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In the study of pairs of subspaces M and N ina. Hubert space H there are four

thoroughly uninteresting cases, the ones in which both M and N are either 0 or H.

In the most general case H is the direct sum of five subspaces:

MnN,       MnN1,       MLr\N,       MLC\NL,

and the rest. The parts of M and N in the first four are "thoroughly uninteresting".

In "the rest", the orthogonal complement of the span of the first four, M and N

are in generic position ("position p" in [2]), in the sense that all four of the special

intersections listed above are equal to 0. The purpose of this paper is to use graphs

of linear transformations to represent pairs of subspaces in generic position. The

results arose in the study of the invariant subspace lattices of operators and

promise to be useful there. A more immediate by-product, described below, is a

reasonably transparent new proof of Dixmier's theorem on the unitary equivalence

of pairs of subspaces. Even aside from such external applications, however, the

results answer at least one natural question and may be considered to be of

geometric interest in their own right. Specialization to the finite-dimensional case

makes neither the conclusions more obvious nor the proofs substantially simpler.

Axis-graph. Suppose that T is a closed but not necessarily bounded linear

transformation on a dense subset of a Hubert space ft with zero kernel and dense

range. Write H=K © ft let M be the "horizontal axis" consisting of all vectors

of the form </ 0> in H, and let N be the graph of ft i.e., the set of all vectors of

the form </ 7/> in H. Assertion : M and N are in generic position. The first step

of the proof is to show that M n N=0. Indeed, how can an </ 0> be equal to a

ig, 7g>? Answer: only if 7g=0, whence g=0 (because ker T=0), and therefore

/=0. To prove the rest of the assertion, it is necessary to know Mx (trivial: all

<0,/>) and N1 (easy and standard computation: all < —r*/,/>). From this it is

easy to deduce that Mx n N1=0: since ran T is dense, it follows that ker T*=0,

and the proof just given applies again. The equations M n N1 = 0 and M1 n N=0

are trivial.

The construction of the preceding paragraph is not new; it has been used, for

instance, to exhibit pairs of subspaces whose vector sum is different from their

closed span [4, p. 110], [5, p. 26]. The first result of the present paper is that this

way of constructing pairs of subspaces in generic position is, to within unitary

equivalence, the only way. To say that a pair <Aft, Nft of subspaces is unitarily
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equivalent to a pair (M2, N2} means, of course, that there exists a unitary operator

U such that UMx — M2 and UNx=N2. In case Mx and Nx are in one Hubert space

Hx and M2 and 7Y2 in another Hubert space H2, then the requirement that U be

unitary is to be interpreted to mean that U is an isometry from Hx onto H2.

Theorem I. If M and N are subspaces in generic position in a Hubert space H,

then there exists a Hilbert space K, and there exists a closed linear transformation T

on K with zero kernel and dense range, such that the pair (K ® 0, graph T} is

unitarily equivalent to the pair <M, N}.

Proof. Let P be the projection with range M. Assertion: the restriction P\N of

P to N maps N one-to-one onto a linear manifold dense in M. Suppose, indeed,

that Pg=0 for some g in N. It follows that g e ML n N, and hence (generic

position) that g=0: this proves that the kernel of P\N is 0. To prove that PA' is

dense in M, suppose that fe M and / _[_PN. This means that if geN, then

0 = (f,Pg) = (Pf,g) = (f,g), so that fe M n N1. It follows (generic position) that

/=0; the proof of the assertion is complete.

The existence of a transformation with the properties just proved for P\N

implies [5, p. 27] that M and N have the same dimension. Since M and ML on the

one hand and JV and N1 on the other hand enter the hypotheses with perfect

symmetry, it follows that all four of these subspaces have the same dimension.

Since this applies to M and Mx in particular, there exists an isometric mapping /

from M onto M1.

Everything is now prepared for the necessary definitions. Write

K= M,

define T on the dense subset PN of M by

TPg = r1(\-P)g       (geN),

and, if both/and g are in K (=M), write

U<fg>=f+Ig.

The definition of T may look artificial at first, but it is not. Here is what it says.

To represent a vector g in N in the form </ Tf}, recall that the components of g

with respect to the decomposition H=M ® M1 are Pg and (1 -P)g, and, there-

fore, let/be Pg and define Tso that Tf is (1 -P)g. Since Tis to be a transformation

on K( = M), the last part does not quite make sense; the closest Tf can come to

being (1 — P)g is to be I~\\ —P)g, the vector in M that is identified with the vector

(1 — P)g in M. That the definition of Tis unambiguous is implied by the one-to-one

character of P\N, proved above.

