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Abstract. In this paper we present an axiomatic theory within which much of the

theory of computability can be developed in an abstract manner. The paper is

based on the axiomatically defined concept of a Uniformly Reflexive Structure

(U.R.S.). The axioms are chosen so as to capture what we view to be the essential

properties of a "gödelization" of a set of functions on arbitrary infinite domain. It

can be shown that (with a "standard gödelization") both the partial recursive

functions and the meta-recursive functions satisfy the axioms of U.R.S. In the first

part of this paper, we define U.R.S. and develop the basic working theorems of

the subject (e.g., analogues of the Kleene recursion theorems). The greater part of

the paper is concerned with applying these basic results to (1) investigating the

properties of gödelizations, and (2) developing an intrinsic theory of relative com-

putability. The notion of relative computability which we develop is equivalent to

Turing reducibility when applied to the partial recursive functions. Applied to

appropriate U.R.S. on arbitrary domains, it provides an upper-semi-lattice

ordering on the set of all functions (both total and partial) on that domain.

0. Introduction. In this paper we present the axioms of an abstract theory of

computability (the theory of Uniformly Reflexive Structures) and employ it to

establish a number of general results on gödelizations and to develop an intrinsic

approach to the study of relative computability.

To a first approximation, a Uniformly Reflexive Structure (a U.R.S.) is a set

of functions on an arbitrary infinite domain together with a special indexing of the

functions by elements of the domain. We call these indexings gödelizations; this

terminology is apt in that the partial recursive functions with a " standard gödeli-

zation" (such as given by Davis [1]) form a U.R.S.

For each element u of the domain, the indexing gives us a 1-ary function denoted

[u]i; following Schoenfinkel [6], we extend the indexing, by iteration, to n-ary

functions [u]n for all positive integers n and elements u of the domain. The require-

ments for an indexing to be called a gödelization are, again approximately, that,

(1) there be a function in the set such that applied to the gödel numbers (indices)/

and g of any two functions [f]i and [g]u it gives us a gödel number of their

"blend", that is, the function which, for all x, equals [[/]i(*)]([g]i(*)); (2) there be
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a fonction in the set which, when applied to any three elements a, b, and c of the

domain, gives us a gödel number of the function which applied to any element x of

the domain takes the value a or b according as whether or not x=c.

In §1 we restate these requirements as formal axioms and give an additional

axiom-of-convenience for dealing with partial functions. At the end of this section

we briefly discuss models for these axioms. In §2 we establish some preliminary

results and additional necessary notation. These results comprise the fundamental

lemmas of the subject.

In §3 we prove a number of results on gödelizations. These results, while perhaps

not of particular interest to recursive function theorists, encompass the results of

recursion theory which we have found to be of greatest interest in application in

"computer science". We prove that we cannot gödelize a set of total functions; we

present two simple normal form theorems for U.R.S. and we prove that gödeliza-

tions are ¡nfinite-to-one. We show that if two gödelizations index the same set of

1-ary functions, then they must index the same sets of «-ary functions for all

positive «. We prove that given two gödelizations of a set of functions, there must

exist functions in the set which carry one gödelization to the other, and vice versa;

that is, that with respect to the first gödelization, there will exist a function [f]x

such that, for all elements u of the domain, [[/]i(«)]i will be the 1-ary function

corresponding to u under the second gödelization. Finally, we prove a converse to

the last result to the effect that if [g]x and [f]x are total functions such that, for

every u and x in the domain, [/]2([g]i(M), x)=[w]j(x), then the map which carries

each element v of the domain to the mapping [[/]i(f)]i is a gödelization.

The second half of the paper is directed toward the development of an intrinsic

theory of relative computability. §4 consists of some additional preliminaries. We

introduce generalizations of the concepts of computable and semicomputable sets

and we extend the operations of primitive recursion and minimalization to arbitrary

U.R.S. We begin §5 with a means for "constructing" U.R.S. on arbitrary infinite

domains. After employing this result to give a particularly simple characterization

of the partial recursive functions as a U.R.S., we turn to the study of U.R.S.

within which it is possible to "carry out" this "construction". We introduce a

special class of U.R.S., the highly constructible U.R.S., which are "self-construct-

ing" using only total functions. We show that the partial recursive functions form

a highly constructible U.R.S. and that such U.R.S. exists on all infinite domains.

We establish a direct generalization of the Kleene Normal Form Theorem for

highly constructible U.R.S. and we employ it to prove that such U.R.S. contain

"recursively inseparable" semicomputable sets. In §6 we introduce the promised

intrinsic definition of relative computability with respect to highly constructible

U.R.S. We say of two U.R.S. 7and 7' that 7'is an extension of 7 if the set of functions

F(7') associated with 7' contains the set of functions F(7) associated with 7. We

show that if 7 is a highly constructible U.R.S. and/is any function (on the same

domain) then there exists a U.R.S. If which is the minimal extension of 7 which
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contains/, i.e., F(F) u {/} £ Fí/, ) and for every U.R.S. /", if F(I) u{/}sF(I"),

then F(If) £ F(I"). Conversely, we show that if Us highly constructible, and F is an

extension of I (but not necessarily highly constructible) then there exists a function

/such that, where If is the minimal extension of/containing/ we have F(I,)=F(F).

Applying these results to "the" U.R.S. IR of partial recursive functions, we show

that for any total function / the set of functions F(If) of the minimal extension If

is precisely the set of functions recursive in/ On the other hand, where lis highly

constructible and/is total, it follows that I, is highly constructible. Thus, the notion

of relative computability reduces directly to the natural, and intrinsic, ordering on

the highly constructible extensions of a highly constructible U.R.S. To complete

the picture, we show that where/is not total, the minimal /extension need not be

highly constructible, and that the set of all extensions of a highly constructible

U.R.S. form an upper semilattice.

1. Axioms for uniformly reflexive structures. We shall first give the required

definitions and axioms and will then motivate and interpret them in terms of the

partial recursive functions.

A Uniformly Reflexive Structure (a U.R.S.) I is a pair /=<{/, G> where U is an

arbitrary infinite set and G: £7-»- Uu. (Rather than assume U infinite, it suffices, as

can be shown from the results of the next section, to assume that U contains at

least three distinct elements.) The set U is called the domain of the U.R.S., the map

G is called the gödelization (of the 1-ary functions) of the U.R.S. For all elements

u, xe U, we write [u]i for G(u), and [m]i(x) for the value (G(u))(x) of [u]i at x. The

set G(U), also denoted F(l, /), is called the set of 1-ary functions of F Following

Schoenfinkel [6], we extend the gödelization to functions [«]„: Un -+■ U, of n

variables, for all n> 1 by iteration; namely, for each ueUand each integer «> 1,

[u]n is defined to be such that, for each «-tuple

XM = Oi, . . ., Xn-i, Xny e Un, [u]n(Xi, ..., Xn_i, Xn) =  [[«]»_i(Xi, • • -, *n-l)](*n)-

For each n, the set {[«]„ | u e U}, of the K-ary functions of I, is denoted by F(n, I).

The set F(7) = (J™= x F(n, I) is called the function set of I. When there is no ambiguity

we shall omit the subscripts on the functions.

For I=(U, G) to be a U.R.S., we require that it satisfy the following axioms:

Axiom 1. There exists * e U such that, for every u e U,

MO) = * - [*](")•

We shall find it convenient, in what follows, to write V for £7—{*}.

Axiom 2. There exists aeUsuch that, for all/ g, and jc in V,

(0   [«](f,g)ï*,
GO [[«](/, g)](x)- LAX*, [g](x)) = [[f](x)](ig](x)).

(Note the two expressions on the right-hand side are equal by virtue of our definition

of n-ary function.)
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Axiom 3. There exists ifieU such that, for all a, b, c, and x in F,

[[>l>](c, b, a)](x) = a   if x = c

= b   if x =£ c.

This completes the statement of the axioms.

If we interpret these axioms in terms of the partial recursive functions, as given

say in Davis [1], then the domain U(= V u {*}) is the nonnegative integers plus *,

where * corresponds to "undefined". That is, rather than have a partial function

undefined for a given argument, we adopt the convention that it take the value *

for the argument. For the gödelization G in this case, we can take any gödelization

of the 1-ary partial recursive functions. For example, we might take the "standard

gödelization" given by Davis so that for every e, xe V,

[e](x) = £/(min T(e, x, y))

where U and Fare as in Davis's Theorem 2.1, page 63 of [1]. It follows from the

Kleene Iteration Theorem that all the «-ary partial recursive functions can be

produced from this gödelization by means of iteration.

Axiom 1 may then be interpreted as saying that the result is undefined ( = *)

when we either apply a function to an undefined argument, or when we apply the

function corresponding to an undefined gödel number to any argument. In keeping

with this interpretation, we say a function [u]n e F(I) for any U.R.S. 7, is *-1otal if

it never assumes the value * on F". We shall write F"(7) to denote the set of all

*-total functions in F(7).

Axiom 2 provides a uniform means for forming the special composite of two

functions which we have called their "blend". The purpose of this axiom, as with

Schoenfinkel's Verschmelzungsfunktion [6] (similar to our [ce]3), is that it allows us

to establish the closure of F(7) under composition. The "blend" is chosen over the

simple composite [/] ° [g] for the pragmatic reason that it does not appear possible

to prove general closure under composition from a similar axiom for the simple

composite.

Axiom 3 provides a uniform means for generating (gödel numbers for) all

functions which are constant on all but at most one element of F. The primary

motivation behind this axiom is to establish a basis from which to build up

definition-by-cases and predicates.

That Axioms 2 and 3 hold for the partial recursive functions under the "standard

gödelization" is easy, but tedious, to show using the Kleene Normal Form and

Iteration Theorems plus some elementary constructions. We leave the proof to the

reader. Another proof, using a "simpler" gödelization is given in §5. In the re-

mainder of this paper we generally abuse terminology by referring to "the U.R.S.

of partial recursive functions" when we mean a U.R.S. 7 whose function set F(7)

(with * interpreted as "undefined") is the set of partial recursive functions.
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In both Axioms 2 and 3, we have the situation that the axiom reflects a property

of F(7), or more specifically, of the partial recursive functions, in a uniform

manner. Axiom 2 reflects the property of closure under "blend", Axiom 3 the

property of containing all functions constant on all but at most one element of the

domain (other than *). It is this uniform reflecting of properties that we believe is

the essential kernel of the intuitive concept of a gödelization, and it is from it that

we derive most of our results and, of course, the name "U.R.S."

As regards models of these axioms other than the partial recursive functions, we

show in §5 that for all functions/: A-> A (A=nonnegative integers), the set of

functions recursive in/form the function set of a U.R.S. A more detailed proof is

given in [10], and in [11] it is also shown that the partial recursive functions "are

the smallest U.R.S. on the nonnegative integers which contains the standard

successor function i(x) = x+l". We also show in §5 that U.R.S. can be "con-

structed" on any infinite domain (this also follows from restating the axioms

within the first order predicate calculus and applying Henkin's theorem). It has

been shown by Strong [8] that the meta-recursive functions form a U.R.S. and that

there exist U.R.S. whose function sets are proper subsets of the set of partial

recursive functions.

As a final example, we shall sketch a proof that the (partial) flj-functions form a

U.R.S. (see Rogers [5] for underlying concepts and notation). As is well known, for

each n>0 there exists a recursive relation Tn such that an «-ary function is a

(partial) II]-function if and only if there exists an integer z such that the graph of

the function is precisely the set,

{<*,,..., *„, yy 3 (Vf)(3w)Tn(z,flw), <*x,..., xn, y»}.

We claim that the desired U.R.S. is precisely the U.R.S. 7=<G, A u {*}> where *

corresponds to "undefined" and G is the indexing given by Fx; i.e., for all

x, y, z e N,

(G(z))(x) = [z](x) = y o (Vf)(3w)Tx(z,flw), <x, y})

and otherwise, (G(z))(x) = [z](x) = *.

It is easily seen that the «-ary IlJ-functions are precisely the functions that arise

from the iteration of these 1-ary functions and that these functions satisfy an

S-m-n theorem.

The satisfaction of Axiom 1 follows immediately from the definition of *.

The existence of the desired function [a]3 for Axiom 2 follows from the obser-

vation that its graph is precisely the set

{</>, q, x, yy 3 (3y')(3y")[(yf)(lw)Tx(p,flw), <x, /» A (yf)(MTx(qJ(w), <x, j">)

A W)(lw)Tx(y',f(w),(y",yyy\}.

This set is clearly II] (see Rogers, Theorem 16,1, III [5]), and by the S-m-n theorem,

we can pick a such that [a]2 is total as required.
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The satisfaction of Axiom 3 follows from the fact that the desired function [>p]3

is clearly recursive and thus IIJ.

The above result, and similar results, can also be conveniently proved using

results due to Strong [9].

2. Preliminary results. The following results are presented in order to establish

notation and to make the paper self-contained. For a more detailed presentation,

see [10]. To give a brief illustration of the nature of the complete proofs, we have

given the proof of 2.1(d) in detail.

Theorem 2.1. In every U.R.S. /=<£7, G}, there exists:

(a) for each xe V, a constant function [kx]x such that, for all y e V, [kx](y) = x;

(b) an identity function [i]x such that, for all xe V, [i](x) = x;

(c) a function [ß]x such that, for all x, y e V, [\ß](x)](y)=x, indeed [ß](x)=kx;

(d) a function [y]2 such that, for allfi g, and x in V, [[y](f, g)](x)=[f]([g](x)), i.e.,

F(l, I) is closed under simple composition.

