, f* has a continuous
extension to D~ and f®(1)=0 for k=0,1,...,n—1. Then for k=0,1,...,n—1
and zy in D™,

l 2,
1) = G |, o= ) de.
Proof. Write f®(z,)= [ f%*1(z) dz and integrate by parts.
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Given a sequence {M,} of positive numbers, let C(M,,) be the set of functions f
analytic in the disc D={z : |z| <1} such that for n=0, 1,...,
(i) f™ has a continuous extension to D~ ;
(i) |f™(z)| £BM, in D for some number B=B(f).
The class C(M,) is said to be quasi-analytic if fe C(M,) and f™(1)=0 (n=0, 1,
..) together imply that f=0.

THEOREM 2.2 (KORENBLIUM). Let T(r)=supn»or"My; . The class C(M,
quasi-analytic if and only if [T r=3/2 log T(r) dr diverges.

Proof. Suppose that the integral converges. Then by Theorem 3 of [3] there is a
function F(w)#0 analytic in the right half-plane H such that F™ has a continuous
extension to H-, |[F™(w)|£M, in H and F™(0)=0 for n=0, 1,.... Let f(z)=
F(1-2z). Then fis in C(M,) and f™(1)=0 for n=0, 1,...; but f#0. Hence C(M,)
is not quasi-analytic.

Conversely, suppose that the integral diverges and fis a function in C(M,,) such
that f™(1)=0, n=0, 1, .... Computing the derivatives of F(w)=f((1—w)/(1+w))
gives an expression of the form

F®(w) = Z an(1+w)" (n+k>f<k>( w)

= 1+w

where the a,, are real numbers. Differentiating this expression and comparing
coefficients, we obtain the formula

Api1e = —(M+K)ay—2a,,-,,
Qno = Qppy1 = 0, |annl = 2"
Using the binomial expansion

(n+1)2(n+1—k) = n2(n+1—k)+2(n+l_k)nz(n+1—k)—1+. o,

an induction argument on n shows that |a,| £2"n*"~®/(n—k)!. Fork=0,...,n—1
we have

1) = Gy | G @

by Lemma 2.1. Hence

1
[f¥(z0)| = k=112 *BM,.
ank

1—w
f®
l-l—w]"*" (l+w)\

nz(n k) m- k

%) n—k—1)!

And

| F(n)( w)l

IIA

BM,+2"BM,,.

IA

3 M.- HM:
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Now the first term is bounded by

p2n=k n=2 p2k+2

n—1
4"BM, kzl =D ~ 4"BM, go ik

So we conclude that

m n 2 % (M)? n 2( )2
|F®(w)| < 4"BM,n kZO (/ﬁ) < 4 BM, (e,
Again referring to Theorem 3 of [3] we conclude that F=0 and hence f=0.

We define a class of functions similar to C(M,) as follows. If fis analytic in D
and has a continuous extension to D -, denote the boundary values by f(8) =f(e*).
Let C(M,) be the set of functions analytic on D such that for each n=0, 1,.. .,

(i) f™ has a continuous extension to D~ ;

(i) |f™(6)| < BM, on [0, 2a].

The class C(M,,) is said to be quasi-analytic if fe C(M,) and f»(0)=0(n=0, 1,...)
together imply that f=0. Estimates similar to those in the proof of Theorem 2.2
show that C(M,) is quasi-analytic if and only if C(M,) is.

3. Functions with small Taylor coefficients. Mandelbrojt [6] has shown that if
g(0)=22, a,e™ is infinitely differentiable, {a,4,,}*» is bounded, and g™(0)=0
(n=0,1,...), then a necessary and sufficient condition to conclude that g=0 is
that >2_;, n~2log A,=00. The main theorem of this section, Theorem 3.4, says
that if g(6) comes from the boundary values of an analytic function, then the
appropriate condition is that >*_, n~%2 log 4, =o00. Thus by making an additional
assumption on the functions, we can relax the condition on the sequence {4,}.
The methods we use are much the same as the methods Mandelbrojt uses.

In this section, A4, A,,... will be a sequence of positive numbers such that
log A, is convex in log n, i.e.