It remains to prove that K, T, and [/have the required properties. Since I'1 is

an isometry, the assertion that ker T=0 comes down to this: the restriction to A^

of the projection with range ML has kernel 0. That assertion is one of eight (go
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from M, or M1, to N, or N1, or back); it differs from what was shown in the first

paragraph of this proof in notation only. The density of ran T in K is proved

similarly.

Next, why is T closed? It is to be proved that if fn=Pgn (with gn e N),fn ->/,

and I~1(l-P)gn-^h, then f=Pg for some g in N, and h = I~1(l-P)g. Apply 7to

I~1(l-P)gn-^h and infer (l-P)gn-^7«. Combine this with Pgn (=/„)-^/

to get

gn = Pgn+(l-P)gn^f+Ih.

In view of this, the obviously indicated thing to do is to write g=f+Ih. Since gne N

and N is closed, it follows that g e N. Since 7_1(1 ~P)gn E M and M is closed, it

follows that heM; hence IheM1 and (l-P)Ih = Ih. Since, finally, feM, it

follows that

(1-P)g = (l-P)(f+Ih) = (l-P)Ih = 7«,

and hence that I~1(l—P)g=h. Consequence: Tis closed.

Since 7 maps M onto Mx, the transformation U maps K® K onto 77. The

isometric character of U follows from the computation:

\\U<fg>\\2 = ||/+7g||2 = ||/||2+||7g||2 = ||/||2+||g||2 = ||</g>||2.

It is trivial that U maps K © 0 onto M; how does U map the graph of T1 The

graph of Jis the same as the set of all <Pg, 7~1(1—7>)g>, with g in N; the image of

<Pg, 7_1(1 -P)g) under U is 7,g-l-77"1(l —P)g=g, and therefore the image of the

graph is exactly N. The proof of the theorem is complete.

Corollary. The transformation T can be chosen selfadjoint and positive, and, if

it is so chosen, then it is unique, in the sense that if the pair (K © 0, graph ft> is

unitarily equivalent to the pair (K © 0, graph ft>, then ft is unitarily equivalent

to ft.

Proof. To make T selfadjoint, consider its polar decomposition T= WA, where

Wisa. partial isometry and A is selfadjoint and positive [3, p. 1249]. The conditions

on T (zero kernel, dense range) imply that the partially isometric factor W is

unitary. Apply the unitary operator 1 © W* to both axis and graph; the axis

remains invariant, and the graph becomes the graph of the positive selfadjoint

transformation A.

To prove uniqueness, observe first that if a unitary operator on K® K maps

the axis K © 0 onto itself, then it is a direct sum U1 © t/2 of two unitary operators

on K. (A subspace mapped onto itself by a unitary operator is invariant under

both the operator and its inverse, and therefore reduces the operator.) The assump-

tion that ft © U2 maps graph ft onto graph ft implies that if fe dorn ft, then

ft/sdomft and T2UJ=U2T1f; in other words T2UX = U2TX. By adjunction

tV1*ft = ft(72* (because ft and ft are selfadjoint); by multiplication ft2 = fti/2*C/2ft

= UfTiUu and therefore ft = (Vfftft (because ft and ft are positive).
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Projection matrix. It is an elementary exercise in analytic geometry to calculate

the matrix of a projection of rank 1 acting on a space of dimension 2. The pro-

jection whose range is a line of inclination 0 turns out to be

(cos2 6      cos 6 sin 6\

cos 9 sin 6       sin2 0   /

The graph of a linear transformation on a Hubert space is very much like a line

in a plane. Since the elements of the graph of Tare ordered pairs </ 7/>, it follows,

purely formally, that the ratio of the second coordinate to the first is always T;

the transformation T plays the role of the slope of the line, i.e., of the tangent of

the inclination 8. The following result is the operator version of the elementary

exercise in analytic geometry mentioned above. The boundedness of sin and cos

(as opposed to the unboundedness of tan) are reflected in that only bounded linear

transformations need to be mentioned.

Theorem 2. If M and N are subspaces in generic position in a Hubert space H,

with respective projections P and Q, then there exists a Hubert space K, and there

exist positive contractions S and C on K, with S2 + C2 = l and ker5'=ker C=0,

such that P and Q are unitarily equivalent to

/l   0\ ,   ¡C2    CS\
\o o)  and \cs  S2)

respectively.

Proof. Identify H with a direct sum K © Adjust as in the proof of Theorem 1.

In this identification M and M1 are the axes K ® 0 and 0 © A and therefore

Since Q is a positive contraction, it follows that

e = U* a)'
where D (=PQP\M) and F (=(l-P)Q(l-P)\M1) are positive contractions.