Proof. It suffices to give specific gödel numbers for the desired functions as

follows :

(a) take kx = [i/t](x, x, x);

(b) where c is some fixed element of V, take i= [a]([ip](c, c), kc);

(c) takeß=[a]([a](t, i), i);

(d) we give the derivation of y in detail. Let/ g, and x he elements of V. Then

[/!([£](*)) = [[kf](x)]([g](x)) by (a)

= [[«](*/, g)](x) by Axiom 2

= [l*WW),g)Kx) by(b)
= [[a]([j8](/))Kár, x) by definition n-ary function

= [[[ka](f)W](f))](g,x) by (a)
= [[«P«, ß)](f, g, x) by Axiom 2.

Thus, it suffices to take y= [a](ka, ß) = [a]([ß](a), ß).

Theorem 2.2. In the function set of every U.R.S. /=<£/, G}, there exists for each

integer n > 0

(a) a function  [yn]2 such that, for all figeV and x(n) e Vn, [[yn](f,g)](x(n))

= [f]([g](xM));

(b) a function [an]2 such that, for all figeV and x(n) ë Vn, [[«„](/ g)](x(n))

= [f](xM,[g](x<*));

(c) a function [ßn]n such that, for ally, z e Vandxin'" eVn'\ [[ßn](y, Xe* _ "MOO

=y,

(d) a function [unJ]nfor eachj, ISjún such that, for any (xu ..., x¡,..., xn} e Vn,

["n.iX*!, • ■ -,xj, ..., xn)=xt.
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Proof, (a) take yi=y and, for «ä 1, take yn+ x = [y](y, yn);

(b) take ax = a and, for «^ 1, take an+1 = [y](a, [y](an))',

(c) take ßx=ß and, for «èl, take ßn+x = [yn+i](ß,ßn);

(d) define [/3]° = [/], [/3]1 = [ß] and, for n ̂  1, [/3]n+J = |j8] o [£]* (these powers of [ß]

are then in F(7) by virtue of induction using [y]), then it suffices to take, un?n

= [ß]n-Ki) and, fory<«, take u^lßy-1^,).

Having established the existence of the above functions in an arbitrary U.R.S.

7=<C/, G>, we are now in a position to prove that any appropriately well-formed

expression formed of elements of U, square brackets, parentheses, and variables

Xx, x2, x3,... corresponds to a function in F(7). This result will allow us to

establish the existence of new functions in F(7) without having to display specific

gödel numbers.

Let 7=<i/, G> be a U.R.S., let U he called the set of constants of 7, let

X={xx, x2, x3,...} be a set of variables, X n U= 0. We define a term (well-formed

expression) in 7 as follows:

1. Any constant or variable is a term.

2. If 70, tx, t2,...,tn are terms, then [t0](tx, t2,..., 7„) is a term.

3. All terms are given by 1 and 2.

Let F denote the set of terms. By an assignment we shall mean a map a: X-*-U.

An assignment a may be extended to a map ä: F-> U, as follows:

Let 7 be a term, then

ä(t) = t       if 7 is a constant

= a(t)   if 7 is a variable.

Lastly, when t=[t0i(tx, t2,..., tn),

ä(t) = ä([t0](tx, h,. ..,/„)) = [ä(t0)]n(ä(h), ä(t2),..., â(7n)).

Theorem 2.3. Let 7=<C/, G> be a U.R.S. and let t be a term in I, then there exists

an integer n, and a constant t e U such that, for every assignment a: X'-*■ U,

ä(7) = a([r](xx, Xa,..., xn)) = [T]n(a(xt),a(x2),..., a(x„)).

Proof. We proceed by induction on the form of t. If 7 is a constant ue U, then

take r=ku, n = l(k* = *). If 7 is a variable x(, then take t=wm, n = i. Now say

t=[to\(tx,t2,-..,tr) where the result holds for 70,71;..., tr. Then, for each

assignment a: Jf-> U,

ä(t) = ä([t0](tx, t2,. ..,tT)) = [ä(t0)]r(ä(ti), ä(t2),.. .,ä(tr))

by the definition of ä, and

= [ä([T0](Xl, . ■ ■, Xnm))]r(ä([Tx](Xx, ..., xn(1))),..., Ô([tt](Xx, ..., xnW)))

for some t0, t1; ..., rre U and integers n(0), n(l),..., n(r) by the induction

hypothesis.
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Now pick n to be the largest of «(0) through n(r). Then, by the above theorems

we have that, for each Oiïi'gr

a(KK*i» ■■■, xMt>)) = hW>(a(*i), • • -, a(xMn))

= [-ri]([un.i](a(xi),.. .,a(xn)),..., [unMi)](a(xi),. ..,a(xn)))

= [T^](a(xi),...,a(xn))

where

TÍ  =   [[«„](• . ■([[*n]([M([[yn](Ti)](Un,l))](Un,3)). ■ 0](«„,„(o)-

Thus, we have

ä(t) = [ä([r'0](Xi, . ..,Xn))]r(â([r'i](Xi, .. .,xn)),.. .,ä([r'r](Xi, ..., xn)))

= [ä(Wo\(xi,..., xn)](Wi](xi,..., xn),..., [t't](xi, ..., xn)))

= à([-r](Xi,...,Xn))

where

r = [«n](- • • [«h]([«b](t'o, n), t'2), . . ., r'r)

by 2.2. This proves the result for t, and thus, by induction, for all terms.

The following two results show that we can build up functions in a U.R.S. by

means of definition-by-cases.

Theorem 2.4. In every U.R.S. I=(U,G)

(a) ifu, v,ae V, then there exists [g]x e F(I) such that, for every xe V,

[g](x) = [u](x)   ifix+a

= b>](x)   ifx = a

(b) given n>0 pairs (a(i), b(i)) of elements of V where b(i) + b(j) if i /y, and an

element ceV, then there exists [w]x eF(I) such that, for every xe V,

[w](x) = a(i)   ifx = b(i)

= c       ifxi{b(l),...,b(n)}.

Proof, (a) By 2.3 there exists [g]i e F(I) such that, for all xeV, [g](x) =

[[i/>](a, u, v, x)](x), and this gives the desired result by Axiom 3.

(b) By 2.4(a) there exists [gx]x e F(I) such that, for all xeV,

[gi](x) = a(l) = [kam](x)   ifx = b(l)

= c     =[kc](x)      if^^è(l).

Then, again using 2.4(a), define [g¡]x for i'=2,..., n to be such that, for all xe V,

[gt\(x) = a(i) = [ka(i)](x)   if x = b(i)

= [gi-i](x) if *#*>(/).

Clearly, then, it suffices to take [w]x = [gn]i-
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Theorem 2.5. For each pair of integers <«, «?> and distinct elements ax, a2,...,an

in V, there exists «n-m e F such that, for any f0,fx, ■ ■ -,fn, xx,..., xme V

[hn.m\(fo,fi, ...,/„, x1;..., xm) = [fx](xx, ...,xm)   i/[/0](Xi,..., xm) = ax

= U2J.X1, ■■■,xm)    if [/o](xi, ...,xm) = a2

= [fn\(*i, ■ ■ ■, xm)   if [fo\(xx, ...,xm) = an.

Proof. For the sake of convenience, we shall denote (f0,fi, ■ ■ -,fn, Xx, ■ ■., xm)

by (fo,fln), x(m)). By 2.4 there exists [w] e F(I) such that, for all xeV,

[w](x) = /    if x = a„ i > 0,

= /,   otherwise.

By 2.2 we have [ßn](f0,fln\ x("") = [/0](x<m)), and [[|Sn+1](/)](/o,/">,x«)=[/](x('">).

Combining these we get

[[ßn+ l]([w]([ßn](fo,f(n\ *W)))K/«,/W. Xn   = /(X<m>)       if [/0](X"">)  =  Oí,  i  >   0,

= /o(x(m))   otherwise.

The existence of the desired element «n,m of F then follows immediately by 2.3.

Theorem 2.6 (Iteration theorem). For each integer «>0, there exists [sn]n+1

e F(I) such that, for all fe V, x(n) e Vn, m>0 and yim) e Vm, [sn](f, x<n))^* and

[[Sn](f,x™)](y™) = lfl(xM,y™).

Proof. Consider that

[f](x^,yn = [f](xx,...,xn,yx,...,ym)

= [[f](xi, ...,xn, yx)](y2, ■ ■ ■, ym)

= ÍÍWUyi)]([ß](xx,yd),■■■, [ß](xn,yx), V](yx)](y2,...,ym)

= [[«]([«](... [a]([ß](f), [ß](xx)),..., [ß](xn)), i)](yx, y2,..., ym).

Now, by 2.3, there exists [sn],l+i e 7^(7) such that, for all/ x1;..., xn e V,

[Sn](f, Xx, ...,Xn)=  [«]([«](. . . [a]([ß](Xx)), . . .,[ß](xn)), i).

But [sn](f Xx,..., xn)#* since [ß]x and [a]2 are *-total, and, by the above, for any

ym)G vm,m>0,

[[SnU xx,..., xn)](yM) = [f](xx, ...,xn, yn,

just as desired.

Theorem 2.7 ("fixed point theorem"). Given any function [g]n+1 e F(I), n>0

there exists fe V such that, for every x(n) e Vn, [/](x(n)) = [g](/ x(n)).
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Proof. Let [g]n+x be given. By 2.3 and 2.6, there exists [w]n+x e F(I), such that,

for all y,xu...,xne V, [w](y, xx,..., xn) = [g]([ii](.v, y),xx,..., xn). But then,

for all xu ..., xne V,

[[si](w, w)](xi, ...,xn) = [w](w, Xi,..., xn) by 2.6

= [?]([íi](w, w), xi,..., xn)    by definition [w].

Thus, it suffices to take f=[sx](w, w).

3. Theorems on gödelizations. The results on gödelizations presented in this

section are, in general, not unexpected results; rather, they serve to establish that

our formal definition of a gödelization is in line with our intuitive expectations. The

first four results deal with properties of single gödelizations, the final three with

relationships between different gödelizations.

We begin by proving that it is impossible to gödelize a set of total functions, or to

give another interpretation, that we may not replace Axiom 1 by its negation.

Theorem 3.1. In any U.R.S. /=<£/, G> the set F(I) contains l-ary functions,

other than [*]x, which are not total; indeed, there exists 6 e Vsuch that, for all xeV,

[6](x) = *.

Proof. We first show that there exists an element q in V such that [q](q) = *. By

2.3 there exists a function [S]x e F(I) such that [&](x) = [x](x) for all xeV. But then,

given a, be V,a=£b, there exists, by 2.3 and 2.4, a function [q]x e F(I) such that,

for all x e V,

r V > =/I*)   if[S](x)*b;[8](x)eV

{qm     \[ka](x)   if [S](x) = b

(b   if [x](x) # b, *

\ a   if [x](x) = b

if [x](x) = *.

Now we must have [q](q) = * for otherwise we get [q](q) = a if and only if [q](q)

= b^a, a contradiction. But then it suffices to take 6=[a](kQ, kq).

The next two results are elementary normal form theorems for U.R.S. A more

sophisticated normal form theorem, analogous to Kleene's Normal Form Theorem,

is presented in §5.

Theorem 3.2. Let /=<£/, G> be a U.R.S. Then there exists a function [8] e F(l, /)

such that for every function [f] e F(l, I) there exists a *-total function [t] e F(l, I)

such that [/] = [8] o [/]; i.e., for all xeU, [fi](x)=[8]([t](x)).

Proof. Let [f]x be an arbitrary element of F(l, I). Then, by 2.3, there exists

f'eV such that for all x, y e V, [f'](x, y) = [f](x). But then, by 2.6, there exists

t = folCO e y sucn that, for all x, y e V, [t ](x) = [sx](f, x) ± *, so [t ]x is *-total, but

[t](x,y) = [sx](f',x,y) = [f'](x,y) = [f](x). Thus, in particular, for every xeV,
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[['](*)]([?](*)) = [/](*), ar,d so the desired result is achieved by taking S such that

[8]x is the function given by 2.3, such that, for every xeV, [S](x) = [x](x).

The above function [8]x, which is often called the diagonal function, can be

employed in the theory of U.R.S. to build up a body of results analogous to those

concerning creative sets in the theory of partial recursive functions (see [13]).

Theorem 3.3. If'/=<£/, G> is a U.R.S., then there exists ge Usuch that, for all

xeUand/n) e Un, [g](x,/">)= [x](yin)).

Proof. Trivially, it suffices to take g=i, i as in 2.1(b). Then, for all xeU, and

?*>eU™, [g](x,y^)=[[i](x)](yn=[x](/n)y

The next result is self-explanatory, but indicates that one-to-one enumerations of

the partial recursive functions, such as Friedberg's [2], are not gödelizations in our

sense. Note also that results analogous to a number of standard undecidability

results, such as the halting problem and the equivalence problem, can be extracted

from the proof given below.

Theorem 3.4. In every U.R.S. /=<(/, G> the map G is infinite-to-one; i.e., for

every ueU, the set W(u) = {ve U \ [v] = [u]} is an infinite set.

