TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 147, February 1970

GENERALIZED STOCHASTIC INTEGRALS
AND EQUATIONS()

BY
DONALD A. DAWSON

1. Introduction. In his fundamental memoir [7] K. Itd introduced an important
class of stochastic differential equations which are now known as Itd equations.
These equations are based on his definitions of stochastic integrals with respect to
Brownian motion and random measures with independent values. The importance
of these equations is due to the fact that a large class of Markov processes in R"
can be represented as solutions of such equations. A thorough account of Itd’s
work and various extensions of it has been given by A. V. Skorohod [18]. It is
also possible to represent certain other Markov processes of finite order as solu-
tions of vector It6 equations. In this paper we consider an extension of It integrals
to integrals with respect to generalized processes with independent values in the
sense of I. M. Gel'fand and N. Ja. Vilenkin [5]. We do not consider the most
general case which would involve integration with respect to generalized processes
with independent values defined in R*, n>1 (cf. K. It6 [7] and A. V. Skorohod
[18] for random measures) but restrict ourselves to the case n=1. The relation
between the generalized Itd integral and the multiplication of (Schwartz) distri-
butions is discussed. This involves a study of u-transformations of &', the space of
distributions, where p is a measure on 2. Following the example of K. Itd we
then discuss stochastic differential equations defined in terms of these stochastic
integrals and prove several existence theorems.

It is shown that the solutions of generalized It6 equations with local coefficients
have local splitting o-fields and are weakly Markov of finite order. Generalized It
equations may also be considered in connection with P. Levy’s problem of the
representation of stochastic processes in terms of differential innovation processes
[11, §2.7].

2. Preliminaries on generalized processes. The theory of generalized stochastic
processes are thoroughly studied in I. M. Gel’'fand and N. Ja. Vilenkin [5] and in
X. Fernique [3]. In this section we review those parts of the theory which are
relevant to this paper.

A generalized stochastic process X is a mapping ¢ ~ X(¢) of 2, the space of
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C>-functions with compact support in R?, into the family of random variables on a
probability measure space (€2, &, P) which satisfies

2.1) X(ap+pBp)=aX($)+BX () for o, B € R, and

(2.2) if ¢, — 0 in @ with the usual topology, then X(¢,) — 0 in probability.

If for each w, ¢ ~ X(¢) (w) is linear and continuous on £, X is said to be a
random distribution. If X is a random distribution, then a measure is induced on
(D', #(2')) where #(2') is the o-field of Borel subsets of 2'. Because of the
nuclearity of 2, the fundamental theorem of R. A. Minlos [5, Chapter 4, Theorem
2.3] yields the following.

THEOREM 2.1 Every generalized random process has a modification which is a
random distribution.

Proof. See Fernique [3, Proposition III, 4.2(a)].
The following result is easy to verify.

THEOREM 2.2 The derivative of a random distribution is a random distribution.

Proof. See I. M. Gel'fand and N. Ja. Vilenkin [5, p. 246]. (All derivatives are
derivatives in the sense of distributions and are denoted by df]dt, f or Df.)
The mean of a generalized process is defined (if it exists) by

M(¢) = E(X(¢)), ¢€9.

The mean is a distribution.
The correlation functional of X is defined (if it exists) by

L(¢, §) = E[X($)- X(¢)] for ¢, 4 e D.
The kernels theorem implies that I'(¢, ¥)=K(¢ & ¢) for some K € Z'(R*XR?Y). A
process for which I'(¢, ¢) exists for all ¢ is said to be a second order generalized
process. Note that I'(-,-) is a positive definite bilinear form. For second order
generalized processes Fernique has proved the following fundamental convergence
theorem.

THEOREM 2.3. Let {X,} be a sequence of second order random distributions such
that for every ¢ € D, E(X,— Xn)(¢$))? — 0 as n, m — co. Then there exists a sub-
sequence {X,,} which converges almost surely. The different limits are equal, almost
surely.

Proof. X. Fernique [3, Theorem III, 7.2].

X is said to be a generalized process with independent values at every point if
the random variables X(¢) and X(i) are mutually independent random variables
whenever Spt (¢) N Spt ()= @. The following theorem characterizes the correla-
tion functional of a process with independent values at every point.

THEOREM 2.4. The correlation functional T'(-,-) of a process with independent
values at every point is given by

T, ) = f f j Sl DFPO) i, 1)

k=0
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where ¢(x)=d’¢(x)[dX’, n is a positive measure, the functions r;(-,-) are pu-square
integrable and only a finite number of the r; ,(-,-) are nonzero on any given bounded
set.

Proof. See Fernique [3, Theorem IV.1.3] (cf. I. M. Gel'fand and N. Ja. Vilenkin
[, III, Theorem 9]).

Note that if T is a differential operator of finite order, then the correlation
functional of TX satisfies I'rx(¢, ¥)=Ix(T¢, Ty). Many different generalized
stochastic processes with independent values at every point can have the same
correlation functional. A rather large class of processes with independent values at
every point is characterized in terms of the characteristic functional in I. M.
Gel'fand and N. Ja. Vilenkin [5, III, 4].

Let 2™ be the set of functions with compact support and m continuous deriva-
tives. The space of distributions which is the dual of 2™ is denoted by 2'™ and its
elements are called distributions of order =m. A distribution which is of order
<m but not of order £m— 1 is said to be of order m. R. M. Dudley has proved the
following theorem.

THEOREM 2.5. If for every ¢ € D
sup EQX(n))? < o0

where (7,6)(t)=¢(t—h), then there is a positive integer m such that the measure
induced by X is concentrated on the set of distributions which are of the form D™f for
some continuous function f.

Proof. See Dudley [2, Theorem 3.1].

The Sobolev space H%™(U) is the set of distributions in an open set U such that
the distribution derivatives of order <m belong to L2(U). The space H*>™(U) is a
normed space with norm

[4]am = (og;m L (Du(x))? dx)m.

HZ™(U) is the closure of 2™(U), the set of functions in 2™ with compact support
in U, in H2™(U). H*"™(U) is the set of distributions defined in an open set U such
that the distribution derivatives of order <m belong to L*(U). The space H*"™(U)
is a normed space with norm

[l 0,m = 1D°u| .

0sa=m

THEOREM 2.6. H>™(U) and H3™(U) are Hilbert spaces.

IIA

Proof. See F. Treves [20, Proposition 31.1].
Let H?~™(U) be the space of distributions in U which are equal to a finite sum
of derivatives of order <m of functions in L3(U).
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THEOREM 2.7 If m is a positive integer, then there is a canonical linear bijection of
H?~™(U) onto the dual of H3™(U).

Proof. See F. Treves [20, Proposition 31.3].

For m positive or negative HZ,™ is the set of distributions whose restrictions to any
relatively compact open set U lie in H%™(U).

A fundamental system of neighbourhoods of 0 for the usual topology, Z,; in
2’ are of the form

V(B,e) = {T: |T($)| < ¢ for ¢e B}

where ¢>0 and B is a bounded set in 2. The weak topology 7., is given by the
fundamental system of neighbourhoods of the form

V(e by - - ., ba) = jr:)I (T:|T@)| < ¢

where e>0 and ¢,,..., ¢, are in . Let B, B, gZ’,,, Q?w be the respective Baire
and Borel sets and let Z(2’) be the o-field of subsets of @’ generated by the family
of sets of the form {T : T(¢) € B} where ¢ € 2 and B € #(R"). Let #(2', I) be the
sub-o-field of #(2’') generated by the family of sets of the form {T : T¢ € B}
where B € Z(R*), ¢ € 2 and Spt (¢)<I. If X is a generalized process defined on the
probability measure space (Q, &, P) let F¥ be the o-field generated by the random
variables X(¢), Spt (¢)< L.

THEOREM 2.8, B, =B, =B, =B,=2A.
Proof. See Ju. V. Prohorov [14].

THEOREM 2.9. The sets C, the set of continuous functions, 2'™ and H*~™ are
Borel subsets of Z'.

Proof. See Fernique [3, III. 3].

Given a compact subset K of R, let Zx={¢ : ¢ € 2, Spt ()< K}. Then there
exists a natural measurable mapping =:(2’, #(2')) - (D%, #(2%)). Given a
measure p on (2', #(2')) then the measure py, on (2%, #(2%)) which is induced by
= is called the K-marginal of p.

