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Introduction. In this series of papers we will discuss homotopy invariants of

differentiable maps /: M' -> N in various situations within the framework of

differential geometry. We shall be particularly interested in the case where / is an

immersion. Our principle is simple. We use the fact that the pullback/*«j of a» is a

differentiable homotopy invariant where w is an arbitrary cohomology class always

over the real number field, R. We note if F=Mx /-> Nis a differentiable map with

fo=f, then/*cu belongs to the same cohomology class as/feu where /is the interval

[0, 1] and/ is defined by/(x)=F(x, t), x e M, t e I.

There are many known examples beside various characteristic classes. To quote

a few of them, let/be an immersion of the two-torus T2 into the complement of the

diagonal set of the six dimensional euclidean space R6 considered as R3xR3;

f: T2 -* Ä3 x Ä3 — A, where A is the diagonal set. The space R3 x R3 — A is diffeo-

morphic with R* x S2 where S2 is the two-sphere. Thus, if u> denotes the volume

element of S2, at becomes a 2-dimensional cohomology class of R* x S2 by pulling

back with the projection onto S2 and gives us a homotopy invariant/*«». Consider

T2 interpreted as the direct product S1 x S1 of circles and/as the pair of two closed

curves c¡: S1 -> R3 without intersection. Then f*a> is nothing but the linking

number of two closed curves cx and c2 (up to a universal constant multiple) ac-

cording to Gauss [8]. Another (but somewhat more extraneous) example, due to

J. H. C. Whitehead [12], is the Hopf invariant, H(f), for a differentiable map

/: S2""1 -> Sn. Again, denoting the volume element of the «-sphere Sn by w, H(f)

is given by the closed form 8Af*w where 8 is any (n— l)-form with d8=f*w.

In this paper/will be an isometric immersion of a compact oriented Riemannian

manifold M into a euclidean space Än+V. Since the cohomology groups of N=Rn+v

are then trivial, our principle does not apply to/directly, but we construct a mani-

fold B from M and replace /by a certain map/B: M —> B. To do this, let us recall

Hirsch's theorem [5] to the effect that the regular homotopy classes of the im-

mersions/: M -*■ N of any manifold M into another manifold A7 with dim N > dim M

are in a one-to-one correspondence with the homotopy classes of the cross-

sections fB : M -> B of a certain bundle B over M, where a regular homotopy

F= Mx I->■ N means one for which each/ is an immersion. Despite the triviality

of the cohomology groups of N=Rn+v in the case above, we can expect to obtain

homotopy invariants fB'8 corresponding to a cohomology class 8 of B. In §4, we
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will construct an important example of fB'0, which is expressed with the second

fundamental form for/

In differential geometry, manifolds usually carry an additional structure (like a

Riemannian or Kählerian structure) other than the differentiable structure and one

might wish to develop a restricted type of homotopy pertinent to that additional

structure. To be more specific, in the case of the isometric imersions/: M-> N of

this paper, there will be some hope of having a differential form 0 on B, not neces-

sarily closed, such that fB'0 is an isometric homotopy invariant, meaning that

ftB'0 remains in one and the same cohomology class of M as long as/ is an isometric

immersion. 0 should not be closed since otherwise fB'0 would be a mere regular

homotopy invariant; and yet each/B*ö should be closed in order to give a coho-

mology class. This would be guaranteed if 0 on B is closed when restricted to each

integral element 77 of the differential system Jf on B (see §3), the system intimately

related to the given structure (the Riemannian metric in this paper) of M. For a

description of ^ note that locally the integral manifolds of #f are in a one-to-one

correspondence with the isometric immersions/(Proposition 3.2). In §5 we will con-

struct examples of 0 with the property we have just described. The result (Theorem

5.1) means that the integrals over M of the symmetric functions of the principal

curvatures off are isometric homotopy invariants for isometric immersions/of M

as hypersurfaces. (See Remark 5.2 for a more intuitive geometric meaning of this

result.)

§§1-3 are preliminaries, the contents of which would be more or less known. In

§1 we will construct B for M and/s for/and give a condition that a section s of A

must satisfy for s to be some/B (Proposition 1.1). In §2 we define differential forms

necessary to describe any other forms and give the formulas for their exterior

derivatives (i.e. the structure equations) using the integral geometric method devel-

oped by Chern and others. In §3, Jf will be defined and studied. §§4 and 5 will be

devoted to examples of the regular and the isometric homotopy invariants res-

pectively. A number of remarks will be added without proofs mostly to explain

geometric meanings, although they are logically redundant.

1. The bundle B and the section fB. M will always denote an oriented Rieman-

nian manifold of dimension «. Let A=ft be tfie space of all linear isometries

(=monomorphisms of metric vector spaces) b:Tx(M)-+ Rn+V of the tangent

spaces to M at the points x into the (« + iftdimensional euclidean space Rn + v. In

case v=0 we agree that the maps b in B preserve the orientation. We denote by P the

oriented orthonormal frame bundle, which is {¿>_1 | b e B0} with a certain differ-

entiable principal SO («)-bundle structure. ttp will denote the projection of P onto

M. B becomes a differentiable fiber bundle in the following way. The projection

ttb : B -> M sends b : TX(M) -> Rn + v to x e M. The (standard) fiber is the set of all

linear isometries of Rn into A" + v, which, in case v=0, preserve the orientation, of

the fiber 7^(0) over the origin 0. This space, called a Stiefel manifold, will be
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denoted by ft+v,n. Now the special orthogonal group .SO («)= ft,n acts on

ft + v,n to the right; each g £ SO («) sends v: Rn^-Rn + V to vg=v °g: Rn-+Rn

-^Rn + V. SO(«) acts on P also to the right; g sends p:Rn-+Tx(M) to

Pg=P ° g'- Rn^-TX(M). Thus, if one defines the map 7r: Px ft + v_n-> B by

tt(p, v) = v op'1: Rn -> TX(M) -> An + V, then tt becomes the principal map for the

bundle so that (1) 7r is surjective (or rather a submersion), (2) n(p, v) equals tr(p', v')

if and only if there exists some g £ SO («) such that pg=p' and vg=v'. The differ-

entiable structure is introduced on B so that B becomes a differentiable fiber bundle.