Proof. Say there exists an element u0e U such that the set rV(u0) is finite. Then,

by 2.4(b), we may find 0, 1 e V, 0 ̂  1, and pe U such that, for every xeV,

[p](x) = 0   ifxeW

= 1    if x £ IF.

Now we may employ [p] to tell, for any/ y e V, whether or not [f](y) = [u0](y).

For, by 2.4, there exists t e U such that, for all / y, and x in V,

[[r](f, y)](x) = [u0](x)   ifx^y

= [f](x)    ifx=y.
But then, for any/ y e V,

[f](y) = [u0](y) o [r](f, y) e w(u0) o [P]([r](f y)) = o.

Now we may employ [p] and [t] together to determine, for arbitrary g e V,

whether or not [g](g) = *. For, if we pick some element v0 e V, then either [u0](v0)

= * or [u0](v0) = w e V. In the first case, let r e V, by 2.3, such that, for all g, x e V,

{[r](g)](x)=[g](g) and, in the second case, let r e V such that, for all g, xe V,

[[r](g)](x)= [kw]([g](g)). Then, in the first case, for any g e V,

[p]([r]([r](g), v0)) = 0   if [g](g) = *

= 1    if [g](g) * *,

and, in the second case,

[p]([r]([r](g),v0)) = 0   if [g](g)¿*

= 1    if[g](g) = *.
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In either case, it follows from 2.3 and the arbitrariness of the choice of 0 and 1, that

there exists p e V such that, for any g e V

M(g) = o  if [g](g) = *

= i   if lg](g) # *•

But then, by 2.3 and 3.1 there exists p* e F such that, for all geV,

[p*](g) = MV, o, K, M(g))](g) = o  if [g](g) = *

= *   if lg](g) ¥= *.

This, however, leads to a contradiction since we get [p*](p*) = * o [¿i*]^*)^*.

Thus, for every ue U, we must have W(u) infinite.

We turn now to theorems dealing with different gödelizations of the same set of

functions. We first show that F(l, 7) completely determines F(7) irrespective of the

choice of G. It follows, in particular, from this result that no matter how we

gödelize the 1-ary partial recursive functions (in keeping with our axioms), the set

of «-ary functions we get by iteration is just the set of n-ary partial recursive

functions.

Theorem 3.5. Let I=(U, G> and 7' = <£/, C> be two U.R.S. with domain U.

Then G(U) = G'(U),i.e., they have the same 1 -ary functions, if and only ifF(I) = F(I').

Proof. That F(I) = F(F) implies G(U) = G'(U) is immediate.

Now say G(U) = G'(U). Then, to prove F(I) = F(I') we claim it suffices to show

that F(7) and F(7') contain the same 2-ary functions. To see this, let us, for each

ue U, write [u] for G(u) and [u]' for G'(u). From the assumption that every 2-ary

function in F(7) is in F(7'), it follows, from 3.3, that there exists [g]2 e 7^(7') such

that, for all x, y e V, [g]'(x,y) = [i](x, y)= [x](y). But then, for any ue U, integer

« > 0, and x(n) = <jc1$..., xn> e Un,

[u]n(xx, ...,xn) = [... [[u](xx)](x2). ..](xn)

= [g]'(- ■ ■[g\'([g]'(u, Xx), x2)..., xn)

=   [h]'n(Xi, ...,X„)

for some « e U, by 2.3 (as stated for 7')- Hence, [u]n=[hYne F(F), and so F(7)

cf(/'). By symmetry F(7')CF(7) and so F(I') = F(I).

It remains to show then that F(7) and F(7') contain the same 2-ary functions

when G(U) = G'(U). We shall achieve this end by, in effect, reducing the 2-ary

functions in F(7') to 1-ary functions by means of special pairing functions.

Let c, d be distinct fixed elements of F. Then where A = [<*](/, kc) and A2 = [a](i, kd)

we have, for all x, y e V,

[K](m(c, x, y)) = y,       [X2](M](c, x, y)) = x.
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Now, since G(U) = G'(U), there exist functions [Ai]' and [X'2]' in F(7') such that

[X'x]' = [Xx]and[X'2]'=[X2].

Let [r']'2 e F(7'), to see that [r']2 is also in F(7), consider that, by 2.3 (as applied

to I'), there must exist [w']i e F(I') such that, for every zeV,

[w']'(z) = [r']'([Xx]'(z),[X2]'(z)).

But then, since G(U) = G'(U), there must exist [w]x e F(I) such that [w]x = [w']i.

And so, by 2.3, there exists [r]2 e F(7) such that, for every x,yeU,

[f](x, y) = [w]([<b](c, x, y))   which by the above

= [w']'([>/>](c,x,y))

= [r'mKYiMc x, y)), [X'2]'(m(c, x, y)))

= [r']'([Xx](W(c, x, y)), [X2](W(c, x, y)))

= [r']'(x,y).

Hence, [r']2 = [r]2 e F(I), so every 2-ary function in F(7') is in F(7) and, by sym-

metry, F(7) and F(7') contain the same 2-ary functions and we are done.

Remark. As we will show subsequently, the stronger statement, "if F(l, 7) and

F(l, I') contain the same *-total functions, then F(7) = F(7')", is false.

The following result corresponds to the intuitive idea that given any two gödeli-

zations of the same set of functions, there must exist an effective way to get from

one gödelization to the other. Applying this result to the partial recursive functions,

we see that the class of gödelizations for the partial recursive functions which we

have defined is precisely Rogers' class of "fully effective numberings" [4].

Theorem 3.6. If I=iU, C> and I' = <[U, G'y are two U.R.S. with domain U and

F(I) = F(I'), then there exists [p]x e F(I), [p]x *-total, such that G o [p]1 = C.

Proof. As in 3.5, for each ue U, let [u] denote G(u) and [u]' denote G'(u).

Let [i']'x be the identity function in F(7') as given by 2.1(b). Then, of course, for

all u,xeU,[i']'(u,x)=[[i']'(u)]'(x) = [u]'(x). But, since F(7) = F(7'), there must

exist p. e U such that [p]2 = [i']'2, and clearly, for all u, xe U,

((G o Mx)(u))(x) = M(u)](x) = [i']'(u, x) = [u]'(x) = (G'(u))(x).

If now [ß.]x is total, we may take p = p-, and, if [p]x is not total, then we may take p,

by 2.3, such that, for any ue V, [p](u) = [a]([a](ku, [ß](u)), i), which is not equal *

since [a]2 and [/3]x are both *-total; but then, for any u, x e U we have

[P](u, x) = [[p]([P](ku, [ß](u)), i)](x)

= l[[p](k„ [ß](u))](x)]([i](x))

= [[[k»](x)]([ß](u, x))]([i](x))

= [p](u, x).
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The following result serves as a converse to the preceding one and provides

means for producing new gödelizations from existing ones. It follows easily from

this result that, given a U.R.S. /=<£/, G>, then F(7) has Card (£/) gödelizations.

Theorem 3.7. Let /=<£/, G> be a U.R.S. If[f]x and [g]x are total functions in

F(I) such that, for every u, and x in V, [f]([g](u), x)=[u](x), then the structure

/' = <£/, G'>, where G' = Go[f]xisa U.R.S. and F(F) = F(I), where F(F) is the set

of functions generated from F by iteration.

Proof. Given ueU, let [u] denote G(u) and let [«]' denote G'(u).

We first prove that F(F)^F(I). To see this, let [u]n e F(F). Then, by definition,

for every x(n) = (xx, x2,..., xn> g £/",

MX™) =  [[/](-.. [[f](.[[f](u)](Xi))](x2). . .)](*»),

from which it follows immediately, by 2.3, that there exists v e V such that [v]n =

[«];. Thus, F(/')£F(7).

To see now that [u]n e F(I) implies [u]n e F(I'), we proceed by induction on n.

For n = l we have that if [u]x e F(I), then, by the conditions of the theorem,

[L?K")j"i = Mi- Now, assuming the result is proved up to n=k, let [u]k+x e F(I).

Then, for any x<k + 1) = (xx,..., xk, xk+x) e Uk + 1, we have

[u]k+i(x(k + ") = [[«X*i, • • -, **)](**+1)

= [f]([g]([u](Xi, ..., xk)), xk+x)

by the choice of [/] and [g]. Then, by the definition of G', (1) equals

(2) [[g]([u](xx,...,xk))]'(xk+x).

But, by 2.3, there exists veU such that, for all x(k) e Uk, [v](xM)=[g]([u](xm)),

and, by the induction hypothesis, there exists v' e U such that [v']'k = [v]k. Hence,

(2) equals

[[v']('xx,..., xk)]'(xk+x) = [v']'(xx, ...,xk+x)

by the definition of (jfc+l)-ary function. Thus, F(I)çF(F) and so F(F) = F(I).

It remains then to show that /' = <£/, G'> is a U.R.S. That it satisfies Axiom 1 is

trivial. That it satisfies Axiom 3 follows from F(F) = F(I). Thus, it remains to

prove Axiom 2. What we must show is that there exists a e V such that, for any

p, q, and x in V, [a'](p, q)¿* and [a'](p, q, x) = [[p]'(x)]'([q]'(x)). That is,

[a']'(p,q,x) = [[f]([[f](.P)}(.x))]([[f](<l)](x)).

To see this, let [t]2 be the element of F(I), whose existence is established by 2.3,

such that, for all p and q in V,[t](p,q)=[g]([a]([y](f,[f](p)),[f](q)). From

F(I') = F(I), it follows that there exists [a']2 e F(F) such that [a']2 = [t }2. Furthermore,
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from the fact that [g]1; [a]2, [y]2 and [f]x are all total, it follows that [a']2 is total.

But then, for ally?, q and x in V,

WY(p,q,x) = [[a']'(p,q)]'(x)

= l[t](p,q)

= UW](j>,q),x)

= [f]([g]([«]([YM [f](p)), [/](<?)), *)

= [[«]([y](/, ifi(p)), lf](q))](x)

= [lf](ilf](P)](x))]([lfl(<l)](x))

= [[pY(x)Y([qY(x))

as desired.

4. Sets, predicates, recursion and minimality. In this section, we present a num-

ber of definitions and results which will be needed in the coming sections and which

are also of interest in that they generalize to U.R.S. more of the conventional theory

of computability.

We shall wish to speak of sets and predicates which are representable within

U.R.S. To this end, we directly generalize the notions of computable and semi-

computable sets from recursive function theory.

Let I=(U, Gy he a U.R.S.; let 0, and 1 be two distinct elements of F; let «i be a

nonnegative integer and let A ç Vm. Then we say that A is computable (resp. semi-

computable) if the characteristic function of A,

d(x(m)) = 0   ifx(m)e^

= 1   ifx<m)<M

(resp. the semicharacteristic function of A

SA(x(m)) = 0   if x(m) e A

= *    ifx(m)<M)

is in F(7).

We say that an «-ary predicate F on F is computable (resp. semicomputable) if

the set {x(n) | F(x(n))} is computable (resp. semicomputable).

Note. We use the notion of semicomputable set (from Davis [1]) rather than the

more common notion of recursively enumerable set since these two notions, while

equivalent in the theory of partial recursive functions, are not equivalent in ar-

bitrary U.R.S. (see Theorem 6.13), and in these cases, semicomputability appears

to be the more intuitively natural notion.

From the following theorem, it is easily seen that the computable sets are closed

under intersection, union, and complementation, and that the semicomputable sets

are closed under intersection. This, of course, implies corresponding results for the
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conjunction, alternation and negation of computable and semicomputable predi-

cates. Note that the tables for A and v are asymmetric. Thus, the evaluation of an

expression involving semicomputable predicates may be 0 or 1 even though some

of the predicates take the value *. This asymmetry will be of use in §5.

Theorem 4.1. Let I=(U,G)bea U.R.S. and let [p]n, [q]n e F(n, I) such that for

every x<n> £ V\ [p](xin)), [q](xw)e{0, 1, *}. Then there exist [/pA,]n, [fpVg]n, and

[f~p]n in F(I) in accordance with the following tables:

P A q

p   0    1     *

p V q

p     0    1    *

q    0

1

1 q    0

1

0 P  o

1

Proof. The desired result follows from 2.5 since the functions can be expressed

by cases as follows :

ifp^](x(n)) = [q](x™)   if [p](xn = 0

= 1 if [p](xM) = 1

= * if ÍP](xM) = *

r/pv,]^) = [q](xn if [P](xn = i

= 0 if [p](x™) = 0

= * if [p](xM) = *

lfi~p](x™) = o = [fcoKKiK*™)  if [p](xM) = i

= 1 = [ki]([un,x](xn   if [p](x™) = 0

= * if [p](xin)) = *.

The following simple results on computable and semicomputable sets in U.R.S.

are worth noting.

Proposition 4.2. 1. A set A^V is semicomputable if and only if there exists

[/] 6 F(7) such that A={x\ \J](x)^*}.

2. There exists an enumeration with repetitions of the set of semicomputable sets

i.e., a map of V onto the set of semicomputable sets (we shall generally write a>ufor

the semicharacteristic function oj(u)).

3. If A^V is a computable set, then both A and V—A are semicomputable sets.

4. All finite and cofinite sets A<=-V are computable. Note: It has been shown by

Strong [8] that there exist U.R.S. in which these sets are the only computable

subsets of V.

5. The equality predicate is computable.
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Proof. 1. Given [f]x, let [k0] be as in 2.1. Then A has the semicharacteristic

function [k0] o [ß = [[y](ko,f)].

