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1. Introduction. Let H(n + k;n) denote the topological group of homeomor-

phisms of Rn + k which leave 0 and the «-dimensional hyperplane, Fn x 0, invariant.

A Euclidean bundle, or an (Rn + k, F")-bundle, over a space, X, is defined to be a

fiber bundle with fiber, Rn+k, and group, H(n + k; «). The total space of a Euclidean

bundle contains a subspace which has the (induced) structure of an (Rn, 0)-bundle

over X. Thus (|n + \ £n) will denote an (Rn+k, Fn)-bundle with total space,

(F4»+*, E("), and projection,/?.

If « = 0, we take F° to be 0 and also use 0 to denote $°. The trivial (Rk, 0)-bundle

is (ek, 0). Since every Euclidean bundle contains 0 and p: F0 —s* X is always a

homeomorphism, there is an inverse, a0, which is called the zero section after the

following definition. Let (|n + fc, |n) be a Euclidean bundle over X. A section is a

map a: A,->Fïn + " such that pa=lx, where lx denotes the identity map on X.

A section is said to be nonsingular if a(X)<^E(«+><\Ein, where A\B denotes those

points of A not in F.

Just as in the theory of vector bundles, it is possible to define the Whitney sum

of Euclidean bundles. We write

(e+\ e) e (r)m+\ vm) = (tn+k © vm+l, f © *?m)-

If a Euclidean bundle, (£»+*, f ), is equivalent to (f © ffc, £n)=(in> f) © (¿*, 0)

we say that the bundle splits. A splitting need not exist. Indeed, the Rourke-

Sanderson embedding, [15] and [13], gives a Euclidean bundle which splits only in

a very weak sense, i.e. as a spherical fibration [12].

The purpose of this work is to investigate the relationship between the existence

of a nonzero section and a splitting of the Euclidean bundle. For example, if a

vector bundle has a nonzero section it splits off an e1. Thus, one asks if a nonzero

section to an (Rk, 0)-bund'e implies that it splits off an e1. Browder [2], using results

of Hirsch [6] and Mazur, has shown that an (Rk, 0)-bundle with a nonzero section

splits off an e1 if and only if it contains a closed disk bundle. (By Kister [9], this

means that the (Rk, 0)-bundle must be equivalent to the interior of a (Dk, 0)-

bundle, where Dk is the closed &-disk, whose (topological) group is the group of
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homeomorphisms of Dk leaving 0 fixed.) Browder then proves that there is an

(Rk, 0)-bundle over a finite simplicial complex which has a nonzero section, but

which does not split off an e1. Consequently, it is of interest to know why there is

no splitting and, furthermore, if there is a homotopy splitting.

Browder's result implies that one of the following statements is false.

(A) A Euclidean bundle, (£k, 0), over a finite simplicial complex with a nonzero

section is equivalent to (¿*, e1).

(B) A Euclidean bundle, (ffc+1, e1), over a finite simplicial complex splits.

Motivated by the suspicion that (B) is false in the topological category and desiring

to determine conditions under which (A) is true, we are led to consider the follow-

ing, more general, question. Is a Euclidean bundle, (fn + ic + 1) £™); having a non-

singular section equivalent to (fn + fc + 1; |" @ ei)?

In the stable range this question may be answered by using the recent results of

Kirby and Siebenmann [8], or Lashof and Rothenberg [10], relating the topological

category to the piecewise linear category and then applying the results of Haefliger

and Wall [5]. It is below this stable range that our results are of interest and provide

a new application of piecewise linear techniques to topological bundle problems.

This is done by generalizing the techniques developed by A. V. Cernavskii [4].

In the following we shall assume that X is a topological space which has the

homotopy type of a countable CW-complex of dimension m.

Theorem 1. Suppose that (£n + k + \ |n) is a Euclidean bundle over X such that k^3

and m + nfH2k — 3. Then, if a is a nonsingular section to the bundle, the Euclidean

bundle is equivalent to (£n + k + 1, £n @ e1), where E¿i contains a(X). Ifm + n-¿2k — 4,

e1 is unique.

This theorem is proved by "reducing the group" of the bundle. Thus, let e¡,

1 -¿j-^k, denote the point in Rk whose only nonzero coordinate is a 1 in they'th

position. The topological group of homeomorphisms of Rn + k which are the identity

on /?nx0 will be denoted by G(n+k; «). Let Gf(n + k; n) denote the subgroup of

G(n + k;n) consisting of those homeomorphisms leaving en+1 fixed. In §2 the

following theorem is used to give the necessary reduction.

Theorem 2. Iflc^4 andm+n^2k-6, then

TtJGfin+k; «), G(n + k;n + l)) = 0.