The group SO (« + v) acts on ft to the left ; each aeSO(» + v) sends be B to

ab=a°b: TX(M)^-Rn+V-> Rn + V. In this action SO(n + v) leaves each fiber in-

variant. In particular SO(« + v) acts on ft+v>ntothe left and gives the identification

ft+v>n = SO (« + v)/SO (v), where SO (v) is identified with {ft} x SO (v)çSO (n + v)

and 1„ is the « x « unit matrix.

Given an immersion/: M^Rn + v, we will construct a cross-section fB: M'-*■ A

of the bundle A. The differential .ft, restricted to each tangent space TX(M), is a

vector space monomorphism of TX(M) into THx)(Rn+v) which we identify with the

vector space An+V in a natural way. Next we factor this map ft | ft(A7) into the

composite of the two maps :

TX(M) ^ftft(ft(M)) -Ur«^

where i is the inclusion map. And we modify ¡' to a linear isometry r(ft, x) by the

Gram-Schmidt method of orthogonalization. Finally the composite r(ft, x) °ft

gives the desired fB(x). fB is clearly a differentiable section of A. We have fB(x)

=fif\Tx(M),xe M, when and only when / is an isometric immersion. Since the

Gram-Schmidt method gives a retraction of the space of the linear morphisms onto

that of the linear isometries and is homotopic with the identity in a canonical

way, fB will vary continuously when / does.

One might ask when a section s : M -> B comes from an immersion / to yield

s=/B. To answer this question, we introduce the canonical form (i^)iS*Sn + v of A.

Each Q,K is a differential one-form on A, which assigns the Ath component of the

vector b(7TB.(X)) in fin + v to a tangent vector Xe Tb(B); we thus have b(7rB.(X))

= 2"Îï ^*(ftW in terms of the canonical basis (ft) of An + V. The vector A1 is tangent

to the fiber of A if and only if all Q.K(X) vanish.

Proposition 1.1. A section s:A7—>A comes from an isometric immersion

/= M —> Rn + v so that one has s =fB if and only if the pullbacks s*QA, 1 S A ̂  n + v,

are all exact (viz. closed and cohomologous to zero). When the above hypothesis is

satisfied, fB determines f uniquely up to the translations ofRn + v.

Proof. Assume s*QK are exact so that there exists a function/*: M-> R satis-

fying s*W = df\ Then a map /: M^ Rn+V is defined by f(x) = (fh(x))lèAan + v

= 2/*(*)e>i. We claim that / is an isometric immersion. For any tangent vector
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XeTx(M) to M we have s*XeTsM(B) and f*(X) = (dfA(X)) = (s*W(X))

= (Q.x(s*X))=s(x) ° ttb.(s*(X))=s(x)(X) since ttb o s is the identity map of M. Thus

fn\Tx(M)=s(x) and this must be a linear isometry;/(:|A(A#f)=/B(x). Hence/is an

isometric immersion. Conversely, assume s=/s for some isometric immersion

f: M^Rn+\ Let/A be the Ath component of f;f(x) = 2f\x)e„. Then we have

(s *a\X)) = (&(s*X)) = s(x) o ,rB.(s*(X))=s(x)(Z) =/B(x)(JT) =f*(X) = (df\X)) for

each X e TX(M). Thus s*Q.Á = dfÁ and s*£2* is exact. This/* is unique up to a con-

stant. Hence/is unique up to a translation of Rn+V.   Q.E.D.

Analogous forms iol, lúifkn, are defined on the orthogonal frame bundle

P={è-1 | beB0}; Z?=1 a>'(X)et=b(nP(X)), or è-*(2 "WO="/■(*), or equiva-

lently, if i denotes the map P -^ P defined by i(b~1)=b, then a,'^*^ where (Qf)

is the canonical form of B0. (<•»') is called the canonical form of P. (We use P

instead of B0 just to conform to custom.)

2. A generating system of differential forms. Our convention on the ranges of

the indices is: 1 ̂ ¿c, A, p.,... fín + v; \^i,j, k,... ^«; n+l^a, ß, y,... fín + v.

We will define particular forms on P x SO (« + v) to express other forms with

them. We begin by fixing notations for the Maurer-Cartan form Í2 = (Q£) of

SO(n-r-v). SOÍm + v) consists of the unimodular orthogonal («+v)x (« + !»)-

matrices V=(V£), i.e.

(2.1) % VZV¡¡ = 8„u,       lúKnín+u,
K=l

and det (V£)= 1. We understand that (V£) is a linear transformation of Rn + V which

sends <?A to 22Í ï F£eu. Each V$ is a well-defined function on SO (n + v). If we put

(2.2) Ü* = 2 n dVl,
K=l

or, in matrix expression, Q = • VdV, we obtain the Maurer-Cartan form on SO («+v).