2. For every ueV, let wu = [[y](k0, «)].

3. Follows from 2.4 and 3.1.

4. Follows from 2.4.

5. Take [e](x, y) = [<p](x, 1,0, y).

We turn now to the extending of the operations of primitive recursion and

minimalization to arbitrary U.R.S. What we do is show that, in any U.R.S.

7=<£7, G>, we can pick subsets of F which are analogous to the integers and with

respect to which we can perform the operations of primitive recursion and mini-

malization. These sets, which need not be either computable or semicomputable

with respect to /, are defined as follows:

Given [/JeFÇL.O, let [fi]° = [i], [ff = [f] and, for «2:1, let [ff+1 = [f] -[/]».
That [/] e F(l, I) implies [ff e F(l, I) follows from 2.3.

Let /=<£/, G> be a U.R.S. We say that a pair <[s], z> ([s] e F(l, I), z e V) is a

successor pair for /if for all integers n, m^O, [s]n(z)=[s]m(z) o n = m. If <[s], z> is

a successor pair for /, then the set N={[s]n(z) \ n is an integer, «2:0} is called the

successor set of <[s], z>, [s] is called the successor function and z is called the zero.

As an example of a successor pair, we have, for the U.R.S. of the partial re-

cursive functions, the pair <s, 0> where s is the "standard successor function",

s(n) = n+l. For an arbitrary U.R.S., it is easy to show that the pair <[/}], ß) (ß as in

2.1) is a successor pair. In applying the results of this section, we shall be most con-

cerned with cases in which the successor set A is a computable or semicomputable

set (with respect to the given U.R.S.); however, in this section, only our final result

employs a semicomputable successor set. The question of whether or not there exist

U.R.S. which do not contain any computable successor sets was left open in [10].

This question has since been answered in the affirmative by Strong [8]. More

recently Friedman [3] has shown that there exist U.R.S. which do not even contain

semicomputable successor sets.

We first show that given a successor pair for a U.R.S. / that F(I) is closed with

respect to primitive recursion.

Theorem 4.3. LetI=(JJ, Gybe a U.R.S. and let <[i], z> be a successor pair for I

with successor set N. Then, for every pair of functions [f]k+2 and [g]k in F(I), there

exists a function [r]k+x in F(I) such that, for all x(k) e Vk, [r](z, x(k)) = [g](x{k'') and,

for all integers « è 0,

[r]([sf + í(z), x™) = [/](x<*>, [sf(z), [r]([sf(z),x™)).

Proof. For the sake of simplicity, take k=l. Now say we can find a function

[A]5 e F(I) such that, for all wx,..., w5 e V,

[X](wx, ...,w-0) = w3 ifw2 = wt

= tA](wi, [s](w2), [wx](w5, W2, W3), Wi, wb)    if w2 ^ w4.
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Then, taking [r]2 to be such that [r]([s]n(z), x) = [A]/(z, [g](x), [sf(x), x), it is

easily seen by induction on «, that we get the desired result.

The existence of the desired function [A]5 may be established as follows :

Let 0, 1 e F, 0/1, and let [7] be the function, given by 2.5, such that, for any

Wo, Wx,..., w5 e F, [t](w0, Wx,..., w5)=[[h2,6](t0, tx, t2)](w0, wu..., w5) where

Uo](w0, Wx,..., w5) = [>/i](wa, 1, 0, w4) = 0   if w2 = wt

= 1    if w2 + Wi,

by 2.3 and Axiom 1. [/i](>Vo, wlt..., w6) = wa by 2.1. Lastly,

[h](w0, Wx,..., w5) = [w0](wx, [s](w2), [wx](w5, w2, w3), w4, ws),

by 2.3. But then, by 2.7, there exists A e F such that for all (wlt..., m>5> e F,

[X](wx,..., w5) = [7](A, Wx, ■ ■ -, w5), and from the definition of [7]6 (i.e., from 2.5),

we see that [A5] is precisely the desired function.

In our most important use of the above result in this paper 5.3, we shall employ

it to define two functions simultaneously in terms of each other. The validity of such

"joint-recursive-definitions" follows readily from the above result if we employ

the simple device of combining the two functions into a single function; e.g., to

define say 1-ary functions/: andg: A^ V where fl[s]n + 1(z)) depends on g ([s]n(z))

and vice versa, it suffices to define a single 2-ary function h such that, for all

«eA

h(x, «)=/(«)    ifx = 0

= g(n)   ifx^O.

We shall now prove two theorems on minimalization. The first is a general

result, good for all successor pairs. The second requires that the successor set A be

at least semicomputable. While minimalization is traditionally defined with respect

to total functions, we here adopt a trivial generalization which will be more in

accord with our applications.

Let 7=<C/, G> be a U.R.S. with successor pair ([s], z> and let ce V. Then, a

function [/]„+1, (« è 1), will be said to be c-consistent if, for every x(n) e Fn, if there

exists a least integer m such that [f]([s]m(z), x(n)) = c, then for all m', O^m'^m,

[/]([*TO, *<n))^*.

Theorem 4.4. Fe/ /=<£/, G> be a U.R.S. with successor pair ([s], z> and let c be

a fixed element of V. Then for each integer «>0 there exists a function [p-n]n+i "*

F(7) such that, for every c-consistent function L/jn+i eF(7), and every x(n)e Fn,

[t*n](f,xin)) = the least element [s]m(z) of N such that [f\([s]m(z), xin)) = c, if such

exists. (Note that no value is specified where no such [s]m(z) exists.)
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Proof. For simplicity, take « = 1. We claim it will suffice to find a function [A]3 in

F(7) such that, for all wx, w2, w3 e V,

[X](Wx, w2, w3) = Wx if [w2](wx, w3) = c,

= [X]([s](wx), w2, w3)   if [w2](wx, w3) =¿ c.

For, if such [A]3 exists, then taking [/¿T such that, for all/and x in F, [px](f, x)

= [A](z,/ x), we see by inspection that we get the desired result. (In effect, [A]3(z,/ x)

successively computes [/]([i]n(z), x) for «=0, 1,2,. . . until the desired element of

A, if such exists, is reached.)

The existence of [A]3 may be established as follows:

Let 0, 1 e F, 0^ 1, and take [7]4, by 2.5, such that, for all wQ, wlt w2, w3 e V,

[t](w0,..., w3) = [[«2>4](/0, tx, t2)](w0, ...,ws)

where

[t0](w0,..., w3) = [<fi](z, 1, 0, [w2](wx, w3)) = 0   if [w2](wx, w3) = c

= 1    if [w-jXh-!, w3) ¿ c;

[ti](w0,...,w3) = Wx

and

[t2](w0, ...,w3)= [w0]([s](wx), w2, w3).

But then, by the fixed point Theorem 2.7, there exists A e F such that, for all

Wx, w2, w3 e V, [X](wx, w2, w3) = [t](X, w1; w2, w3) which is easily seen, by inspection,

to be the desired function.

Inspection of the above theorem will show that we have not specified the value of

\p](f, x) when there is no [sf(z) e N such that [/]([s]k(z), x) = c. In order to mimic

conventional minimization, we would want [¡i\(f, x) to have the value * under these

circumstances. However, it would appear that the fixed point theorem (as used to

develop A) is not strong enough to guarantee this result. On the other hand, if A is

a semicomputable successor set, then we are able to get the desired result.

Theorem 4.5. Let I=(U, G> be a U.R.S. with successor pair <[s], z> with semi-

computable successor set N and let c be a fixed element of V. Then for each integer

« > 0, there exists a function [pn*]n+ x in F(7) such that, for every c-consistent function

[f]n+i e F(I), and every x(n) e Fn,

[p-n*](f, xM) = the least element [sf(z) e A such that [ß([sf(z), x(n)) = c,

if such exists;

= *   otherwise.

Proof. For simplicity, we again take « = 1. Let [fix] be as in the preceding theorem.

What we wish to do is make [p-x*] such that [px*](f, x) = [px](f, x) except when
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[pi](f,x)^* but [f]([pi](f, x), x)^c or [px](f, x)$N, in which case we want

[pi*](f, x)—*. This may clearly be accomplished by use of 2.5.

Rather than use the above notation, [pn*](f, xM), in the remainder of the paper,

we shall employ the more suggestive and complete notation, minBeN [f](y, x(n)) = c.

5. The construction of U.R.S. and highly constructible U.R.S. We begin this

section by presenting a means for "constructing" U.R.S. on arbitrary infinite

domains. Using this "construction", we prove that the functions recursive in/

form the function set of a U.R.S. This proof, and the new gödelization which it

presents, allows us to show that the results given in the remainder of the paper

apply to the partial recursive functions. We next present a fundamental lemma

which presents sufficient conditions under which the "construction" given in the

first theorem can be carried out within a U.R.S. On the basis of these results, we

develop and investigate a special class of U.R.S., the highly constructible U.R.S.

This class includes the U.R.S. of partial recursive functions. The highly con-

structible U.R.S. enjoy a number of properties important in the theory of com-

putability which are not enjoyed by arbitrary U.R.S. In addition, the members of

this class will form the basis of the intrinsic theory of relative computability

developed in §6.

A function/: Un -> £7 is said to be *-admissible if and only if, for all jc(n> eUn— V,

we have/(x(n)) = *.

Theorem 5.1. Given an infinite set U, a designated element * of U, and a set F of

l-ary *-admissible functions of U into U where Card (F)^Card (£7), then there

exists a U.R.S. /=<£/, G> such that FsF(7).

Proof. Let V= £/—{*}. Let a and i/i be two arbitrary elements of V. Let

F0, Vx,...,Ve be seven disjoint subsets of V such that, V0={a, $}, Card (Vx)

^Card (F), and, for 2^/^6, we have Card (F¡) = Card (V). Let F7= F-Uf=o Vu

Using these sets, we will now form functions from which we can develop a

gödelization G: U^ Uu which will satisfy the axioms. In particular, we will have

G(a) = [a], G(<k) = [i/i]; Vx will contain gödel numbers for all of the elements of F;

and V2 through F6 will contain gödel numbers corresponding to functions of the

forms [[>l>](x)], [[i/>](x, y)], [[>fi](x, y, z)], [[a](x)l and [[a](x,y)] respectively; and

lastly, the functions corresponding to elements of F7 will take the value * on all

off/.

To start, let there be given maps <f>x through <f>6 where <f>x maps Vx onto F, <f>2 maps

F one-to-one onto V2, <j>3 maps Vx F one-to-one onto V3, cA4 maps VxVx F one-

to-one onto F4, <p5 maps F one-to-one onto F5, <f>6 maps Vx F one-to-one onto F6.

(The existence of these maps, for arbitrary infinite U, is assured by elementary set

theory with the axiom of choice.)

Given the sets F0,..., F6 and the maps <f>x,..., <¿6, we shall now define a map

g: U x U ̂  U such that for every u,xeU, the map G: U-+Uu given by (G(U))(x)
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=g(u, x) will be the desired gödelization. Let C= UF= o F¡ and let, A0 = Cx V. Then

g0=g|A0 is given as follows:

g0(H, x) = (4>x(u))(x) if x 6 Vx

= <¡>2(x) ÍÍU = l/l

= <f>3(c, x) ifue V2, u = <f>2(c)

= <t>A[c, b, x) ifue V3, u = <f>3(c, b)

= a if u e F4, m = <j>A[c, b, a) and x = c

= b if u e F4, u = </S4(c, b, a) and x ^ c

= <f>5(x) ifu = a

= <f>6(c, x) ifue V5, u = ch5(c)

for all <77, x> e A0 and all c,b,ae V.

We now define An and gn for all integers « > 0 as follows:

A„+i = An u {<w, x> | u = <l>s(p, q) where (p, x>, (q, x>

and (gn(p, x), gn(q, x)> are all in A„},

and gn+i: An+1 -» U such that

gn+x(u, x) = gn(u, x) if <k, x> e An

= gn(gn(p, x), gn(q, x))   if u e An+ x - A* and t/ = <¿6(/>, q).

Now take g to be the function mapping UxU-> U such that, for any u, x e U,

g(u, x) = gn(u, x)   if there exists n such that <k, x> e A„

= * otherwise.

That g is well defined follows from the definition of gn. Consider now the structure

<t/, G> where G is the map of U^ Uu such that, for every u and x in U, (G(u))(x)

=g(u, x). To see that this structure is indeed a U.R.S., we must show that Axioms

1, 2, and 3 are satisfied.

Let us denote G(u) by [u] for all ue U.

To prove that Axiom 1 is satisfied, we must show that, for every ue U, [*](u)

= [«](*) = *. This amounts to showing that g(*, u)=g(u, *) = *. Since, for all

<x, y y e Ux U, g(x, y) = * if there does not exist An such that <x, y) e A„ it

suffices to show that for every n, An^VxV. But A0çCx V by definition, and it

follows easily by induction on «, that for all «, A,g(Cu V6)x V^ VxV. Thus

Axiom 1 is satisfied.

To prove that Axiom 2 is satisfied, consider the element a of F0. Letp, q and x be

elements of F. Then, from the definition of g, we see that

[[<A(p)](q) = g(g(«,p),q)
= g(Mp), q)

= <pe(p,q)eV6^V,

so the first requirement, namely [[a](p)](q) = *, is met.
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Second, we see that [[[<*](p)](q)](x)=g(g(g(a,p),q), x)=g(</>B(p,q), x). Now, in

order for Axiom 2 to be satisfied, we must show that

(1) [[[«](/»)](*)](*) = [[P](x)]([q](x)).