THEOREM 2.10. In order that a system {uy} of probability measures on (D, #(2%))
where K runs through the set of compact sets be a system of K-marginals of a random

distribution, it is necessary and sufficient that for every pair K, K, and all
¢ € Dy, N Dy,

pe,({T 2 T€ Dx,, [T@)| £ 1) = pi,({T : T€ Dk, |T(P)]| = 1)),

Proof. See Fernique [3, Proposition III. 4.3].



1970] GENERALIZED STOCHASTIC INTEGRALS AND EQUATIONS 477

THEOREM 2.11(3). 2’ is a Lusin space.
Proof. See L. Schwartz [17].

THEOREM 2.12. For any probability measure P on (2', #(2')) and any sub-o-field,
&, of B(D') there exists a regular conditional probability with respect to .

Proof. Since 2’ is Lusin, there is a finer topology J!>7, such that (2', 1)
is Polish. Hence (2, #(7)) satisfies the conditions of the well-known theorem of
M. Jirina [9] which implies the existence of regular conditional probabilities.

THEOREM 2.13. If the generalized stochastic process X satisfies E[X($)P < k|¢|2.
for all ¢ with support in a compact set K, then the K-marginal measure can be
concentrated on H*~ ™+,

Proof. See Gel'fand and Vilenkin [5, 329].

THEOREM 2.14. Let BF=(\e»0 B(D', [t—¢, t+¢]) and let Bo=\/; BF. Then
Bt RBD).

Proof. Consider the measures p and v on #(2’) induced by the first derivative
of the Poisson process and the identically zero process respectively. Now these two
measures agree on #BXvV --- v & for (¢,,...,1,) € R* and hence they agree on
# . Since p#v on B(2') it follows that Z,#H(2'). On the other hand it is
obvious that #, < %(2’).

We will also require the following theorem.

THEOREM 2.15. Consider the system of differential equations

M
. d
DTi+jZ1 AOT; =S, i=1,...,M where DT, = T,
A; () are C*-functions and S'e @', i=1,..., M. If $;=0,i=1,..., M then the
only solutions are C*-functions. For any {S;} there exist solutions to the system and
the difference between any two solutions is a solution of the homogeneous system.

Proof. See Friedman [4, Theorem 36].

3. Stochastic integrals. I. Throughout the remainder of this paper X denotes a
second order generalized stochastic process with independent values at every
point, zero mean and correlation functional I'(-,-). Since I' is a nonnegative
quadratic form (Theorem 2.4) on 2, we can complete 2 with respect to I' to
obtain a Hilbert space Hr. with inner product I'. Instead of taking the most general
form of I' given by Theorem 2.4 we assume that I'(-,-) is of the form

N

(€R)) L(¢, §) = f; 2 orjk(x)¢"’(x)¢"‘)(X) dx

k=

(® I would like to thank Professors J. R. Choksi and K. N. Gowrisankaran for their
communication of the results of [17] and their assistance with the proof of 2.12.
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where N < oo and the functions r;,(-) are in L*(R?).
The set of functions

N

{re 3 [rawrocaroe ax < oo}
j, k=0

modulo Nr={f: I'(f,f)=0} can be identified with an appropriate subspace of

Hp. (N.B. Derivatives always refer to distribution derivatives.)

PROPOSITION 3.1. If I'(-,-) is of the form (3.1), then H¢"¥|Np.< Hy.

Proof.

N

112 = X |7 ratarawrew dx

J k=0

IIA

Il [ 1200 )

J, k=0

. I7s,ell o (f_: (f(x))? dx)ll2 ( J*—: (FO0)? dx)m

by Schwarz’s inequality

IIA

ik

IIA

N
> skl wlf1Z
Y=

j 0

The proof is completed by noting that 2 is dense in HZ-¥. (We do not consider
here the question of when Hp=HgZ?¥ but it is related to Garding’s inequality
[22, VI. 81.)

The mapping ¢ ~ X(¢) of 2 into L%(Q, &, P) extends naturally to an isometry
of Hp onto a closed subspace of L3(2, & P) such that

E(X(f)- X(g)) = I'(f, 8)-

This extension is called the second order extension of X.

EXAMPLE 3.1. Let X be the first derivative, B, of the Brownian motion process B.
Then B is a second order generalized process with independent values at every
point and correlation functional

TG = [~ o) ax
B is usually known as the Gaussian white noise generalized process. The Ito

integral [* f(¢) dB(t) is a linear isometry of L?(R') into L%(Q, & P) which is
defined for a simple function f(-)=2>7-1 ¢xa,.0 bY

|7 reyaso = 3 eceod-B@)
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It is well known that if ¢ € 2, then

|7 swane)

- f ’ B(t)$(t) dt  a.e.
—B($) = B($).

Hence the usual stochastic integral is the second order extension of the Gaussian
white noise process B.

In the study of stochastic differential equations it is also necessary to consider
the indefinite integral

[ 10 @80) = [xc a5 aB5)+c

where ¢ is an arbitrary random constant. In the general case with X playing the
role of B the function x(__; may not belong to Hy. so that we may not be able to
define the indefinite integral in this manner. However, in this case we first define
the product fX as a distribution and then consider the primitive, [ f(£)X, of ()X
as a distribution. We now proceed to do this.

If ®: 2 — Hy is a continuous linear mapping, then so is the composition

() X
9 —> Hp — Ly)(Q, Z P).

It is easy to verify that this yields a generalized stochastic process and hence there
is a modification which is a second order random distribution with correlation
functional

I = | 2, TP () D) P(x) dx.
-® f,k=0

Following Fernique we call X® the second order transformation (or P-transforma-
tion) of X by ®. We next apply this to obtain P-products.
For fixed f consider the linear mapping ® from 2 to Hr. defined by ¢ ~ f-¢.

ProPOSITION 3.3 If assumption 3.1 is satisfied and if f € HY 2, then the mapping ®
is continuous.

Proof.

I /612 _ 1)) (x) dx

I Il
Mz TMs=
3

k=0

Bl 3 3 5 [7

jk0=

$ 5 7 nucol() (e s

IA

ra@ () (})roerow | ax

a||% v f1Z.n for an appropriate constant c.

IA

Therefore if ¢, — 0 in 2, then | fé,|r — 0 and the proof is complete.
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Therefore the second order transformation of X by the mapping ¢ ~ f¢ gives
us a P-transformation which we call the P-product, Xf, of f and X. If f€ 2, then
for almost every w, Xf(w) is the product of f with the distribution X(w) in the usual
sense of the theory of distributions. In addition Xf(¢) is the stochastic integral of
¢ with respect to Xf. If assumption 3.1 is satisfied, then Proposition 3.1 implies
that E((X$)?) < «||$||2, y which in turn implies that the K-marginal measures can be
concentrated on H?~W+2 (Theorem 2.13). Hence the usual distribution product
X(w)f'is defined for almost every w only if fe HZ¥*2, Thus we would not expect to
be able to multiply X by an arbitrary f€ HZ'~. The fact that we have defined such a
P-product can perhaps be explained by the fact that if f, —f in H¢V, f, €2,
n=1,2,..., then for each ¢ € 2, Xf,($) — Xf(¢) in L? but not necessarily almost
surely. However, by Theorem 2.3 there is a subsequence Xf, — Xfin 2’ almost
surely.

REeMARK 3.1. If fe HZY, then by a minor modification of the above argument
we can define Xf restricted to any relatively compact open set.

REMARK 3.2. L. Schwartz [15] has shown that it is impossible to define multi-
plication for all pairs of distributions in such a way as to maintain the usual rules
of differentiation.

The primitive of the random distribution Xf is denoted by [* Xf, that is, if
¢ € 2 then (' Xf)($)= — Xf(¢). If we fix ¢, € 2 which is not of the form 4 for
€ 2, then we can allow ([* Xf)(4,) to be an arbitrary random constant.

PROPOSITION 3.4. For any fe H%" and any ¢ € D, E(Xf($))=0, that is, the mean
of Xf is zero.

Proof. By definition there exists ¢, € 2, n=1, 2, ..., such that ¢, — fin Hg".
But E(X¢.(¢)=E(X($,$))=0 since X has zero mean. By Proposition 3.3.
X, () = Xf($) in L*(Q, & P) which implies that Xy, (¢) — Xf(¢) in LX(Q, &, P).
Therefore E(Xf(4))=0.

PROPOSITION 3.5. If fe H5:"N then the K-marginals of the measure induced by Xf
on @' can be concentrated on HZ,” ™ *?, that is, Xf can be concentrated on HZ,~ N +?.