The Q£ are one-forms on SO (« + v) which are left-invariant in the sense that we

have \AV) d(AV) = tVtAA dV=lVdV for any fixed A e SO (n + v), while the right

transform t(VA)d(VA)=tA(tVdV)A=tAQA is not necessarily Í2. We note that

these forms £2£ span the cotangent space to SO (n+v) at each point and that we

have

(2.3) ß« = -flfc        1 ¿ A, ̂ g« + v,

which we readily see from (2.1) and (2.2). (0¡¡)lsA<iJSn+v gives a basis of the

cotangent space to SO (n + v) at each point. If A e SO (n+v) and F is a skew-

symmetric (n + v)x(n+v)-matñx (i.e. a member of the Lie algebra of SO (« + »')),

then A Y is thought of as a tangent vector to SO (n+v) at A and we have Q.(A Y)
=lAAY=Y.
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Next we pull back these forms QA, 1 ̂  A, p á « + v, to P x SO («+v) from SO (« + v)

by the natural projection P x SO (« + v) -> SO (« + v), and denote the resulting

forms on Ax SO (n+v) by the same symbols £2¡¡.

Furthermore, we pull back the canonical form (ojl)láián and the Riemannian

connection form («>$)igi,isn from A to Ax SO (n + v) by the natural projection of

A x SO (« + v) onto A. The unique existence of (to)) is well known. The connection

(<uy) is characterized by the following conditions : (1) o>{ = - to), (2) (a>)(p Y)) = Y for

peP, and any member Y of the Lie algebra of SO («), (3) (w)(Xg)) = 'g^y W)g for

X e T(P) and g £ SO («), and (4) (tu)) is torsion free, meaning (2.5) below. The forms

so obtained on P x SO (« + v) will be denoted by the same symbols tu' and œ).

The forms Í2A, to), wk span the cotangent space to P x SO (« + v) at each point and,

if we impose the restrictions X<p and i<j, they become a basis. Thus the differ-

ential forms on Ax SO (n+v) form the exterior algebra generated by Q£, a>), t»k,

l^X<p^n+v, l^i<jún, lúk^n, over the ring of differentiable functions on

Ax SO (« + »).

In particular, the canonical form (QA) of A, pulled back to A x SO (« + v) via

Px ft+v.n by the projection: Ax SO (« + v) -> Ax Kn+V>n -^-> B, is expressed as

Lemma 2.1. íiA = 2"=i F/W, or equivalently a»*=2Sîï ftA^A on PxSO(« + v).

This will be proved shortly later.

The exterior derivatives of those generators above are given by the following

"structure equations":

(2.4) ¿o» = 2 n; a us,
K=l

(2.5) í/íu' = J ^ A o>),

and

(2.6) ¿a;} - .jr «# A «>?+   2 ^W"* A <"">
k=l fc,ft=l

where A! = (Ajfch) is the curvature of the Riemannian connection whose components

Kjkh are functions with convention K\hk= —K\hk. (2.4) follows from (2.2) and (2.1).

(2.5) was contained in the definition of (w)). (2.6) is well known.

To prove Lemma 2.1, it is sufficient to show that the formulas in Lemma 2.1

make sense and are valid on Ax ft + vn. They will make sense if the functions

ft\ ISiún, l^X^n + v, are well defined on ft + vn or A x Vn + v>n since other forms

are clearly well defined on Ax ft+vn. ft + vn was identified with SO (n+v)/SO (v)

in §1. If V=(V£) £ SO (n+v) is mapped to v e Vn+vn by the natural projection:

SO (n+v) -> SO (« + v)/SO (v) = ft+v,n, v

is given by the submatrix (ftA)iStSn,iSASn+v; in fact, F sends each basis vector

««, 1 =ípún+v, to 2"±ï V^eK and in particular, the first « vectors eh l&i£n, are

sent to 2 ftA^A or ufo) = 2 ftA^A- Now we will prove the formulas in Lemma 2.1
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onPx A + Vi„. Let (A Y) be an arbitrary tangent vector to Px Vn + V¡n at a point

(p, v); XeTp(P), YeTv(Vn + Kn). Put ¿>=n(p, v). Then the definition of DA reads

Sí! Q*((A F)K=è(7rB.(A F)). We have Wb.(»*(*, F))=ttb.K(A', 0)) = 7rP.(*)

since (Z, F) = (Ar, 0) + (0, Y) and ^(O, F) is tangent to the fiber of B through b.

On the other hand, we recall (see the end of §1) that the canonical form (m') of P

satisfies/»(2in= i oj'(X)ei) = irP.(X) or 2 wi(X)ei =p~ 1(ttp.(X)). Hence, it follows from

the relation b=-rr(p, v) = v °p'1 that we have

b(nB.(^(X, Y))) = b(nP.(X)) = (vop-^MX)) = v(2o)'(X)ei)

= 2 "'(XHed = 2 »'W 2 KM-
f A=l

Thus, we conclude 2 &*((*> Y))eK = % V?aj'(X)eh and D/ = 2 K/V, since w'(X)

should be understood as co'((X, Y)). That the formula Í2A = 2 K/W is equivalent to

^ = 2a ^^ follows from (2.1); indeed we have 2a VtQÁ = ZKj VfVfa^t, 8*X

= cu'. We have thus proved Lemma 2.1 together with the following modification:

Lemma 2.1'. On Px Vn+V<n, the functions Vf, 1 ̂ A^n + v, lái'á«, are well

defined, and one has

QA = 2 Vfa*   and   oj' = 2 K,AQ\
i A

We have constructed differential forms on Px Vn + vn to help us define certain

significant forms on P. More precisely, given a certain form 0 on Px SO (« + v), we

want to have a form 0B on B whose pull back to P x SO (« + v) is 8. When this is the

case we will say that we can dump 8 to B obtaining 8B. First, we note that, with the

projection: Px SO (n + v) -^Px Kn+Vi„, Px SO (« + v) is a principal SO (^)-bundle

over Px A + v,n which in turn is a principal SO («)-bundle over B with the pro-

jection it, and finally P x SO («+v) is also thought of as a principal SO («) x SO (v)-

bundle over B with the projection Px SO (« + »')->Px A + v.n-^ ^, as will

be explained later.