_ log 4,1 —log 4,
log (n+1)—logn

Sn

is a nondecreasing sequence. We let F(A4,) be the set of functions f(z)=>7_o a,z*
analytic in D such that f™(z) has a continuous extension to D~ (n=0,1,...)
and such that {4,a,} is bounded. We call F(4,) quasi-analytic if fe F(4,) and
f™1)=0 (=0, 1,...) together imply that f=0.

We begin by proving some properties of the sequence {4,}.

LemMma 3.1, If lim,_,, s,=00, then for each nonnegative integer k, {n*A;*} is a
bounded sequence.

Proof. Fix k and choose n, so that s,, 2 k. Then for n=n,,

log A,,1—log A, = s,(log (n+1)—1logn)
Z k(log (n+1)—log n).

Hence n*A4;*2(n+1)*4;},; and n*4; ! is nonincreasing for n=n,.
n +1 n
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This lemma allows us to state the following proposition which is crucial in
relating F(4,) to a class of functions of the type C(M,,).

PROPOSITION 3.2. Suppose that 5,20 and lim, _, ,, s,=00. Let c(n)=sup;», k"A;?*
and let d(t)=sup,, t"c(n)~*. Then for n=1,2, ..., d(n)< A, <nd(n). Furthermore,
given ny, there exists a number t,, such that for tZ t,,, d(t)=sup,zn, t"c(n) 1.

Proof. By the previous lemma c(n) is finite, so that the definition of d(z) is
meaningful. For fixed n and for each k, A, =n*c(k)~*. Hence 4,2 d(n).

To prove the second inequality, fix n and let k£ be the integer such that k<s,

<k+1. An argument similar to the proof of Lemma 3.1 shows that for j=n,
jkAj_l é n"A;l < n"“A;l.
While, for 15j<n,
log 4;,1—log 4; = si(log (j+1)—log )

< (k+D(log (j+1)—log ).
So that
jk+1A;1 < (]+ 1)k+1Aj_+11 < n"“A;l.

We therefore have c(k)=sup,,, j*4; 1 <n**14;*. So that A, <n**1c(k)~* < nd(n).
Finally, given n, choose t,,=1 so that t,,c(n)>c(no) for each n less than n,.
Now fix t=1,,. For n<n,,

thoc(n) = t"*ie(n) = thta,c(n) > thc(ng).
Thus t™c(ny)~*>t"c(n)~'. And hence for t=1¢,,,
d(t) = sup t"c(n)~* = sup t"c(n)~.
n20 nZno

Before proving the main theorem of this section, we prove the following special
case which contains the crux of the argument.

THEOREM 3.3. Suppose that 5,20 and lim,_, s,=0. Then a necessary and
sufficient condition for F(A,) to be quasi-analytic is that

0
6)) > n%2log A,
n=1

diverge.

Proof. Sufficiency. We first show that F(A4,) is contained in C(M,) where
M,=c(n+2). Suppose f is in F(4,). Then f(z)=2., a,z" where |a,| <BA;* for
some constant B. Now f(6) =32, a,e'™. So for k=1,2,...,

Z a(in)*e'

) = | 3, < 3 lan

< D n n*2BA;t < Be(k+2) D n7
n=1 n=1

Y

Hence fe C(M,) where M,=c(n+2).
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Therefore it is enough to show that the divergence of (1) implies that C(M,) is
quasi-analytic, i.e. that [T r=%2 log T(r) diverges. Now

T(r) = sup r¥c(k+2)~* = r~2sup r¥+2c(k+2).
k20 kZ0

So for r=t,, T(r)=r~2 d(r). By Proposition 3.2 the divergence of (1) is equivalent
to the divergence of > n~32 log d(n) and hence to the divergence of

J ) r=32log T(r).
1

Necessity. Let Mo=1 and M, =c(k—1) for k=1, 2,.... We first show that the
convergence of (1) implies that C(M,) is not quasi-analytic. Let T(r) =sup;»o r*M; 1.
Then for r= M,,

T(r) = sup r*M;* = rsup r*~c(k—1)"1 = rd(r).
k20 k21

By an argument similar to the above, the convergence of the series (1) implies that
£ r=%21log T(r) converges and therefore C(M,) is not quasi-analytic.