Proof. Consider a relatively compact open set U, and assume that Spt (¢)< U.
Then

E((Xf(#))®) = | f#[?
- 3 s
- :’=0 ;0 é;) f_: ({) (];)f("¢"")f“)¢""”r,’k dx
= ”flv"fon ;,kzlio ‘:O :0 f:o ({)(]Ic)lr]k(x)l |¢(”(x)~¢(”(x)[ dx
=<

|| flol% wl B35
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The result then follows from Theorem 2.13.

4. Stochastic integrals. II. In this section the notion of stochastic integral is
extended to the case of random integrands. As in the previous section this requires
a consideration of P-transformations of 2’ and in this section these transformations
will in general be nonlinear. We will first review the approach of K. It in the case
of Example 3.1 (refer to J. L. Doob [1, IX, 5] for the details).

Let V=L3(R*x Q, #(RY) X %, dt x P) and let

e, )l = [ U@ P ar] "

Let V™={f(-,) : f(:,-)€V; Vs, f(s,-) is F_o» g-measurable}. A (¢, w)-step
function is a function of the form

f(t,w) =0, t<a,
=filw), @ =t<ay,, j<n
=0, a, <t
where a; <a,< - -+ <a, and fi(-) is #_ » o y-measurable. It can be shown that the

(¢, w)-step functions are dense in V™. For such a (¢, w)-step function the stochastic
integral is defined by

© n—-1
[C o eraso =5 fexse.-Ba).

Then the mapping f~ [* f(t, w) dB(t) can be extended to an isometry from
V¥ to L3(Q, &, P).

Now let X be a generalized process with independent values and correlation
functional I'(-,-) of the form 3.1. A function f: R'x Q — R! is said to be F*-
progressively measurable if for each ¢ € R, the mapping f: (—o0, t]x Q— R! is
measurable with respect to #(— oo, t]x FE ;.

Let

WX = {f: fis #FX-progressively measurable, fe HZY a.s., E(|f|3.x) < o},

e =E[[ 5 () o],

and let

For a € R? let

W, ={f:Spt(f) < [a,©)as., f(t,-) e H¥Y ass.,
f(-,) is B(R) x FE , or-measurable, E(||f|2x) < oo}
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We define the inner products

8o Dr = E[[T 3 radf 0, 0)g®Cx, o) d |,

—® j,k=0
S gCone = E[[ S nuaf e ae ) ds]

in WY, The spaces W" and W, completed with respect to <-,->r are denoted by
W*, W} respectively. It is easy to verify that W*/N* is a Hilbert space where
N*={f: fe W* {f,f>r=0}. Let W*° denote the set of W*-functions of compact
support.

Let

={f:fe Wk, f= Z Xa S SPt(f) < [a,0), ALEFE o i=1,...,m
i=1
A‘nAj= %) ifi#j,f;er,i= 1,...,m}‘

We now proceed to define the P-product fX for fe W*. In order to do this we
begin by defining the stochastic integral X(f) for fe W,, ae R'. For fe W,,
[=2" 1 Xa S AAEFE . i=1,...,m, A, A;= 3 if i#], e Hy, i=1,...,m,
we define X(f) by :

@.1) X() = Z X X()

where X(f;) is the second order extension of X(-) which is defined in §3.

PROPOSITION 4.1. The mapping from W, to L*(Q, % P) defined by equation
4.1 preserves inner products.

Proof. Let f=2>T, x4 /i and g=2>7_, xz&:. Since X has independent values, it
follows that x,, and X(f)) are independent and yp and X(g,) are independent.
Therefore

E(X(f)- X(g)) = [

[\

xW,'(X(mX(g,))]

I
[\Y%E]
M= L'Ma

P(4; N B)E(X(f)- X(g)))

-
]
-
<
]
P

Ms
e

s [ "Z (P RgP() dx
2

-

-
]
P

/\ S
||M3 g—“‘s

FaGS O, w)g®Cx, ) dx]

WY

=0
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PROPOSITION 4.2. W, is dense in W},

Proof. Let fe WF and let ¢ be the o-field of subsets of Q generated by f con-
sidered as a Hp-valued random variable. It can be shown that ¢ is generated by
sets of the form {w : (f(w), $)e B, Be #(R'), ¢ € 2D, Spt(¢)<|[a, ©)}. Since
Fubini’s theorem implies that (f, ¢) is FE ., ,-measurable, ¥ is a sub-o-field of
Z._ ».q- Since Hy is a separable Hilbert space, ¢ is countably generated. Hence
there exists a sequence of finite o-fields, ¢, 1 ¢. Let W, wg.,n=1,2,3,..., be
the Hilbert subspaces of W consisting of those fe W} such that for each ¢ € 2,
(f, 4) is ¥-measurable, ¥,-measurable, respectively. Note that for each n, W < W,
and that W 1 WZ. Therefore if Eg,(f) is the projection of f on Wg , then
f=lim, ., Eg (f) in W¥ (Doob, [1, IV, Theorem 7.4]).

Hence the isometry given by equation (4.1) can be extended to an isometry
from W} to L*(Q, &, P).

PrOPOSITION 4.3. If fe W¥, then E(X(f) | FE ©,a)=0.

Proof. It suffices to show this for f(f, w)=x,(w)f(?), 4; € FE .01, F(t) € Hy.
But then

E(X(f) I "d;(x—w,a] = E(XA,(‘“)X(f)(w) I FEwa)
= XA;(‘)E(X(]‘) | gr(x_w’a])
= x4(-)E(X(f)) since X(f)is FE, .,-measurable
= 0 by Proposition 3.4.

PROPOSITION 4.4 There exists a linear mapping X(-) from W*°nW¥ to L¥(Q, %, P)

which preserves inner products and which agrees with that given by equation 4.1 on
W¥, aeR.

Proof. Consider fe W*°NW?" and let a,, ..., a, be a partition of Spt (f). Let
Jfo = Projection of fon W}k,
fi1 = Projection of f—f, on W},
Jm = Projection of (f—f; - -+ —fn_1) on Wk.
Then set

.2) Sty w) = Z At w).

We now prove that the mapping >, fi ~ 2™ X(f}) preserves inner products,

that is

To prove this, it suffices to show thatif f=y,f, g = xzg, fand g € H, with appropriate
supports, 4 € FE ., o), BEFE o, ny,a<b,f | gin Hy, then E(X(f)- X(g))=0. Since
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FE wv-1um? FE on as nt oo, there exist B,, n=1,2,3,..., such that B, e
F & wp-1m and xp,(-) —> x5(-) a.s. Then xz,(-)g — xs£ in <‘,_‘>r and x5, X(g) —
xsX(g) in L*(Q, & P). Hence it suffices to show that E((x,X(f))- (xz,X(&))=0 for
each n.

Any f with support in [a, 00) can be decomposed as f=f; +f; with Spt (f,)<[a, b)
and Spt (fz)<[b—1/n, ), f, and f, € H3¥. Then

E(xaX(F)) - (x5, X(8)) = E((xaX(F) x5, X(8)))
+ E(xaX(f2)- (x5, X(8)))-

But
E((xaX(F1))- (x5, X(2))) = E(E(xaX(F) x5, X(@)) | Z (- 0,02))
= E(XAX(fl)XBnE(X(g) | F(—w,0)
= 0 by Proposition 4.3.
We have
afonxae = E|xatnne) [~ 3 raofy (g ds|

=0 since Spt(f}) N Spt(g) = &
and therefore {x, /s, xs,&>r=0. But by Propositions 4.1 and 4.2,
E((XAX(fz))‘(XB,.X(g))) = <XAf2, XB,.g>l" =0,

since both x,f, and x5 g are in Wi ..
To complete the proof we must show that

4.3) limfi,, = f in W*°
2
where 2 is the directed set of partitions.

We first show that the C*-functions in W*° N W7 are actually dense in W*©,
Consider p.(x)=(1/¢)p(x/e—1) where

A

-1
p(x) = aexp ('I_W) for |X|

1\

=0 for |x|

-1
-1 _
al= Lxl<1 exp (——l_ |x|2) dx.

Then for any fe W*°, (f*p,)(-, w) > f(-, w) in HZ¥ for almost every w as
e} 0 (cf. Treves [20, p. 328]). In addition

1f* pe—fllzm(@) £ | fllzn(@)1+]p]:2] for ace. w.

Hence by the bounded convergence theorem, f* p, — f in W*. To complete the
proof note that for >0, f* p, € W°* N W¥ and for almost every w, f* p.(-, )
is C*. Hence it suffices to verify equation (4.3) for an a.s. C*-functionin W°* N W>,

where
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If h>0, f*(t, w)=f(t—h, w), then for each 7, f*(t, w) is FE ;- -measurable.
Hence it is clear that limg f%,,=f" in W°*. On the other hand, if f'is a.s. C*, then
|f—f*|2—0as.as h— 0 [1, p. 441].