Thus, the dumping will be done based on the following principle. Let P be an

arbitrary differentiable principal bundle which may be different from the frame

bundle of M in the rest of this paragraph. Let M, tt and G denote the base manifold,

the projection and the structure group respectively of P. If a differential form 8 on

P is the pull back n*8M of a form 8M, then (1) 8 is G-invariant and (2) 8 is transversal

to the fibers in the sense that we have t(7)0=0 for any tangent vector Y to the

fibers ofP where i(Y)8 means the inner product of Twith 0;i(y)0(T1, Y2,..., Yr./)

= 8(Y, Yx, Y2,..., Fr_i), r=deg 0. (To see (1), let G act on M trivially. Then n is

equivariant. (2) follows simply from 7r*(T) = 0.) Conversely, if a form 0 on P

satisfies the conditions (1) and (2) then we can dump 0 to M. In fact, since tt is a

submersion (i.e. its differential n* : TP(P) ->■ Tnip)(M) is surjective if it is restricted

to each tangent space TP(P)), there exist X[,..., X¡eTp(P) for any 2f±,..., X,

e TX(M) such that -rr#(Xq) = Xq, l^qúr, wherep is a point in 7r_1(x), 8(X[,..., X'r)

is determined by Xlt..., Xr only and is independent of the choice of X[,..., X', as
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above by virtue of both (1) and (2). Although there would be other methods (e.g.,

to use a connection on P) to construct a form on M from a given form 0 on M, the

dumping, has the advantage of the relation d0=dTT*0M — -n* d0M; this implies that

we have d0=O if and only if d0M = O. (For the proof of the "only if" part, use the

fact that ir is a submersion.)

Hereafter A will denote the orthonormal frame bundle of our oriented Rie-

mannian manifold M. We will apply the principle above to forms on our principal

bundles A x SO (« + v), etc. First we recall that every form 0 on P x SO (« + v) can be

uniquely expressed with œ1, to) and QA along with the coefficient functions. Regard-

ing AxSO(« + v) as an SO (v)-bundle over Ax ft + v,n, 0 satisfies (1), i.e., 0 is

SO (iftinvariant if the coefficient functions for 0 are constant and the expression of

0 remains unchanged under the transformation : ii = (Í2A) i-> laQ.a for any a e SO (v)

or the substitutions of 2?=n+i ®-W«> l&i£n<a£n+v, for Qj, and of

2r.*Ii alQ-lal for Q.%, n < a, ftg « + v, where (af) is an arbitrary member of SO (v)

identified with {ln} x SO (v)<= SO (n + v). 0 is moreover transversal to the fibers if the

expression of 0 does not contain Q.%, « < a, ß á « + v, since the tangent vectors Y on

(p, a) Y to the fibers are characterized by the vanishing of the inner products of Y

with the other forms to', etc. (and (£)£( Y)) = Y if Y is interpreted as a skew-symmetric

matrix). For instance, we can dump Q), 1 éi,j£n, to Ax ft + v,n; although one may

note that this fact follows also from Lemma 2.1' and the definition (2.2). Hence, it

makes sense to consider a linear differential system Q) — w)=0, HUjít», on

Px ft+v,n, which will appear in later sections.

Furthermore, we wish to dump 0 on A x SO (« + v) to A. If this is possible, we can

dump it to Ax ft+v,n. In any case, PxSO(« + v) is a principle SO («)x SO (v)-

bundle over A. Each (g, h) e SO («) x SO (v) sends (p, a) to (pg, a(g x «)) where

gx« is considered as a member of SO(«+v) which sends eK to g(e*) or h(eh)

= (1 „ x «)(eA) depending on whether A ̂  « or A > «. A form 0 on A x SO (« + v) can

be dumped to A if 0 is SO («) x SO (v)-invariant and 0 is transversal to the fibers. To

see when the second condition is satisfied, we will find the relation between the

tangent vectors Y to the fibers and the values of the basic forms Í2A, etc. for Y. A

member of the Lie algebra of SO («) x SO (v) is a skew-symmetric (n + v)x(n + v)-

matrix, which we denote by the pair (ft, Y2) of the skew-symmetric matrices ft of

size n and ft of size v such that Y1(ea) = 0, n<a^n + v, and Y2(et)=0, l^i^n.

This (ft, Y2) gives rise to a vector field Y on PxSO(«+i') whose value at

(p, a) is written as (pYu aY1+aY2) in a natural way. For a fixed (p, a), this map:

(YUY2) h-»- (/»ft, a ft + a Y2) is an isomorphism of the vector space of the pairs

(ft>T2) onto the tangent space to the fiber through (p, a) at (p, a). We have

the matrix

(QX(Aft,aft+*ft))) = (WaYJ) = ft,

QRipYuaY^aYJ) = (ß°(y2)) = Y2,

(^((Aft, aft + ßT2))) = (coXpft)) = ft   for 1 g i,j ^n,n<*,ßun + v,
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and the inner products of Y(p, a) = (pYx, aYx+aY2) with the other basic forms

Q^= — Of, (o\ 1 ̂ i^n<ß<n + v, are all zero. We have thus proved:

Lemma 2.2. A form 8 on Px SO (n + v) can be dumped to B (i.e. 8 is a pullback of a

form on B by the projection) if and only if 8 is SO («) x SO (y)-invariant and 8 does

not contain either coj+Q.) or Q% so that 8 can be expressed only by Q.'e, m} — Q.\, and

w\ l^i,j^n<a, ß^n + v.