Theorem 2 is then reduced to a geometric bundle problem which can be con-

sidered in a manner analogous to that used by Cernavskii. As a final comment

on Theorem 2, we note that the dimensional restrictions are necessitated by the

use of general position and engulfing arguments in Lemma 4.11 and Proposition

5.1.

A corollary to Theorem 1 gives a partial verification of statement (A). Unfor-

tunately, it does not seem to have sufficient strength to prove that (B) is false.
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Corollary 3. Suppose that (èk + 1, 0) is a Euclidean bundle over X, with k^3

and mS2k — 3. If the bundle has a nonzero section, it is equivalent to (ik + 1, e1),

where a(X)<^Eei. If mS2k — 4, e1 is unique.

2. Reduction to a geometric bundle problem. In this section we shall, assuming

Theorem 2, give proofs of Theorem 1 and its corollaries. Theorem 2 is then reduced

to a bundle problem which is accessible by geometric methods.

Proof of Theorem 1. By Whitehead [17], we may assume that A' is a countable,

locally finite, m-dimensional polyhedron. Let G be any topological group and BG

the associated classifying space for G-bundles [14]. Given a G-bundle, f, let /4

denote its classifying map.

It is easy to show that an (Rn+k + 1, Fn)-bundle, (f*+k + 1, £"), has a nonsingular

section if and only if

/jn+K + i^: A^F77(« + A:+l;n)

factors (homotopically) through F771(n+/c + l; n), where 771(«+/c+l; ri) is the

subgroup of H(n+k+1 ; n) leaving en+1 fixed.

We note that Hx(n+k +1 ; ri) is (group) homeomorphic to

G(n;G)xGx(n + k+l;ri)

and that the theorem will be proved if we can show that, in the appropriate

dimensional range, any map

g: X^BHx(n+k + l;ri)

can be (homotopically) factored through BG(n ; 0) x G(n+k +1 ; n +1). The obstruc-

tion to doing this is in irm(BHx(n+k+l;ri), BG(n;0)xG(n + k + l;n+l)) which

is isomorphic to irm_1(G1(n + k+\; ri), G(n + k+l; «+1)). If m + nS2k-3, and

k ä 3, this group is trivial by Theorem 2. Hence existence has been proven. The

uniqueness statement follows similarly.

Corollary 3 follows from Theorem 1 by taking n = 0.

With the above, it is only necessary to prove Theorem 2. Let a be an element of

TTm(Gx(n + k; ri), G(n + k; n+l)) and let

G : (Am, dAm) -> (Gx(n + k;ri),G(n+k;n +1))

be a map representing a. Corresponding to G, via the adjoint homeomorphism,

there is a bundle map, also denoted by G, such that the diagram

G: AmxRn+k -> AmxRn+k

pri    a pTx
Y

1A-: Am-

is commutative, where a(x) = (x, en+1). Thus, to show that a is zero, it suffices to

prove that a representative G, can be written as the composition of bundle maps
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Gu G2 and G3, where G3 represents a map into G(n + k; n+1) and Gx and G2 are

homotopic to bundle maps in G(n + k; n+l) through bundle maps in

(Gx(n + k;ri), G(n + k;n+l)).

We note that we may assume, without loss of generality, that G is radially constant

in a neighborhood of 3Am. Thus it is sufficient to prove the following theorem.

Theorem 2.1. Ifm + n-¿2k-6, 4^k, s< 1, and

G: AmxRn + k -> AmxRn + k

Pfj Pri

lAm: Am-> Am

is a bundle map such that

(i) the diagram commutes,

(ii) G is the identity on

cl (Am\A™) x Rn + 1 U Am x Rn

then G = G1G2G3 such that, for some t<l,

(i) G¡ is f-isotopic to the identity through bundle maps having the same properties

as G, with s replaced by t, s < t < 1, /'= 1, 2,

(ii) G3 represents a map of Am into G(n + k; n+l).

Proof of Theorem 2.1. By Proposition 5.2, G can be written as the composition

GiG2G3 such that Gx satisfies the hypothesis of Lemma 4.13, G2 satisfies the

hypothesis of Lemma 4.12, and G3 satisfies condition (iii). Since, by the Lemmas

4.12 and 4.13, Gi satisfies (i) and G2 satisfies (ii), Theorem 2.1 is proven.

For the most part, the remainder of this paper is devoted to giving a proof of

Proposition 5.2. The basic definitions and conventions necessary for the develop-

ment of the theory are given in §3. In addition to Lemmas 4.12 and 4.13, a series of

lemmas are given in §4 which are used to give a proof of Proposition 5.2 in §5.

The proofs of many of the results will be omitted as they are direct extensions of

published proofs. The proof of Proposition 5.2 is based upon a result of A. V.

Cernavskii [4]. Since the author has been unable to significantly simplify Cernavskiï's

argument we shall give an outline of the proof and include the necessary modifica-

tions.

