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Introduction. Lebesgue studied the differentiability ,of additive functions of

subsets of Euclidean «-space. He proved [5, p. 419] that the derivative of a com-

pletely additive function of bounded variation defined on a class of intervals exists

and is finite almost everywhere. He also proved [5, p. 399] that the derivative of a

completely additive and absolutely continuous function defined on the class of all

measurable sets exists and is finite almost everywhere, and, furthermore, the

function is the indefinite integral of a function which is equal to the derivative

almost everywhere. A number of later publications on the subject (see, for instance,

Banach [1], R. C. Young [13], Saks [11, p. 152], Morse [8], Ward [12], de Possel

[10], and Hartnett and Kruse [4]) give conditions which are sufficient for the

existence of a derivative under more general conditions, i.e., for functions that are

not necessarily additive, or for functions of subsets of abstract spaces. However,

to the authors' knowledge, conditions have never been given which are both

necessary and sufficient for the existence almost everywhere of a unique, finite

derivative. It is the purpose of this paper to give such conditions. Also, necessary

and sufficient conditions are given for each of the upper and lower dérivâtes of the

function to be finite almost everywhere and to be bounded almost everywhere on a

measurable set of finite measure.

This investigation will be restricted to Euclidean «-space Rn and to Lebesgue

measure. The functions considered will be arbitrary, real and finite valued set

functions. The family J5" of sets on which the functions are defined will be quite

general and will not be required to be additive. The family ^ will be a collection

of sets with the property that if Ais in &, then Ais measurable and the measure of

A is equal to the measure of the closure of A. This last condition is imposed in

order that the Vitali covering theorem will be available for subfamilies of J^

Definitions and basic concepts. If A is a subset of Rn, the outer measure or

exterior measure of A will be denoted by |A|e and, if Ais known to be measurable,

the Lebesgue measure of A will be denoted |A|.
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Definition 1. The parameter of regularity of a bounded measurable set T,

denoted /•(£), is defined as the least upper bound (l.u.b.) of the set of numbers

|7|/|/| where /denotes a cube containing T.

Definition 2. A sequence {TJ of sets is said to close down on the point x if

xeTx for each z' and if lim^a, [diam (Tt)] = 0, where diam (Tx) denotes the diameter

of the set Tx.

Definition 3. Let a represent a real number such that 0<a< 1. A sequence of

sets is said to be a regular a sequence if each of the sets in the sequence has parameter

of regularity greater than a.

Definition 4. Let a be a real number such that 0 < a < 1, let x be a point in £n,

and suppose that J^ contains at least one regular a sequence of sets that closes

down on the point x. Define the upper (^ a) derívate, D°(F,f a, x), of / at the

point x to be

D\!F,f,a,x) = lim sup/(T)/| £| = lim [l.u.b./(£)/|7|]
A-.0

and the lower (F, a) derívate, D0(F,f a, x), off at x to be

D0(F,f «, x) = liminf/(£)/|£| = lim [g.l.b. f(T)/\T\]
A-.0

where the limit superior (lim sup) and limit inferior (lim inf) are taken as diam (T)

-> 0 for sets T such that xeT, TeF, and r(T) > a, and the least upper bound

(l.u.b.) and greatest lower bound (g.l.b.) are taken over sets T such that xeT,

TeF, r(T) > a, and diam (T) < A.

The l.u.b. and g.l.b. are monotone functions of A. Therefore, the limit always

exists but may have the value +oo or —oo. In order to simplify notation, reference

to the family F will be deleted from the symbol. Thus D°(rF,fi a, x) and Da(rF,f, a, x)

will be denoted simply D°(f, a, x) and D0(f, a, x), respectively. These dérivâtes are

defined only at points x where there exists a regular a sequence of sets from the

family ¡F that closes down on x. The set of all such points constitutes the domain

of definition of the dérivâtes and will be denoted by Sa.

Remark 1. 77°(/ a, x) and 770(/ a, x) are, respectively, the least upper bound

and greatest lower bound of numbers £ for which there exists a regular a sequence

{PJ closing down on x such that limi_,00/(7,t)/|rf|=L. Furthermore, there is a

sequence {Tx} for which limi_00/(Ti)/|Ti| = D°(f a, x) and a sequence {£,} for

which lim^ m f(Tj)/\Tj\ = D0(f, a, x). The existence of such sequences follows from

the definitions and by use of the diagonal process.

If the upper and lower (F, a) dérivâtes are equal, the function / is said to be

(IF, a) differentiable at x with (F, a) derivative, denoted 77(/ a, x), equal to the

common value of the dérivâtes, which may be oo or — oo.

Remark 2. In view of the monotoneity of each of the l.u.b. and g.l.b. as a

function of A in Definition 4, the dérivâtes can be written

770(/ a, x) = g.l.b. [l.u.b. /(£)/|7|]    and    D0(f, a, x) = l.u.b. [g.l.b. f(T)/\T\]
A>0 A>0
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where the l.u.b. and g.l.b. in the brackets are taken over sets A such that x 6 A,

Te&, r(T) > a, and diam (A) < A.

Some of the properties of the (&\ a) dérivâtes which are immediate consequences

of the definitions and of properties of limit superior, least upper bound, etc., of

real numbers (see, for instance, McShane [6, pp. 1-51]) are listed in Theorem 1.

Proofs will be omitted.

Theorem 1. Let f and g be real valued functions defined and finite on sets in the

family &. Then at any point x in the domain Sa of definition of the (&, a) dérivâtes

the following conditions hold:

(a) D0(fia,x)=-D°(-fia,x).

(b) D°(af a, x) = aD°(f, a, x)for any positive number a.

(c) D°(af a, x) = aD0(f, a, x) for any negative number a.

(d) D0(f+g,a,x)SD0(fia,x) + D°(g,a,x) provided the sum on the right is

defined.

(e) D0(f+g, a, x)^ D0(f, a, x) + D0(g, a, x) provided the sum on the right is

defined.