3. Prolongations of the differential system for the isometric immersions. We keep

the notations of preceding sections in this and subsequent sections.

Definition. A subspace H of the tangent space Tb(B) at a point b is called a

holonomic horizontal plane if and only if

(3.1) The restriction ttb.\H is an isomorphism onto TX(M), x=TrB(b), and

(3.2) each i/OA=0 on H, 1 ̂  \^n + v, where nB is the projection: B-> M. The

requirement (3.2) means d£lK(Xx, X2)=0 for Xlt X2 e H. We have dim H=n

=dim M by (3.1). A holonomic horizontal plane H is "an integral element" of

"the differential system" given by í/Oa=0 with M as the space of "the independent

variables," in the terminologies of the Cartan-Kuranishi theory. The purpose of

this section is to state and prove several propositions and lemmas to be used in §5.

Proposition 3.1. The collection 3^={H} of all the holonomic horizontal planes H

is naturally a (nonempty) differentiable subbundle of the Grassmann bundle consisting

of all the n-dimensional subspaces of the tangent spaces to B.

The geometric meaning of the differential system #F is given by

Proposition 3.2. Locally, the maximal dimensional (i.e. n-dimensional) integral

manifolds of ^C are in a one-to-one correspondence with the isometric immersions of

M onto Än + V modulo the translations ofRn + \

In other words Jf is "a prolongation" of the differential equation for the iso-

metric immersions of M into Pn + V.

By means of the projection n: Px Kn+V>n -> B, we pull H back to tt*J^. Thus,

given a point (p, v)ePx Kn + V>n let (tt*^)íp¡v} denote the set of all the complete

inverse images {n*x(H) \ He3fF, H<^Tnip^(B)} where it* is understood as its

restriction to T(pM(P x Kn+V>n). Let tr*3^ denote the union of (-rr*J>f )(p>lJ) for all (p, v)

ePx Fn+V>n. Tr*3t will turn out to be a differentiable fiber bundle overPx Kn+Vi„.

We will write tt*H for ^(H).

Lemma 3.3. o>j=QJ, l^i,j^n, on each -n*Heir*J(f.

Lemma 3.4. Each Tr*HeTr*Jif contains a unique subspace H0 such that (1)

oj)=Ci] — 0 on H0 and (2) it*: H0->- H is an isomorphism.

We begin the demonstrations by proving:

(3.3) 2 v?dÇlX = 2 (Qi-",i") ****       \újú n,
A=l i=l

onPx Vn + V¡n.
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From Í2A = 2 ftV (Lemma 2.1'), we obtain </QA = 2 (dVtA A to' + ftA dto'). It

follows from (2.5) and (2.2) that 2a ftA du" = JiiCi{Aw' + da>>=2¡ (QÍ A to' + to' a <W)
= 2 (0.¡-to¡)Aw*, ani/ (3.3) is proved.

Since the matrix (ftA)iSfs,i,iSAsn+v has rank«, we have 2a Ví dO.Á=0, lui un,

on a subspace, say ft of Tip>v)(Px ft+v>n)ifandonlyifwehaveí/í2A=0,1 :£ A^n + v,

on U. Hence, in view of (3.3), we have d£lh=0 on U provided Q{—to{=0 on U. Let

Eft,«) be the subspace of T(PtV)(P xVn+v>n) defined by the linear equations ü{- a>¡=0,

l=\i,jík\n. We have i/QA=0, l^A^n+v, on ftp,,, by the above. Let 77' be an «-

dimensional subspace (provided it exists) of C/(PjV) on which

(3.4) a»1, to2,..., ton are linearly independent.

Such an 77' does indeed exist since the forms to' are linearly independent of

Qy-coy, 1 ÚUjíkn, on TiPiV)(Px ft+v,n) and hence on UlPtV). We have £?£2A=0 on

ATç eft,,». Again by Lemma 2.1', there exist « one-forms among Q/, 1 ̂  X^n + v,

which are linearly independent on H'. This fact is also true for tt*(H'), and so, by

the definition of Q\ ttJJI') satisfies (3.1). tt*.(H') satisfies (3.2) too. Therefore,

7T*(77') is a holonomic horizontal plane. In particular, J? is not empty. Conversely,

given an 77 e JF, we will show that to\=£l{ on 7r*/7and thereby establish Lemma 3.3.

On this space tt*H we have (3.4) and dQ.K=0 by (3.1) and (3.2) respectively. Thus

7r*77 satisfies the hypothesis for U in the Lemma 3.5 below, and Lemma 3.3

follows.

Lemma 3.5. A subspace UofTiPtV)(Px KB+V>n) is contained in UiPyV), i.e. to{=Q.{on

U if we have (3.4) for U and ¿QA = 0, 1 ̂  A ̂  « + v, on U.

Proof. (This is equivalent to the uniqueness of the Riemannian connection, or

rather to the fact that the linear group SO («) is of the order one.) By (3.3) and

dQh=0, we have on U

(3.6) ^(Ü'i-tot) a to' = 0.

Therefore, Q{—w{ is a linear combination 2"=i A{ktok of at1, to2,..., ton by (3.4)

and the so-called Cartan lemma, where A)k e R. Substituting 2 A)ktok for il{ — to\ in

(3.6), we see that A\k is symmetric in the indices i and k;Akl = A{k. On the other hand

we have A)k= —A\k since Q{—to{ is skew-symmetric in i and / From these two

properties of (A)k) we infer that A)k = A'kj=-Akj=-A% = Aiki = A{k=-A)k,

whence A)k = 0 or Cl\ — w{ = 0 and Lemma 2.5 is proved.