Since ||f—f"|2<«|f|3.~ a.s., the bounded convergence theorem implies that
f*—fin W*, as h— 0. Hence if fe W°* is a.s. C*,

4.4) If=fanle = 1= le+ 1" =flolo+ 1 flan—Fianllr-

But the right-hand side of (4.4) can be made less than ¢>0 by first choosing 4 so
that || f—f"|r<e/3 and then choosing {a;} so that || f*f%, |- <e/3. The proof is then
complete.

REMARK 4.1. If we had not assumed that I'(-,-) were of the form of equation
3.1 but rather had tried to deal with the general form of Theorem 2.4, in which
the measure x need not be absolutely continuous with respect to Lebesgue measure,
then the proof of Proposition 4.4 would not go through as given. This corresponds
to the situation which has arisen in the extension of the It6 integral to the stochastic
integrals with respect to square integrable martingales. This has been carefully
studied by P. Courrége and P. A. Meyer [13] and requires the investigation of
rather delicate measurability considerations.

Propositions 4.1, 4.2 and 4.4 can be summarized in the following theorem.

THEOREM 4.1. There exists a linear isometry X(-) from W* to L¥(Q, % P) such
that if f,ge WV

E(X()X(8)) = {f(-,+), 8(:» Do

Proof. This follows immediately from the proof of the above proposition since
WOo* N WV is dense in W*,

PROPOSITION 4.5. If fe W* and Spt (f)<[a, ), then E(X(f) | FE ©..1)=0.

Proof. It suffices to show this for a sum of the type (4.2) where a,=a. Then
EX(N | FEwm) = 2 EX() | FE 0,0)
i
= D EEX() | FE 000) | FE o.0)
i

= 0 by Proposition 4.3.

If ®: 92 — W* is a continuous linear mapping, then so is the composition

@ X
D —> W* s [X(Q, Z P).

The composition then yields a generalized stochastic process which has a modifi-
cation which is a second order random distribution with correlation functional

@ N

L@, 4) = E [ f ;zo T3 ) ($) P (x) () (x) dX]-
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We now apply this to obtain the P-products of f€ W¥ and X. For fixed fe W¥
consider the linear mapping from 2 to W * defined by ¢ ~ ¢f.

PROPOSITION 4.6. If fe WX, then the mapping ¢ ~ fé is continuous.

Proof. The proof is essentially the same as that of Proposition 3.3.

Therefore the P-transformation of X by the mapping ¢ ~ f¢ yields a random
distribution which is called the P-product of f and X. If f€ 2 a.s., then for almost
every w, Xf(w) is the product of f(w) with the distribution X(w) in the usual sense
of the theory of distributions. In addition we then have (Xf)(¢) is the stochastic
integral of ¢ with respect to Xf. We denote by [ * Xf the primitive of the random
distribution Xf; that is, if ¢ € 2, then

( j ’ Xf)(«ﬁ) = —(X/)(#), where ¢(r) = d(t)/dr.

If we fix ¢, € 2 which is not of the form ¢ for ¢ € 2, then we can allow (J* X ) (o)
to be an arbitrary random variable with finite second moment.

NoTE 4.1. A note on the calculus of P-transformations.

As we have seen above the definition of a stochastic integral with respect to a
generalized process with independent values is an extension of the It6 calculus.
From such a point of view it is desirable to establish the rules satisfied by the
calculus. However, in this section we settle for demonstrating that the rule for the
differentiation of a product is satisfied (which is also the basis for integration by
parts).

PROPOSITION 4.7. If fe W¥*1 then
4.5) d(Xf)|dt = X df|dt+fdX]dt.

Proof. Let f,=f* p,,, where p, is as defined in the proof of Proposition 4.4.
Then f, — fin W¥*! and f, —f in W". Now by a theorem of Schwartz [16,
Chapter 1V, Theorem 4],

4.6) d(Xf,)/dt = X df,|dt+f, dX|dt for each n.

But for any ¢€9, (Xdf,/dt)(¢)—~> (X dfldt)$) in LAQ, Z P), (f, dX[dt)($)
— (fdX[dr)() in L(Q, % P), and (X£,)($) - (X/)($) in L*(Q, F P).
Therefore, by Theorem 2.3, there exists a subsequence {n,} such that
Xdf, [dt — X dfldtin D as.
4.7 S dX/dt > fdX|dtin D"  as.
(Xf,,) — Xfin 2’ a.s.
and therefore
d(Xf,)/dt — d(Xf)|dt in 2" as.

Equation (4.5) then follows from equations (4.6) and (4.7).
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COROLLARY. If fe WY+ has compact support, then X(f)= — X(f).

Proof. Let ¢ € 2 such that ¢(x)=1 for x € Spt (f).
Then by 4.5

—(XN)($) = — X(f$) = (X(dfldt))($)+((dX[de)f )($)-
But f$=0, and therefore

(X (dfld))(¢) = —((dX]dt)f)($).

Therefore,
X((dfldt)p) = —(dX[dt)(f$).

But (df/dt)¢ =df|dt and f¢=f and therefore X(df|dt)= —(dX/dt)(f).

REMARK 4.2. It should be noted that in general the stochastic calculus is not
identical to ordinary calculus. For example, putting K. It6’s formula for stochastic
differentials [8] into our setting, one can show that

deP®|dt = 1eB® +eB® dB/dt a.s.

4.8. Connection with the It6 integral. We now show that the stochastic integral
defined above agrees with the Itd stochastic integral when X=B. In this case
W*=V™M, Hence it suffices to show that the two integrals agree on (¢, w)-step
functions.

Let f(t, @)= 270 Xtay.a;+ p(¢)fi(w) Where each fi(-) is F_ «,qo,-measurable. Then
since the functions xiq,,q,, ,,f;(*) are orthogonal in W*, it suffices to show that the
integrals agree for xq,q,,,)(t)fi(w). But xi,.q,,(#)fi(w) € W5 and f(w) can be
approximated in L*(Q, & P) by functions of the form J}_; b;xz(w) where the
B eZ _o,q,and B N B,= o if i#k.

Hence it suffices to show that the integrals agree for functions of the form

bing(w)X[aj,aj + 1)(t) € Wa,~
But then
B(biXB.(w)X[a,,a; + 1)) = biXBg(w)B(X[a,,a, + 1>)-

But it is shown in Example 3.1 that

Bayron(D) = [ Xtoparent®) dBE).

5. Stochastic equations.
5.1. Introduction. K. 1t6 and M. Nisio [9] have studied stochastic integral
equations of the form

t t
X(t) = X(0)+ fo als, X) ds+ fo b(s, X) dB(s)



488 D. A. DAWSON [February

with past condition X(¢#)=X—(¢) for t<0 where a(s, X) and b(s, X) are pro-
gressively measurable. In general, the stochastic integral equations of It6 deal with
the case in which the processes integrated with respect to are either Brownian
white noise or random measures.

On the other hand the concept of stochastic differential equations can be ex-
tended to any equation of the form

5.1) PECE-=

where X is a generalized process and the a;(¢) are C*-functions.

THEOREM 5.1. Egquation (5.1) has a solution which is a generalized process. Any
two solutions differ by a solution of the homogeneous equations.

Proof. For each w € Q, apply Theorem 2.15 to the equation

2 aft) dit: Y(w) = X(w).

J. L. Strand [19] has studied the above equation and obtained conditions under
which the solutions have pth moments. In a similar way we could consider a
linear Volterra integral equation with an analytic kernel, for example,

t
Y(t)+ f h(s, 1) Y(s)ds = X(2), X a generalized process.
0

5.2. Generalized 1td equations. In this section we consider the family of stochastic
differential equations of the form

ay,

(5.2) &

—MH+ZWD% i=1,...,m,

where {X,} are a family of independent generalized processes with independent
values, and a;,(Y) and b¥(Y) are progressively measurable mappings from ™2’ into
a function space S.

A mapping ¢ from ™2’ (the space of continuous linear functionals of 2
into R™) into a space, S, of real valued functions on R! is progressively measurable
if the mapping ¢ o E, : ("D’')x(—o0,t]— R* is measurable with respect to
B(D', (—o0, t]) x B(R*; (—o0, t]) where E, is the “evaluation at ¢ mapping of
S into R.