(f) Ifß is a real number with 0 < /3 < a, then D°(f, ß, x) ̂  D°(f, a, x) and D0(f, ß, x)

âD0(f,a,x).

(g) D°(f, a, x) = D°(f+, a, x)-D0(f~, a, x) where /+(A) = max [/(A), 0] and

f'(T) = ma\ [—/(A), 0] denote the positive and negative parts off.

Furthermore, at most one of D°(f+, a, x) and D0(f~, a, x) can be different from 0.

(h) A>o(/, a, x) = D0(f+, a, x) - D°(f~, a, x) and at most one of D0(f+, a, x) and

D°(f~, a, x) can be different from 0.

Definition 5. Suppose 0 < ß < 1 and xe Sa for every a such that 0 < a < ß. Then

the (J*; a) dérivâtes are defined at x for each value of a and, in view of Theorem

1(f), are monotone functions of a. Define the upper (^,0) derívate, D°(f x), of/

at the point x to be

D°(f x) =   lim D°(f, a, x) = l.u.b. D°(f, a, x)
œ->0 +

and the lower (^, 0) derívate, D0(f x), of/ at the point x to be

D0(f, x) =   lim  D0(f a, x) = g.l.b. D0(f a, x)
or->0 +

where the l.u.b. and g.l.b. are taken over all a such that 0<a</3.

The definition of the (^ a) dérivâtes at the point x can be generalized somewhat

by not requiring that the point x be contained in the set A but just requiring that

r(T u {x}) > a and diam (A u {x}) -> 0. The symbol {x} is used here to denote the

set whose only element is the point x.

Definition 6. Let S* denote the set of all points x for which there exists a

sequence A¡ of sets from !F such that r(Au {x})>aandlim¡_00 [diam (A; u {x})] = 0.
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Define the upper star derívate, D°*(f, a, x), to be

D°*(fia,x) = lim sup f(T)/\T\ = lim [l.u.b./(£)/|7|]
A-.0

and the lower star derivate, />*(/, ce, x), to be

D*0(fa,x) = liminf/(7)/|7| = lim [g.l.b./(£)/|7|],
A->0

where the lim sup and lim inf are taken as diam (7u {x}) -> 0 for sets TeF

such that r(Tu {x})>ce and where the l.u.b. and g.l.b. are taken over sets Te «F

such that r(T u {x}) > a and diam (T u fx)} < A.

It is seen that the set 5* is the domain of definition of D°*(f a, x). Note that

Sac5* and also that at any point x e Sa the inequalities 77°(/, a, x)¿ D°*(f, a, x)

and D0(f, a, x) ^ D*(f a, x) are satisfied. It will be shown in Theorem 4 that

|SÍ — Sd =0 and, furthermore, D°(f, a, x)=D°*(f a, x) almost everywhere on Sa.

Remark 3. Note that Theorem 1 remains valid if D°(f a, x) and 770(/ a, x)

are replaced by D°*(f, a, x) and /)*(/ «, *)» respectively, throughout the theorem.

The proofs of the following theorems make extensive use of the Vitali covering

theorem, a proof of which can be found in several places in the literature, (see, for

instance, Saks [11, p. 109]) and, therefore, will not be included here. However, the

theorem will be stated for convenience in a slightly more general form than usual.

An argument similar to that given by Saks [11, p. Ill] shows that the theorem is

valid in this form.

Definition 7. A family S of sets is said to cover a set £ in the sense of Vitali if

there exists a subset A of £ such that |£— A\ =0 and xe A implies that for some

a>0 there exists a regular a sequence of sets from S that closes down on x.

The following theorem is known as the Vitali Covering Theorem:

Theorem 2. Let E be a subset of Euclidean n-space Rn and let S be a family of

subsets Tof Rn such that \T\ = \T\, where Tdenotes the closure ofT, that covers the

set E in the sense of Vitali. Then there exists in S a finite or enumerable sequence

{£„} of sets, no two of which have points in common, such that |£—Un Tn\ =0.

The Vitali covering theorem is often stated in the following form [2, p. 170]:

Corollary 1. The hypotheses of Theorem 2 imply that for an arbitrary e>0,

there exists a finite collection {TJf^x of sets from S, no two of which have points in

common, such that |£— (J?=i Tx\e<e.

The next result follows directly from the definition but will be stated for future

use. Proofs will be omitted. In the interest of brevity several conditions will be

included in one lemma.

Lemma 1. Consider the unprimed conditions (1) 77°(/, a, x) > a, (2) D°(f a, x) < a,

(3) D°(fa,x)^a, (4) D°(f,a,x)úa, (5) D°(f, a, x)= +co, (6) D°(f, a, x)= -oo,

and the primed conditions (V) f(T)/\T\> a, (2')f(T)/\T\<a, (3')f(T)/\T\ >a- 1/«,
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(*')f(T)/\T\ <a+ \/n, (5')/(A)/|A| >«, and (6')/(A)/|A| <-n.Ifa is real number,

a is a real number such that 0<a<l,iis an integer such that 1 á í á 6, and D°(f, a, x)

satisfies condition (i) at almost all points of a set A, then for any positive integer «

and any positive number A, the collection of all sets T e!F such that r(T) > a,

diam (A) < A and condition (i') is satisfied, covers E in the sense of Vitali.

It is noted that Lemma 1 remains valid if D°(f a, x) is replaced by D0(f a, x),

D°*(f a, x), or D%(f, a, x) throughout.

Script letters S, 3^, etc., will be used to denote finite collections of mutually

disjoint sets from the family ^ A dot (") placed over a script letter will denote the

point set obtained by the union of all sets in the collection, e.g., ^ = Ure<í T. If a

function /is defined for each set Teê, then, with two exceptions,/^) will denote

the sum of the values of the function on sets from «?, i.e.,/(<?) = Zre^/CD- The two

exceptions are diam (<S) and r(S). The symbol diam (<?) will denote the maximum

of diam (A) for Tee and the symbol r(S) will denote the minimum of r(T) for

Tee. Unless otherwise noted, the symbol ^ will denote the family defined as

&a = {T | Te SF and r(A)>a}. The symbol V will be used to denote the symmetric

difference of two sets, i.e., for any two sets A and A, A V B=(A — B) u (B—A).

