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GENERALIZED STOCHASTIC INTEGRALS

AND EQUATIONSO

BY

DONALD A. DAWSON

1. Introduction. In his fundamental memoir [7] K. Itô introduced an important

class of stochastic differential equations which are now known as Itô equations.

These equations are based on his definitions of stochastic integrals with respect to

Brownian motion and random measures with independent values. The importance

of these equations is due to the fact that a large class of Markov processes in Rn

can be represented as solutions of such equations. A thorough account of Itô's

work and various extensions of it has been given by A. V. Skorohod [18]. It is

also possible to represent certain other Markov processes of finite order as solu-

tions of vector Itô equations. In this paper we consider an extension of Itô integrals

to integrals with respect to generalized processes with independent values in the

sense of I. M. Gel'fand and N. Ja. Vilenkin [5]. We do not consider the most

general case which would involve integration with respect to generalized processes

with independent values defined in Rn, n ä 1 (cf. K. Itô [7] and A. V. Skorohod

[18] for random measures) but restrict ourselves to the case n=X. The relation

between the generalized Itô integral and the multiplication of (Schwartz) distri-

butions is discussed. This involves a study of /¿-transformations of Q)', the space of

distributions, where p. is a measure on 3>'. Following the example of K. Itô we

then discuss stochastic differential equations defined in terms of these stochastic

integrals and prove several existence theorems.

It is shown that the solutions of generalized Itô equations with local coefficients

have local splitting a-fields and are weakly Markov of finite order. Generalized Itô

equations may also be considered in connection with P. Levy's problem of the

representation of stochastic processes in terms of differential innovation processes

[11, §2.7].

2. Preliminaries on generalized processes. The theory of generalized stochastic

processes are thoroughly studied in I. M. Gel'fand and N. Ja. Vilenkin [5] and in

X. Fernique [3]. In this section we review those parts of the theory which are

relevant to this paper.

A generalized stochastic process X is a mapping <j> ~* X{f) of 2>, the space of
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C^-functions with compact support in R1, into the family of random variables on a

probability measure space (Q, J^ P) which satisfies

(2.1) X{a4>+ß$) = aX{f)+ßX{il>) for a,ße R1, and

(2.2) if <j>n -> 0 in 3¡ with the usual topology, then X{<f>n) -*■ 0 in probability.

If for each w, <j> ~* X{<f>) (to) is linear and continuous on 2>, X is said to be a

random distribution. If X is a random distribution, then a measure is induced on

{&', SS{ß')) where 3&{3>') is the a-field of Borel subsets of 3>'. Because of the

nuclearity of Qi, the fundamental theorem of R. A. Minios [5, Chapter 4, Theorem

2.3] yields the following.

Theorem 2.1 Every generalized random process has a modification which is a

random distribution.

Proof. See Fernique [3, Proposition III, 4.2(a)].

The following result is easy to verify.

Theorem 2.2 The derivative of a random distribution is a random distribution.

Proof. See I. M. Gel'fand and N. Ja. Vilenkin [5, p. 246]. (All derivatives are

derivatives in the sense of distributions and are denoted by dfdt, for Df.)

The mean of a generalized process is defined (if it exists) by

M{</>) = E{X{<f>)),       4>e2>.

The mean is a distribution.

The correlation functional of X is defined (if it exists) by

Y{<f>, *) m E[X{f) ■ Xm   for <f>, 0 e 3.

The kernels theorem implies that T{<j>, 4>) = K{<f> ® >p) for some KeS'{R1XR1). A

process for which T{<f>, f) exists for all <f> is said to be a second order generalized

process. Note that r(-,) is a positive definite bilinear form. For second order

generalized processes Fernique has proved the following fundamental convergence

theorem.

Theorem 2.3. Let {Xn} be a sequence of second order random distributions such

that for every <j>e2iï, E{{Xn — Xm){<f>))2 -*■ 0 as n, m -> co. Then there exists a sub-

sequence {Xnk} which converges almost surely. The different limits are equal, almost

surely.