We have already shown that the left side equals g(<f>6(p, q), x). Let us now consider

the right side. By definition, [[p](x)]([q](x))=g(g(p, x),g(q, x)). Now a necessary

condition for this to not equal * is that there exist integers «, «' and n" such that

</?, x> e An, <c7, x> g An-, and (g(p, x), g(q, x)> e An„. If this condition is satisfied,

then

[[P](x)]([q](x)) = gn"(gn(P, x), gn(q, x))

= gn<gn*(j>, X), gn*(q, X)),

where «A is any integer >:«, «', «". But if this is the case, then, by definition,

<4>e(P, q), x} e A„a + 1 and [[[cc](p)](q)](x)=g(<f>6(p, q), x)=gn*(gn*(p, x), gAq, x))

and thus (1) is satisfied. While on the other hand, if this condition (the existence of

n, ri and «") is not satisfied, then, by definition, for all «A, (</>6(p, q), x> $ A„a, and

[[[<A(p)]{q)](x) = * = [[p](x)}([q](x)), and (1) is again satisfied.

Lastly, to prove that Axiom 3 is satisfied, consider the element i/> of F0. Let c, b, a,

and x be elements of V. Then, from the definition of g0, we see that

mm(c)](b)](a)](x) = g(g(g(g(4>, c), b), a), x)

= g(g{gih{c), b), a), x)

= g(g(<Ps(c, b), a), x)

= g(Mc, b, a), x)

(a   if x = c

' \b   if x + c

which is just what is required for Axiom 3.

Thus all three axioms are satisfied and so < £7, G> is indeed a U.R.S.

The above argument not only provides a proof for the theorem, but in addition,

provides a means for "constructing" a U.R.S. given a 15-tuple S=(F,a,<¡>,

Vx,..., Ve,<f>x,..., <f>e). This "construction" will play a central role in the remain-

der of this paper.

Let N denote the nonnegative integers. We shall now employ the above con-

struction to give (a sketch of) a proof that for any total function/: N ->■ N the set

of functions recursive in/form (the function set of) a U.R.S. By the set R(f) of

functions recursive in / we mean the smallest set of functions which contains the

functions

0)/
(ii) s(n) = n+l (the standard successor function)

(iii) Un-i(xx,..., xh ..., xn) = x¡ for all n and all i, l^i^n

(iv) Z(«) = 0
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and is closed under the operations of composition, primitive recursion, and

minimalization.

Theorem 5.2. Let N denote the nonnegative integers and let f: A ->■ A be a total

function. Then there exists a U.R.S. Fr = <(A u {*}), G> such that F(Rf) is precisely

the set R(f) of functions recursive in f (where the value * is interpreted as " undefined").

Proof. We employ the construction of the preceding theorem to construct Rf.

Let s:N->N be the standard successor function on A (i.e., for every « e N,

s(n) = n +1). Then, let Rf be the U.R.S. constructed from the 15-tuple, F=<F, a, <¡s,

Vx,..., V6,<j>x,---,<t>ù where:

F={/i}

^=5
«=13

F!={2,3}

¿i={<2,/>,<3,í>}
and, for all x,y,ze N,

Mx) = 5*+2

<f>3(x,y) = 5x + 2-T<+2

<t>i(x,y,z) = 5*+2.7"+2- 1F+2

Ux) = 13^+2

çb6(x,y) = 13*+M7" + 2

and, for /=2,..., 6, F( = range (<f>t).

That Rf is a U.R.S. follows from 5.1. It remains to show that F(Rf) = R(f). We

first show that R(f)<^F(Rf). The functions/and s are in F(Rf) by definition, the

functions i/ni are in F(Rf) by 2.2, and the function Z is the function [k0]x

= [[0](O, 0, 0)] given by 2.1. Finally, Rf is closed under composition by 2.3, under

primitive recursion by 4.3, and under minimalization by 4.5. Thus R(f)^F(Rf).

To see that F(Rf) <= Rf, it clearly suffices to prove that the function g : NxN-> A

constructed in the proof of 5.1 is recursive in/ starting from the above 15-tuple S

since this will give us all the 1-ary functions in F(Rf) and that the «-ary functions

(«>1) are in Rr will then follow by composition. The construction is straight-

forward, but tedious. The essential construction, once g0 is known, is given in the

proof of the next result. We leave the details to the reader.

We return now to U.R.S. on arbitrary domains. The next lemma provides the

foundation for studying the "carrying out within a U.R.S." of the "construction"

given in 5.1.

Lemma 5.3. Let F = (U, GA> be a U.R.S. constructed from SA=<FA, a\ <£\

FÍ,..., F6\ <pi, ...,Vù andjor allée V, let [e]A denote GA(e). Let 7=<£/, G> be a

second U.R.S. where, for all eeV, [e] denotes G(e). If I is such that,
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(a) I has a computable successor pair {[s], z> with successor set N;

(b) The sets (J?=o Vf and Vè are computable in I (recall V{¡ ={«A, ̂ A});

(c) There exist functions [aï1] and [a2x] in F(I) such that, for all x, y e V,

[eïlXff«A]A(*)]AO0) = x,

[«tf T0kTC*)]Ato) = y,
(i.e., F(I) contains "inverses" for [a*]£);

(d) There exists [t°]2 e F(I) such that, for all e, x e V,

[t°](e,x)= [eY(x)   ifee\Jfm9Vt

= 1 otherwise;

thenjhere exist functions [T]3 and [U]3 in F(I) such that, for all e, xe V,

(A) [e]A(x) = [U](e, x, min [T](e, x, y) = 0)

and thus, F(l,/A)<=F(1,/).

Proof. Let Anç: Vx Fand gn: An -» V(n=0, 1, 2,...) be the sets and functions

respectively used to "construct" F in accordance with Theorem 5.1. What we will

show is that F(7) contains functions [T]3 and [£/]3 such that, for all e, x e V, and

every integer « sj 0,

[T](e, x, [sf(z)) = 0 if (e, x> e An and [e]A(x) * *

= 0 only if (e, x> e An

= 1 only if <e, x> £ An

= * only if [e]A(x) = *;

(ii) [T](e, x, [s f(z)) = 0 implies that, for all m, 0 ^ m ^ n, [T](e, x, [s ]m(z)) = 0 or 1 ;

..... [U](e, x, [sf(z)) - gn(e, x) = [e]A(x)   if <e, x> e A„

{Ul) = * only if [e]A(x) = *.

That the desired result (A) will follow from these three properties is an im-

mediate consequence of 4.5. The function [F]3 and [U]3 are defined jointly by

recursion with respect to the successor set A of <[s], z>. We take:

[T](e, x, [s]°(z)) = 0   if (e, x> e A0 = (|Jf-o Ff) x V

= 1    if (e, x) i A0,

[U](e, x, [sf(z)) = [t°](e, x)

and for n ̂  0,

[T](e, x, [sT + \z)) = ([T](e, x, [sf(z)) = 0)

V (([T](e, x, [sf(z)) = 1)

A (e g V6) A ariaar1]^), x, [s]n(z)) = 0)

*({T]([«i1](e),x,[sT(z)) = 0)

*([T]([U]([aïi](e),x,[sT(z)),

[UYl^M, x, [sf(z)), [sf(Z)) = 0))
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[U](e, x, [sf + 1(z)) = [U](e, x, [sf(z))   if [T](e, x, [sf(z)) = 0

= [t/Kti/KK1]^), x, [sT(z)), [U^a^Xe), x, [sf(z)), [sT(z))

if [T](e, x, [sf(z)) = 1    and [T](e, x, [sf + 1(z)) = 0

= 0   if [T](e, x, [sf(z)) = [T](e, x, [sf + 1(z)) = 1

= *   otherwise.

That these functions are well defined and in F(7) follows from 4.3 (and the re-

marks following it) and from 4.1 and 2.5. Note particularly that the terms in the

definition of [F]3 are ordered so as to take advantage of the fact that 0 v *=0 and

1 A * = 1 ; and that the conditions are ordered in the definition of [U]3 so that the

value * will be taken only if none of the other conditions are met (see 4.1).

To prove that [F]3 and [U]3 have the three claimed properties, we proceed by

induction on «. It is clear from the definitions of the functions that the properties

all hold for « = 0 ; assume now that they hold for « = k ^ 0. To see that they hold for

k+l, we investigate the properties one at a time.

Consider the first property. From the definition of Ak+1 (see proof of 5.1), we

know that <e, i)eAwl if and only if

«e, x> e Ak) or («e, x> £ Ak) and (e e F6) and

(1) «[«f1]^), x> e Afc) and «[«J*](*), x> e A,»

and «[[«f^rix), [[a2 1](e)]A(x)> 6 Afc)).

Now say <e, x>eAfc+1 and [e]A(x)^*. Then, by the induction hypothesis (1)

corresponds directly to the conditions for [T](e, x, [s]k+1(z))=0 in the recursive

definition of [T] (note that if any of the terms in these conditions took the value *,

then this would imply [e]A(x) = * by the induction hypothesis and the definition of

[e]A (see 5.1)).

Conversely, if [T](e, x, [s]k + 1(z)) = 0, then, by essentially the reverse of the above

argument, we see that the conditions in the definition of [T]3 imply that the above

predicate (1) is satisfied and thus that <e, x> e Afc+1; hence, [T](e, x, [s]k + 1(z)) = 0

only if <[e, x> e Ak+1.

Now say that [T](e, x, [s]k + 1(z))=l. Then, by the definition of [F]3 we have:

([T](e, x, [s]k(z)) = 1) A ((e i V6) V ([T]([a:^(e), x, [sf(z)) = 1)

v([T]([a21](e),x,[sf(z))=l)

[U]([^](e),x, [sf(z)\ [sf(z)) = 1)).

But this, by the induction hypothesis, gives us the negation of the above predicate

(1) and thus implies (e, x> 6 Afc+1.

Finally, say [T](e, x, [s]k + 1(z)) = *. Then, it follows from the definition of [F]3,

that  [T](e,x,[sf(z))^0.  Now if [T](e, x,[s]k(z)) = *, then, by the induction
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hypothesis, [e]A(x) = *and we are done. Thus, let us assume that [T](e, x, [s]k(z))=l.

Now, to avoid [T](e, x, [i]k + 1(z))=0, we must not have

(ee F6) A ([T]([a^](e),x, [sf(z)) = 0)

v([F]([a2-1Mx,[Jf(z)) = 0)

v ([TKmaa^eyxAsnz)),

lU]([a2-1](e),x,[sf(z)),[s]k(z)) = 0).

But if e £ F6, then [e]h(x) = * (since [T](e, x, [sf(z)) = 1 implies e <£ (Jf=o Ft) and we

are done. Thus, let us assume e e F6. But then, to avoid [T](e, x, [s]k + \z)) = 1, at

least one of the remaining terms in (2) above must take the value *. Then, by the

induction hypothesis, it follows that either [[a{1](e)Y(x) = *, [[a21](e)]A(x) = *, or

[[[«r1](e)]A(x)]A([[a2-1](e)]A(x)) = *. Thus, by the definition of [e]A (5.1), we get

[e]A(x) = *, and so [T](e, x, [s]k(z)) = * only if [<?]A(x) = *.

This completes the inductive step for the first property. As for the second

property, clearly, for any m^O, [T](e, x, [s]m(z)) = * implies [T](e, x, [s]m + 1(z)) = *,

(see definition of [T]3) and the property follows immediately.

It remains to establish the third property. Assume first that <e, x> g Ak+X and

[eY(x)j=*. Then by the inductive step for property 1 we know [F](e, x, [s]k + 1(z))=0.

If, in addition <e, x> g Ak, then, by the induction hypothesis, [T](e, x, [s]k(z)) = 0

and so, by the definition of [£/]3, [U](e, x, [s]k+1(z)) = [U](e, x, [s]k(z)) which, by

the induction hypothesis, =[e]A(x) as desired. But if <e, x> <£ Ak then, since

[e]A(x)^*, we have [T](e, x, [s]k(z))= 1 and so, by the definition of [£/]3,

[U](e, x, [s]k + i(z)) = [£/]([£/]([«r1](e), x, [sf(z)), [£/]([«21](e), x, [s]k(z)), [s]k(z))

which, by the induction hypothesis = [[[ctf1](e)]A(x)]A([[a21](e)]A(x))=[e]A(x) by

the definition of [e]A (5.1).

Next, consider the case where <e, x>GAk+1, but [e]A(x) = *. Then from the

inductive step for property 1, it follows that [T](e, x, [s]k + 1(z))=0 or *. In the

latter case, it follows, from the definition of [U]3, that [£7](e, x, [s]k + 1(z)) = * so

assume [T](e, x, [s]k + 1(z)) = 0. But then, from property 2 we have [T](e, x, [s]k(z))

= 0or 1 and we get [T](e, x, [s]k*1(z)) = [e]'i(x) by essentially the same argument as

for the MA(x)#* case. Thus, we have that (e, x> e Ak+X implies [U](e, x, [s]k*1(z))

= [eV(x).
Finally, say [U](e, x, [s]k + 1(z)) = *. Then, from the definition of [£/] it follows

that [T](e,x,[s]k(z)) = * or [T](e, x, [s]k+\z)) = * or [£/]([£/]([ar1](e), x, [sf(z)),

[£7]([a21](e), x, [s]k(z)) = *. But, by the induction hypothesis and the inductive

step for property 1 it follows, from any of these, that [e]A(x) = * and thus,

[U](e, x, [s]k + 1(z)) = * only if [e]A(x) = *. This then completes the inductive step for

the third property and so, by induction, the three properties hold for all n 3:0.

