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ON A SECOND ORDER NONLINEAR

OSCILLATION PROBLEM

BY

C. V. COFFMANC) AND J. S. W. WONG

1. Introduction.   We are here concerned with the oscillatory behavior of solutions

of the following second order nonlinear differential equation:

(1) /'+j£(/,x) = 0,

where the function £(?, x) is continuous and nonnegative for t e [0, co), x e (0, co).

It will be tacitly assumed here that every locally defined solution of (1) is con-

tinuously extendable throughout the entire nonnegative real axis. This will be the

case if for example one requires that for fixed t, F{t, x) satisfies a uniform Lipschitz

condition in some neighborhood of every x e [0, go). (See Hastings [3], and Coffman

and Ullrich [2].) Actually, this tacit assumption can easily be removed, see the

remarks at the end of the paper. A nontrivial solution of (1) is said to be non-

oscillatory if for every a>0 the number of its zeros in [a, oo) is finite, and it is said

to be oscillatory otherwise. Different from the linear equation, when F{t, x) is

independent of t, the nonlinear equation may possess solutions of either kind. In

view of this, one is led to consider the following types of oscillation and non-

oscillation conditions; namely, those which guarantee all solutions of (1) oscillate

and its converse, i.e. the existence of one nonoscillatory solution, and those which

guarantee all solutions of (1) do not oscillate and its converse, i.e. the existence of

one oscillatory solution. The first type of oscillation and nonoscillation conditions

have been the centre of considerable amount of research and there are a number of

results available for equation (1) or similar equations. For an expository account

on this subject, we refer the reader to Wong [12], where other references may be

found. An excellent discussion on the nature of oscillatory and nonoscillatory

solutions may also be found in the papers by Moore and Nehari [9], and Nehari

[10]. The second type of oscillation and nonoscillation conditions have received

little attention until recently. The prototype of equation (1) is the following

generalized Emden-Fowler equation:

(2) y"+p{x)yy = 0,

where y ̂  1 is the quotient of two odd integers. For equation (2), Jasny [4] and

Kurzweil [7] have established the following result on the existence of one oscillatory

solution :
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Theorem A. Let y>X. If x(v + 3)t2p{x) is nondecreasing in x, then equation (2) has

an oscillatory solution.

Jasny and Kurzweil's result is complemented by the following theorem of

Kiguradze [5]:

Theorem B. If x{y + 3V2 + ep{x) is nonincreasing in x,for some e>0 then equation

(2) is nonoscillatory, i.e. all solutions are nonoscillatory.

Very recently, Nehari [11] obtained a result which is an improvement of the

result of Kiguradze [5], namely,

Theorem C. If (x log x)(y + 3)l2p{x) is nonincreasing in x for sufficiently large x,

then equation (2) is nonoscillatory.

In [11], Nehari also initiated the study of obtaining similar results for the more

general equation (1). Part of the difficulty of such an extension lies in the fact that

the proofs of Theorems A, B, and C depend heavily on the form of the function

£(/, x) in that it is separable as a product of functions of t and x. Using some

ingenious differential identities and inequalities, Nehari [11] obtained the following

nonoscillation result for equation (1) corresponding to Theorem B for equation (2).

Theorem D. Let G{t, x) be defined by

(3) G{t, x) =  f F{s, x) ds.
Jo

If (i) for fixed x, F{t, x) is a nondecreasing function oft and (ii) for some positive e

and all positive a, xG{axx + €, x) is nonincreasing for x e [a, oo) for some a>0, then

equation (1) is nonoscillatory.

Questions were open as to whether (a) a similar result for equation (1) corre-

sponding to Theorem A for equation (2) holds, and (b) Theorem D may be

improved to include Theorem C as a special case. The purpose of the present work

is to answer these questions in the affirmative, thus completing the extension of

Theorems A and C to the more general equation (1). In fact, we prove a little more

than that stated above, and we refer the reader to the last section where a discussion

of these details will be given.