Hence there is a function fin C(M,) such that f™(0)=0 (n=0, 1,...) but f£O0.
The proof of the theorem will be complete if we show that f'is also in F(4,). Fix
n=1. Integrating by parts we find that

a, = —!— jzn f(a)e—"‘a de == —1 fzn f(k)(o)(l)k e"ina da
n 277' 0 217' 0 in :
And
nNe B 1 B
la,]| = BMk(;l) = 7 ?d_(;j = -A—n

Therefore {|a,|4,} is bounded and f'is in F(4,).
Theorem 3.3 can be improved to give the main result of this section.

THEOREM 3.4. Iflog A, is a convex sequence in log n, then a necessary and sufficient
condition for F(A,) to be quasi-analytic is that

(¢)) 2 n-3%2log A,

n=1
diverge.

Proof. First suppose that lim, ., s,=00. If 5,20 (n=1, 2,...), then Theorem
3.3 applies. If not, then since lim, _, ., s,=0c0, there is an integer n, such that 5,20
for all n=n,. Let

A, = A4, if n<ng,
= A, ifn2Zn,
Then
S5, =0 if n < n,,
=gs, if n=n,,
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where
5 = IOg Zn+1_10g Zn
" log(n+1)—logn

Hence log A4, is convex in log n, §,20 and lim,_, ,, §,=0. So Theorem 3.3 applies
to F(A,). But F(4,)=F(A4,) and 3 n~%?2 log 4, diverges if and only if (1) diverges.
Hence the theorem is true whenever lim,,_, , s, =00.

Now suppose that it is not the case that lim,_,, s,=0c0. Then, since {s,} is a
nondecreasing sequence, we must have s, <b for some number b. In this case we
show (1) converges and F(A,) is not quasi-analytic. Since

log 4,.,—log A, = s,(log (n+1)—1log n)
< b(log (n+1)—log n),
we have

n+1\°
An+1 = An(T)

n \*(n+1\° »
A,,_l(n_l) (T) < S Ayt )

IA

And

Zn-alz log 4, < Zn"’/z(log A,+blogn) < .
1 1

To show F(4,) is not quasi-analytic we exhibit a non-quasi-analytic class F(4,)
which is contained in F(A4,). Let 4,=A,n""¢" Since A,<An’*<A4, for n=3,
F(A4,) is contained in F(4,). And since

5 = lOan+1"'10g Zn
" log(n+1)—logn

= b(log (n+1)+log n),
we may apply Theorem 3.3 to F(4,). But
Z n=%2log 4, = Z n=%2(log A, +b(log n)?) < oo.
1 1

So F(4,) is not quasi-analytic.

A number of comments on Theorem 3.4 should be made. The first is that if the
series (1) diverges, then any function f(z)=>¢ a,z*, such that {a,4,} is bounded,
is already in F(4,), i.e. f™(z) has a continuous extension to D~ for n=0, 1,....
. For as we have seen, the divergence of (1) implies that lim,_, . s,=0c0. Thus, by
Lemma 3.1, {n**24, '} is bounded for each k. Hence f®(z) =3 7_, a,z" *nl/(n—k)!
converges uniformly on D -, since

< n*la,| £ n~2n**2BA4;* £ n%B,.

n!
n=r1%

Secondly, one might want to study the classes F?(4,) (0 <p <), where F?(4,)
is the set of functions f(z)=>& a,z* analytic in D such that f™ has a continuous
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extension to D~ (n=0, 1,...) and 37 |a,|?4, <. The following theorem shows,
however, that the problem reduces to considering F(4,).

THEOREM 3.5. F(n*?AY?)< FP(A,)< F(AL'"); and hence F?(A,) is quasi-analytic
if and only if (1) diverges.

The proof of this theorem is straightforward and is left to the reader.

4. An analogue in the half-plane. The class F(4,) has a “continuous analogue”
in the following sense. Given a real-valued function A4(¢) defined on the open
interval (0, 00), let F(A()) be the set of all functions f analytic in the upper half-
plane H={z : Im (z) >0} such that

(i) f™ has a continuous extension to H~ (n=0, 1,...),

(i) fis of the form f(z)=[7 e"*f(¢) dt, where f(t) is a measurable function and
| /(£)] A(¢) is bounded.