Without going into the details of the proof, we next show that 3t and 7r*Jf are

differentiable fibre bundles over A and Px ft+v>n respectively. In fact, the holo-

nomic horizontal planes H at an arbitrarily fixed point be B form a subset JPb of JP

which is in a one-to-one correspondence with (tt*3^)(pv) for a fixed (p, v) e B x Vn+„_„

with tt(p, v) = b. And a member tt*H of (tt*3^)ípv) is characterized as a subspace

(Lemma 3.3) of UlVtQ) which is the direct sum of an «-dimensional subspace 77'
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satisfying (3.4) and the tangent space, denoted by (Ker tt*)(pv}, to the fiber through

(p, v) at (p, v) of the principal bundle Px Fn + VjB over B; tt*H=H' © (Ker ir#)(p>l)).

If we fix a subspace U{Ptb> of t/(p,,) which is complementary to (Ker ir*\PM, then we

have (3.4) and dü.Á = 0 since we have these on c7(Pj9) and cu1 are zero on (Ker tt*\p¡v).

The set of all «-dimensional subspaces H' contained in U{Pfi) and satisfying (3.4)

is in a one-to-one correspondence with (tt*j^')<pv) and it is open in the Grassmann

manifold of all «-dimensional subspaces of U[p¡v). We want to choose i/(pt)) for each

(p, v) in such a way that the union of all UIPtV), (p, v) ePx Vn + V¡n naturally becomes

a differentiable bundle over Px Vn + VfJ¡. Let U[p¡vi be the subspace of i/(p>u) which is

given the linear equations o>\=0, l^i, jún. Then we have U(PM= U(p¡v-, ®

(Ker w*)(p>t„ since we have (o)\(p Y, v Y)) = Y for any tangent vector (p Y, v Y) in

(Ker 77N.)(PV), where Y is an arbitrary skew-symmetric « x « matrix. This incidentally

proves Lemma 3.4; indeed, H0=tt*H n U{PtV). Also we see from the arguments

above that differentiable bundle structures are defined on 77* Jf and hence on JP. So

Proposition 3.1 is proven. It remains to establish Proposition 3.2. Let S be an

integral manifold of 3tf so that each tangent space to S belongs to J?. By (3.1),

ttb\S is a local diffeomorphism. Let/S be the local diffeomorphism (defined on a

small open set in M) from 77B(,S) to 5 which is the local inverse map of 77fl|S. Then

fB'£lh is closed by (3.2). Hence locally/S"£)A is exact. Thus, by Proposition 1.1, fB

comes from a local isometric immersion/ Conversely, if/is an isometric immersion

of an open set of M into Rn+v, the corresponding local section/8 of B gives rise to

an integral manifold = Image (fB) of ^ since its tangent spaces satisfy (3.1) (be-

cause of the section/5) and (3.2) by Proposition 1.1.

Remark 3.1. When v=0, it is not hard to see that Jf is a vector subbundle of

the tangent bundle of B=B0 and, moreover, it is a connection of B0, which gives

the Riemannian connection of M when ¿F is transplanted to P.

Remark 3.2. For an isometric immersion /: M -^-Rn+V we obtain the map

fP:P -»■ KB + V>B such that Tr(p,fP(v))=fB(nP(p)). It is seen that the tangent spaces to

the graph of/P are contained in U(PtV), v=fP(p), and hence ajj=/j?Qj, l^i, y'á«.

(Kobayashi [7]). This proves the existence of the Riemannian connection (cd)) under

the assumption of the existence of some/

4. A regular homotopy invariant. For the sake of simplicity we will assume for

the rest of the paper that M is compact. In this section we will construct a regular

homotopy invariant for the isometric immersions/: M^- Rn + V assuming that the

codimension v is even.

We first put 0?:S = 2"=i QLaQ},, «<«, ßun + v. This is a form on SO (n + v).

We pull it back to P x SO (n+v). Then we put

0 = 2 sgn (r)0&> A &l\l] A • • • A ©Sïf»,
f

where sgn (t) is the sign of the permutation t of {1, 2,..., v} and the summation

ranges over all permutations. In this definition of 0, we have used the assumption
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that v is even. We will show that we can dump 0 to A to obtain a closed form 0B.

First 0 is invariant under the right action of {ln} x SO (v). This can be proven in

various ways. For instance, since each 0£, 1 Sp, qúv, is of even degree, 0 can be

thought of as a polynomial in the entries of 0£ of the matrix (0*). Now it is known

(see Chern [1]) that 0 is essentially (det (0£))1/2, and so the invariance follows.

Next 0 is invariant under the right action of SO («). Really each 0£:„ = 2?=i ©La &lß

is invariant, since SO («) leaves invariant the polynomial 2f« i (x')2. (g = (g¡) e SO («)

sends @'a to 2/=i gföL-) It is obvious from Lemma 2.2 that 0 is transversal to the

fibers of the principal bundle A x SO (« + v) over B. Finally, we have to prove that

0B is closed, which is true if 0 is closed. Again there are various proofs. We will

give two of them briefly. We regard 0 as a form on SO (« + v). Since 0 is SO («)

x SO (iftinvariant and 0 is transversal to the fibers of the principal bundle

SO(«+v) over the Grassmann manifold (by arguments similar to the proof of

Lemma 2), 0 can be dumped to the Grassmann manifold to obtain a (left)

SO (« + »^-invariant form. On the other hand, a Grassmann manifold is a compact

symmetric space and any invariant form on such a space is closed by a well-known

theorem of E. Cartan. Thus 0 is closed. A more elementary proof goes like this:

0?:ï = ̂ -2?=+fti ££AÍ2¿ by (1.4). Hence, d©2:» = 2 ((</OZ)A a}-QlAdQ}).
Thus, £10 is contained in the ideal generated by {0£ | « < a, ftá « + v} is the exterior

algebra of forms on P x SO (« + v). On the other hand, d<d can be dumped to A and

Lemma 2.2 applies to 0; in particular, 0 does not "contain" Q£. Thus t/0=O.