That, for all e, x e V,

[e]\x) = [U](e, x, min [T](e, x, y)=0)
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then follows immediately from the three properties. Note particularly that the

second property insures that the min yeN will be "found" if it exists. That this

function is in F(7) follows from 2.3 and it follows immediately from this result that

F(l,7A)cF(7).

The preceding result shows that under the given conditions we can "construct"

the set F(l, 7A) of all 1-ary functions of 7A "within" the U.R.S. 7 in a uniform

manner (i.e., just using [T]3 and [U]3). This immediately suggests the study of the

case where 7=7A. In addition, the functions [T]3 and [U]3 are strongly reminiscent

of those employed in the Kleene Normal Form theorem of partial recursive function

theory, except that they are not necessarily *-total. This suggests a strengthening of

the above result to the case where 7=7A and [F]3 and [U]3 are *-total in order to

produce U.R.S. with a normal form theorem. The following definition provides a

class of U.R.S. with these properties.

A U.R.S. 7=<[/, G> will be said to be highly constructible if there exists a 15-

tuple S=(F, a, i/i, Vx,..., F8, <px, ■ ■ -, <f>e} such that 7 is constructible from S and

(1) Every function in F is *-total ;

(2) There exists a computable successor pair <[s], z> in 7;

(3) The predicates "x e F(", i= I, 2,..., 6 are computable in 7;

(4) There exist *-total functions [a^1] and [a2 x] in F(7) such that, for every p

and q in V,

[«Í ']([*](P, q)) = P,        [«2 ̂ ([^(p, q)) = q.

Theorem 5.4. Let N denote the nonnegative integers and let f: A-> A be a total

function. Then there exists a highly constructible U.R.S. Fr = <(Au {*}), G> such

that F(Rf) is precisely the set R(f) of functions recursive in f.

Proof. This result is an almost immediate corollary of the proof of 5.2. All that

remains to be done is to show that the U.R.S. Rf given there is highly constructible,

but this is evident on the basis of very elementary results of the theory of partial

recursive functions.

Theorem 5.5 (Normal Form Theorem). Let /=<£/, G > be a highly constructible

U.R.S. and let <[$], z> be a computable successor pair in I with successor set N. Then

there exists a *-total function [U]3 anda 3-ary computable predicate [T]3 in F(I) such

that, for all e and x in V,

[e](x) = [U](e, x, min T(e, x, y) = 0\.

Proof. Let [T]3 and [U]3 be the functions developed in Lemma 5.3. All that

remains to be shown is that these functions are *-total. We know that for all

e, x e V and v £ A, [T](e, x, y), [U](e, x, y)¥=*. Thus [F]3 and [U]3 are not *-total

only if there exists a triple <e, x, n>, e, x e V, « an integer 3:0, such that

(1) ([T](e, x, [sf(z)) - *) V ([U](e, x, [sf(z)) = *).
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Consider the set of all such triples. If this set is not empty, then there will exist a

least integer « for which there exist e and x in F satisfying (1). Now for all e, x e V,

[T](e, x, [s]°(z))#* and, since all the elements of F are *-total, we have <e, x> € A0

implies [e](x)#*. Thus, from the definition of [U]3, we have [U](e, x, [s]°(x))^*

for all e, x e V. Hence, the minimal « must be greater than 0. But then, from in-

spection of the recursive step in the definitions of [F]3 and [U]3 (proof of 5.3), we

see that (1) above cannot be satisfied without contradicting the minimality of «

since the values of [T](e, x, [s]n(z)) and [U](e, x, [s]n(z)) are then given in terms of

their values on [s]n~\z), for which, by the minimality of«, [F]3 and [U]3 are *-total.

Thus, [T]3 and [U]3 are *-total.

To complete this section, we prove a number of results for highly constructible

U.R.S. which, as we will later show, are not true for arbitrary U.R.S. In particular,

we shall show that the usual proof of the existence of recursively inseparable semi-

computable (i.e., recursively enumerable sets) holds for highly constructible U.R.S.

We first give a result (which does not hold for arbitrary U.R.S.) which shows that

recursive inseparability does not arise trivially in highly constructible U.R.S.

Theorem 5.6. If I is a highly constructible U.R.S. andP(x) is a predicate such that

both P(x) and ~F(x) are semicomputable in I, then P(x) is computable in I.

Proof. If F(x) and ~P(x) are both semicomputable in 7, then, by definition, there

exist p.qeV such that [p\x and [q\x are the semicharacteristic functions of F(x)

and ~F(x) respectively. Now, by 5.5 and 2.5 there clearly exists a function

[g]2 e F(7) such that for all xeV and all integers « ̂  0

[g](x, [sf(z)) = 0   if [T](p, x, [s]"(z)) = 0

= 1    if [T](q, x, [sT(z)) = 0.

But then there exists peV such that, for every xeV,

[p](x) = [g](x, min ([T](p, x,y) = 0 or [T](q, x, y) = 0))
V       yeN '

by virtue of 4.1 and 4.5. But clearly, [p\x is the characteristic function of F(x) and

thus F(x) is computable in 7.

We say that two disjoint sets A and F in a U.R.S. 7 are recursively inseparable in

7 if there does not exist a computable set C in 7 such that A <= C and F<= F— C. To

prove that there exist recursively inseparable semicomputable sets in highly con-

structible U.R.S., we shall use essentially the same proof as used by Smullyan [5]

to establish this result for the partial recursive functions. We need the following

simple notion and result:

Given two semicomputable sets cou and wv in a highly constructible U.R.S. 7, we

say that, xea>u before xewv if and only if (3n)([T](u, x,[s]n(z))=0 and

(V«7^«)([F](t;,x,[ir(z))=l)). Let

a>u = {x | x 6 wu before x e a>„}

co'v = (x I x e cu„ before x g cou}.
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Lemma 5.7. Ifl is a highly constructible U.R.S., then for every u,veV, we have

that o)'u and w'v are semicomputable and disjoint and they are respective supersets of

(cou - wv) and (co„ - cuu).

Proof. To see that the sets are semicomputable, consider w'u. By 2.3 there exists

[r] e F(l, I) such that, for every xeV,

lr](x) = [T](v, x, min ([T](u, x, y) = 0)).
V yeN '

But from the proof of 5.3, we see that if [T](v, x, [s]n(z))=0, then for all m^n,

[T](v, x, [s]m(z)) = 0. Thus, for every xeV,

[r](x) =1    if x g coi

= *   otherwise

and so [[yK&o, r)] = [k0]■ [r] is the semicharacteristic function of oi'u. Similarly, w¿ is

semicomputable. The remaining claims are obviously true.

Theorem 5.8. If I is a highly constructible U.R.S., then there exist disjoint semi-

computable sets in I which are not recursively separable.

Proof. We shall construct semicomputable sets P=ojv and ß = coQ and show that

the (not necessarily semicomputable sets) (P—Q) and (Q—P) are recursively in-

separable. But from this, it will follow immediately that the above defined semi-

computable supersets w'p and oj'q of, respectively, (P— Q) and (Q—P), are recursively

inseparable.

Let c he a fixed element of F and let [t]2e F(I) such that, for all x, ye V,

[t](x, y) = [<jj](c, x, y). From the fact that range ([<j>]3) is computable, it is easily

shown that range ([/]2) is computable and that there exist *-total functions [Xx]x

and [X2]x in F(7) such that for all xx, x2 e Fand /'= 1, 2, [AjKtfKxj., x2))=Xi, and for

all w $ range ([r]2), [Af](w)=0. Now define the sets P and Q by

xePo x e o)Kl(x),       xe Qo xe üja¡2(x).

To see that P is semicomputable, consider the function [p] of F(I), given by 2.3,

such that for every xe V, [p](x)=[k0] (minïsi, [F]([AJ(x), x, y) = 0). Clearly, [p]x is

the semicharacteristic function of P. A similar proof gives us a function [q] for Q.

Our claim now is that there does not exist a computable set B such that

(P—Q)C1 V—B. For assume such a B existed and let [u] be the semicharacteristic

function of B and let v be the semicharacteristic function of V— B. Now consider

w=[t](v,u)

(1) wePo wewv = V-B   by definition F

(2) weQowewu — B   by definition Q.

From which it follows that

(3) w e(a>v-œu) = ((V-B)-B)=V-B o w e(P- Q) => weB

(4) w e (wu-cüv) = (B-(V- B)) = B o w e (Q-P) => we V-B.
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Hence, xeBoxe V— B, a contradiction. Thus, no such computable set F can

exist which separates (P—Q) and (Q—P), and clearly then, w'v and w'q must be

likewise recursively inseparable. Since o>'p and co'q are semicomputable sets, by 5.7,

this then completes the proof.

The following results which we state but do not prove will be useful in the next

section.

Lemma 5.9. Let 7= <[/, G> èe a highly constructible U.R.S. where </S e Vsatisfying

Axiom 3 for I. Then

(1) The functions [i/i]x, h/]2 and [>h]3 are one-to-one on the sets V, VxV and

{x, y, z | x, y, z e V and y^z} respectively.

(2) The sets {tb}, range (h/]i), range (h/]2) and range ([^]3) are pairwise disjoint.

(3) If range ([i/<]2) and range ([^]3) are computable, then there exist fix, fi2, fi3e V

such that, for all w, x e V

lPii(w,x) = y   ifx = hp](w,y);yeV

= 1    otherwise

[p-2\(w, x) = y   if x = [<fi\(w,y,z);y,zeV

= 1    otherwise

[p-3\(w, x) = z   if x = [ti](w, y,z);y,zeV

= 1    otherwise.

(4) If range ([i/>]2) and range ([^]3) are computable, then for every integer n > 1,

there exists a function [/>„] e F(n, I) and functions [IIJ],..., [II;;] e F(l, I) such that

for every n-tuple x(n> = <x1; x2,..., xn> e Fn,

(i) [Pn](x™) e V,

(ii) for i= 1,2,...,«,    [nr]([/7n](x<">)) = xf,

(iii) range ([/>„]„) is computable.

Proof. The proofs are simple but tedious. We leave them to the reader.

6. Intrinsic relative computability—the U.R.S. lattice.    Given two U.R.S. 7 and

7' with domain U, we say that 7' is an extension of 7 if F(7)çF(7'). What we wish

to show in this section is that if we consider the set of all U.R.S. which are exten-

sions of a given highly constructible U.R.S., then the extensionality relationship on

this set induces a relationship on the set of *-admissible functions which is a natural

generalization of the "computable in" relation. Indeed, where the given highly

constructible U.R.S. is the set of partial recursive functions, then the induced

relationship on the set of total functions is precisely the "recursive in" relationship

(or Turing reducibility relationship) of the traditional theory of computability.

Thus, the extension relation, which is intrinsic to the theory of U.R.S., provides an

intrinsic notion of relative computability.

The following lemma, while of little interest in its own right, will be very useful.
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Lemma 6.1. Let /=<£/, G> andF = (U, G'> be two U.R.S. with domain U. Then

(F(l, I) u {[<A]3})£F(/') implies F is an extension of I (i.e., F(I)çF(F)).

Proof. Let the argument be the same as in the proof of 3.5 up through the defini-

tion of the function [A2]. Then to complete the proof, we must show that F(2,1)

çF(2, /'). This may be done as follows:

Let [r]2 g F(2,1). By 2.3 there must exist [w]x e F(I) such that, for all zeV,

[w](z)=[r]([Xx](z),[X2](z)). But then, since F(l, 7)<=F(1,/'), there must exist

[w']'xe F(F) such that [if']l = [ic]i. Thus, since we have assumed h/i]3 g F(F), it

follows, by 2.3, that there exists [r']2 e F(F) such that, for all x, y e V,

[r']'(x,y) = [w']'(W(c,x,y))

which, by the above,

= [wW](c,x,y))

= [r]([*iW](c, x, y)), [X2](m(c, x, y)))

= [r](x,y),

whence [r]2 = [r']2 e F(2,1) and so F(2, /)<=F(2, /') and thus F(I)<=F(F) by the

same argument as in 3.5.

In the development of "relative computability" in this section, we shall always

start from a highly constructible U.R.S. and consider its extensions. This seeming

restriction is justified since the U.R.S. of partial recursive functions is highly con-

structible. However, inasmuch as the reader may be interested in applications other

than to the partial recursive functions, we note the following. By 5.1 we know that

there exist highly constructible U.R.S. on all infinite domains and thus the results

of this section are applicable to all domains. On the other hand, it can be shown

that there are U.R.S. on every domain which are not highly constructible (see 6.12).

However, as the following result shows, we can always replace a U.R.S. by a highly

constructible extension.

Theorem 6.2. Every U.R.S. has an extension which is highly constructible.

Proof. Let [8] be the diagonal function of / (see 3.2) and let [</r]2 be the function

given by Axiom 3 for /. Let 0 g F— range ([</<]2), and let /: £7 -> U be the function

such that, for all xe V,

fix) = M(0, [8](x))   if [8](x) ¿ *

= 0 otherwise.