2. Oscillation theorem. The desired extension of Theorem A to the nonlinear

equation (1) is the following result:

Theorem 1. Let F{t, x) and G{t, x) be given as above. Suppose that (i) there

exist constants x0, M, c>0 and K^ X such that

(4) X2£(aX, x) ^ i + C, X ^ X0, a ^ M,

and

(5) G{t, x) ¿ KtF{t, x),       x ^ x0, t Ú Mx,
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and {ii) for every a>0 the function xG{ax, x) is nondecreasing in xfor x^x0. Then

equation (1) has an oscillatory solution.

The proof will be carried out in a series of three lemmas each of which may be

of interest in itself. In each of these, we assume without explicit mention, that the

hypotheses of the above theorem hold.

Lemma 1. Let y{x) be a nonoscillatory solution of {I). Then

(6) liminfx2£(j2(x),x) ^ ±.

Proof. Suppose that (6) fails, then there must exist a S>0 and an x^Xn such

that for x ̂  x,

x2£(j2(x),x) £ {I+8) I A.

But then y{x) satisfies a linear equation:

(7) y"+Pix)y = 0,

where p{x)^{l +S)/4x2, for xäx,. Since equation (7) is oscillatory when p{x)

= {l +8)jAx2, the given solution y{x) must also be oscillatory by the Sturm Com-

parison Theorem. This contradicts the assumption that y is nonoscillatory. Thus

(6) must hold.

Lemma 2. Let y{x) be a nonoscillatory solution of {I). Then there exists a positive

constant B, independent of the initial values of y{x) and y'{x) such that

(8) lim sup \xll2y'{x)-$x-ll2y{x)\ è B.
a:-» co

Proof. Let <f>(x) = xll2y'(x)-ix~my(x). We note first that, since y(x) is a solution

of (1), we have,

(9) d<f>{x)j dx = x - 3l2y{x){i - x2F{y2{x), x)).

Now if we rewrite (1) as

y+¿^ = ¿ii-x2F{y2{x),x)),

and apply the variation of constants formula, we obtain

(10) y{x) = x^/a + r, log £\ +x112 f* s~312 log j {i~s2F{y2{s), s)y{s)) ds,

where a=xïll2y{xf) and b=4>{xf). Assume that y is positive for x^xx and that

(11) y{x) < (Afx)1'2,
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when x = Xj. By continuity then (11) holds on some interval [x1; x2), and on that

interval we obtain, using (11) in (10),

y{x) S xll2(a + blog—)+iMll2x112 [* s'Hog-ds,
\ Xil JXi s

or, using a = xï ll2y{x1) < M112,

(12) y{x) á x1/2ÍA71/2 + elog—+ |M1/2(log^)2y

for Xi i=x<x2. If the logarithmic polynomial

P(0 = Mli2 + b log £ + iM1/2(log a2

satisfies

Mm > p(0 > 0)    for 1 < ^ < ^4,

then, by (12), the inequality (11) will hold also when x = x2, provided x2<^X!.

This last fact can be used to show that the validity of (12) extends to [x1; Axi\.

Now let A > 1 be given, there exists then a B > 0, such that if — b > B the logarithmic

polynomial P{£) defined above satisfies

A/1'2 > £(0 > 0   for 1 £ è < A',       P{A') = 0,

whereA' = A'{b)<A; moreover B depends only on A and M. The foregoing remarks

show that if j is, as above, positive for xg^Xi and satisfies (11) at x = Xi then

<j>{xi) > — B. Since, in view of (4), the right-hand side of (9) is negative for y{x) ä

(Mx)1'2, it follows from (6) and (4) that <f>{x)> —B for all xîïx,. Repeating the

same argument, but "going backwards" we see that if x0 is the last zero of the

eventually positive solution y, then for X!>^x0, and when (11) holds at x = Xi we

must have 4>{xi) < B- Using (4), (6), and (9) as before we conclude that </S(x) < B

for all large x. If y{x) < 0 for all large x, then the above argument applied to the

solution — y{x) gives (8). This completes the proof.

Lemma 3. Ify{x) is a solution of {I), then the function *F(x) defined by

T(x) = x{y'2{x) + G{y2{x),x))-y{x)y'{x)

is nondecreasing in x.