Since E=PQ(l-P)\M1 and E* = (l-P)QP\M, it follows easily, just as in the

first paragraph of the proof of Theorem 1, that ker £=ker E*=0. This implies

that in the polar decomposition E= WA of E, the partially isometric factor W is

unitary. Transform both P and Q by

IW   0\

\0     l)
(i.e., multiply by

(W*   0\
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on the left and

IW   0\

\0     lj

on the right) ; the former remains invariant and the latter transforms to the same

form as before except that now the off-diagonal terms are equal and positive.

Assume therefore, with no loss of generality, that they were that way in the first

place. (The identification of H with K® K was achieved by writing K= M and

choosing an arbitrary isometric correspondence between M and ML. In these

terms the change just made amounts to choosing a different, more convenient

isometric correspondence.)

Let C and S be the positive square roots of D and F respectively, so that

„     (C2   E\Ö = U     S2)'

where C, S, and E are positive contractions. The idempotence of g says exactly

that

C2-Ci = S2-Si = E2   and   C2E+ES2 = E.

Since, by the first two equations, C and S commute with E, the last equation says

that E(C2+S2-\)=0. Since ker£=0, it follows that S2 = l-C2; since A =

C2-C4 = C2(1-C2) = C252, therefore E=CS. The last assertion, together with

ker E=0, implies that ker C=ker 5=0; the proof is complete.

Some of the known theory of pairs of subspaces in generic position can be

recaptured from Theorem 2. Consider, as a sample, the problem of determining

the commutant of the pair of projections P and Q. The commutant of P alone is

easy to compute: it consists of all matrices of the form

C I)
When does such a matrix commute with

IC2    CS

\CS   S2

Answer: if and only if both Zand F commute with C2 (and hence with C, and S2

and S), and also CSX=CSY. Since ker CS=0, the last condition implies X= Y.

Conclusion : the simultaneous commutant of P and Q consists of all

(ox)

'

where X commutes with C.
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The mere statement that the commutant of {ft Q} is nontrivial is trivial:

(P+Q-l)2 commutes with bothP and Q. N.B.:

It follows easily that the von Neumann algebra generated by two projections (on

a Hubert space of dimension greater than 2) is never the algebra of all operators ;

the cases in which the ranges are not in generic position are easily disposed of.

Equivalently : if P and Q are projections on a Hubert space 77 of dimension greater

than 2, then there exists a nontrivial subspace of H invariant under both P and

Q. (Note that since P and Q are Hermitian, invariance is the same as reduction.)

Results such as these are almost explicitly contained in the earlier work on pairs

of subspaces; cf. in particular [1] and [2].

Reflected graphs. Theorems 1 and 2 were proved separately above, but there are

other (not necessarily simpler) approaches to the theory. The same results can be

obtained by proving only one of them directly (either one) and then deriving the

other one from it.

The way to get Theorem 1 from Theorem 2, for instance, is to note first that the

range of

IC2    CS\

\CS    S2)

consists of all vectors of the form <C/ S/>. (It really consists of all vectors of the

form (C(Cf+Sg), S(Cf+Sg)}. Since, however, the positive operator C+S is

invertible, because the function x^- x + (l— x2)112 is bounded away from zero in

[0, 1], the simpler description is valid.) To recognize that set as a graph, it is

necessary to define a linear transformation T such that TC=S. (Formally: tan 6

= sin 0/cos 6.) There is no conceptual difficulty here. The operator C has an inverse

(not necessarily bounded), and the functional calculus for selfadjoint transforma-

tions can be invoked to justify the definition r=C_1(l —C2)1'2.

To go in the other direction, from Theorem 1 to Theorem 2, it is necessary first

to express in terms of T the projection whose range is the graph of T. Formally this

too is an exercise in analytic geometry; the projection whose range is a line of

slope tan 8 turns out to be

(I-Kan2!?)-1        tan 0(1 + tan2 0ft ft

tan 6( 1 + tan2 6) ~1   tan2 0( 1 + tan2 6) - V '

(Alternatively, obtain this matrix from the one in terms of sines and cosines by

trigonometric identities.) It is easy to derive the precise version of the formalism

from the basic definitions; for an explicit treatment see [6]. Once the projection Q

is recognized as

(l+r2)-1    m+T2)-1^

m+T2)'1   T^l+T2)-1)'

(

(
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then the functional calculus for selfadjoint transformations can be invoked again;

the result is that C2 = (\ + T2)~1 and S2 = T2(l+T2)-\ and all the conditions of

Theorem 2 are satisfied.

The purpose of this section is to exploit the trigonometric analogy once more.

The underlying geometric fact is that the diagram

when rotated downward through 0/2 becomes

^-•^0/2

^^^9/2""""

The operator version of this geometric fact is the following somewhat surprising

assertion.