Proof. X. Fernique [3, Theorem III, 7.2].

X is said to be a generalized process with independent values at every point if

the random variables X{<f>) and X{f) are mutually independent random variables

whenever Spt {<f>) n Spt (¡/i) = 0. The following theorem characterizes the correla-

tion functional of a process with independent values at every point.

Theorem 2.4. The correlation functional T(-,) of a process with independent

values at every point is given by

m $) - ff 2 r-k{x' www dp-ix, o
JJ  i.k = 0
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where <fn{x) = d'<f>{x)ldxi, p is a positive measure, the functions rjk{-,-) are ^.-square

integrable and only a finite number of the rjtk{-,-) are nonzero on any given bounded

set.

Proof. See Fernique [3, Theorem IV. 1.3] (cf. I. M. Gel'fand and N. Ja. Vilenkin

[5, III, Theorem 9]).

Note that if £ is a differential operator of finite order, then the correlation

functional of TX satisfies rTX{<f>,ip) = rx{T(f>,Ttli). Many different generalized

stochastic processes with independent values at every point can have the same

correlation functional. A rather large class of processes with independent values at

every point is characterized in terms of the characteristic functional in I. M.

Gel'fand and N. Ja. Vilenkin [5, III, 4].

Let 3im be the set of functions with compact support and m continuous deriva-

tives. The space of distributions which is the dual of 3¡m is denoted by 3>'m and its

elements are called distributions of order im. A distribution which is of order

^m but not of order ^ m— X is said to be of order m. R. M. Dudley has proved the

following theorem.

Theorem 2.5. If for every j>e3>

sup E{X{rhf))2 < 00
h

where (thf){t) = </>{( — A), then there is a positive integer m such that the measure

induced by X is concentrated on the set of distributions which are of the form Dmffor

some continuous function f

Proof. See Dudley [2, Theorem 3.1].

The Sobolev space H2-m{U) is the set of distributions in an open set [/such that

the distribution derivatives of order S m belong to L2{U). The space H2-m{U) is a

normed space with norm

Mkm  =   (    2        f   (Dau{X))2 dx)1'2.
VOáítSm JO I

H2-m{U) is the closure of 3>m{U), the set of functions in 3)m with compact support

in U, in H2-m{U). H°°,m{U) is the set of distributions defined in an open set U such

that the distribution derivatives of order -¿m belong to L°°{U). The space H™-m{U)

is a normed space with norm

i«ik»= 2 |J*»I-
OSaSm

Theorem 2.6. H2-m{U) and H2-m{U) are Hubert spaces.

Proof. See F. Trêves [20, Proposition 31.1].

Let H2- ~m{U) be the space of distributions in U which are equal to a finite sum

of derivatives of order ^m of functions in L2{U).
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Theorem 2.7 If m is a positive integer, then there is a canonical linear bijection of

H2-~m{U) onto the dual of H2-m{U).

Proof. See F. Trêves [20, Proposition 31.3].

For m positive or negative H2¿f is the set of distributions whose restrictions to any

relatively compact open set U lie in H2-m{U).

A fundamental system of neighbourhoods of 0 for the usual topology, 3~b; in

3' are of the form

V{B, e) = {T: \T{</>)\ i e   for </> e B}

where £>0 and £ is a bounded set in 3. The weak topology iFw is given by the

fundamental system of neighbourhoods of the form

V{e,j>i,...,<?n)=   H  {T:  \T{<f>,)\  <e}
j = l

where e>0 and <f>i,..., </>„ are in 3. Let 3$b, 38 w, 38b, 3SW be the respective Baire

and Borel sets and let 38{3') be the <j-field of subsets of 3' generated by the family

of sets of the form {T : T{f) e B} where </, e 3 and B e 38{RX). Let 38{3', I) be the

sub-a-field of 38{3') generated by the family of sets of the form {T : T<f>e B}

where B e 38{R}), cj>e 3 and Spt {f) <= /. If X is a generalized process defined on the

probability measure space (Q, 3?, P) let J^f be the u-field generated by the random

variables X{f), Spt (<£)<=/.