3. Definitions and conventions.   Consider a coordinate system for Rn+k given by

x1;..., xn+fc and consider R'czRn+k as R'={(xu ..., xn+fc) | xi+1= • • • =xn+fc=0}.

Let

■"n    =  l(*l> ■ • •> Xn+k) | Xn+1   ¿  0},

Bn    =  \(xi, ■ ■ -, Xn+k) I Xn+1   S  0),

Rn++1 = Rn + 1 r\R¿,

Rn+i = z^ + i n/?-,

D't = {xeR'\ ||x|| Í/}.
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Define A] inductively by

A° = A° = {0},       Al = A<~1* {(tei), (~ ted},

where * denotes the geometric join in R'. Let

A?++1 = A?+1 n Fn++1,       A?_+1 = A? + 1 n Fn_+1

and identify A\ with A' via the obvious piecewise linear homeomorphism.

At every point of Rn, x, consider the family of two dimensional planes in Rn + k,

{Pa.x} coordinatized by the line in Fn+1, through x, parallel to the xn+1 axis as

abscissa and a line orthogonal to Fn + 1 as ordinate. We note that the various

families are mutually disjoint and that PafX and Pßx have only their abscissa in

common. In each Pax consider all possible semicircles, {Cii(r>JC}, with centers at x

and having their diameters lying in the abscissa. Note that through each point of

Fn+fc\F"+1 there passes exactly one semicircle CÄiBiÄ and exactly one plane Pax.

We now define a family of surfaces which will play a crucial role in the argument.

These surfaces, called horns and denoted by Rt, consist of the points in Rn + k

which satisfy the equation

*n+l  = t(xl + 2+ ■ ■ ■ +Xl + k)112, -CO  <   7 <   +00.

Let F_ . = Fn_+1 and F+ „ = Fn++ l.

Each horn, F¡, -oo<7< +oo, intersects each plane, Pa¡x, in two rays originating

at x lying on both sides of the abscissa and forming, with it, equal angles of arc-

cotangent (/). As / varies between -co and +oo, each point on the horn describes

a semicircle which belongs to a family {CB¡a¡x}. For each horn we may thus define

the positive and negative side (relative to the xn+1 axis) and for each pair of horns,

the region between them. These regions will be denoted by Qt+, Qr and g(il>(2)

respectively.

A set X is said to be tangential to Rt if for each e > 0 there is a 8 > 0 such that,

in the 8-neighborhood of 0, X is the nonempty and lies in Qct-t.t+ty If it is in

Qu.t+s), X is said to be tangential from the positive side. We make the analogous

definition for the negative side.

A surface in Rn + k, which is homeomorphic to Rn + k~1 under a homeomorphism

which is the identity on Fn, is called a curved horn, 0tt, if it is tangential to Ft

and intersects each semicircle. CB_a_x, at precisely one point. A curved horn tan-

gential to Rt on the positive (negative) side will be denoted by 0t^(0t^).

Because of the nature of the argument we shall regard as identical all curved

horns which coincide in some neighborhood of 0. Also, if two curved horns, in a

neighborhood of 0, intersect only in Fn the region between them is defined, i.e. it

is the union of the arcs on the CB¡a<x whose ends lie on the given horns and which

lie entirely in the neighborhood. An example of the use of the convention of local

identification is the validity of the statement that there is a homeomorphism taking
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R0 to /?! which is the identity outside a compact set. The need for such a convention

will become apparent in the proof of Proposition 5.2.

Consider the trivial /?n+fc-bundle over Am,

prx: AmxA?n+fc->Am.

Suppose that A" is a simplicial complex and that/?: K^ Am is a linear map. A map

g: AT-»- Am x Rn+k is said to be an/-map if

g:K -  —*  Amx/?n + ,c

Pri

1A» : Am-> Am

is commutative. Thus we think of K as having an /-structure (fibered-structure)

and of g being an/-map over 1A"», although/»: K-> Am may not be a fiber bundle or

even a fiber space.

In general, when there are /-structures understood, the letter "/" appearing

before any term will denote that the /-structure is to be preserved, e.g. /-homeo-

morphism, /-homotopy, /-approximation.

We extend the concepts of horn, tangentiality, etc., to Am x Rn+k by considering

the inclusion of Am x Rt in Am x Rn + k. A curved horn is then defined as the image

of AmxRn+k~1 under a/-homeomorphism such that the restriction to each fiber

defines a curved horn.

An/-map g: AT-» Am x Rn+k is said to be linear if it is linear on simplices.

A set of points in AmxRn+k is said to be in/-general position if every subset of

s points, s^m+n+k+l, containing a maximal subset of / points whose projections

are in general position in Am, determines a hyperplane of dimension (/— 1) +

min (n + k, s — l). If we take m = 0 and /= 1 this reduces to a standard definition of

general position in Rn + k [18].