Measurability of the (&, a) dérivâtes. Measurability of the dérivâtes plays a

vital role in this development. It will be shown that the star dérivâtes are Borel

measurable and that the (^ a) dérivâtes are equal to the (!F, a) star dérivâtes almost

everywhere.

Theorem 3. If a is a real number then {x | D°*(f a, x)>a} is a Borel set.

Proof. It follows from the definition of D°*(f a, x) that {x | D°*(f, a, x) > a}

= U"= i Hm= i En,m where An,m = {.y | there is a set Ae J5" such that diam (A) < l/m,

r(T*J{y})>a, and/(A)/|A|>a+l/«}. It suffices to show that for each pair of

values m and «, the set An>m is an open set. To see this, let each of «0 and m0 be a

positive integer and let y0 be an arbitrary point in Ar.0,mo. Then there exists a set

A0 e & such that diam (A0)< l/w0,/(A0)/|A0| >a+l/«0 and r(A0 u {y0})>a. From

the definition of r(A0 u {y0}), there exists a cube A such that (A0 u {.Vn}^/ and

|A0 u {>>0}|/|A| >a. But since this last is a strict inequality, there exists another

cube J' containing A in its interior and satisfying |A0 *a {y0}\/\J'\>a. Now any

point in J' is in En0jmo and since y0 is in the interior of A', there is some neighborhood

of y0 which is in J'. But this neighborhood of y0 is a subset of Anomo and the

theorem is proved.

The relationship between the (¿F, a) dérivâtes and the (&, a) star dérivâtes is

given in the following theorem.

Theorem 4. IfO< a< 1, then \S* -Sa\ =0. Furthermore, D°(f, a, x) = D°*(f a, x)

and D0(f, a, x) = D$(fi a, x) almost everywhere on Sa.

Proof. Assume |S£ —Sa|„>0. Then there exists a subset A of S¡¡r-Stt such that

0< |y4|e<+00. Let « be a positive integer. By Lemma 1, the collection &n =
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{T\ TeF^xeA, r(Tu {x})>a, and diam (T u {x}) < 1/«} covers A in the sense

of Vitali. Then by the Vitali covering theorem there exists a sequence {T/1}," x of

sets from J8™ such that \A-{Jt T,n\=0. LetAn = (Ji I?. A set An is thus determined

for each positive integer «. Now A = (A — An) u (A n An) so that \A\e¿ \A — An\e

+ \Ar\An\e and since \A — An\=0, \A n An\e = \A\e. Thus, since |/4|e<+oo, it

follows that |lim supn_„o (A n /ln)|e^ |^|e>0 which implies that there is a point

x0 in lim supn^co (A n yl"). But such a point must be in A n ,4n for infinitely

many values of «. Consequently, x0 £ 5a which is a contradiction since x0 e A

and A<=-(S£ — Sa). Thus |5£ —Sa|=0 and the first part of the theorem is proved.

It will now be shown that 77°(/ a, x) = D°*(f, a, x) almost everywhere on Sa.

Suppose the contrary. Then there is a set A<=-Sa and a rational number b such that

0 < \A [e < +00 and, at each point xe A, D°(f a, x) < b < D°*(f, a, x). Let « be a

positive integer. By Lemma 1, since D°*(f a, x)>b at each point xe^, the

collection ¿F" = {£| Te^,r(Tu {x})>a, f(T)/\T\ >b, and diam (£u {x})< 1/«}

covers A in the sense of Vitali. By the Vitali covering theorem there is a sequence

{T/1}^! of sets from this collection for which \A-{JiT¡l\=0. Let An = \JtTxn.

An argument similar to that used in the first part of this theorem shows that

|lim supn-.co (A n An)\e^ |y4|e>0 so that there must exist a point x0 in

lim sup (A n An).
n-»oo

But, for such a point x0, D°(f a, x0) ä b which contradicts T)°(/, a, x0) < b. Thus

the two upper dérivâtes are equal almost everywhere on Sa. A similar argument

shows that D0(f, a, x) = D*(f, a, x) almost everywhere on Sa and the theorem is

proved.

Thus the two dérivâtes D°(f a, x) and D°*(f a, x) are found to be essentially

the same. Since D°*(f, a, x) is measurable, Theorem 4 provides a different proof

of the measurability of 77°(/ a, x) than that given by Hahn and Rosenthal [3,

p. 274] and Hartnett and Kruse [4, p. 187]. However, 7>°*(/ a, x) is of special

interest because it is Borel measurable. Hartnett and Kruse [4, p. 188] defined a

derivate which represents a generalization of 77°(/ a, x) and claimed a proof of

the Borel measurability of this derivate. However, a counterexample was given by

Pauc [9].

The final result on measurability that will be stated follows from the measurability

of D°(f, a, x) and 770(/ a, x) and the fact that the limit function of a sequence of

measurable functions is a measurable function.

Corollary 2. D°(f x) and D0(f x) (cf. Definition 5) are measurable functions

ofx.

Finiteness of the (J5", a) dérivâtes. This section contains theorems giving

necessary and sufficient conditions that the dérivâtes be finite almost everywhere

on a measurable set £ of finite measure. The conditions will be given separately for

the upper (F, a) derivate and for the lower (F, a) derivate. It follows from Theorem



1969] ARBITRARY REAL-VALUED SET FUNCTIONS 445

4 that these theorems remain true if the (!F, a) dérivâtes are replaced by the (J^ a)

star dérivâtes throughout.

Theorem 5. Let E be a measurable set with \E\< +co, let abe a real number such

that 0<cc< 1, and assume that \E—Stt\ =0. A necessary and sufficient condition that

D°(f a, x)< +00 almost everywhere on E is that for any A>0, there exist numbers

a and | > 0 such that for any S with r(S) > a and diam (S) < i, the subcollection S'

of S consisting of those sets T of ê for which f(T)> a\T\ has \¿' n E\ <A.