Proof. We give a proof for the case where £(?, x) is of class C1. For the general

case, the result will follow by a standard argument involving approximation of

£(?, x) by C1 functions. By a straightforward computation we have the identity

¿TYx) = {2xy'{x)-y{x))[y"{x)+y{x)F{y2{x),x)]+Q{y2,x),

where Q{t, x) = G{t, x) + tF{t, x) + xGx{t, x). Note that the function Q{t, x) satisfies
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for arbitrary t, x > 0. Thus, in view of the nondecreasing character of xG{ax, x)

for a > 0, we have Q{t, x) ä 0, and the desired conclusion follows.

Proof of Theorem 1. Let y{x) be a solution of (1), vanishing at x^Xo, and let

x2 be some value of x^Xi for which

(13) x22F{y2{x2),x2)Sl + c,

so that in particular from (4) we have

(14) y2{x2) ^ Mx2.

Suppose that j(x2) > 0 and y'{x2) > 0, then, by Lemma 3, it follows

(15) x2[y'2{x2) + G{y2{x2),x2)] ^ C0,

where the constant C0 = x1y'2(x1). By (5), (13), and (14), we have

(16) x2G{y2{x2), x2) ú Kx2y2{x2)F{y2{x2), x2) í KM{\ + c).

Suppose that y{x) is any solution of (1) defined by the initial values .Kxi^O and

Xiy'2{xi)^B'2, where £'2>2£2 + A7/2 + (| + c)A:M, then, it follows from (15) and

(16) that for arbitrary large x2 for which (13) is satisfied,

<f>{x2) = xy2y'{x2)-\x2ll2y{x2)

^ xh>2y'{x2)-$M112

^ {B'2- KM{]r. + c))112 -IrM112 > B.

If such a solution y{x) is nonoscillatory then the above clearly contradicts (8);

hence y{x) is an oscillatory solution of (1).

3. Nonoscillation theorem. We shall now prove a result which is the desired

counterpart of Theorem C for equation (2). The following result is also a generali-

zation of Theorem D.

Theorem 2. Let. F{t, x) and G{t, x) be given as before. Suppose that there exists a

constant x0 > 3, such that for x ä x0, we have (i) £(i2, x) ^ F{tu x), t2 ̂  tu and {ii) for

every a > 0, the function x log xG(ax log x, x) is nonincreasing in x. Then equation

(1) is nonoscillatory.

Before we prove Theorem 2, we need two preliminary lemmas which also seem

to have independent interest in themselves. In the following, we restrict the

independent variable x to the half open interval [x0, oo) without further mention.

Lemma 4. Let ax be a zero ofy{x) satisfying (1), and a2 > ai such that y{a2)y'{a2) = 0.

Then,

(17) a2 log a2{y'2{a2) + G{y2{a2), fla))-fll log aiJ'2(fll) ^ - f2 Ä^) dx_
Jai X
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Proof. Denote Q{t, x) = G{t, x) + tF{t, x) + xGx{t, x) as before and observe that

(18) (log x)Q{t, X) + G{t, x) + tF{t, X) = ¿ (a log «tG( j^|, a)) ^J

for arbitrary t, x > 0. Thus in view of the nonincreasing character of (x log x)

•G(axlogx, x) for a>0, the left-hand side of (18) is nonpositive. Let y{x) be a

nontrivial solution of (1), and define T(x) by

T(x) = x{y'2{x) + G{y\x),x))-y{x)y'{x)

as in Lemma 3. An easy computation shows

(19) ¿ (log xY(x)) = log xß(/(x), x) + G{y2{x), x)+/\x)-&&&

Integrating (19) between a± and a2 and using the relation

f2 y'2{x) dx =  C" y2{x)F{y2{x), x) dx,

we find

£^{logx^{x))dx

=  P [log xQ{ v2, x) + G{y\ x)+y2F{y2, x)] dx- f2 j(x){W í7x,
Jai Jai x

from which (17) readily follows.

Lemma 5. Let a be any zero of y{x) satisfying (1) and b be the first zero of y'{x)

to the right of a. Then there exists a constant B0, depending only on the first zero a0

ofy{x) such that

(20) C y'2{x) dx Ú B0.