Theorem 3. If M and N are subspaces in generic position in a Hubert space H,

then there exists a Hubert space K, and there exists a positive contraction T0 on K,

with ker T0 = ka(l — T0)=0, such that the pair <Af, N} is unitarily equivalent to

the pair <graph T0, graph (- A)>-

Proof. The rotation that maps a line of inclination 0 onto one of inclination 8/2

and, at the same time, maps the horizontal axis onto the line of inclination — 8/2

has the matrix

cos (0/2)    sin (0/2)\

-sin (0/2)   cos (0/2)/'

This suggests that Theorem 3 could be derived from Theorem 1 by the operator

analogue of that half-angle rotation. Formally this program is a simple computa-

tion, and precisely it is a straightforward argument about selfadjoint transforma-

tions. Since, however, the argument involves unbounded transformations, and

since the same result can be achieved with bounded operators only, it is preferable

to base the proof on Theorem 2. The boundedness of T0 is, by the way, one of the

mildly surprising features of Theorem 3. The heuristic reason for it is that if T

corresponds to tan 0, 0<8<n/2, then T0 corresponds to tan (0/2). As 0 varies

over the domain (0,7r/2), its tangent varies unboundedly, but, since 0/2 varies over

(0, 7t/4), the tangent of the half-angle remains bounded.

By virtue of Theorem 2 there is no loss of generality in assuming that H is

already represented as K ® K in such a way that M is the axis K ® 0 and N is

the range of the projection

ô=r cs\
*      \CS    S2)

(
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The problem is to find ft so that <7< © 0, ran Q} is unitarily equivalent to

<graph T0, graph (—ft)>. Since the half-angle formula for the tangent is

0     /l-cosöX1'2
tan2 = lr^o7ö)   '

it is formally natural to write

ft = ((l-C)(l + C)-1)1'2.

This makes sense. Since C is positive, 1 + C is invertible, and since C is a positive

contraction, the same is true of 1 — C. That ft and 1 — ft have zero kernel is a

consequence of the same properties of 1 — C and C, respectively.

The natural candidate for ft has been found; the next problem is to find a

unitary operator that transforms M and N the desired way. The formalism suggests

that too ; since

8     /l+cosöX1'2              .   0     /1-COS0X1'2
C0S 2 = (—2-.I       and   Sin 2 = (—2^-;   '

it is natural to write

I-ft    Co)
where

_    /i+c\112     ,  _    n-cv'2
Co = \—)   and 5o = r2-) ■

All this makes sense; the verification that U is unitary is trivial.

The rest of the proof is computational : it verifies that as / varies over ft the

images

/   C0    S0\/Cf\ I   C0    S0\/f\
Uo    J W)    and    (s0    Co)(o)

fill out exactly the graph of ft and the graph of — ft respectively. It is to be verified,

in other words, that

(i) ran (C0C+SQS)=K,

(ii) To(CoC+SoS)=-S0C+C0S,

(iii) ran C0=ft

(iv) (-ft)C0=-ft.
For (i): in fact C0C+S0S=C0; since C0 is invertible, this settles (i) and (iii). The

verifications of (ii) and (iv) are mechanical.

Corollary. If M and N are subspaces in generic position in a Hubert space H,

with respective projections P and Q, then a complete set of unitary invariants of the

pair <M, Aft is the unitary equivalence class of the Hermitian operator P+Q.

Proof. The statement means that <M1; TVft is unitarily equivalent to <M2, N2}

if and only if Pi + gi is unitarily equivalent to ft + Q2. Since the problem of
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unitary equivalence for Hermitian operators is in principle solved, this is a solution

of the problem of unitary equivalence for pairs of subspaces. The result is due to

Dixmier [2].

To prove the corollary, use Theorem 3 to justify the assumption that M and N

are the graphs of T0 and — T0 respectively. In that case the matrices of the pro-

jections P and Q are given by

[ui+ny1 Tfri+To2)-1)

and

0= (  (i+A2)-1      -AO+A2)-1)

or, equivalently, by

p _ / C0     C0S0\        .    _ _ /   C0       — C0S0\

\CqSo      S0  i \— Co¿o        So    /

The rest of the proof is the same as Dixmier's. In view of the form oí P+Q,

it is natural to consider the Hermitian operator

¡C       0\
R = p+Q-l = [o   -c\

Since the positive and negative parts of a Hermitian operator are unitary invariants

of it, it follows that the unitary equivalence class of R uniquely determines that of

C. (Here it is important that ker C=0.) Since C, in turn, uniquely determines C0,

and thence P and Q, it follows that the unitary equivalence class of R uniquely

determines that of the pair P, Q. The opposite direction is trivial; the proof of the

corollary is complete. (The difference between P+Q and R is a technical triviality.

For R the parts that matter are the ones above and below 0, whereas for P+Q

they are the ones above and below 1.)
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