A linear /-map is said to be in /-general position if the image of the vertices of

K are in /-general position.

4. Some basic lemmas. The first three lemmas are generalizations of standard

methods.

Lemma 4.1 Suppose that Bp is a simplex, with a fibered structure. If a denotes a

disjoint vertex, then aop can be given a fibered structure extending that on 8P such that

there is a sequence of triangulations ofaop, T¡, with the projection onto 3" simplicial

and respecting the fibered structure, and such that the mesh of the T/s converge to

zero.

Proof. Identity o" with Ap and a with ep+l, and hence a8p with the geometric

join of Ap and ep+1. The line segments through points in Ap parallel to the segment

Oep+1 determine a fiber structure extending the one given on 8.

The triangulations, T}, are defined inductively as follows:
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T0 : To the triangulation of d Ap add a vertex at 0 and given Ap the cone triangula-

tion ep+iAp is also given the cone triangulation induced from the one on Ap.

Suppose Fy-j has been defined so that the projection is simplicial.

Tt: Take a barycentric subdivision of Ap, triangulated by F,_j, ordering the

barycenters in order of increasing dimension, ba0,..., ba,. We then describe a

derived subdivision of en+1Ap with respect to Tj~i as follows:

Since the projection is simplicial the inverse image of each vertex of T} is a sub-

complex lying in a single fiber. Take the barycentric subdivision of these complexes.

Next suppose that a derivation has been defined on 7r_1(as) for s<t, where tt

denotes the projection of ep+1Ap to Ap. Consider Tr~1(bat)<^TT~1(at). 77"1(¿>ctí)

intersects the interior of every simplex which does not lie in ir~\da^. In the interior

of every such simplex we choose the midpoint of the segment intersecting that

simplex as a matrix and triangulate, in order of increasing dimension, by taking

cone triangulations. This gives a triangulation of 77" \at) which extends that of

77-1(der() and is such that 77 is simplicial on 77" ̂ oj).

Thus we define Fy. It remains to be shown that the mesh of the F;'s go to zero as

j goes to infinity. This, however, follows as the mesh of the triangulations induced

on Ap go to zero, since we take barycentric subdivisions of the complexes 77 ̂(¿xj;)

at each stage, and since the convergence property of the mesh is preserved under

the identification.

Lemma 4.2. Suppose that g: A"-»- Am x Rn+k is anf-map, L is a subcomplex of K

such that g\L is a linear f-map, e: K^- (0, 00) is a continuous function, and P is a

subcomplex of Am x Rn + k such that g(K) C\P=0. Then there is a linear f-map

g':K->AmxRn+k

such that g'\L=g\L, ||g'(x)-g(x)|| <e(x), andg'(K) nP=0.

The proof consists of taking a linear approximation to g satisfying the conclusion

and noting that, since g is an/map, the linear approximation is an /-map.

Lemma 4.3. Suppose that g: K-> Amx Rn+k is a linear f-map, L is a subcomplex

of K such that g\L is in f-general position, e: A->(0, oo) is a continuous function,

and P is a subcomplex of Amx Rn+k such that g(K) c\P=<z. Then there is a linear

f-map in f-general position

g':K-+AmxRn + k

such that g'\L=g\L, Ig'(x)-g(x)\\ <e(x), andg'(K) nP=0.

The proof follows from standard general position techniques, with the additional

restriction that prj (g'(x))=pr! (g(x)).

The following three lemmas are extensions of Cernavskiï's lemmas (A), (B), and

the construction of his "fundamental homeomorphism". Their proofs are direct

extensions of those given by Cernavskii and are omitted.
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Lemma 4.4. If X is a subset of AmxRn + k which lies on one side of the horn Rt

and has the property X\X<= Am x Rn, then there is a curved horn, â#t, separating X

from F(.

Lemma 4.5. If the curved horns 3$tl and ¿%u intersect only at Am x Rn, ifâth and

¿%t3 lie between them, and ifOSsx<s2Sl are given, then, for every e>0, there exists

an e—f-homeomorphism of AmxRn + k over 1A™ which

(i) is the identity on Am x Rn,

(ii) is the identity outside the e-neighborhood of Am x 0,

(iii) is the identity on cl (Ara\A£) xRn + k,

(iv) is the identity outside the region between 0ltl and 8tti, and which

(v) takes @l2 to ^¡3 over A™.

Lemma 4.6. Suppose that i:Am->[0, 1] is a continuous function. There is a

f-homeomorphism, g: Xs^- Ys, where

Xs = {(x,y)eA»'xR" + k\ytAlx)}

and

Ys = {(x, y)eAmxR" + k\yt A-&1},

such that

(0   g|s-1(0)x<Rn + ,c\0)=l|s-1CO>x<Rn+'£\0>,

(Ü)   i\Am x <fin + k\Dl+k)=l\*m x IR" + k\Dl + k),

(iii) a sequence of points, S, in Ys converges to a point, x, in its complement if and

only if (a) g~x(S) converges to a point in the complement of Xs and (h) g_1(F) is

tangential to the horn Rt, where t is the (n+l)st coordinate of x and \t\ ^s(prj (x)).