Proof. With no loss of generality, we may assume y{x) > 0 on {a, b). Forx e{a,b),

we have

{{x-a)y'-y)' = {x-a)y" = -{x-a)yF{y2, x) < 0

hence y'{x){x — a)^y{x).  Using this estimate,  we easily verify  the following

inequalities:

(21)

Cy'2{x)dx=  \bx-^.y'2{x)dx
Ja Ja X

Ja % Ja        X
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¡bq^dx=CX-^y'2{x)dx
Ja       X Ja X

a Ja X Ja       x2

Combining (21) and (22), and using the fact that y'{x) < y'{d) for xe{a, b), we

obtain

(23) f y'2{x) dx í 2 f * y^y'M dx + ay>2(ay
Ja Ja X

Using (17) in (23), we have

\%'2{x)dxi2a0loêa0y'2{a0) + a°Xa°^

(2A) ë
Û3a0 log a0y'2{a0) = B0.

Proof of Theorem 2. Assume that the assertion is false, hence, there exists an

oscillatory solution j(x) of (1). Let a0, a1} a2,..., an,... be consecutive zeros of

X*)andè0, bu b2,..., bn,... be zeros of y'{x) with ak-1<bk-1<ak,k=X, 2, 3,....

Define a sequence of positive numbers {p.k} by

(25) pk =  C* y'2{x) dx =  f * y\x)F{y\x), x) dx.
J ah- Jai,fJak Jak

For x e [ak, bk], we have by Schwarz's inequality

(26) y2{x) ¿ {x-ak)      y'2{x)dx ^ p.kx.
Jak

Using (26) in (25) and the nondecreasing character of £(r, x) with respect to t,

we have

(27) 1 £        xF{pkx, x) dx ^       xF{B0x, x) dx,
Jak Jak

where B0 is given by (20). Again by assumption (i), we know that G{t, x) is convex

in t. Hence,

(28) G{ßx log x, x) — G{ax, x) £ (8 log x — «)x£(ax, x),

provided ß log x — «SO. Let ß = a{log x0)_1, then (28) may be rewritten as

(29) g(!£J28* x) à (« i°i*-«W, x).
\ log x0      /      \   log x0      /

Choose Xi £ x0 so that log x =£ 2 log x0 for x 3: x^ Now (29) becomes for x ^ Xj

„nv /ax log X     \ alogX      _, .

(30) Gllo?x7'X)=2loi^xF(o:X'x)-
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Pick k0 so that ak ̂  xx for k 2: k0. Using (30) in (27), we observe

1 g  f ' x£(£0*, x) dx ^  ("" I ].g Xo G{B'x log x, x) dx
,-,, Jo« -V  «olOgX

-1 £ xfj^b)2 x log xG(jB'* log x>x) dx>

where £' = £(log Xo)"1. Denote G0 = ako log akoG{B'ako log a^, ako). Using assump-

tion (ii), we obtain from (31) the following estimate valid for k^k0,

(32) li»f.
-Dl    Jo*   ■

í/x       ^     2G0
^2,«, x(log x)2 = B' log ate

Letting k -> co in (32), we obtain the desired contradiction.

4. Discussion. Theorem 1 generalizes the result of Jasny and Kurzweil, i.e.

Theorem A, in several directions. First, as remarked before, the function Fit, x)

is not necessarily of the form of a product of two functions each of t and x alone.

Next, the usual assumption on £(/, x) that it be nondecreasing in t is weakened to

condition (5) which admits a much larger class of functions. Finally, we would

like to point out that in contrast to Theorem A which is strictly a nonlinear result,

our Theorem 1 also covers the linear case as well. Consider equation (2) with

y=X. Assumptions (i) and (ii) thus reduce to: there exist constants x0, c>0 such

that

(33) x2p{x) ^ i + c,       x ^ x0

and that x2^(x) is nondecreasing in x. We note that the second condition may be

waived in general. Consider a function p{x) defined for each xïtx0 by x2p{x)

= infxgs<00 s2p{s)^\ + c. Clearly p{x)^p{x) and x2p{x) is nondecreasing in x.