Hence d&B = 0. We have proved :

Proposition 4.1. Let 0B be the v-form on B as defined above when v is even. Then

for an isometric immersion f: M -> An + V, the form /s"0 is a closed v-form on M and

the corresponding cohomology class is a regular homotopy invariant.

Corollary 4.2. Ifv is even and fis regularly homotopic to an isometric immersion

of M into A" + v_1, thenfB'& is cohomologous to zero.

Roughly speaking, this is because we then have £ft + v=0.

The rest of this section is devoted to several comments on 0B without proofs.

Remark 4.1. /B*0 is essentially the Euler class of the normal bundle of f(M) in

A" + v (or rather of/). (See the next paper of this series for the Euler class of a

differentiable vector bundle.) The corollary is obvious. The cohomology class

/B'0B is zero when/is an imbedding (see Husemoller [5, p. 261] or the next paper).

It is possible to express the Pontrjagin classes (see Chern [1]) of the normal bundle

with the forms (0.'a). However, they are trivial since they are determined by the

Pontrjagin classes of M (due to the duality theorem) and independent offa priori.

Remark 4.2. The invariant/4*'0B has an important meaning from the standpoint

of obstruction theory (see Steenrod [9] for details). The fiber of A is the Stiefel

manifold Vn+V<n, and (v- l)-connected. And the vth homotopy group 7rv(ft + v,n) is

isomorphic with Z or Z2 according as v is even or odd. Now the odd case is out of

our framework. When v is even, 7rv(Kn+v>„) is naturally contained in 7ït(ft + v,n)
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^H'(Vn + vn) and spans this over R by the Hurewicz theorem. It follows that the

primary difference of two sections of B appear in the cohomology groupHv(M)

over Hv(Vn+Vtn)^R, since Vn+V¡n is a homogeneous space, which is nice in a certain

sense. Given two sections Sx and s2 of B, the cohomology class s* 0B — sf 0B e H2(M)

will essentially give their primary difference.

Remark 4.3. When n = v and is even,/s*0B is exactly the only regular homotopy

invariant (Hirsch [5]).

Remark 4.4. Apart from topology, some interest of Proposition 4.1 would lie in

the fact that the homotopy invariantfB'0B is completely described by the "second

fundamental form" (Í2J,) off (hence by the second order jet off).

5. Some isometric homotopy invariants. In this section we will construct some

isometric homotopy invariants. They are, as defined in the Introduction, cohomol-

ogy classes on M for each isometric immersion which remain constant under any

smooth homotopy F: Mx 1-^Rn+V such that each/: M->-Pn+v is an isometric

immersion for te [0, 1], where/(x) = P(x, t).

Even if it is not closed, a differential form Q on B will give rise to an isometric

homotopy invariant/s[ü for each isometric immersion/: M ->- Rn + v provided that

/B*iî is closed on Mxl for any isometric homotopy /: Mx I-> Rn + v, where

FB(x, t)=fB(x). In fact, we then have, for each cycle c in M, ¡cfB'Q-\cfB'Q

-i.-o) ^'"-Ícxío) FB'&= ± J8(cx7) FB-Q= ±J-cx/ dFB'Q=0 by Stokes theorem,

where d denotes the boundary operator. Thus, what we are looking for is an Q of

degree p on B such that

(5.1) d£l(FB( Y), FB(Xx),..., FB(XP)) = 0

for Y, Xx,..., Xp e Tixt)(MxI), (x,t)e Mxl. Here we may assume that

Xx,...,Xp are tangent to Mx{t}. Then Fi(Xk)=ft?(Xk), l^k^p, where X'k is the

image of the natural isomorphism Tix¡t)(Mx{t})^Tx(M). By Proposition 3.2,

these fB(Xk) belong to a holonomic horizontal space fB(Tx(M)). Therefore (5.1)

follows from

(5.2) i(Y)-dO. = 0

on any holonomic horizontal plane H<=Tb(B) and any vector Ye Tb(B) (see §3). In

other words, we want to construct forms Q on B which is closed on each integral

element HofJf and also closed in each subspace of the tangent space Tb(B) which

contains H as a hyperplane.

Hereafter we consider the case where v= 1 andp=n. As in the previous section,

we first construct forms on PxSO (« + l)=Px FB+ljB and then dump them down

to B. Let Q. = Q.(r) be the «-form, parametrized by reR; Q = (cu1 + /"Í2B + 1)

A(oj2 + rQ% + x)A ■ ■ ■ A(wn + rQZ + 1), where mi and Í2B+1 are the forms defined in

§2. Q. is invariant under the right action of SO («) x SO (v) = SO («) x SO (1) = SO (n),

the proof being the same as for the volume element a> = w1 a <o2 a ■ ■ ■ A wn under

SO («). Q is transversal to the fibers of the bundle P x SO (« +1) -> B since O
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does not contain to) — il), in view of Lemma 2.2. Therefore we can dump Q to A

to obtain QB = QB(r).

Theorem 5.1. The form QBon B defined above gives rise to an isometric homotopy

invariant fB'QB e Hn(M; R) for any isometric immersion f: M -* Än + 1 and for any

value of the parameter.