While f$ F(I), we see immediately that it is *-total and that, for all x,yeV,

f(x) =f(y) o [8](x) = [8]( v). Now, since h/<]2 is one-to-one, there exists a function

h: U—> Usuch that, for every xe V,

h(x) = y   ifx = hA](0,y)

= 0   if xi range ([[>l>](0)]x).
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Again, « is not necessarily in F(7), but it is *-total. Now pick Fl5..., F6 and

<f>x, ■ ■ •, <Pe with Card (Fi) = Card (U) in accordance with 5.1, and let g: £/->- U

such that for every xeV,

g(x) = [</-](z, b, c)   if x = <¿4(a, b, c) e F4

= 0 ifx£F4.

Then, let 7A = <[7, GA> be the highly constructible U.R.S. constructed from the

15-tuple S=((F»(1) u {/ «, g}), aA, 0\ Fx,..., F6, <f>x, ...,<f>6> (note: ^ must, of

course, be chosen after g is defined). Let [h]a denote GA(u) for all îî e U. Since

/ «, g e F(l, 7A), it is easy to see that there must exist XeV such that for all x e F

[A]A(x) = h(f(x))   if/(x) * 0

= * otherwise

= [S](x).

Thus, [A]A = [S] and so {[8]} u F"(7) = F(7A). But, by 3.2 every 1-ary function [u]

in F(7) can be formed as the composite of [S] with an element of F"(7) and thus

F(l, 7)çF(l, 7A). On the other hand, g, «¿4 e F(7A) (recall [<AA]â =<¿4 by 5.1), Thus,

there must exist t e V such that for all x, y, z e V

[t]a(x, y, z) = g(Mx, y, z)) = [ii](x, y, z).

Thus k¿]3 e F(F) and so, by 6.1, F(I)cF(F).

In proving results concerning the extension-relation, we shall make considerable

use of the "construction" of Theorem 5.1. The following lemma establishes con-

ditions under which this "construction" can be used to form extensions. First, a

definition :

Given a U.R.S. 7 and a set A of »-admissible functions, we say that a second

U.R.S. I' = (U,G'y is an ^-extension of 7 if F(7) u AçF(F). If A contains only

one element, say g, then we will write g-extension instead of {g}-extension.

Lemma 6.3. Let I be a highly constructible U.R.S. constructed from 5=<F, a, tp,

Vx,. ■., Vn, fa,..., cj>ey where V— U?=o ^¡^ 0.LetF' be any set of l-ary ^admis-

sible functions such that Card (F')áCard (F-IJi?=o F). Then where cf>' is a one-to-

one map of F' onto F'çF-lJ?=o F¡, the U.R.S. I' = (U, G'> constructed from

F' = <F u F', a, ip, V u Vx, F2,..., F6, ck' u <^, <f>2,..., <£6> is an F'-extension

of I.

Proof. From the construction (5.1), it follows that F'sF(7'). Thus, what we

must show is that F(7)çF(7'). Since the construction also insures that [ib]3 e F(I'),

it remains only to show that F(l, 7)sF(l, 7'). Let<[j], z> be a computable successor
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pair for 7 with successor set A. Then we know that there exist *-total functions

[F]3 and [U]3 in F(7) such that for all <«, x> e F,

[u](x) = [U](u, x, min [F](t/, x, j>) = 0).

It follows then that we need only show that [F]3, [U]3, and [s]x e F(I').

Given 17 6 F, let [u] denote G(u) and let [u]' denote G'(u). Let A, and A[,

i=0, 1,2,... be the sets employed in Theorem 5.1 to define G and G' respectively.

By induction on / we see easily that '.A,s A\ for all / and that for all (u, x> e F,

if <M, x> e A¡ then [u]'x = [u]x. From this it follows, by induction on «, that if [u]n

is*-total, then [u]n = [u]n. Thus, FV(I)^FV(F) and, in particular, [U]3,[T]3,

[s]x e FV(F). But then, from 5.5 it follows that F(l, 7)gF(l, 7') and so, by 6.1,

that F(I)<=F(I').

We now show that where we start from an appropriate highly constructible

U.R.S. that the "construction" yields a minimal/-extension for any »-admissible

function/ The lemma requires that the original U.R.S. 7' be constructed with sets

Vx,..., Ve such that V— (Jf=o F(^ 0. The three results following the lemma show

that this restriction is inessential; that is, such minimal/-extensions always exist.

Thus, the lemma leads to Theorem 6.7, which states the same result without the

above restriction.

Lemma 6.4. Let I' be a highly constructible U.R.S. constructed from S' = <F, a, tp,

Vx,..., V6, <px,..., 4>ù where V-Uf= i F + 0, andletf: U^- Ube a ^-admissible

function. Then there exists a minimal f-extension I¡ of I' in the sense that if I is any

f-extension of I', then F(If)çF(I).

Proof. Let the highly constructible U.R.S. 7' be " constructed " from S' = (F, a, ip,

Vx,..., Fe, <px,-.., <p6y and assume that F7= F-(Jf=o F,# 0. We claim that the

desired/extension I¡ is the U.R.S. 1, = (JJ, Gfy "constructed" from S" = <F\ a, xp,

Vi, V2,..., F6, <Pî,...,<p2,..., <p6y, where:

FA =Fu{/}

FÍ = Vx U {vt};vf 6 Vn

and a, tp, F2,..., F6, <p2,..., <pe are as in 5".

Let 7=<C/, G> be an arbitrary/-extension of the highly constructible U.R.S.

I' = (U, G> and, for every ue U, let [«] denote G(u), [u]' denote G'(«), and [z/]A

denote Gf(u). What we must show then is that F(7A)<=F(7). We know that

Ms =[ñ £ F(7')sF(7). Thus, by 6.1, all we need to show is that F(l, 7A)çF(l, 7).

To prove this we employ 5.3. The conditions of 5.3 may be established as follows.

Condition 1 is satisfied since the computable successor pair <[s]', z> of 7' is per-

force in F(7). Condition 2 is satisfied since the characteristic functions of F2,..., F6

are in F(T)^F(I) and the characteristic function of Vx can clearly be extended to
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Fi u {v{} by virtue of 2.4. Similarly, the functions [«r1]', [aj1]' g F(F)<=F(I) and

[£*]£ = [a]2 so condition 3 is satisfied. Lastly, since F(7')CF(F) and/GF(7), there

exists, by 2.5, a function [F°]2 e F(I) such that, for all e, x e V,

[t°](e,x) = {

[e]'(x)    ifee\Jtm0Vt

f(x)        ife = vi

0 otherwise

(W(x)    if e e VÎ u V0 u V2 u • • • u FB

1^0 otherwise,

and thus the fourth condition is satisfied. Hence, 5.3 applies so F(l, 7A)<=F(1,1),

and so, by 6.1, F(F)^F(I). Thus, since I was an arbitrary /-extension of /', we

have that F(P) is minimal.

Theorem 6.5. A necessary and sufficient condition on a U.R.S. 7=<£7, G> for

there to exist a highly constructible U.R.S. P such that F(7A)sF(7) is that I contain

a computable successor pair <[i], z> and that there is >jj e V satisfying Axiom 3, and

such that the sets range ([<fi]2) and range ([^]3) are computable in I.

Proof. We shall give the requisite 15-tuple

sa = <f\ «\ r, vî, ..., y¿, m, ..., <i>è>

for 7a. Then show that 7A is highly constructible, and lastly, we shall show that

F(/A)c F(I).

Let 0, 1, 2, 3, 4, 5, and 6 be distinct, fixed elements of F (no numerical significance

assumed). Let the maps <f>2,.. .,<p6 be defined so that, for all x,y,weV

tt(x) - M(2, x)

u(x,y) = m(3, m(o,x),m(i,y))
tt(x,y, w) = M(4, mío, Mío, x), [m, y)), MO, *0)

tè(x) = Uh](5, x)

<pè(.x,y) = m(6,[4>](0,x),W(l,y)).

Note that all these fonctions are, perforce, in F(I).

For/=2,..., 6 define F/ = range (c4A). Utilizing the functions [/¿J, /'= 1, 2, 3, of

5.9, it is easy to show that the sets V,,j=2,..., 6 are computable in I, and, again

by 5.9, we can see that the functions ç4A are one-to-one. Thus these sets and functions

have the requisite properties. Let aA = h/>](0) and i/rA = [>l>](\). Fory'=2,..., 6, let [e,]

denote the characteristic function of Vf. Let [tj] be the characteristic function of the

successor set N of <[$], z>, and let [p.¿], i=l, 2, 3 be as in 5.9. Now pick a set

Ví={s\ex-,...,ee,v\pí,ti,p£} from the set V-({a\ </,»} u UU Vp) (that

this set is nonempty, indeed infinite, follows from the definition of the Vf). Then,

where [ex] is the characteristic function of Vx, (note: [ex] e F(I) since Vx is finite),

let 4>i be the obvious map from Fi\ one-to-one onto the set of functions Fv =
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{[s], [£i], [«2]» • • •> [£e]> bl], [ß-i], [ß-2], [ß-a]}- This completes the specification of the

15-tuple FA. From 5.1 it follows that there is a corresponding U.R.S. 7A = <t/, GA>

constructed from FA. Given eeV, let [e]A denote GA(e).

That 7A is highly constructible is easy to see except for the existence of the re-

quisite "inverses" K_1]A and [a2_1]A of [aA]¿. But for all x,ye V, [<*A]A(x,y)

= [<A](6, [<A](0, x), [0](1, y)) and so since [pt] = [/¿tA]A e F(7A) for i= 1, 2, 3, we have,

by 2.3, that there exist [ceA_1]A and [a2~1]A in F(7A) such that, for all xeV,

[ar1r(z) = [pi](0,[fi2](6,z))

[a2A-1]A(z)=[Ml](l,hx3](6,z)),

which thus are the requisite "inverses" for [aA]2.

It remains to show that F(7A)<=F(7). That [tpA]3=<f>^ e F(I) is clear from the

definition of <p£. Thus, by 6.1, we need only show F(l, IA)<^F(I). To prove this,

we employ 5.3. The first three conditions of 5.3 h#ve been established above. Thus it

remains only to establish the existence of the function [7°]2. Consider the function

t: Vx V-^ U such that, for all e, x e V,

t(e,x) = (tt(e))(x) ifeeVf

= <P£(x) if e = r = bp](l)

= ^(\Pi](2,e),x) ifé>eF2

= #(IAi](0, [p2](3, e)), [px](l, [H-s](3, e)), x)   if e e F3

= D"i](l, [M3](4, e)) if e e F4 and x = [/^(O, [p.2](0, [p.2}(4, e)))

= &*i](l, ta](0, [fi2](4, e))) if e e F4 and x # &*,](<), M(0, [p2](4, e)))

= M(x) ife = aA = m(0)

= <f>è(lni](5,e),x) ifß6F5

= 1 if^U5=oFy.

That this function is in F(7) follows from the fact that the [e¡] e F(I),j= 1,..., 5;

that the [fit] e F(I), i= 1, 2, 3; that the fâ e F(I),j= 1,..., 6; and from 2.5. Thus,

there exists [7°]2 e F(I) such that [Z°]2 = i. That this is the desired function follows

from inspection of the proof of 5.3 and the definitions of the <p} and /x¡. Thus,

F(7A)cF(7)by5.3and6.1.

Lemma 6.6. Every highly constructible U.R.S. 7=<i/, G> is functionally equivalent

to a highly constructible U.R.S. in which U— (Jf=o F^ 0.

Proof. Using 6.5 we shall construct a new, highly constructible U.R.S. 7A from

sets F0A, Vi,..., F6A such that F-(J?=o F¡A is infinite (of Card (F)) and F(7A)

£ F(7). We will then show that there exists a *-total function/such that F(7/) = F(7)

where 7/ is the minimal/-extension of 7A.

Since 7 is highly constructible, we know that it contains a computable successor

pair <[j], z> and that it contains tp e V satisfying Axiom 3 and such that the sets
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range ([>p]2) and range (h/<]3) are computable in /. Hence, we can apply 6.5 and

construct another highly constructible U.R.S. 7A such that F(IA)<=F(I). Now

where 7A is constructed using F0A, Vx,..., F6A, we see, from the proof of 6.5, that

Vq and FiA are finite and

U Vt £ range W](2)]x) u range W](3)]2)

u range ([h¿](4)]2) u range ([[>A](5)]i)

u range ([[</-](6)]2).

But then, for every a $ V-{2, 3,..., 6}, we know that range ([[</<](a)]i) is infinite

and disjoint from (Jf=2 Vt (by 5.9) and hence F—(Jf=o FA must be infinite. Thus,

it follows that we may form extensions of Ia in accordance with 6.4.

Let </>A = [<A]0)- Then [V]a gF(7a)cF(/) and, in particular, there exist

p: Vi -* V,p e F(7A)sF(/) such that for all w, x, y, z e V,

p(w, x, y, z) = MA]A(0, h>A]A(0,h¿A]A(0, w, x), y), z).

Furthermore, p is one-to-one and range (p) is computable in Ia (and thus in 7)

since 7A is highly constructible.

Let [£/]3 and [T]3 be the functions employed in the normal form Theorem 5.5 for

7. Let/be the function such that, for all v e V,

f(v) = [£/]3(x, v, z) if v = p(0, x, y, z)

= lTh(x, y,z) ifv=p(l, x, y, z)

= 0 otherwise.