Applying our result to the linear equation y" +p{x)y = 0 and making use of the

Sturm Comparison Theorem, we obtain that the linear equation y"+p{x)y = 0 is

oscillatory. In this way, Theorem 1 recovers the well-known result of Kneser [6]

for the linear case, although it should be mentioned that in the proof presented

here we have already used this linear result of Kneser, cf. Lemma 1. However,

alternative proof may be devised so as to avoid the explicit use of Kneser's result.

Such a proof necessarily involves longer arguments.

It is a simple matter to see that Theorem 2 includes the two results of Nehari [11]

as special cases. In contrast to Theorem 1 whose proof is significantly different

from that of Theorem A, here we make use of some of the techniques developed in

[11] in establishing Theorems C and D. We remark that in both Theorems B and C,

Kiguradze [5] and Nehari [11] stated their results only for equation (2) with y> X,

(in fact they assume y = 2«— 1, where « is a positive integer > 1). It is clear from

Theorem 2 or a simple application of Sturm's Comparison Theorem that Theorems
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B and C remain valid for equation (2) in case y = 1. Indeed, the proofs of Kiguradze

[7] and Nehari [11] made no explicit use of the fact that y> 1.

It should be mentioned that the proofs of both Theorems 1 and 2 can be made

more transparent by transforming into an auxiliary equation. For example in

Theorem 1, let / = log x and x~ll2y{x) = u{t), then equation (1) is transformed into

(34) d2ujdt2 + w(e2t£(efu2, e<) - i) = 0.

Clearly equation (1) possesses an oscillatory solution if and only if equation (34)

does. Since this approach does not shorten the presentation, we choose to use the

present analysis in order to conform with Nehari's work. A similar comment

applies to Theorem 2. Here we use the change of variables: i = loglogx and

(xlogx)-1,2j(x) = «(r).

Previously it was tacitly assumed that every local solution of (1) can be extended

to [0, co). Actually this assumption can be omitted without essential modification

of the statements or proofs of Theorems 1 and 2, provided that we understand by a

solution of (1) a C2 solution defined on a right maximal interval of existence

[au co), a1t0, tug +00. We shall call such a solution oscillatory if it has infinitely

many zeros in [xu co); if we adopt this definition then every solution y having a

finite right maximal interval of existence is oscillatory, see for example [2]. More-

over, ifa1<a2< • • • <o)< co, are the zeros of the solution y then limn^„o | v'(an)| =c0>

and also Mm sup*.^ \y{x)\ =co.

For Theorem 2 the assumption on the continuability of solutions is superfluous,

since for a given solution y{x), y'{x) must remain bounded on its maximal interval

of existence because of (17). In fact, Nehari [11] has already noted that every

nonoscillatory solution is ipso facto continuable throughout {a, co). We also note

that the continuability assumption is not necessary in Theorem A, as it is already

guaranteed by the hypothesis. In [4], Jasny assumes that p is locally absolutely

continuous and discusses the prolongability of solutions quite independent of the

discussion here. (Cf. also Kurzweil [7], p. 358.) We note in fact that in these cases

the monotonicity of xßp{x), ß>0, implies thatp(x) is locally of bounded variation,

and hence the continuability of solutions follows from a result in [2].

We would like to point out that results in this paper may be stated in terms of the

more general equation:

y"+fiy,x) = o,

where/(j, x) satisfies a set of conditions similar to those we impose on the function

F{t, x). Such a generalization does not seem to add much to the present knowledge

of the problem, we content ourselves with just a mention of such a possibility.

Finally, we note that in contrast to results which guarantee oscillation of all

solution or the existence of a nonoscillatory solution, our conditions on the growth

of the function G{t, x) are not in terms of convergence or divergence of a certain

integral. In this sense, our results are not totally satisfactory. For example, Atkinson



366 C. V. COFFMAN AND J. S. W. WONG

[1] has established a necessary and sufficient condition for equation (2), when

y> 1, to be oscillatory, namely

/»CO

xp{x) dx = co.

(Extension of Atkinson's result to more general equations similar to (1) have been

given by Macki and Wong [8].) It would be tempting to conjecture that a necessary

and sufficient condition for equation (2) to be nonoscillatory is

^ x(y + 1)l2p{x)dx < co.

Thus far, the validity of such a conjecture remains unsettled.
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