If S is a space of distributions a similar definition is used with E, replaced by
E¢, the “evaluation at ¢ mapping of S into R*; that is, ¢ o E¢ : "D’ x D(— 0, t]
— R! is measurable with respect to Z("2’, (— o0, t]) x B(2(— 0, t]).

By a solution to equation (5.2) we mean a R™-valued generalized process Y
defined over (Q, & P) for which b¥(Y) and a(Y) are defined for each i and &
and such that for every ¢ and 1 <i=<m, both sides of (5.2) evaluated at ¢ are equal



1970] GENERALIZED STOCHASTIC INTEGRALS AND EQUATIONS 489

almost surely. Note that this is all that can be expected since the right-hand side is
defined uniquely only up to modifications. We first study the case m=1, L=1 and
then modify this to study the general case.

THEOREM 5.2. Let X be a second order generalized process on (Q, %, P) with
independent values and whose correlation functional T satisfies y=73, ; |[tj.x] = <.
Assume that b: 2' — H2" is progressively measurable and continuous and that
a: 2’ — 2’ is continuous and progressively measurable. Assume that Spt (X) < [0, c0)
and that if Spt ($) = (—o0, 0] then a(-)(¢) is zero. Let V be an absorbing subset of 2
on which ||¢| « y is bounded. For s € R*, let

1Yls = sup E(Y(9))>.

PeV;Spt(d) = (- »,s]

Assume that |a(0)+b(0)X |, is finite valued. Assume that for any progressively
measurable second order generalized processes Y., Y,,

(53) Ib(Y)~b(YDlgws S K [ I¥i=Val2ds
and
(54 la(¥)-a(¥lE < K [ |¥i=Yal2 ds

Then the stochastic equation
(5.5) Y=a(Y)+b(Y)X
has a unique solution.

Proof. Let Y,=0 and (5.6) Y,.,=a(Y,)+b(Y,)X. By (5.3) and (5.4) it follows
that Y, is a second order Z#*-progressively measurable generalized process. If ¢ €
V and Spt (¢) =(—o0, 5], then by (5.6)

(Yor1— Yo)@) = (@(Y)—a(Yn- D)) +(B(Yn)—b(Yn 1) X($).
Therefore
E[(Yoy1— Y )@ = 2E[(a(Yr)—a( Yo - ))$)* +2E[(B(Y2) — b(Y, - 1)) X($)]?
S 2E[(a(Yn)—a(Yn-)) @) +27]8]% x[6(Ya) = (Y- )3 v.s
= 2a(Yn)—a(Ya- )2 +2y[¢% 5 6(Y) — (Y- 1)[3.v.s

<2 [ Y- Yol dssllanks [ 1Y Yaal2ds

S
< Kaf | Yn— Yn-1||Z2ds since ||¢] .,y is bounded on V.
Therefore

" Yn+1"‘ n"s2 é KSJ; " Yn_ Yn—lus2 ds*
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Hence by induction

s th 1
" Yn+1_ Ynl|s2 é K:’;J:) e J:) " Yl_ Yo”gzn dtu dtn-l e dt2

Ks
< 3 ]IY1 Yol 2.

For each ¢ € 2 there is an « € (0, ) such that a¢ € V since V is absorbing. Then,

E(Yass= Y = 5 2E(Yays— Vr)a)?

1 K3st
= a_z " Yn+1_ n"s2 = aan!

| Y1—Yol3.

Hence

(B Yo Y71 = [E (il(YHl—Y,)qb)z]m
PRCEAROT

n-1 KIsT\1/2
Z  (2) Il

IIA

3
3

II/\

Since the series >,°_; a¥%/(n!)*/2 is convergent,
E(Y,—Y,)$)?—0 asm,n— oo,

Therefore Theorem 2.3 implies that there exists a subsequence {Y,,} such that Y,
converges almost surely to a generalized process Y, in the sense of convergence in
2'. Since a(-) and b(-) are continuous, a(Y,,)—>a(Y,) in 2" a.s. and b(Y,,)
—b(Y,) in H3Y as. Moreover (5.3) implies that b(Y,,) is a Cauchy sequence
with respect to |- |5y, for each ¢ and therefore b(Y,,) — b(Y,) with respect to
|- || 2,n,¢ for each 7. Hence for each ¢ € 9, b(Y,,)X($) = b(Y ) X(¢) in L¥(Q, & P).
Equation (5.4) implies that for each ¢, a(Y,,)(¢) = a(Y.)(¢) in L%(Q, & P) and
we have shown above that Y, (¢) > Y(4) in L%(Q, & P).
Therefore

E(Yo—a(Yo)—b(YL)X)($))* = 0

and

Yo(@) = a(Y)($)+(Yo)X(¢) as.

Hence there is a modification of 5(Y,)X such that Y, =a(Y,)+b(Y,)X a.s.
We next prove the uniqueness (up to modification).
Let Y1 and Y2 be two solutions of (5.5). Then as above if ¢ € V, Spt (¢) = (— 00, 5],
then

K3s

E[(Yo—Y2)@)* = —5F [ Y- Y23
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Therefore,
K3s™

Iv2-vz)z = =5

1Y:— Y23

Since for sufficiently large n, K3s"/n!<1,
|[Y1—YZ|2 =0 and hence for each ¢ € 2, Yi(¢) = Yi(¢) as.
COROLLARY. Under the above hypotheses the initial value problem
Y =a(Y)+b(Y)X, Y(¢) = 0 if Spt (¢) < (—0, 0]
has a unique solution.

ExAMPLE 5.1. The following is a very simple example of a mapping b(-) which
satisfies the hypotheses of Theorem 5.2.

Let b(Y)=¢, = Y for some ¢, € £ with support in [0, o). It is easy to verify that
b(-) is progressively measurable and continuous from 2’ to &’. Then

e =BTl = E| [ > @ —b(ray ) e
][ 3 @ (- vaw )

= [, 2 B(r- Yope— )y ds.

Since Spt (¢§’(x— -))=(— o0, x], then if V is any absorbing subset of £ containing
the functions ¢§’(t— ), € R*, 1 £j< N, it follows that

16(Y) —b(Y2)|on.s < K f | Yy~ Y2 ds.

THEOREM 5.3. Let Xy, k=1, ..., L be independent second order generalized pro-
cesses with zero means and independent values and correlation functionals T\, which
satisfy a=2, ;i [FF()] o <o0. .

Assume that b¥ :MPD' — H3Ye, i=1,...,M, k=1,...,L are progressively
measurable and continuous and that a;: "9’ — 2', i=1,..., M are progressively
measurable and continuous. Assume that Spt (r¥;)<[0, ), i, jS Ny, k=1,..., L.

Assume that if Spt (¢) =(—o0, 0], then ai(-)(¢)=0, i=1,..., M. Let

|73 = sup{E(| Y$|*) : ¢ ¥, Spt(¢) = (—oo, s}

and V is an absorbing set on which |¢||« v, k=1,..., L are bounded. Assume that
la0)+ >5_ , b¥(0) X, | are finite valued. Assume that for any pair Y,, Y, of F¥1: %1
progressively measurable second order R™-valued processes,

T RLCORTTCOT IS oY I b A AT
i=1,...,.M;k=1,...,L,
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and

(5.7) la( ) —a(To)|2 < K? f

S

| Y,— Y2 ds.

Then the system of stochastic equations

L
(5.8) Y'=a(V)+ D V)X, i=1,..,M,

k=1
has a unique solution where Y=(Y?,..., Y™),
Proof. Put Y{=0;i=1,..., M, and

Y1:+1 =al(Yn)+ i bzc(yn)Xk’ i= 1,"-,M'
k=1
If ¢ € V and Spt (¢) =(— 0, s], then
(Yai1—= Y = (@(Yn)—a(Y,-1))($)

+ 3 GHT) BT )Xl®),  i= 1. M.

Hence
E(¥is - Y)@) < L+ 1){E«a,( ¥,) - a¥o_ )@
+ 3 BIGHCE)-bi Yn-l))X@)F}
< (L+1){||af(Yn)—ai(Yn-1)||3

L
te > ||¢na,,~,,1|b:f(m—bz°(Y,,-ong,w,,,s}
k=1 .

| Yn— Yo-:|2ds

< (L+ 1){1(‘1 f )

vo 3 Iblaak [ 1%, Tl o)
Therefore if ¢ € ¥ and Spt (¢) =(— o0, 5], then
CANS ATLES 3 WA ANEE
where K is a constant. Therefore,
| Fosr— Vo2 < Kf_m | o ¥, |2 ds.
We can then repeat the reasoning of Theorem 5.2 to show that }_’,.k—> Y. in

MZ' almost surely for some subsequence {Y,,} and that Y, satisfies the system of
equations (5.8).
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In Theorems 5.2 and 5.3 existence proofs were obtained by working on 2’ and
using the basic properties of convergence of generalized processes. However, in
many cases one must work in a Sobolev space H? ~ instead of all of 2’. In such a
case, it is more difficult to prove the existence of a solution. In the remainder of
this section we will prove an illustrative existence theorem of this type, which is
analogous to the usual Itd equations. We will require the following lemma.