Proof. To show sufficiency, assume that the condition holds and deny the

conclusion, i.e., suppose that D°(f a, x)= +oo on a set A^E with |^4|>0. Let

A=\A\/2 and let a and £ be numbers satisfying the condition. By Lemma 1, the

collection ^'={T | Te J^, diam (A) < $ and /(A)>a|A|} covers A in the sense of

Vitali. Then by Corollary 1, there is a collection S of sets from J5"' such that

\A-ê\<\A\/2. But \Ar\S\ = \A\-\A-é\>\A\/2 = tx and \Ec\ é\^\A n i\
which contradicts the hypothesis that the condition holds.

To show necessity, assume D°(f, a, x) < +co almost everywhere on A. Suppose

the condition fails to hold. Let A be a value for which there exists no pair of numbers

a and f satisfying the condition. Then, for each integer «, there must exist a collec-

tion <fn such that | A n ¿n\ > A and such that r(T) > a, diam (A) < 1/« and/(A) > «| A|

for each Ae «f„. Since \E\ < +oo, it follows that |A n lim sup ¿n\ ä A. But at each

point x of lim sup ¿n, D°(f, a, x)= +co which contradicts the hypotheses and the

theorem is proved.

Corollary 3. A necessary and sufficient condition that D0(f a, x)> -co is

obtained by replacing, in Theorem 5, D°(f a, x)< +oo by D0(f a, x)> -co and the

conditionf(T)>a\T\ byf(T)<a\T\.

The proof follows from Theorem 5 and the observation, stated in Theorem 1(a),

that A>o(/, a, x)=-D°(-f a, x).

The next theorem gives conditions that D0(f, a, x) < + oo almost everywhere.

Theorem 6. Let A be measurable with \E\< +oo, let a be a real number such that

0<a< 1, andassume |A— S„\ =0. A necessary and sufficient condition that D0(f a, x)

< +co almost everywhere on A is that for any e>0 there is a number ae and a sequence

{&v}n=i such that, for each positive integer n, \E— ¿>n\ <e+l/n, and TeSn implies

r(T)>a, diam (T)<l/n andf(T)<ae\T\.

Proof. To show sufficiency assume the condition holds. For an arbitrary e > 0,

let ae and {<?n}"=1 satisfy the condition. Now |A| = |An én\ + \E-én\ and hence

[An én\ > \E\-e-l/n. Let A=lim sup (An án). Since |A| < +oo,

|A| = limsup |An<#n| ä \E\-e.

But D0(f a, x0) ¿ ae for any point x0 e B. Thus for an arbitrary e > 0, D0(f, a, x) ¿ ae

on all of A except at most a set of measure < e and, therefore, D0(f a, x) < + oo

almost everywhere on A.
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To show necessity, assume D0(f a, x)< +00 almost everywhere on £. Let e>0

be arbitrary. Let £n = {x|xe£ and D0(f a, x)<«}. Then lim„ |£„| = |£| by

hypotheses. Let N be an integer such that \E—EN\ <e. Let ae = N+1. By Lemma 1,

it follows that for each positive integer «, the collection

&n = {T I £e J^, diam (T) < l/n, and/(£) < as\T\}

covers EN in the sense of Vitali. By the Vitali covering theorem there is a collection

gn<=&n such that \E„-¿n\<l/n. Thus \E-¿n\ = \E-EN\ + \EN-én\ < e+\/n

and the theorem is proved.

Corollary 4. A necessary and sufficient condition that D°(f, a, x)> — 00 is

obtained by replacing, in Theorem 6, D0(f, a, x)<oo by D°(f a, x)> -co and the

condition f(T)<ae\T\byf(T)>ae\T\.

The proof follows from Theorem 6 and Theorem 1(a).

The above two theorems and two corollaries give necessary and sufficient

conditions that the upper and lower (¡F, a) dérivâtes be finite almost everywhere

on a measurable set of finite measure.

Boundedness of the (ïF, a) dérivâtes. This section contains theorems giving

necessary and sufficient conditions that the upper and lower (rF, a) dérivâtes be

bounded almost everywhere on a measurable set of finite measure. It follows from

Theorem 4 that these theorems are true if the (!F, a) dérivâtes are replaced by the

(¡F, a) star dérivâtes throughout.

Theorem 7. Let E be measurable with |£| < +00, let a be a real number with

0<a<l, let a be a real number, and assume that |£—5a|=0. A necessary and

sufficient condition that D°(f, a, x) g a almost everywhere on E is that for any e>0

and A > 0, there exists a number | > 0 such that for any S satisfying /■(<?) > a and

diam (€)<|, the subcollection i' of S consisting of all sets TeS for which

/(7)>(ö + e)|£| has |<#'n£|<A.

To prove sufficiency, assume the condition holds. Suppose the contrary of the

conclusion, i.e., suppose there is a subset A of £ such that \A\ >0 and such that

77°(/ a, x)>a for each xe A. Then there is a subset B of A and a number r¡>0

such that |£|>0 and D°(f, a, x)>a+r¡ for each x e B. A contradiction will be

reached by showing that there exist positive numbers £ and A such that for any f

there is an S for which the condition fails. Take e<r¡/2 and A< [£|/2. Let f be an

arbitrary positive number. By Lemma 1, the collection

.F' = {T\ 7sJ^,diam(T) < Î and f(T) > (a-M)|r|}

covers B in the sense of Vitali and, therefore, by the Vitali covering theorem

there is a collection S such that \B-é\<b,/2. But \B n ¿\ = \B\-\B-¿\ >3A/2,

which is a contradiction of the hypothesis that a value of £ >0 exists for which

the condition holds.
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To show necessity of the condition, assume D°(f a, x)^a almost everywhere on

A. Suppose the condition fails to hold. Let e>0 and A>0 be a pair of values for

which no value for £ will satisfy the condition. For each positive integer «, let

Í=l/n and let <f„ be a collection such that |^nnA|äA and such that TeSn

implies r(T)>a, diam(A)<l/« and/(A)>(a + e)|A|. Since |A| <+00,

|Anlimsup^n| = A

But D°(f a, x)S:a+£ for each point x e lim sup (A n én) which contradicts the

assumption that D°(f a, x)Sa almost everywhere on A.