We shall now give a sequence of lemmas which are related to the engulfing

lemmas of Stallings [16] and Zeeman [18], as extended by Cernavskiï [4], (cf. Bing

[1], Cantrell and Lacher [3], Millett [11]). In the following, if F is a complex and

Q is a subcomplex, then [P\Q] denotes the smallest subcomplex of F containing

F\ß.

Lemma 4.7. Let P be a given polyhedron in Amx Rn + k containing a simplex a = A/3,

where A is a l-simplex with vertices A0 and Áx contained in the same fiber, i.e. prj (A0)

= Pri (K)- Suppose that an [P\a] = [<r\A1/3] and that [P\a] lies in an open set, U,

such that U r\AmxRn=0. If V is an open set such that a^V, prj. (F)<=Int Am,

and F n Am x Fn= 0 there is a f-homeomorphism, q, of AmxRn + k such that q is

the identity on [P\a] and on the complement of V, and Pcq(U).

Proof. By considering a model of A0/3 lying in the appropriate Euclidean space,

F'cF, + 1, with A0 at the origin we can give a a fibered structure. Take Aj to be the

point (0,..., 1) in F1 + 1 and <x=A1(Aoj8). a is then fibered by lines through the points

of A0/3 parallel to A. Note that this fibration respects the fibration of a induced by

that of AmxRn + k since A lies in a single fiber.
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Figure 4.8 will prove useful in understanding the following construction. There

exist simplices, A' and ß', such that

(i) Aij8'«=IiitA1/3,

(ii) A^clntA/3,

(iii) A' lies in a single fiber of a so that the fibration of a determines a fibration

of a = X'ß' having the same properties as that of a,

(iv) cl(o\o')c(y.

Let v2 denote the barycenter of X^ß'. On the ray determined by Aói>2 we select

two points, vy and v3, such that

(i) along Aóf2 we have the following order X'0, vu v2, v3,

(ii) Mi/S'ciF,

(iii) Ai»1(0A'1j8')<=C7.

Figure 4.8

We note that the fibers of a', extended linearly, intersect v^dX'ß'), X[ß', and

v3(dX'^') in precisely one point each, in that order.
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Select a simplex, 8, in Am x Rn+k whose barycenter is at v2 and which lies in the

hyperplane orthogonal to a. We may assume that 8 is sufficiently small so that

Q = X'0v3(o8)(8X'xß') lies entirely in F. Furthermore, we may assume that v3 is

sufficiently close to r;2 and that 8 is sufficiently small so that g does not intersect

[P\a]. Finally, note that g is fibered by line segments parallel to A' so that these

segments intersect Vx(dS)(dX'xß'), (dS)(X'xß'), v3(d8)(dX'xß') in precisely one point, in

that order, and that the fibration respects that of Am x Rn+k.

If, to each such line which meets the interiors, we apply the standard linear

homeomorphism which leaves the endpoints fixed and which takes the point of

intersection with Vx(dS)(dX\ß') to the point of intersection with (38)(A'1/3') we then

define a/-homeomorphism of g onto itself which is the identity on the boundary

and which takes Vx(8S)(8X'xß') to (BS)(X'xß'). By extending this/-homeomorphism to

the complement of g as the identity we define q.

Lemma 4.9. Let P be a given polyhedron in Amx Rn + k whose subpolyhedron, g,

is equivalent to ax I, with the projection onto axO simplicial. Assume that

[P\Q] n g c "CTx 0 u (da) x7"

and that the projection ofg 7o "o-xO" respects the fibration of Amx Rn+k. If

[P\Q] u "a x 0 u (da) x 7" c u,

where U is an open subset of Amx Rn + k such that U O Am x F" = 0, and V is an open

set containing Q, such that Fn AmxFn=0 and prx (F)<=Int Am, there is a f-

homeomorphism, q, which is the identity outside V and on [P\Q] u " <x x 0 u (da) x 7"

and has the property that P=>qU.

The proof is standard, as is the proof of the following lemma.

Lemma 4.10. Let F be a given polyhedron in AmxRn + k such that [prj (F)] c Int Am,

F n Am x Fn = 0, and P is finite outside of arbitrary neighborhoods of Am x 0.