LEMMA 5.1. Assume that X=d?B[dt?, b is FX progressively measurable with
Spt (b)) < [0, ) and for each t, ||b|3,,,=E [} (b(t, w)+b%(t, w)) dt < c0.
Then for A>0 there exists constants K, and K, such that

f ot
and

(5.11) e[ sup ([ [0 dzB) | = Kallla

Proof. For t=0, let

(5.10) ( sup

0Ss=t

2 ) s S310130

di(s) = (t—s) IfO=s
= (t+s) fO0O=s
=0 otherwise.

Then b-¢! € W* and by the corollary to Proposition 4.7,
¢ d*B
¢C) @Bla)@) = [ [bit,w) Gzt as.
0

Let Y,=b(d*B/dt*)¢!. For s=t, let Y,=Y,+W, Then E(Y,| FX =Y,
+E(W, | FE ). Let

Z,= E(Y,| FE wy) and W, = E(W,| FE ».q).

Then Y,=Z,— W,. Therefore, sup,<, Y2<2(sup,<; Z2+sup,<; W2).
Since Z, is a martingale, ZZ is a submartingale and therefore by the submartingale
inequality (Doob [1, Chapter VIL, Theorem 3.2]),

P(sup 22 2 3) S (IMEZD) = (NE(Y?)
— (UNEI(d>Bldi?) )]
= [ [ (@#7©+ o) s
- K}/A)E[ f: (B3(s) +b%(s)) ds]

where K} is a constant. Now

W, = Yt— Y, = b(d2B/dt2)(¢'s)
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where
Yu) = (t—s) for —s S u =< s,
=({—-u) for s=u=st
= (t+u) for —szuz —t,
=0 otherwise

We will now show that W,/(t—s) is a martingale for 0<s<t. If 5; <s,, then
E(We[(1—52)= Wy, [(t=51) | FE w,0) = EWo[(t—55)— W, [(t—51) | FE o 010)-
But

O o

dt2J\t—s, t—s,
and

Pal) ) _ 0 for

-85 S u =< +s;.
t—S, t—5 1= !

Therefore, by Proposition 4.5,
E(Wsz/(t_sz)_ Ws;/(t"‘sl) | 'g-fx—w,sﬂ) = 0.

Hence, W,/(t—s) is a martingale. Hence W2/(1—s)? is a submartingale. We sub-
divide the interval [0, ¢] into [0, /2], (¢/2, 3t/4],.... The length of the ith sub-
interval is ¢/2'. Let the endpoints be denoted by ¢, t,,.... Then t,=((2'=1)/2"¢.
Then by the submartingale inequality (Doob [1, Chapter VII, Theorem 3.2}),

W2 1 45
P — S _ > AN <<E : )
(t,-i‘;‘i’;t. (—sp = )- X ((t—n)z

Therefore

P( sup W2z A(t;t‘_1)2) hs

ti—1Ss=t;
Let A'=X(t—¢,_,)% Then

(t—1,_1)% E( Wtz:)
Al (t—1)?

A

P( sup W2z )\1)

ti— 1S5Sty

= 51 E(W %) since ((t d ‘)12) = 4.

Hence

P(sup, WP 2 X) S5 > EOF
Let
O(u) = (1-1), —tsust,
= (—t)-2u-1n), S uS by,
=0 otherwise.
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Since Spt (b(8% —y*)) <[, t], Proposition 4.5 implies that
W, = E(b@*Bld®)*) | FE w1
= E(b(@*B|dt*)(6") | FE «.1)-
Therefore, by Jensen’s inequality,
E(W2) = E(E(b(dB|dt*)(6%) | FE o ,1)?)
S E(E((0(d?B[dt*)(6))* | FE 1)

— E(b(d2Bldi?)0))".
But
BBl = E( [~ (b6)0(s)+b)0(s)) )
< 2E f  (b(s)4(s))? ds+ 2E f  (b(s)8(s))? ds
< 2E f (b(s))? ds- -+ 8E f b¥(s) ds.
Therefore
2 E(W?) < 2E f: (b(s))? ds+8E f: b%(s) ds,
and

P(sup WPz X S 3 f (B(5))2+ (B(s))?) ds.

0=s=t
The result then follows by noting that
P( sup Y2 = /\) < P( sup Zzz )\/4) +P( sup, w2z )\/4)

0=s=t
and
P( sup |Y| = )«) = P( sup Y2 = /\2).

0=s=t
We also have
E(sup Yz) < 2E( sup Zz)+2E( sup W2)

0sSs=<t 0=<s<t

Since Z; is a martingale, by applying a theorem of J. L. Doob [1, Chapter VII,
Theorem 3.4] to |Z,| we obtain

E(sup, Z7) S 4E(YD) = KIE[ [ (Bo)+ b)) ds]-

Similarly,
E( sup W2) 16E(W?)

ti-1Ss=t
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and

E(sup, 2) = 16 i E(W?)
and therefore
E(sup, ¥7) < K j (B(s))* + (B(s))?) .

REMARK 5.1. Note that the proof of Lemma 5.1 is valid if d2B/dt? is replaced
by any generalized random function with independent values for which
|él-=k|b]s2.- However the following corollary depends on the sample path
continuity of B.

COROLLARY. The sample paths of the random function s~ [° [ b(t, w) d*B/dt?
are almost surely continuous.

Proof. Regularizing as above we can choose, for a given ¢, a sequence b, — b
in ||+ ||2,1;: such that each b, is almost surely C*. Since the sample paths of B are
almost surely continuous, it is easy to verify that the sample paths of

5o f : f bo(t, w)(d*Bdt?) dt

are almost surely continuous.
But according to Lemma 5.1,

s d?B K
P(sup, [ [t o)t o) 57| 2 ) = 53 16=ul.c
Hence we can choose a subsequence {n,} such that
d%B A K k?
P(sup, | [ [ 0)-bu o) 2| 2 7) = 35

But then by the Borel-Cantelli lemma

P( sup
0=s=t

[ [ewo-b.0un%2

[[ous 0 G2~ s G2

uniformly for s € [0, 7] with probability one. Therefore s ~ [° [ b(t, w)(d®B/dt?) dt
has continuous sample paths with probability one.

> ]% for infinitely many k) =0

Hence

THEOREM 5.4. Assume that c(t) € C* N H*'! and has support in [0, ). Assume
that a is a progressively measurable mapping from C* into 9, where

={T:TeZ';T = Df,feC}
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and that
[ e[ ato)] = k=g sorossse
Also assume that for any f, Spt(a(f))<[0, o). Then the stochastic differential
equation
(5.12a) d*Y|dt® = a(Y)+c(t) Y(¢)(d*B|dt?)
with past condition
(5.12b) Y#)=0 fort <O
has a solution whose sample paths are concentrated on C*.

Proof. If we set Y,=0, then Y,=[ [ [a(0)e C. Forn=1,2,3,..., let
(5.13) Yoo, = f f f [a(Y,) + c(t)Y(d2B|dr?)] dt.

In order that the definition (5.13) of Y,,, make sense we have to check that
| Y,)%.1;:<oo for each ¢ and that Y, € C*a.s. Then the corollary to Lemma 5.1
implies that Y,,, has C! sample functions a.s. It will follow from what follows
below that || ¥, ,||3 1;:< oo for each ¢ and hence the sequence {Y,} is well defined.
It is also obvious that one can choose the arbitrary constants in (5.13) so that the
condition (5.12b) is satisfied. We assume below that Y, ,, is so chosen.