Corollary 5. A necessary and sufficient condition that D0(f a, x) ä a almost

everywhere on E can be obtained from Theorem 1 by replacing D°(f a, x)¿a by

D0(f, «e, x) £ a and the condition /(A) >(a + e)\T\ by f(T)<(a-e)\T\.

The proof follows from Theorem 7 and Theorem 1(a).

Theorem 8. Let E be measurable with \E\< +00, let a be a real number such

that 0<a<l, let a be a real number and assume \E— Sa\=0. A necessary and

sufficient condition that D0(f a, x) á a almost everywhere on E is that if e is an

arbitrary positive number then for each integer « > 0 there exists a collection S such

that \E-én\<l/n, r(Sn)>a, diam (/„)< 1/« and Teên implies f(T)<(a + e)\T\.

Proof. To show necessity assume D0(f a, x)^a almost everywhere on A. Let

Aa={x I x e A and D0(f, a, x)^a}. By hypothesis \Ea\ = \E\. Let e be an arbitrary

positive number. By Lemma 1, for each positive integer «, the collection ¡Fn =

{T I Ae J^, diam (A)< 1/«, and/(A)<(a + e)|A|} covers Aa in the sense of Vitali.

By the Vitali covering theorem there is a collection Sn of sets from !Fn for which

\Ea — ê^[<l/n and hence the condition is satisfied.

To show sufficiency assume the condition holds. Let e>0 be given arbitrarily.

For each integer «, let Sn be a collection satisfying the condition. Let A = lim sup ¿n.

It follows that |A-A|=0 since |A-A| = |lim inf (E-én)\ ^lim inf \E-én\ á

lim inf l/« = 0. But D0(fi a, x) = a + e for any point xe B and hence almost every-

where on A. Since e was arbitrary, DQ(f a, x) S a almost everywhere on A.

Corollary 6. A necessary and sufficient condition that D°(f, a, x) 2: a almost

everywhere on A is obtained from Theorem 8 by replacing D0(f a, x) ^ a by

D°(f a,x)^a and the condition f( T) < (a + e) \ A | by /(A) >(a-e)\T\.

The proof follows from Theorem 8 and Theorem 1(a).

It should be noted that in Theorem 7 the choice of £, which controls the diameter

of the sets, depends upon the parameter of regularity a. This can be seen by the

following example. For any set A in &, let/(A) = 2a|A| if diam (T)>r(T) and let

f(T) = a\T\ if diam (T)^r(T). Then D°(f, a,x) = a at each point and it is evident

that i must be chosen less than a.

There is perhaps special interest in a necessary and sufficient condition that all

the (/, a) dérivâtes be bounded almost everywhere on A. Such a condition will be
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stated as a corollary. The proof follows from Theorems 7 and 8 and Corollaries

5 and 6.

Corollary 7. Let E be measurable with \E\< +co, let a be a real number such

that 0<a<l, let a be a real number and assume |£—Sa|=0. A necessary and

sufficient condition that both \D°(f a, x)| -¿a and \D0(f a, x)\ ¿a is that for any

e > 0 and A > 0, there is a number f > 0 such that for any S satisfying r(S) > a and

diam (S) < i, the subcollection S' at S consisting of all sets T e ê for which

|£(£)|^(a+<0|T| has \ê' r\E\<t\.

The final result on boundedness to be included concerns the (^ 0) derivate

(cf. Definition 5). The domain Sa of definition of D°(f a, x) is such that

Sa<=Ss for ß<a. Let S = \J 5œ = lima_0 Sa. Then S is the domain of definition of

D°(f, x).

Theorem 9. Let E be a measurable set with \E\ < +oo, let a be a real number,

and let |£—5|=0. A necessary and sufficient condition that D°(fx)^a almost

everywhere on S n £ is that 0 < a < 1 implies D°(f a, x) S a almost everywhere on

SanE.

Proof. To prove necessity assume D°(f x)^a almost everywhere on 5 n £

Suppose the conclusion false. Since the conclusion is assumed false, there exists a

value a for which 77°(/ a, x) > a at each point of some subset A of Sa n £ for

which |^| >0. But S=(JaSa and therefore each point x of A is in 5. Thus it

follows from Theorem 1(f) that D°(f, x) à D°(f a, x) and hence D°(f,x)>a at

each point of A which is a contradiction of the hypothesis.

To prove sufficiency, suppose that for each a D°(f, a, x) á a almost everywhere

on £ n Sa. Deny the conclusion that 7>°(/ x) ^ a almost everywhere on S n £.

Then there exists a set A<=S n £such that \A\ >0 and D°(f x)>a for each x in A.

Let Aa be the subset of Sa n Esuch that D°(f a, x)>a for each x in Aa. It follows

from Theorem 1(f) that Aa<^A¡¡ for a>ß. Now A=lima^0 Aa = {Ja Aa and since

| A | > 0, there exists a value a' such that | Aa-1 > 0. But this implies that 77°(/, a', x)>a

for x in Aa> which is a contradiction of the hypothesis. Thus D°(f x)^a almost

everywhere on £ n ,Sa.

Existence of the derivative. The previous sections have dealt with the properties

of measurability, boundedness, and finiteness of the upper and lower dérivâtes

almost everywhere on certain sets. If D°(f a, x0) = D0(f, <*, x0) then / is said to be

differentiable at x0 with derivative, denoted D(f, a, x0), equal to the common

value of the dérivâtes. The following theorem gives a necessary and sufficient

condition that the derivative exist and be finite almost everywhere on a measurable

set of finite measure.