Suppose that P contains a countable collection of subcomplexes, g¡, such that

(i) each g¡ is equivalent to a,xI, where atxl has a triangulation such that pro-

jection onto CTj x 0 is simplicial and respects the fibration of g¡ by Am xRn + k,

(ii) [P\Qi] n Qic»0i x 0 u (8at) x I",

(iii) each Qt is contained in an open set, F¡, such that Ftn AmxFn=0, the

diameters of the F¡ converge to zero, and prx (cl ((J¡ F¡)) <= Int Am,

(iv) ôin6ic""ixOUff/x0u (da%) x 7 u (do,) x 7",    ///

(v) [F\U Qi\ CU, U an open set in AmxRn+k such that UnAmxRn=0.

For any given e>0 there is a f-homeomorphism, q, ofAmxRn + k which is the identity

on Am x Rn, Am x en+1, [P\\J¡ g,], the complement o/IJ¡ F¡, and the complement of

an e-neighborhood of Amx0, and which has the property that [P\R]cqU, where R

is some finite subset of the g¡.
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Lemma 4.11. Suppose that k ä 4 and m + nS 2(k — 3). Let P be a polyhedron in

Af x Rn + k, 0 ^ t < 1, such that P n Am x Rn= 0, P is finite outside arbitrary neigh-

borhoods of Am xO, dim P^m + n-k + 4 and dim P n (x)x Rn + k ̂ n-k + 3, x e Am.

Let U be a region which is f-homeomorphic to Am x R+ via an f-hameomorphism which

is the identity on AmxRn. Finally, let Q be a polyhedron of dimension «z + «+l

which is contained in U and is finite outside arbitrary neighborhoods of Am x 0.

For any given e > 0 there is an s, t < s < 1, and an e —f-homeomorphism

q: Am x Rn + k -> Am x Rn + k

which is the identity on AmxRn, Amxen+1, Q, (Am\Af)xRn + k, Q and outside the

e-neighborhood of Am x 0, with the property that

q(lnt U) a [P\R] u Q

where R is some finite subcomplex of P.

Proof. The proof is by induction on the dimension of P. The induction begins

with dim P= — 1, i.e. P= 0. Suppose, then, that the lemma has been proven for

polyhedra of dimension smaller than dim P.

Thus we may assume that we have constructed an/-homeomorphism

q':Amx Rn+k -»■ Am x Rn + k

such that the conclusion holds for the (p- l)-skeleton of P, s', e/2 and R.

Subdivide P so that every simplex which intersects Q lies in q'(lnt U) and index

the/>-simplexes which neither intersect R nor lie inc/'(Int U) by a0, au ... . Note that

the diameters of the o( converge to zero.

Let Ap +1 denote the standard (p + l)-simplex written as ao, 8 a fixed p-face of

Ap +1 and a a fixed vertex. For each i there is a linear homeomorphism of 8 onto o¡

which, then, gives rise to the notion of an/map, for each i, of Ap + 1 into Am x Rn+k

by requiring that the fibers of aS respect the structure already given on 8 via the

linear homeomorphism.

The map of 8a to da{ is an/-map of do into q'(Int U). We can then extend to an

/-map of ado such that the diameters of these images converge to zero. Thus we

have defined a sequence of /-maps

01:SAp + 1-»-AmxA!n+k

such that 0¡(o) = a¡ and 0¡(a8S)c:q'(lnt U) which we wish to extend to Ap + 1 such

that the images do not intersect Am x Rn and such that the diameters of the images

converge to zero. This is possible since p^m+n — k+4 and m+n^2(k—3), so

thatp¿k-2.

We wish to take a linear/-approximation of each 0¡, relative to 0¡\ó, such that

with respect to the subdivision, the projection of Ap +1 onto 8 is simplicial. This is

possible by Lemmas 4.1 and 4.2, using the triangulations of 4.1 in 4.2. By Lemma
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4.3 and 04 are brought into /-general position with respect to F and g without

moving those vertices of 6¡(A) already in F. Furthermore the o¡'s have the property

that the diameters of the images converge to zero and the images do not meet

Am x Rn. We may also require, without loss of generality, that the images lie in

Af1xRn + k,s'Ss1<l.

We shall now consider the singular set of the 0t, i.e. the intersections of the

öi(Ap + 1) with themselves and F and g. From the definition of/-general position

we have

dim(di(At, + 1)r\Oj(A" + 1)) S (dim (F n (x)xFn+k) + l)+(dimP+l)-(« + A:)

(1) S(n-k + 3 + l) + (m+n-k+4+l)-(n+k)

= m + n-3k + 9 S 3-k,

dim(0t(Ap+1)n7>) S (n-k + 3 + l) + (m+n-k+4)-(n+k)

= m+n-3k + & S 2-k,

dim(Ö((Ap + 1)n g) S (n-k + 3+l) + (m + n + l)-(n + k)

= m+n-2k + 5 S -1.

Thus, if k^4, the singular set is empty. Hence we may apply Lemma 4.10 to the

images of the 0¡(A), since the projections onto 0¡(S) are simplicial, thereby defining

the " Q" as those inverse images which are not entirely in q'(lnt U). Note that

we may assume the triangulation is sufficiently fine so that the " Q" have the

required structure.