Now

DY, 1~ D*Y, = a(Y,)—a(Ya1)+c(t)(Ya— Ya-1) d2Bdt2.
If Spt (4)<[0, ¢] then
E[(D*Yys1— DY)
< 2E[(@(Y) —a( Yy ) @)+ 2E[e(- Yo Yoo )B)IR
2E(@(¥,)~a( Yo D)AF+6E | [ Fi(0)= Yaus ()"
+6E[ [0 = Va0 |

IA

+6E[ [0~ Yo sO)0)? |
< 2E[(@(Yy) — a( Y- ) S+ ks | Y= Yooy B el 612

for an appropriate constant k.
Let § =4¢° as defined in Lemma 5.1 and z/J"’z(u):j"i o () du where

Pu) = ¢(u), —s2uss,

= —¢(—25—u), —s=uz= —3s.
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Then Spt(¥5)<(—o0,s] and Spt(P3)<(—o0, s]. Since for each n, Spt(D®Y,)
<0, 00), it is easy to verify that (D®Y,,,— D3Y,)(¥3), j=1, 2, are well defined
and that

fs ff(D" Y11= D*Yy) = (D*Yoin— D*Ya)(#2) as.

and
[N GRS ARG A S AT RS
It then follows that
E(Yaa)- Y0)* 5 28] [ [[@¥-atu-0)] +hall Yu= Yool

Hence by our hypotheses,

B = 1a0F S kE[[ (1)~ Yauso)? ] + kil Yo Yol
Therefore -
(5.14) B(Ypar(t) = Yo()? < (ko) Yo Yoo
Also

E(taes)- 10" < 26 [ [a(¥D=a(tso0] +hal Yum ¥ocslne

< 2RE]| Yolt) — Yoo s 1+l Yo Yoo

WEE[ [ 170= Fums Ol ] +hal Ya Yool

é Zk?“ Yn— Yn—l"%,l;t'l'k&" Yn_ Yn—l"%,l;t-

IIA

Therefore for s<t,
(5.15) E(Yyi1(8)— Yo(5))? £ (ka+ks)| Yo— Yo_1]|3, 156

From (5.14) and (5.15) we have for u<¢,

u
" Yn+1_' n"g,l;u = k6 f " Yn_ Yn—l"%.l;s ds.
-

Therefore for u<t,
kg—lun—l
" Yn+1_ Yn"g,l;u é 131 " Yl_' YO"%,I;u

(n—-1)!

where k¢ may depend on ¢ but not on n.
Let gom=|Y,— Yn|31, and g;=g; ;. Then for m<n,
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Therefore Y,(-) converges in |- ||2,1;; to Y(-) and

Therefore, by Lemma 5.1,

(osg;g‘ ff(Yn“ Yo)e(- )‘Zf

Since the right-hand side converges, the Borel-Cantelli lemma implies that
J° [ Yace(-) (d2B|dt?) converges uniformly on [0, t] with probability one. Also

P{sup | 5}

1
< P{ sup k| ¥ori©)- Y00 2 35
0=s=t .

4nkn lt” 1
= 2n) é (n l)' glKl'

a(¥oed)- [ [a(r)| 2

<Pk [ %010 2 5}

But by Chebyshev’s inequality this becomes

{Oslipt Us fa(Yn+1)—js fa(Yn) z %
< k%t24nE[ f t (Yny1(5)— Yo())? ds]

< k24 kn ltn+1
= (n -

” Yl YO " g,l;b
Since

o k24nkn ltn
Z | Yy— Yol3 .1

converges, the Borel-Cantelli lemma implies that [* | a(Y,) converges uniformly
for s € [0, ¢] with probability one. Since by hypothesis

[ [atro-ar

it follows that [* { a(Y,) — [* [ a(Y ) uniformly for s € [0, #] with probability one.
To complete the proof that Y, satisfies equation 5.12, it suffices to show that

[ [eornZZ [ [err. %2

uniformly for s € [0, ¢] with probability one.

Sk|Yo(9)-Yu(s), O0=s=<y
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According to Lemma 5.1

P(sup, | [ [errran- Yw(t))‘%’dz( 2 )
< 2Ky e@)(Yat) = Yo (1)) [3 1
< 2k72 . Z kf ltJ 121

where k, is a constant. Since Y., n?2-"< o0, the Borel-Cantelli lemma implies
that

fs fc(t) Y.(1) ‘%f dt - f fc(t)Yw(t) ‘%dz

uniformly for s € [0, ] with probability one.
REMARK 5.2. It is important to note that in contrast to the case of Itd equations
the above methods do not easily extend to the general nonlinear equation

(5.16) d®Y[dt® = a(Y)+c(t)g(Y(1)) d>Bjdt?

where g is a real valued function. The reason for this is that to follow up the
analogous type of reasoning to that used for It6 equations would require that we
restrict ourselves to functions g which satisfy:

5.17) [8(Y1(2))—g(Ya(t))| + |d(g(Y1(2)) — g(Yo(2)))/dt|
' S k| Yi(0) = Yo(0)| + ko Yi(2) — Yo(2)].

But

|d(g(Y1(2)) —g(Ys(1)))/dt|
= [&(Y2(1)) Y2(1) —g(Yo(2)) Yo (1))
= [(&(Y1(2)) Yo(t) — g(Y1(1)) Yo(1)) +(8(Y1(1)) Yalt) — 8( Y1) Yo(1))]
z | [8(Y())(Y1(t) = Ya(0))| = | Ya(t)(E(Y2(1)) — (Yo())] |-

But if for any Yy(r)# Ya(), 8(Y1(r)) #&(Ya(1)), then | Yo(g(Y1(1))—£(Yx(1)))] can
be made arbitrarily large under the constraints | Y,(t) — Y,(¢)| + | Y1(t) — Ya(1)| < K.
Therefore the only functions g satisfying (5.17) are those such that g(s)=c or
g(s)=cs+b where b and c¢ are constants. In view of this, it appears that to prove
existence for equations of the type (5.16) different methods are needed. Such
existence theorems will be proved elsewhere.

6. Markov properties of solutions of stochastic equations. A generalized process
Y is called a local process with respect to {# _ :te R} if for te R, >0,
A€F o, BEFyie 0y then P(AN B| F¥)=P(A | F¥)-P(B| F}) a.s. where
FE= Ne>o0 Fi-et4 0 (cf. Urbanik [21]).

A generalized process is weakly Markov of order N with respect to the family
{# - w.n : t€ RY if there exist N random functions Zi, . . ., Z§, such that for each



1970] GENERALIZED STOCHASTIC INTEGRALS AND EQUATIONS 501

t and i, Z! is measurable with respect to % _, ;, and such that if 4 €% _. .4,
Be #; ), then
P(ANB|Z:,...,ZY) =PA|Z,,...,Z4)-P(B|Z,...,Z§) as.

(cf. Hida [6]).
A mapping ©: 2" — 2’ is a local mapping if for T,, T, € &', and any open
interval U, the property

T.(¢) = Ty(¢) for every ¢ with Spt (¢) = U,
implies that
DT, (¢) = PT,(¢) for every ¢ with Spt (¢) = U.

THEOREM 6.1. If Xisageneralized process with independent values, Spt (X) < [0,00),
T is a continuous, linear, local transformation on 2’ and if the solution of Tf=g are
analytic in the complement of Spt(g), then the solution of TY=X, Y(¢)=0 if
Spt (¢)=(—00, 0}, is a local process with respect to {F¥_ o 1}. (FE- w.n is the o-field
generated by the random variables Y(¢), ¢ € 2, Spt(¢)<=(—o0, t].)

Proof. Let O0=s<t<u,<us<uzg<v<w. Let 4 € FE , and Be F(, ,,. Then it
suffices to show that

PANB|F, up) = P(A| FL,up) P(B| FEuw) as.

It therefore suffices to show that if B={Y(¢,)€ By, ..., Y(¢,) € B,}, ¢1,...,$, €D,
Bla A Bn € ‘@(Rl), Spt (d’i)c(v’ W), then

P(B l y(‘:ll,ua)) = P(B I ‘g'(ig,ua)) a.s.
Let X=Xy, + Xy, where oy, by are C® and Spt () < (uy, up), i=1, 2, Spt (¢,)
<(—00, us], Spt (¥2) < [y, ). Then in [u,, ),
(6.1) TY = X,

Let Y, be a particular solution of (6.1). Note that conditioned on FY,, ), Y, is
independent of F¥ , ,; in fact, since T is local, Y, is measurable with respect to
F .« Then Y=Y, + Y, where Y; is a solution of TY= Xy,. But Y, is analytic
in [ug, 00) and therefore is uniquely determined by its restriction to (u,, u3). Hence
the restriction of Y; to (v, w) is measurable with respect to the o-field generated by
the restrictions of Y and Y, to [u;, o). Therefore

P(Y(¢1) € Bl, ER) Y(¢n) € Bn | y(l;,ua)) = P( Y(¢1) € Bl, cees Y(?Sn) € Bn | 5"&1,1‘3))

since we have shown that conditioned on Y restricted to (u,, us), Y restricted to
(v, w) is independent of F¢ , ,. Hence the theorem is proved.