We call F(A(?)) quasi-analytic if f € F(A(¢)) and f™(0)=0 (n=0, 1, . ..) together
imply f=0.

Thus, looking at the boundary values of functions in F(A4(¢)) and F(4,), functions
in F(A(t)) have Fourier transforms which vanish on the negative real line and go
rapidly to zero on the positive real line, while the negative Fourier coefficients of
functions in F(4,) vanish and the positive Fourier coefficients go rapidly to zero.

We restrict our attention to functions A(¢) for which log A(¢) is a convex
function of log ¢, A(t) is bounded below by 1, and A(¢) is bounded on the interval
(0, 1]. Such a function has the following properties:

(i) For t,<t, < t,,

log A(t,) —log A(ty) _ log A(t;)—log A(to)
logt,—logt, = log t,—log ¢,

< log A(t;)—log A(t,)
= logt,—logt,

(ii) For A>0,

.y _ log A(t+h)—log A(1)
TR = e G+ —Tog 1
is a decreasing function of A.
(iii) s(¢)=1lim,_o+ f(t; h) exists and is a nondecreasing function of ¢.
(iv) For t<t,,

log A(t,)—log A(t)
log t,—log t

= s(to).

Properties (i) and (ii) are statements about slopes of chords of the graph of
log A(#) vs. logt and are clear when viewed geometrically. The function s(t)
measures the slope of the graph at (log ¢, log A(¢)). The corresponding properties
for convex functions are known [3, §3.18], so we omit a proof of the above
properties.
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LemMaA 4.1. If lim,.,  s(t)=0c0, then for each nonnegative integer k, t*A(¢)~* is
bounded.

PROPOSITION 4.2. Suppose s(t) 20 and lim,_, ,, s(t)=00. Let c(n)=sup,»; t"A(¢)*
and d(t)=sup, o t"c(n) 1. Then for t= 1, d(t) < A(t) <t d(t). Furthermore, given n,
there exists a number t,, such that for t2 t, , d(t)=sup, s, t"c(n) 1.

The proofs of the lemma and proposition follow the corresponding proofs given
in the previous section. It is interesting to note that if we let ¢(r)=sup,», t"A(¢)~*
(0=r<o0) and d(t)=sup,», t"c(r) 1, then d(t)=A().

THEOREM 4.3. Suppose that s(t)=0 and lim,_, ., s(¢)=co. Then a necessary and
sufficient condition for F(A(t)) to be quasi-analytic is that
@) f 1-912 log A(f) dt
1
diverge.
Proof. Sufficiency. Suppose that f is in F(A(¢t)) and f™(0)=0, 1,.... Since
t"*24(t)"1<c(n+2) for t 21, the integral

1@ = [ aoresso di

converges uniformly for Im (z) 20. In fact,
@) < [ B0
0
?3) < B+f t=2"*+2BA(t) " dt
1

=< B+Bc(n+2)f t~2dt
1
forn=0,1,.... If we let

= n -1 _ -2 n+2 -1
() sup r c(n+2) ro®supr c(n+2)~1,

then T(r)=r-2d(r)=r-34(r) for r=t,. Hence the divergence of (2) implies that
¥ r=32 log T(r) dr diverges. Hence by Theorem 3 of [3], f=0.

Necessity. Let My=1 and M,=e " "c(n—1), n=1,2,.... As in the proof of
Theorem 3.3, the convergence of (2) implies that [T r=%2log T(r) dr diverges,
where T(r)=sup, s, r"*M, *. Hence by Theorem 3 of [3] there is a function f#0
analytic in the upper half-plane H such that f™ has a continuous extension to H~,
|f™| =M, and f™(0)=0 for n=0, 1,.... Let g(z)=(z+i)"2f(z) then g has the
same properties as f. The proof will be complete if we show that g is in F(A(?)).