The following two lemmas, which are generalizations of the Alexander isotopy,

were used in §2 to conclude the proof of Theorem 2.1.

Lemma 4.12. Suppose that G2:Amx Fn+fc-^Am x Rn + k is an f-homeomorphism and

tx<l<t2 are such that G2 is the identity on

Am\A(n1 x Rn + k u Am x Rn u Am x Df2+k

then G2 is f-isotopic to the identity through such f-homeomorphisms.

The proof is the same as for Alexander isotopy.

Lemma 4.13. Suppose that Gj: AmxRn + k ̂  AmxRn + k is an f-homeomorphism

which

(i) is the identity on dAm xRn + k,

(ii) is the identity on Am x (Rn + k\Dl+k),

(iii) is the identity on Am x Rn,

(iv) is the identity on Amx(en+1).

Then Gx is f-isotopic, through f-homeomorphisms satisfying (i), (iii), (iv) to one which

is the identity on Am x Fn+1.

Proof. Gx is/-isotopic to the identity through/-homeomorphisms satisfying (i),

(ii) and (iii). However, we lose (iv). In regaining (iv) we lose (ii), as noted in the

conclusion.

(2)

(3)
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We may assume, without loss of generality, that the track of Amx(en+1) is in

Am x Rk since we may translate in the complement of Am x Rn.

Let R\0(k) denote the group consisting of orthogonal matrices multiplied by a

positive scalar and let p(w) = w(ef), w e R\0(k). Then

0(k-l)^R\Ok—>Rk\0

is a fibration and has a regular lifting function, A. Since the track of the/-isotopy

remains in Am x Rk we may use the track and the regular lifting function to describe

a family in R\0(k) which is used to regain (iv). Since the track is constant over

8Am and the lifting function is regular, (i) is satisfied.

5. The main propositions. The two propositions contained in this section con-

stitute a major portion of the theory developed to prove Theorem 2.1. The first of

these, for which a proof is included, provides the means to prove the second. The

proof of the second proposition is a generalization of an argument given by

Cernavskii [4]. Since his argument is very long and since the author has not

significantly simplified it we shall only give an outline of the proof to the extent

needed to indicate the modifications which must be made in Cernavskifs proof.

Proposition 5.1. Suppose k^4m + n^2k-6 and t e R^O. Let s<l and G be

an f-homeomorphism such that

G: AmxRn + k -» AmxRn + k

CO Pri

U-»: A"

Pii

commutes, where a(x) = (x, en+1).

(ii) G is the identity on Am x Rn.

(iii) G is the identity on (Am\A™) x Rn + 1.

Then there is an r, s<r<l, and an f-homeomorphism

e: AmxRn + k -» AmxRn + k

Pri P«"i

such that

(i) the diagram commutes, where o(x) = (x, en+1),

(ii) e is the identity on Am x (Rn u (Rn + k\Dïf2k)),

(iii) e is the identity on (Am\A™) xRn + k,

(iv) there is a t>0 such that

e(GQfnx) 3Ä"xA?H sgn t.
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Furthermore, ifG(Q*sn%) lies on one side of a horn which contains Am x Af + 1 sgn t,

/ > 0, then e can be taken to be the identity on the other side of the horn.

Proof. We may, without loss of generality, assume t>0 since the proof for

t < 0 is similar. Let By = Am x An++1 e Am x Rn + * and âS1 = G(Bf). Let A denote the

(« + 2)-simplex, defined as vA\+1, and D = AmxA, with subsets B2 = Amx A\+1,

J'2 = Amx(An*i>)and C=Amx(en+1* v).

There is an/-map <f>: D -»■ Am x Rn+k such that

(i) B2 is mapped linearly onto /?! via the identification,

(ii) if a denotes the linear projection of D onto B2, then çi|<22 = Gç4a|#2,

(iii) c4(C)cAmx(en + 1),

(iv) cA(T>\(Amx A"))cA'x(Rn + k\Rn),

(v) c4|cl (Am\A™) x A = ç4a|cl (Am\A™) x A.

By Lemmas 4.1, 4.2 and 4.3 there is a linear general position/map, also denoted

by c4,

<f>: D\(Am x An) -^ Am x (Rn + k\Rn)

and su s<sx < 1 such that

(i) 52\(Am x An) is mapped linearly into Bx via the identity,

(ii)ç4(â?2)c:IntG(Ôt+),

(iii)<i(C)c:IntG(ßI+),

(iv)çi((A"-\A-)x(A\A"))c:G(Ôt+),

(v) with respect to the triangulation of D\Am x Rn, a is simplicial,

(vi) ci extends to a continuous map on D (agreeing with the previous map on

Am x A").