Theorem 10. Let E be measurable with |£|<+oo and assume \E—Sa\=0. A

necessary and sufficient condition that D(f, a, x) exist and be finite almost everywhere
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on A is that for any e > 0 and A > 0, there exist numbers r¡>0 and £ > 0 such that if

S and #F are each finite collections of disjoint sets from ¡F for which r(S) > a,

r(Jt)>a, diam (<?)<£, diam(Jf)<£, \á-E\<v, \3^-E\<r¡, and \áWJíf\<r¡,

then there exist subcollections S" and 3fé" of S and ¿P, respectively, such that

\ê-ê'\ < A, \# -M"\ < A, and \f(ê')-f(M")\<e.

Proof. To prove necessity, assume D(f, a, x) exists and is finite almost every-

where on A. The condition must now be shown to hold. Let £>0 and A>0 be

arbitrary. It may be assumed that AS |A| for otherwise take ■n = (A— |A|)/2 and all

sets from each of if and JP can be deleted and the condition holds. For each

integer/»=1, 2,..., let Ep — {x \ xe A and \D(f a, x)\ </»}. Let A0 = {x | xe A and

D(f a, x) exists and is finite}. Then |A0| = |A|, Ep is measurable for each /», and

{Ap}"= y is an increasing sequence of sets converging upward to A0. Let dy < A/4

and let p0 be an integer such that |E\ - |EPo\ < dy. Let 82 <e/32p0 and let G be an

open set containing EPo and such that |G-APo|<02. Let 03<min (A/4, e/32p0)

and let Abe a closed and bounded set such that A<=C7 and \G — A| < 03. Let y equal

the distance between A and the complement of G. It follows that y>0. For any

positive integers j and k, define Ef={x \ x e (An EPo) and xeA, r(A)>a, and

diam (A) <l/j implies \f(T)\<p0\T\ and \f(T)/\T\- D(f a, x)\<l/k}. Note that

for each/' and k, Ef^Ef+1 and Ef^>Ef + 1. Furthermore, for any fixed value of k,

lim^co Aj° = An EPo. Let k0 be an integer such that k0> 16|G|/£ and let/, be an

integer such that |An EPo\ < |A;o|e + 03 [7, p. 95]. The proof will now be completed

by showing that if »j<min (A/4, e/l6p0) and £<min (y, l/j0), then the condition is

satisfied. Let <? and 2? be arbitrary finite collections of sets from J5" such that

\ê-E\<-q, \jè-E\<7], |<# V ̂ | < r?, and such that r(f) > a, r(^)> a, diam («?)<£,

and diam (Jf ) < £. Delete those sets A from each of the collections S and JC that

do not intersect Eft. Denote by <?' and 3#" the remaining subcollections of S and

JP, respectively. Notice that i'<=G and tf"^G because any set in S' or tf"

intersects Eft and hence intersects A and has diameter <£<y, the distance from

A to the complement of G. It will now be shown that the sum of the measure of

sets deleted from each of S and J? is < A.

To see that \ê — ê'\ < A, observe that if a set A was deleted it did not intersect

Eft and, therefore, (é-é')^(é-E) u (E-EPo) u (EPo - Eft). Furthermore,

(APo-A*°) c [(G-F) U (F-Eft)] n EPo <=(G-F)U [(An APo)-A*°],

Thus (^-^)c(/-£) u (£-£Po) u (6-F) u [(f n £J-£jy], Let A=ê-E,

B = E-EPo, C=G-F, and D = (S-é')-(A U A U C). Then DnEft=0,

(A»u Eft)<=(Fr\ EPo), and, since D is measurable, it follows that |A»| + |A,fc0°|e

S|An EPo\. Thus |D|<03and

\¿-¿'\ S |<?-A| + |A-ApJ + |G-A| + [/)|

< v + 6y + 203 < A/4+A/4 + A/2 = A.

Similarly, \Jf-jè'\<A.
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The proof of the necessity of the condition will now be completed by showing

that d< e where d is defined by d= \f($') —f(Jf')\. Consider the following equivalent

form for d:

2U(S)/\S\]-\S\- 2 lf(T)l\T\]-\T\
sea' TeJtf

The value of dcan be calculated by d= | j^- g(x) dx — \& h(x) i/x|where the integrals

are Lebesgue integrals and where the real valued point functions g(x) and h(x) are

defined as

g(x)=f(S)/\S\ if x 6 5 for some See" andg(x) = 0 otherwise, and

h(x)=f(T)/\T\ if xe 7 for some Te Jf' and «(x) = 0 otherwise.

Each of the point functions g(x) and «(x) are single valued and can take only a

finite number of values. Furthermore, since each set in S" or in Jf' intersects

E!f°, it follows from the definition of Ef° that \g(x)\<p0 and \h(x)\ <p0. Let

A = ê' n jt'. Then dean be written in the form

- I Í [g(
Ja

x)-h(x)]dx +
¿S'

g(x)dx- - f.      Kx)
JX"-A

dx

Notice that A is the union of a finite number of disjoint sets, each of which has the

form S n 7 for some See' and TeJf'. Some of these sets may intersect Ef°

and others may not. Let A = AX u A2 where Ax is the union of those sets which

intersect £f0° and A2 is the union of those sets which do not intersect Ef°. Using

the triangle inequality, d may be written in the form

dû

(D

f   [g(x)-h(x)] dx\ + \¡   [g(x)-h(x)] dx

I g(x) dx +
Jjt

h(x) dx

A bound will now be found for each of these four integrals. Notice that xe Ax

implies that both g(x) and h(x) are within l/k0 of /)(/, a, x) and, therefore,

\g(x) — h(x)\ <2/k0. Therefore the first integral in (1) satisfies the inequality

(2) JJ Ax

[g(x)-h(x)]dx ¿  f   |g(x)-«(x)| dx ú (2/k0)\Ax\ í (2/k0)\G\ < e/4.
Jax

In order to establish an upper bound for the second integral in (1), a bound is

needed for \A2\. Since A2 n Ef° = 0 and Ef°^Fn EPo, it follows that

|£#|e^ |£n£Po|-|^2n£n£p,

Thus

\A2r\Fn E,

Also since A2<^G, it follows that

\A2\ ú |/f2n£n£Po| + |G

Ú I£n£„ \E?0°\e< e3.