CoROLLARY. If P(D) is a polynomial in the differentiation operator D and if X is a
generalized process, then the solution of P(D)Y= X is #¥-local.
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THEOREM 6.2. If X is the nth derivative of an ordinary stochastic process X with
independent increments, Spt (X)< [0, c0) and m > n, then the solution of the equation

6.2) D"Y+a, D" 'Y+ .- +a,Y =X

with past condition Y(¢)=0 if Spt (p)<=(—o0, 0] is weakly Markov of finite order
with respect to {F{_ » u; t € R*.

Proof. Equation 6.2 can be transformed into an equation of the form

(6.3) P(D)( y- > cif“)) = 3 bxo

i=—-m i=-m

where ¢;’s and b;’s are constants and

1
g0 =23 itizo,

= f .. f X, the i-fold indefinite integral if i < 0.

The right-hand side of (6.3) is an ordinary function f(¢) and we can solve the
equations P(D)Z=f in the usual way. If for example, P(D)=]]", (D—p;) with
the p;’s all distinct, then

z0) = 5 dent f “emvt f(1) d.

It is then easy to verify that Y=30" _, ¢, X®+Z(t) is weakly Markov of finite
order with respect to {#{_, ,} with splitting variables | e () dti=1,....m
and X%, —m<i<0.

EXAMPLES. 6.1. (D2—1)Y=cD?B, c € C*, Spt(c)< [0, o), B=Brownian motion,
Then

1 t 1 t
Y(t) = X(t)+5 € f e sX(s)ds—=z et f e X(s)ds

where X(s)=[* [ ¢cD?B. Y(t) is weakly Markov of finite order with respect to
{FE ».4;t€ R} and is also local with respect to {F{_ . ;€ RY}.

6.2. (D*—1)Y=cD?B, with c as in 6.1. Then

Y(t) = X’+l et f e sX(s) ds+l et ft eX(s) ds
27 Jb 2 0
where X(s)=[* [ [ ¢cD*B. This is an example of a weakly Markov process of finite
order which is not an ordinary process.
6.3. DY=c(DB+ D%B), with ¢ as above. Then Y is weakly Markov of finite
order and local with respect to {F¢_ ., ,;}.

THEOREM 6.3. The only local mapping ® from C|[0, 1] to C*[0, 1] is the constant
mapping.
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Proof. We first show that ®(f)(x,) must be a function of f(x,) for fixed x,. If
not, then there are two functions fi(-) and f5(-) such that fi(x,)=fa(x,) but

D(f1)(x0) # P(f2)(x0)
Then define

fax) = fi(x), x = xo,

= fo(X), x> Xo.
But since @ is local,
D(f3)(x) = ©(fi)(x) for x < xo,
= O(fy)(x) for x > x,.

But since ®(f) must be continuous, O(f;)(xo)=DP(f3)(x0)=D(f2)(x,) which yields
contradiction. Hence ®(f)(x)=F(x, f(x)).

Since (d/dx)(®(f))(x) is continuous in x for each fand is local, the same reasoning
implies that it is a function of x and f(x), say G(x,f(x)). But then F(x,f(x))
=[5 G, (7)) dy.

We now show that G(x, y) is bounded on a set of the form [0, 1]x [—y,, y;]. If
not, let (x;, y;) be a sequence of points such that G(x;, y;) — 0. Since [0, 1] x [—y,, 1]
is compact, there is no loss of generality in assuming that (x;, y;) — (xo, Vo).
Furthermore since for each y, G(x, y) is continuous in x, there is no loss of gener-
ality in assuming that the x; are all distinct. But then there exists a piecewise linear
function f(x) for which G(x, f(x)) is unbounded. But this contradicts the fact that
G(x, f(x)) is continuous on [0, 1]. Hence G is bounded on the set [0, 1] x [—y;, y1].

We next show that for each x,, F(x,, y) is constant in y. Let y, < y,. Noting that

F(xo,y) = f " G(x, f(x)) dx

for any f(x) such that f(x,)=y we have

F(xo, ) = f ° G(x, yy) dx

and for any >0,

o

F(xo, y3) = f " Gx, yy) dx+ f

X0~

G(x, Y1 +(y%y_1) (x—x0+s)) dx.
&
Let M be the bound of |G(x, y)| on [0, 1]x [—R; R] where R=max (|y;], | y2|).
Then |F(xo, y1)— F(xo, y5)| £2eM. Hence F(xo, y;)=F(xo, y2) Which implies that
®(f)(x) is a constant function independent of f.

Theorem 6.3 shows that the coefficient b(-) considered in Theorem 5.2 cannot in
general be local. However, it may be that some derivative of b(-) is F¥-local.
b™ is Fy-local if for every interval (o, B), FELP" < F, 2,

THEOREM 6.4. If X is a generalized process with independent values and for
some m and n, a™ and b™ are F¥-local and is a solution, Y, of the equation
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Y=a(Y)+b(Y)X exists, then the vector generalized process (Y, a, b) is local with

respect to {F %4,

Proof. Let 0<u; <u,<ug<v<w. It suffices to show that for Be FE %P,
PB| FLldy) = P(B| FEGL2)  as.

Let ¢ € C*(R?) such that Spt () < (uy, uy), Spt ()< (uy, ) and $(z)=1 for > us,.
Therefore by our hypothesis it follows that if Spt (¢) < (us, w) then

a)@) = a @+ [ pers(e) dr

where p(-) is a polynomial of degree (m—1) and

bW = b @+ [ a0 de

where ¢g(-) is a polynomial of degree (n—1).

But p(t) and g(¢) are determined by the set {b( Y )(¢), a(Y)(), a@ Y)(¢), b Y) (),
¢ € 2, Spt (¢) < (u2, uz)}. Hence conditioned on FE 1% a(Y)(4) and b(Y)(4), are
independent of FX%%%, if Spt (4) < [us, 00). But since X|,, «, is independent of
Y|(- w4, this implies that the set of random variables

{a(N)(g)+o(N)X($); i=1,..., M}

conditioned on F& Y50 is independent of FE:%:%5,if Spt (¢) < (v, w), i=1, ..., M.
This implies that if Be F%?, then
P(B | FET5) = P(B| FEGE).

ExAMPLE 6.4. Theorem 6.4 implies that the solution Y of the equation d®Y/dt?
=f(t)(d? Y/dt?) + Y(d?B|dt?) is F¥-5-local.

REMARKS. 6.1. It is easy to verify that the stochastic process Y(¢) of Example 6.1
induces a probability measure P on the measure space (C*, Z(C *)) where C* is
the set of continuous functions on R which are identically zero on (— oo, 0] and
%(C *) is the set of Borel subsets of C *. Theorem 6.2 implies that Y(¢) is weakly
Markov of finite order and Theorem 6.1 implies that Y(z) is a local process. In
fact equation 6.4 implies that

Ye+h) = 3 +e M Y0+ —e ) f " et X(s) ds + | et x(s) ds)

e [ e x(s) - X ds—gemem [ e - X ds
+(X(2+h)— X(2))
where X(s)=[° [ ¢D?B. If
W(t) = j: et=5X(s) ds+ f: =49 X(s) ds,
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then (Y(z), W(z)) is a Markov process with values in RZ, that is, Y(¢) is weakly
Markov of order 2. Moreover for each t, W(t) is #{_, ;-measurable. Let

(FY*) = {4 : Ae B(C*"), 34, € FT* such that P(4 A 4;) = O}.

Since Y(¢) is a local process with respect to {F{_, . : t€ RY}, W(t) is (FF*)°-
measurable for each 7. One might expect that there exists a local mapping ® on C *+
such that W=®(Y). However since W(-) e C*, this would yield a contradiction
to Theorem 6.3 and therefore no such mapping can exist. In fact since Y(?) is a.s.
nondifferentiable, it is more reasonable to conjecture that there does not even
exist a local mapping ® such that W=®(Y) a.s. (Although we do not attempt to
prove this statement here, it is made plausible by the fact that Theorem 6.3 remains
true if C[0, 1]is replaced by any sufficiently rich subset.) Essentially this means that
the splitting information is hidden by a noise effect in the local o-fields.

6.2. It may be that the distribution semigroups introduced by J. L. Lions [12]
will be useful in the study of processes such as those considered in the above
examples.
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