87 = 3 Conf P+ = DK+ DL
k=0



1969] ANALYTIC FUNCTIONS 103

By Lemma 2.1
fa-i(z) = (k—l_l)' f: (z—w)E~1f™(w) dw.
Hence
|fm-o@)| < (—IE-—IT)!szM"’ k=1,2,....
And

18P@)| £ Coolf@)| |2+i] -2+ [ S Cun (k—_lﬁ 1z|'=BM,,] [z+i]~@*P(k+1)1].
K=1 :

Since the second term is less than

n
D CoiBM,|z+i| "k + 1k,
k=1

we have
67@)| S Bie"M,|z+i| 2.

In particular, g is in the class HZ of the upper half-plane. Therefore by the Paley-
Wiener theorem, the Fourier transform g(¢) vanishes for ¢t <0. For >0,

2mg(t) = fw e *g(x) dx = J. N (= it)~"g™(x)e"* dx.

- 00 - 00

So that
[275(1)| < 1-"BeM, f x+i|-2 dx.
Hence for 121,
g(t) £ B, inf t~"e"M, = Byt~ inf ¢ ~"c(n)
n21 n=0
< Byt ~td(t) £ BA(t) 1.

And for 0<t<1,

|£(2)] < BiM, £ B A(t)7Y,

since A(¢) is bounded on the interval (0, 1). Thus g is in F(A(2)).
As before, we immediately improve Theorem 4.3 to obtain the main result.

THEOREM 4.4. Suppose that A(t) is defined and bounded below by 1 on the interval
[0, ). Suppose further that A(t) is bounded on (0, 1) and that log A(t) is a convex
Sunction of log t. Then a necessary and sufficient condition for F(A(t)) to be quasi-
analytic is that

(V)] jw t=%2log A(?) dt

diverge.
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Proof. If lim,_,, s(t)=00, the proof proceeds as in the previous section. If not,
then let a=sup,<; <. 4(¢) and choose b so that b= s(z) for all z. Let

A(t) = at®™st for t 2 e,
= ae® for t < e.

Then as in the previous section F(A4(t)) is contained in F(A(¢)) and F(A(t)) is not
quasi-analytic. Hence F(A(?)) is not quasi-analytic. On the other hand (2) converges.

We again observe that if (2) diverges, then any function f analytic in the upper
half-plane H and of the form f(z)=[g f(t)e"* dt where f(t)A(t) is bounded, is
already in F(A(2)). For the divergence of (2) implies that lim,_, ,, s(¢) =00 and hence
(3) shows that

2@ = [ feieyes a

converges uniformly on H~. Hence f™(z) has a continuous extension to H".

5. Functions of several variables. Since we will be working in the space of n
complex variables C", we wish to make use of multi-indices of nonnegative
integers m=(my, ..., m,). If m and / are multi-indices, r is an n-tuple of real or
complex numbers, and a and b are real numbers, then

|m| = my+mg+ - - +my;

m+a = (my+a,my+a,...,m,+a;
n
rm = | | ri
7=1

n
(m+a) = H (m;+a)®; and
7=1
m=lImeansm; £ Il;,j=1,2,...,n

We also make use of the following notation: if f is a function of r=(ry,..., r,),
then

S®C) = e )

and

f fr) dr = f f(r) dry dry- - -dr,.
THEOREM 5.1. Suppose that f=7,, a,z™ is analytic in the polydisc
D={zeC":|z| < 1;j=1,...,n}

that {3 m =i |an|B2 S Ay for z in D (k=0, 1,...), and that for each multi-index m
(i) f™ has a continuous extension to D~ ;

(i) f™q, .. ., 1)=0.
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Then a necessary and sufficient condition to conclude that f=0 is that

@ > k~%2log 4,

k=1
diverge.

The following two lemmas contain some of the computations used repeatedly
in the proof of Theorem 5.1.

LEMMA 5.2. If D\mizk 2usm X(m, I) is a convergent series of nonnegative terms,

then
Z Z x(m, ) = 2 Z x(m, ).
NSk m21 ImlZk 1=m
Proof.

) = N

|u§=:k vgz *em, 1 ; Ill=k2.l§m x(em, 1

= Z Z x(m, ) £ x(m, D).
ImlZk  |l=k,ISm ImiZk 1Sm

LeMMA 5.3. If 3\ mi=s |anl2S 472 (=1, 2,...) and (4) diverges, then for k=1, 2,
...andb=1/n

Z z |am|2(m+1)> < ck™+24;2

I=k |mi=1
for some constant c.