■£Po| + |G-£| < e2 + 263
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Now since \g(x)-h(x)\^\g(x)\ + \h(x)\<2p0, the second integral of (1) satisfies

the inequality

(3)      I f   [g(x)-h(x)]dx\ S  f   \g(x)-h(x)\ dx S 2p0\A2\ < 2p0(d2 + 293).

The last two integrals of (1) will be considered together.

(4) g(x) dx \ + \ h(x) dx
Jé'-A \Jjé'-A

< Po[\ê'-A\ + \Jf'- A\\ = Po\é'V Jf'\.

Therefore, an upper bound is needed for the symmetric difference of ¿' and Jf'.

Since ê'^G,

ê'-jf' <= [(G n S')-jf'\ c [(G n é')-EPa] u [(EPa n <#')-^']

<= (G-£P0) u [(£P0 n é')-(jf n £Po)] u [(.rf n £Po)-.rf'].

Now [(£P0 n É')-(jf n £Po)]c(^'-¿f)c:((*5-Irf)c(í? v .rf). \f xejf but xÇjf',

then x was in a set 7 which was deleted from Jf and hence x $ £f0°. Therefore,

[(.rf n £Po)-rf'] c [(.rf n £Po)-£*<>] «= [(.rf n £Po) - (£ n £Po)]

u [(£n £Po)-£*°] c (G-£) u [(£n £Po) -£*•]

and hence

¿'-Jf' c (G-£P0) u (¿ V .rf) u (G-£) u [(£n £Po)-£#].

Let /) = (<#'-.rf')-[(G-£Po) u (/ V .rf) u (G-£)]. Then DnEf° = 0,Du Eft
<=£n £Po, and, since 7) is measurable, it follows that

\D\ Ú \FnEP0\-\Efo°\e< 03.

Thus, \á'-jf'\u62 + T) + 2e3. Similarly, \jf'-ê'\ úG2 + r, + 263 and hence

(5) \á'Vjf'\ < 2(d2 + T, + 263).

Therefore, using (2), (3), (4), and (5), the value of d expressed in (1) satisfies the

inequality

d Ú e/4 + 2p0(62 + 283) + 2p0(e2 + rl + 263) < «.

This concludes the proof of the necessity of the condition.

To prove sufficiency, assume the condition holds. Suppose the theorem false.

Then either D°(f a, x)= +00 or 770(/ a, x)= -00 on a subset A of £ with \A\ >0

or else there exist rational numbers ß, y, A, v such that the set A={x \ x e E and

ß>D°(f a, x)>y>\>Do(f, a, x)>v} has \A\>0.

Suppose the latter case. Let e = (y-X)\A\/2 and let A = (y-X)\A\/4(\ß\ + \v\).

It will now be shown that the condition of the theorem fails to hold for these values

of e and A. Let r¡ > 0 and £ > 0 be arbitrary. Let

Ö = min (V4, Ml/2, (y-A)M|/4(|y| + |A|)).
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Let G be an open set such that A^G and \G — A\<9. Using Lemma 1, it can be

shown that the collection F' = {A | Ae Fa, AcG, diam (A) < f, and ß>f(T)¡\T\>y}

covers A in the sense of Vitali. By the Vitali covering theorem let S be a finite

collection from &' such that \A-ê\<B. Similarly, F" = {A | A e J^, Ac G, diam (A)

<f, and A>/(A)/|A| >v} covers A in the sense of Vitali. Let=5f be a collection from

&" such that M-.3^1 <0. Now A V ê^(A-ê) u (G-^) and, therefore, |^ V <#|

<20. Similarly, |yi V J?\<2B. Since (<# V JP)<=(á V A) u (¿f V A), it follows that

\S V <5f | <4Ö<7?. Since ̂ crj and jf <=G, then |<#-A| S |G-A| á |G-,4| <tj and,

similarly, \J^ — E\<r]. Let <?' and ^f" be arbitrary subcollections of S and #P,

respectively, such that |^-^'|<A and \jè-Jif"\<A ri.ow f(S')-f(^")= f (S)

-f(£-g')-f(JP)+f(3>P-tf"). Also, Tee implies y|A| </(A)<,8|A| and AeJf

implies v\T\ </(A)<A|A|. Using these inequalities, it follows that

f(s°')-f(.yp") -^ f(S)-f(3t)-\B\ \é-é'\-\v\ \^-ä"\

^y\S\-X\3i\-(\ß\ + \v\)A

By adding and subtracting (y+A)|/4| this inequality can be written

f(£')-f(JP') ^ (y_A)|^|-|y|[|K|-M| |]-|A|[| \A\-\#\ \[-(\ß\ + \v\)A

Since \A\-\ê\-i\A-ê\<d and \¿\ - \A\ ̂  \ê-A\ < \G-A\ <8, it follows that

| |^|-1^1 | < 8. Similarly, \\jè\-\A\ \ < 6. Consequently,

f(g')-f(X') ä (y-X)\A\-(\y\ + \X\)8-(\ß\ + \v\)A

Substituting the appropriate values for 8 and A, the above inequality can be written

in the form

/(«f)-./Pn <= (y-X)\A\-(y-X)\A\/4-(y-X)\A\/4 = e.

Thus, since f(S')-f(^")>0, it follows that \f(S')-f(^")\=f(S')-f(M")^e.

This is a contradiction of the hypothesis that the condition holds and results from

the supposition that ß > D°(f a, x) > y > X > D0(f a, x) > v for values of x in a set A

of positive measure.