Proof. We have only to verify (5.2) for ift. We use the notations and the results

in §3. (5.2) is equivalent to

(5.3) i(Yo)dQ. = 0   on H0

for any tangent vector ft in ftpV)(Px Kn + 1,„) which contains the arbitrary 770 in

Lemma 3.4. Simply by taking the exterior derivative we obtain

dü = f (-ly'-H^ + rQftOA ... Ad(to' + rÜ'n+1)A ■ ■ ■ A(y+rQn+1)

and d(to' + rÜin+1) = 27=i(to1Aw) + rüin+1AÜ.)) by (2.4), (2.5) and (2.3). Since

cuy = uy=0 on 770 by Lemma 3.4, we see d(to' + ru.'n=1)=0 on H0. Thus, if we put

y) = (o'i(Y0) and Yj = Q.)(Y0), we obtain

c(Y0)dÜ=   -2(^ + ̂ n+i)A---

A (1 (yW+rYpUi)} A • • • A(to» + rn«n+1).

(5.4)

We note in (5.4) that the summation 2* for/' ranges over the indices different from

i since both (y)) and ( Y') are skew-symmetric matrices. Now we use the following

fact: if we choose a (p, v) e P x Kn + ln with n(p, v)=b for a given be B then there

exist real numbers c' such that we have

(5.5) í^íi + i = c'to',       1 á¡ i Sä n,       (not summed up for i)

on 770 at (p, v). We postpone the proof of (5.5) until the end of this section in order

not to interrupt the stream of the proof of the theorem. (5.5) implies that we have

(on 770)

(5.6) w' + rQUi = (l+rc')to',

and

(5.7) 2 w**+r w ♦ i) = 2 ( j^+r r'c v.
j i*l

Substituting (5.6) and (5.7) into (5.4), we conclude that each term of the right-

hand side of (5.4) vanishes since clearly to1 A ■■■Ato'~1AtolAto'+1A ■ ■ ■ Aton=0

for/'/'. Theorem 5.1 is proved.

Remark 5.1. Since D = ù(r) is a polynomial in r, so is Cft=ift(r). Let Q(W be the

coefficient of rk in £ft(r). Then Theorem 5.1 says that each/B*ß(W is an isometric

homotopy invariant for an isometric immersion/: M-> An + 1. On the other hand,
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we havefB'Cl(k)=skcü if sk denotes the kth elementary symmetric function of the

principal curvatures c1, c2,...,cn for /and w denote the volume element of M.

Thus, Theorem 5.1 is equivalent to saying that the integral over M of the elementary

symmetric functions of the principal curvatures are isometric homotopy invariants.

It is easy to see, however, that/B*Q(ic) for even k is determined by the Riemannian

metric (and its curvature) of M so that it is independent off; in fact, QB+1A 0B+1

= dQ{—2k=i QfcA Cl'k = dw{—2 oik a a>£ = K¡ (on UlPM) by the formulas in preceding

sections.

Remark 5.2 (see Chern [3] or Weyl [11]). The integral JM/fl'DB has a very

clear geometric meaning. Suppose for simplicity that/is an isometric imbedding.

Then that integral is the area of the hypersurface Mr, defined for small \r\, con-

sisting of the points in Rn + 1 at the distance \r\ fromf(M) in a certain side of f(M),

or equivalently, \\T0 dr ¡MfB'Q.B\ is the volume of the "annular" domain between

f(M) and Mr. This interpretation allows us to generalize the theorem to the case

of arbitrary codimensions v. But if v> 1, resulting invariant is determined by the

curvature of M alone, as is known since H. Weyl.

Remark 5.3. /B'°-<B), or rather its integral over M, is essentially the degree of the

Gauss map. Thus, iff is an imbedding and « = dim M is even,/s'ß(B) is essentially

the Euler class of M by Hopfs theorem. Thus the Gauss-Bonnet theorem is obtained

by expressing fB'0.B with the curvature. However, this is the only (topological)

invariant among/B*£2(fc), O^kfín, that is independent of the Riemannian metric of

M. To see this, take M to be the hypersphere of radius a in Rn + 1 and let / be the

inclusion map. Then we have tu' = aQB + 1 and hence fB'QB = (l+(r/a))nw, where tu

is the volume element.

Remark 5.4. As regards the existence (or nonexistence) of isometric homo-

topies, we should note the following: If the second fundamental form is of rank

^ 3, at any point of M, then the isometric immersion of the hypersurface M is rigid

(T. Y. Thomas [10]). There always exists such a point for a compact M (Chern [2]).

This kind of isometric homotopies is of extremely restricted type if one admits the

result of [4].

Remark 5.5. The theorem is also true for a compact hypersurface with boundary

if the homotopy fixes the boundary pointwise.

Proof of (5.5). First we derive a formula similar to (3.3) in a similar way:

2 V* dQ.x = d(y KAoA -2 ^Aff

= dfc V¿ 2 W<A 'I ¿V« A 2 (FM
\ A Í IK i

= 2 d(Í2 w)*') -2 (2v? dv¿)A w< = 2 ¿(s>')-2 "fA <"'

= 0+V £2U«>(
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on PxSO(«+v) for a>«. Since d£lK=0 on H0, 2QlaAtoi=0 follows from the

above. As in the proof of Lemma 3.5, we have Ojt = 2y A"j<a' with A% = Af¡ on 7ft.

Now let v= 1 and hence a—n + l. We have a symmetric form (Af¡+1). Let (p, v) be

the origin of 770. Put ir(p, v) = b. It is easy to see that (/t"y+1) is sent to 'g^py+^g by

the transformation g sending (p, v) to (pg, vg). Thus, by a suitable choice of g, we

can diagonalize (g(ft" + 1)g so that we have (Afj+1) = (8ijcj), or ift + 1 = cV, for

H0g<=Tcpg,vg(PxVn + Un).
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