Note that, in general, 9SX will not be equal to 4>(3S2).

Following R. H. Bing [1], we define the shadow for </> by taking 5 to be those

points which are identified under <f> and such that, for any such pair, at least one

lies in the interior of a simplex of dimension less than m + n + 2. A polyhedron, in

A™ x A is called a shadow for <j> if

(i) dimP^m + n-k + 4,

(ii) P = a-\a(P)),

(iii) if x,ye A™ x A, <¿(x) = <j>(y),   xePif and only if ye P.

The existence of a shadow is proved using Lemma 4.3, i.e./-general position, and

Bing's shadow building theorem [1].

Applying Lemma 4.11 we engulf the shadow, P, save for some finite subcomplex,

Rx. Subdivide so that F is a subcomplex, as in Lemma 4.1, and such that a is

simplicial. By induction, using Lemma 4.10, we engulf the «j + h+1 skeleton,

except for a finite subcomplex, R2, which depends on R^ Finally we engulf B2,

except for a finite subcomplex, by applying Lemma 4.7 to this situation in the

same way that it was used to prove Lemma 4.10, through 4.8 and 4.9. Note

that in each application we cover an m+ « + 2 simplex, but, when passing to

the one below it, its interior need not remain covered since P does not contain
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all of the singularities of <f>. We also note that an infinite process is involved. This

is accomplished as in Lemmas 4.9 and 4.10.

Since we have engulfed F2, save for a finite subcomplex, the first part of the

theorem follows. The remainder is proved by observing that if G(gT+) lies on one

side of a horn which contains Amx AJ"++1, then the image of cf> and resulting en-

gulfing may be taken to lie on the desired side of the horn. Thus, the /-homeo-

morphism which is the result of the engulfing process is the identity on the other

side of the horn.

Proposition 5.2. Suppose that

G: AmxRn + k -> AmxRn + k

t
pri   a prx

Y

-> A"lAm:Am-

is a bundle map such that

(i) the diagram commutes, where a(x) = (x, en+1),

(ii) G is the identity on Am x Rn,

(iii) there is an s< 1 such that G is the identity on (Am\A™) x Fn+1.

Ifk^4 and m + « S 2k — 6, then G = GxG2G3, where each G¡ has the properties of G

and, in addition, there are numbers, tx < I < t2, such that

(i) Gx is the identity on

(Am\A,™) x Rn+k u Am x Fn u Am x (Fn + fc\F»2+fc).

(ii) G2 is the identity on

(Am\A£) x Fn + k u Am x Rn u Ara x Dtn2+ *•

(iii) G3 coincides with G over Am\A^ and is the identity on Am x Fn + 1.

Proof. We shall employ the notation and terminology used by Cernavskiï [4] in

proving his main theorem, as extended in this work. We shall, also, assume

familiarity with the proof of this theorem so that it will only be necessary to

indicate where, and how, modifications are to be made in his argument.

Following Cernavskiï we first construct the /-homeomorphism, Gx, satisfying

condition (i) and, furthermore, such that G' = G1~1G is the identity on Amx D% + 1.

The construction of Gx follows from Proposition 5.1 and Lemmas 4.4, 4.5, and 4.6

using the associated techniques of Cernavskiï. It is possible to make a slight

simplification in his argument so that it is only necessary to use Proposition 5.1

twice (cf. [3] or [11]). One then uses Lemmas 4.4 and 4.5 to modify the/-homeo-

morphism so that it preserves the tangentiality of the horns, Rt, \t\S2. Lemma 4.6

is used to define Gx as in [4].

We next construct a /-homeomorphism, G3, such that G3 = G21G', i.e. we con-

struct G3, take G2 = G'G31, and observe that G2 has the desired properties. As with
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the construction of Gx we parallel the related construction given in [4]. To construct

G3 one first constructs a sequence of concentric " balls", F¡, and/homeomorphisms,

77j, /= — 1, 0, 1,.... Each "ball" is determined by a function y¡: Am -s» [t2, co],

/ä0, such that yf1(oo)='(Am\A^) as follows:

Bi = {(x,y)eAmxRn + k\ \\y\\ S ylx)}.

The/homeomorphisms and "balls" shall satisfy the following conditions:

(1) Bi^Bi+1,
(2) UiêiF1 = A"'xF', + k,

(3) Hi(Bi)czlntBi+x,

(4) Hi(Bi)^Bi_x,

(5) 77i|B(.1 = 77i_1|B(_1,

(6) 77,|B|+2n(A>» xBn + l)= lfl(+2n(Am xBn + l).

They are constructed by induction, taking H_x = G and y_i(x;) = /2 (for an appro-

priate t2), as in [4]. The only modification in the argument is that one works with

continuous functions on Am instead of constants as in [4]. G3 is defined by

G3|Bl = 77,|Bl.
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