Suppose now the other alternative, that D°(f, a, x)= +co or D0(f, a, x)= -co

on a subset A of A with \A\ > 0. If D°(f, a, x) = +co at each point x of a subset A

of A with | A | > 0, let e = \ A | /4 and let A = | A | /4. It will now be shown that for these

values of £ and A the condition of the theorem will not hold. Let r¡ and £ be positive

numbers. Let 0< 0<min (A, t?/4) and let G be an open set such that A<=G and

\G-A\<8. By Lemma 1, the collection F' = {A | AeFa, AcG, diam (A)< f, and

/(A)/|A| >0} covers A in the sense of Vitali. By the Vitali covering theorem let S

be a collection of sets from ¡F' such that \A -S\ < 8. Since there are only a finite

number of sets in <%, let a = maxTe¿'/(A)/|A|. Also, by Lemma 1, the collection

F" = {T | Ae Fa, T<=G, diam (A) < £, and/(A)/| A| > (5a/2+1)} covers A in the sense

of Vitali. By the Vitali covering theorem let JP be a collection from F" such that

\A-3#\ < 8. Observe that \ê-E\ ^ \¿-A\ Ú \G-A\ <v and, similarly, \jt- E\ <r¡.
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Also, \¿Vjf\^\áVA\ + \Jf V A\<-n. Now \jf\^\Anjf\^\A\-\A-jf\>
\A\ — 6. Let S' and Jf' be any subcollections of S and Jf, respectively, such that

\e-¿'\ < A and \jf-jf'\ < A. Then

\¿'\ Ú \G\ < \A\ + 6 ^ 5\A\/4
and

\jf'\ > \Jf\-A > \A\-6-A > \A\-26 > \A\/2.
Then

/(#') ^ a\¿'\ < Sa\A\/4   and   f(Jf') £ (5a/2+l)|.rf'| > (5a/2 + l)\A\/2.

Therefore,

|/(JT')-/(r)| = f(Jf')-f(S') > 5aM|/4+M[/2-5aM|/4 = \A\/2 > e

which is a contradiction that the condition holds. Similarly, if D0(f, a, x)= — oo on

a set A with |/4[ >0, it can be shown that the condition of the theorem does not

hold. This completes the proof of Theorem 10.

It is noted that the hypothesis |£| < +oo is necessary in Theorem 10. This can

be seen by the following example. Let the space be the Euclidean plane, R2, and

let E=R2. Let the family F of sets consist of all circular discs in the plane with

diameter < 1. For each integer «ä0, let Cn denote the closed circular disc with

center at the origin and with radius «. For each integer n=\, let An = Cn — Cn^x-

Define the function/as follows: If £ is a circular disc with center at the origin,

let/(7) = |£|, but if 7 is a circular disc with center in An, let f(T) = \T\ if diam (T)

< l/n and let/(7) = 2|£| if diam (T)§ 1/«. Clearly D(f, a, x) = 1 at every point in

£. To see that the condition of Theorem 10 fails to hold, let e>0 and A>0 be

given. It suffices to show that for any 17 >0 and £>0, collections S and Jf can be

chosen so that the condition fails. Let rj >0 and $ >0 be arbitrary. Let N be an

integer which is sufficiently large that a collection S can be chosen with the proper-

ties that \S\>e + 2A+T) and that TeS implies 1/A<diam (7)<f and T^A%,

where A% denotes the interior of AN. The existence of such an integer N follows

from the fact that limn^co \An\ = +co. Let G be an open set such that G<^A%,

i^G and \G-e\<r¡/2. Now the collection &' = {T\ TeF,T<=G and diam (7)

< 1/7V} covers ¿ in the sense of Vitali. By the Vitali covering theorem let Jf be a

collection from J5" such that \Í-Jf\ <r¡/2. Then \¿W jf\S \Í-Jf\ + \G-¿\ <r¡.

Let ê' and Jf' be subcollections of S and Jf, respectively, such that \¿-¿'\<A

and |.rf-.rf'|<A. Thus f(S') = 2\¿'\ and f(Jf')=\jf'\ and, since \J?\-\é\

S\Jf-¿\ú\G-á\<v, \jf\ú\é\+T). Consequently,

f(S')-f(Jf') = 2\¿'\-\Jf'\ ä 2(\¿\-A)-\Jf\ ^ 2\á\-2A-\¿\-r¡ > e.

Thus the condition of Theorem 10 fails to hold.

The final theorem concerns the existence of the (F', 0) derivative (cf. Definition 5).

Theorem 11. 7er £ be a measurable set of finite measure, and let |£— S\ =0 (see

Theorem 9). A necessary and sufficient condition that D(f x) exists and is finite
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almost everywhere on S n A is that 0 < a < 1 implies D(f, a, x) exists and is finite

almost everywhere on Sa n A.

Proof. It was pointed out in connection with Theorem 9 that Sa<^Sß for a>ß

and also that S = Ua Sa = lima^0 Sa. From Theorem 1(f) it is seen that D°(f, a, x)

is nondecreasing and D0(f, a, x) is nonincreasing as a -> 0. Therefore, it follows

that: (1) if xeSa and D°(fi a, x)=+oo then D°(f, x)= +oo, (2) if x e Sa and

D0(f a, x) = —oo then D0(f, x) = —oo, or (3) if x e Sa and 7)°(/, a, x) > D0(f, a, x)

then D°(f x) > D0(f, x). Consequently, if Aa is the subset of Sa on which D(f a, x)

either does not exist or is infinite, then Aa<^Ae for a>ß and if A is the subset of S

for which D(fix) does not exist or is infinite, then A = yja Aa = lima^a Att. Also,

if D(f x) exists and is finite at some point x e Sa, then D(f a, x) exists and is

finite and, furthermore, ß<a implies D(f ß, x) exists and is finite and D(f a, x) =

D(f ß, x) = £>(/, x). The proof of the theorem follows easily from these remarks. To

prove the sufficiency, assume that, for 0 < a < 1, D(f a, x) exists and is finite almost

everywhere on Sa n A. Then \Aa n E\ =0 for each a and since ^ = lima^0 Aa, it

follows that \A n A| =lima^0 \Aa n E\ =0. To prove necessity, assume D(fix)

exists and is finite almost everywhere on S n A. Then |/lnA|=0 and, since

^c^, l^n A|=0.
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