Proof. If |m|=j=1, (m+1)*» <(j+n)/n by the inequality of the arithmetic and
geometric means. Hence (m +1)° < (j/n+ 1)" = (2/)™ and

D lanlm+1P £ @) Y |anl® S Q)0 452
Im| =34 |

m| =7

Thus it suffices to prove that

Ns

JMAFE S ck™r47? (k=1,2,...).
F)

Since (4) diverges, it follows that lim,_, ., s, =00 (as in the proof of Theorem 3.4).
Hence there exists an integer ko = 1 such that for k = kq, s, = 4nb+ 1. So for j> k= k,,

k

log A;—log Ay
logj—logk =~

And A, A7 S (kj-Y)™+22, So that

Z jmAf? =A,;2(k""+ z A%Aj—2jnb)
i=k

I=k+1

Sp = inb+1.

00

< Ap2km+? z j2.

i=1
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This proves the lemma for k = k,. By choosing ¢ large enough we see that the lemma
is true for k= 1.

Proof of Theorem 5.1. First suppose that (4) converges. Then by Theorem 3.4
there is a function g(w)#0 of one complex variable such that g is in F(4,) and
g®(1)=0 for k=0,1,.... Let f(z)=g(z,) for z=(zy,..., z,) in the polydisc D.
Then {3 m =k |an| B2 4, for z in D (k=0, 1,...) and f satisfies (i) and (ii) but
S#£0.

Now suppose that (4) diverges. We wish to show that f=0. Notice that since f'is
analytic in each variable separately, it is enough to show that f(r)=0 for all
r=(ry,...,ry) with O<r;<1, j=1,..., n. Fix such an r and define a function of
one complex variable by

dw) = ((L—rdw+ry, ..., (1=rw+ry).

Then ¢ maps the open unit disc into D (and the closed unit disc into D~), ¢(1)
=(1,...,1) and ¢(0)=r. Let

gw) = f(Bw) = > bw.
k=0

Then g is analytic in the open unit disc,

gP(w) = | > [

m|l=1Ik

has a continuous extension to D~ and g®(1)=0 for k=0, 1,.... We will show
later that |b,| S ck™*!A4;* for k=0, 1,.... Assuming that this has been done, we
let A=Ak~ "*Y, k=1,2,.... Then {b.4,} is bounded and g is in F(4,). Now
log A,=log A,—(n+1) log k is convex in logk and 3,., k=32 log 4, diverges
since (4) diverges. It follows that F(A4,) is quasi-analytic and g=0. In particular

J(")=f($(0))=g(0)=0.

Thus it suffices to show that |b,| < ck™**A4;*. To simplify notation, let

x(l,m) = I—I Cony (1 —rplrfs™ .
i=1
Notice that >, <, x(/, m)=1. Furthermore

gw) = Z an, Z x(l, mw!! = Z Z anx(l, mw!!!
m I=m I m21
z Z anx(l, m)wk,

0 lll=k mzl

k=
Thus we conclude that
be= 2 > anx(l, m).

=k mzl

Finally
1/2 1/2
164] é{ » x(l,m)(m+1)-2}'{2 > |am|2x<1,m)(m+1)2} :
=k mal |

ll=k mel
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So by Lemma 5.2

1/2 1/2
b4 é{ S S m)(m+1)-2} { lanf?x(, m)(m+1)2}
Im|Zk ISm Im|Zk I1=m
(3 oo (g e
Im|Zk Im|Zzk
{3 3 i)
i=k Im|=J

And by Lemma 5.3
Ibkl é Cl{k2"+2A;;2}1l2 — clkn+1Ak-1.

We conclude this paper by observing that, as in the one variable case, if f(z)
=D m Anz™ is analytic in D, 3 n <k |an|2= 452 (k=1,2,...) and (4) diverges, then
S already has a continuous extension to D~ for all /. To see this

®) 1@ = 3, oy ann

and

Z (m 1)' |am| Z |am|(m+1)l

which is finite by computations similar to those above. Thus (5) converges uniformly
on D-.
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