Clearly, fie F(I) and any U.R.S. which contains both/? and/contains [U]3 and

[T]3. Thus, in particular, the/-extension If of Ia (given by 6.4) contains [U]3 and

[F]3 and thus, F(l, 7)çF(7/). But then F(I)^F(IfA) by 6.1 using [</<A]3A. Conversely,

F(If)<=F(I) since F(7A) u {/} e F(I) and If is the minimal/-extension of 7A. Thus,

F(If) = F(I). But If is constructed using the sets F0A, Vx u {vf}, F2A,..., F6A

where the Va, i=0,..., 6, are the sets used to define 7A, thus, the desired result

follows from the above proof that V- Uf« o F¡A is infinite.

Theorem 6.7. Let I be a highly constructible U.R.S. and let f: U -^ U be a *-

admissible function. Then there exists a minimal f-extension I¡ of I in the sense that if

F is any f-extension of I, then F(//)<=F(7')-

Proof. This result is an immediate corollary of 6.4 and 6.6.

The above result shows that given a highly constructible U.R.S. 7=<£/, G>, we

may associate every »-admissible function/: £/-> U with a minimal/-extension of

7. We now prove the converse, that every extension of a highly constructible

U.R.S. /=<£/, G> is a minimal/-extension of I for some »-admissible/: U ̂  U.
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Theorem 6.8. Let I=(U,G)bea highly constructible U.R.S. and let I' = <£/, G'>

be an extension of I. Then there exists fie F(F) such that F is functionally equivalent

to the minimal f-extension I¡ of I.

Proof. Given ueU, let [u] denote G(u) and let [u]' denote G'(u).

Let [«"]' denote the identity function in F(F) and let [<f>] denote the function

given by Axiom 3 for I. Given a fixed element c of V, we know there exists t e V

such that, for all x, ye V, [t ](x, y) = [>p](c, x, y). Since I is highly constructible, we

know range ([0]3) is computable and thus that range ([t]2) is computable. Taking

[Xx] and [A2] as in 3.5, we see, furthermore, that for all x, y e V,

[K]([t](x,y)) = x,   [X2]([t](x,y)) = y.

Since F is an extension of I, we know that all these functions are in F(7'). It follows

easily then from 2.5 that there exists [p]'x e F(F) such that, for every w e V,

[p]» = [i'Y(x,y) = [x]'(y)   ifw = [t](x,y)

= 0 otherwise.

Now take /= [p]'x and consider the minimal /-extension If = (U, Gf) of I. Given

ueU, let [u]> denote Gf(u). Since F(7) u {/= [p]'x}^F(If), F(F) and I¡ is minimal,

it follows that F(If)^F(F). On the other hand, since f=[p]x and [t]2 are in F(If),

it follows that [í"]2 = [p]i o [t]2 is in F(If) and so, since [i']'(x, y)-[x]'(y) for all

x,yeV, we have F(l, F)çF(l,/,). But then by 6.1, F(F)çF(If) and so F(I,)
= F(F).

Theorem 6.9. Let Ia and I be highly constructible U.R.S. Then I is an extension of

Ia if and only if there exists a *-totalfunction fsuch that I is the minimal f-extension

of Ia.

Proof. By the same argument as used in the second half of the proof of 6.6.

From the above result and 5.4, it follows that if we take I to be the U.R.S. of

partial recursive functions, then its highly constructible extensions are precisely the

set of U.R.S. corresponding to the sets of functions recursive in total functions. To

put it another way, iff is a total function on A, then the set of functions recursive in

/is precisely the function set of the minimal/-extension of /, and if F is a highly

constructible extension of/, then F(F) is the set of functions recursive in/for some

total function /

This result leads us naturally to consider the/-extensions of a U.R.S. I where/is

not *-total. In the next three results, we show that there exist extensions which are

not highly constructible (i.e., in which/cannot be replaced by a *-total function).

As a corollary of these results, we show that there exist U.R.S. in which not all

semicomputable sets are recursively enumerable.

Theorem 6.10. Let I be a highly constructible U.R.S. and let f and h be l-ary

^-admissible functions such that h is *-total and for every xe V,f(x)=£* implies
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f(x) = h(x). Then where 7/ = <{7, G ¡y and 7fc = <í/, Gft> are respectively the minimal

f- and minimal h-extensions ofl, we have that every *-total function in F(If) is also in

F(h).

Proof. We shall first prove that every 1-ary *-total function in F(If) is in F(7„).

Let 7 be constructed from 5=<F, ce, tp, Vx,..., F6, <px,..., <p6y and let If and Ih

be constructed from Sr=(Ff, a, tp, V{, F2,..., F6, <p{, <p2,..., ci6> and Sh = <F", a, tp,

VlV2,...,V6,<P\,<p2,..., <p6y respectively, where F=Fu {/}, Fh = F u {«}, V[ = Ff

= Vx U {v}; v e V= V-\Jfm0 F,; #=¿x u {<»,/>}, # = ¿x u {<t>, hy}. Let A£ andgi

denote the sets and functions used to construct I,, and let A\ and g\ denote the sets

and functions used to construí Ih. For all eeV, let [e\ denote Gf(e) and let [e]h

denote Gh(e).

We claim now that for all integers «^0, A£s A*, Afn+1 — A(s A£+1 —A5¡, and, if

<e, x> e A£, then g¿(e, x)=g£(e, x). The desired result, that [e]r(x)^* implies

[e]'(x) = [e]h(x) will then follow immediately from the construction in the proof of

5.1.

We proceed by induction on n. For « = 0, the result is immediate and, indeed,

A0 = Ag. Assume now that it has been proved up to « = k ^ 0, and consider the case

for/c+1.

Say <e, x> e A£+1. Then, by definition, we have «e, x> e A'k) or (({e, x> 4 AF)

and (e e F6) and «[«f1]^), x> e A0 and «[«¿"^(e), x> e A¿) and «gíüaf1]^), x),

gic([a2 x](e), *)> e A£)). But then, by the induction hypothesis, it follows that the

same statement holds with gk replacing g'k, and A£ replacing A¿ and so, <e, x>

e A£+1. Thus, A£+1çAj>+1.

To see that A£+l — A(s A£+1 — A£, assume there exists <[e, x> e((A£+1 — A£)

-(A*+i-Ag)). Since A£+1£A£+i, it follows that <e, x> e A£, but <e, x> £ A£.

Since A¿ = Ag, it follows that &>0 and (e, x> ^ Ag; yet, ceF6. Now since

<e, x> e A£ + 1 — A£, we know that the pairs <[cef 1](e), x>, <[a2 ^(e), x> and

^¿([«r1]^), x), g'k([a2 r](e), x)> are in A{ and thus, by the induction hypothesis,

in A*. But clearly, these three pairs cannot all be in Ak_x since this would imply

<e, x> e Afk. But <e, x> e A£, <e, x> £ Ag implies that all these pairs are in AjJ^. It

follows then that at least one of these pairs is in A£ — A¿..1; but not in AjJ — A£_j;

i.e., A£ — Ark_xf: Ak — Ak_x, which contradicts the induction hypothesis. Thus, it

must be that A£+1-A£gA£+1-A£.

Now, from this last result, the definition of gfk+1 and A£+1 and the induction

hypothesis, we now have that, for all (e, x> e Afk+1

'g'k(e, x) = gl(e, x)   if <e, x> e A'k s A£

*£ + i(«,*) = ^¿tó([«r1]W,x))g¿([a21](e),x)) = g^íK^^.XÍ.g^tce^Ke)^))

if<e,x>eA'fc+i-A£ç A£+1-A*

= gk+i(e,x).

This completes the inductive step and so the claims are proved by induction for

all n. But then, since {e, x> e A{ implies [eY(x)=g'n(e, x) and <e, x> <£ (J"=o A¿
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implies [e]f(x) = * (see 5.1), it follows immediately that F(If) and F(Ih) contain the

same 1-ary »-total functions.

To see that F(If) and F(Ih) contain the same n-ary *-total functions for n> 1, we

proceed as follows : Say that F(If) contains an n-ary »-total function [g]rn which is

not in F(In). By 5.9 we have a function [pn] e F(I) by means of which we may

(reversibly) encode n-tuples of elements of V as single elements. But then, since

F(I)çF(If), F(In), it is clear that there exists a function [g'] e F(If) such that, for

all x g F,

[gj(x) = [g]f(y(n)) if x = [pn](yin)) for some y(n) e Vn

= [g];(x, x,..., x)   otherwise.

n times

But then, since [g']{ is clearly »-total, we have [g']{ e F(Ih) by the first part of the

proof, and this implies that [g]f = [g']1 o [pn]n e F(Ih), contradicting the assumption

that [g] $ F(Ih). Thus every »-total function in F(If) must be in F(Ih).

Corollary 6.11. If I is a highly constructible U.R.S. and fis a l-ary ^-admissible

function and there exists a *-total function [h]x e F(I) such that, for every xe V,

f(x)^* implies [h](x)=f(x), then every *-total function in the minimal f-extension of

I is already in F(I). Thus, in particular, if p is the semicharacteristic function of any

set A^V (or of any l-ary predicate on V), then F(IP) does not contain any *-total

functions not already in F(I) (take [h]x = [k0] as in 2.1).

Proof. Left to the reader.

Theorem 6.12. If I is a highly constructible U.R.S. then it has an extension F

which is not highly constructible.

Proof. Given the highly constructible U.R.S. I, let [u] denote G(u) for all ueU.

Now let/7 be the semicharacteristic function of the predicate P(x) o [x](x) = *, and

let /' = Ip, the minimal /»-extension of I.

Now the predicate P(x) is semicomputable in F since/? g F(F); however, P(x) is

not semicomputable in I for, supposing that it were, then there would exist

[up] e F(I) such that [up] =p. But then we would have

t"p]("p) = P(ttp) = 0   if [up](up) = *

= *   if [up](up) = 0,

a contradiction. From this, it also follows by 4.2 that P(x) is not computable in I

(see 4.2). On the other hand, the predicate ~P(x) o [x](x)^* is semicomputable

in /(with semicharacteristic function [A:0]([x](x))). But then, since F(/)<=F(/'), it

follows that both P(x) and ~P(x) are semicomputable in /', and, since, by 6.11,

every »-total function in F(F) is also in F(I), it follows that P(x) is not computable

in /'. But if/' was highly constructible, then, by 5.6, P(x) and ~F(x) semicomput-

able in /' would imply P(x) computable in /'. Thus, /' cannot be highly constructible.
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Theorem 6.13. Let a set A^Vbe said to be recursively enumerable in a U.R.S. I

if there exist a *-total function [f]n e F(I) such that A = range ([/]„). There exists a

U.R.S. I' and a set A such that A is semicomputable in I' but A is not recursively

enumerable in I'.

Proof. Let 7 be the highly constructible U.R.S. of partial recursive functions.

Let p be the semicharacteristic function of the set ^4={x| [x](x) = *}. By the

argument given in the preceding theorem, we know that/? $ F(I) and that, since all

recursively enumerable sets in the partial recursive functions are semicomputable

sets, A is not recursively enumerable in 7. Now let I' =IV he the minimal/»-extension

of 7. Then/; e F(7') so A is semicomputable in 7. But if A is recursively enumerable

in I', there exists a total function [f]'n in F(7') such that range ([f]n) = A, but then,

by 6.11, [f]'n is also in 7 and so A is recursively enumerable in 7, which we know it is

not. Thus A is semicomputable in I', but not recursively enumerable in I'.

It was pointed out by a referee that the above result follows directly from the fact

that the Ili-functions form a U.R.S. since the "recursively enumerable" II]-

sets are precisely the hyperarithmetic sets which are all "computable" in our sense,

yet the set {x | [x](x)^x} is clearly semicomputable, but not computable.

To complete the paper, we show that the extension relation induces an upper

semilattice on the set of extensions of a highly constructible U.R.S. and on the set

of all «-admissible functions.

Lemma 6.14. Given a highly constructible U.R.S. I, a minimal g'-extension 79. of I,

and a minimal ¿'-extension Ig~ of I, then there exists a function gA and a corresponding

minimal gA-extension Igh of I such that 79a is also the minimal {g', g"}-extension of I.

Proof. Given g', g", let gA be such that where c', c" e V, c'^c",

gA(x) = g'(y) ifx=[tp](c',y)

= g"(y) if x=[tP](c",y)

= * otherwise.

We see then that, for every xe V, g'(x)=gA([[tp](c)](x)) and so g'eF(79A), and

similarly, g" e F(79a). Thus, 79a is a {g', g"}-extension of 7. On the other hand, let

7A be any (g', g"}-extension of 7. Then since the predicates x = [tp](c, y) and

x= [tp](c', y) are computable in 7 by virtue of it being highly constructible, it follows

that gA e F(7A), and so F(I^)^F(Ih), so 79a must be the minimal {g', g"}-extension

of 7.

Corollary 6.15. Let I=(U,Gybea highly constructible U.R.S. and let 3~ denote

the set of all ^-admissible functions on Upartitioned in accordance with the equivalence

relation = where f=g if and only if F(If) = F(Ig). Then IF is an upper semilattice

under the partial ordering < where, if 3F(f) and !F(g) are elements of ¡F (with

respective representatives f and g), then Jr(/)<Jr(g) if and only //F(7/)<=F(79).

Proof. Follows immediately from 6.7, 6.8, and 6.14.
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