Theorem 2.8. âw=SSW=âb=@b=38.

Proof. See Ju. V. Prohorov [14].

Theorem 2.9. The sets C, the set of continuous functions, 2>'m and H2,~m are

Borel subsets of S¿'.

Proof. See Fernique [3, III. 3].

Given a compact subset K of R1, let 3>K = {<j> : <f> e 3, Spt (<£)<= K}. Then there

exists a natural measurable mapping n: {3',&{3'))->{3'K,3$(3'K)). Given a

measure p, on {3', 3S{3')) then the measure pK on {3'K, 3S{3'K)) which is induced by

77 is called the K-marginal of p.

Theorem 2.10. In order that a system {pK} of probability measures on {3'K, 38{3'Kf)

where K runs through the set of compact sets be a system of K-marginals of a random

distribution,   it  is necessary and sufficient  that for every pair Ku K2 and all

<t>e3Kin 3K2,

pKl{{T:Te3'Kl, \T{<j>)\ ¿ 1}) = pK¿{T : T e 3'K„ \T{f)\ g 1}).

Proof. See Fernique [3, Proposition III. 4.3].
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Theorem 2.11 (2). 3' is a Lusin space.

Proof. See L. Schwartz [17].

Theorem 2.12. For any probability measure P on {3', 3S{3')) and any sub-o-field,

sé, of 38{3') there exists a regular conditional probability with respect to sé.

Proof. Since 3' is Lusin, there is a finer topology STx => STb such that {3', 37"1)

is Polish. Hence {3', 3S{37'1)) satisfies the conditions of the well-known theorem of

M. Jirina [9] which implies the existence of regular conditional probabilities.

Theorem 2.13. If the generalized stochastic process X satisfies E[X{<j>)]2 -¿k\<j>\2im

for all <f> with support in a compact set K, then the K-marginal measure can be

concentrated on H2-~(m + 2).

Proof. See Gel'fand and Vilenkin [5, 329].

Theorem 2.14. Let 38f = (~\E>0 3S{3', [t-e, t + e]) and let 3&m = \lt38f. Then

38x<£38{3').

Proof. Consider the measures p. and v on 3S{3') induced by the first derivative

of the Poisson process and the identically zero process respectively. Now these two

measures agree on 38fx v • • • \¡38fn for (r1;..., tn) e Rn and hence they agree on

38'„. Since p.±v on 33{3') it follows that 38^i=38{3'). On the other hand it is

obvious that 38 ̂  <= 3S{3').

We will also require the following theorem.

Theorem 2.15. Consider the system of differential equations

M j

Df+ 2 ¿iAOf = Si,       i = l,...,M   where DTt = £ Tt,
y = i dt

Au{-) are C°-functions and Si e 3', i=X,...,M. If S¡ = 0, i=X,...,M then the

only solutions are C"-functions. For any {S¡} there exist solutions to the system and

the difference between any two solutions is a solution of the homogeneous system.

Proof. See Friedman [4, Theorem 36].

3. Stochastic integrals. I. Throughout the remainder of this paper X denotes a

second order generalized stochastic process with independent values at every

point, zero mean and correlation functional T(-,). Since V is a nonnegative

quadratic form (Theorem 2.4) on 3, we can complete 3 with respect to Y to

obtain a Hubert space Hr with inner product V. Instead of taking the most general

form of T given by Theorem 2.4 we assume that r(-,) is of the form

(3.1) r06,-A)=  f f   rjk{xW'\xWk\x)dx
J j,k = 0

(2) I would like to thank Professors J. R. Choksi and K. N. Gowrisankaran for their

communication of the results of [17] and their assistance with the proof of 2.12.
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where V<oo and the functions rjk{-) are in Lco{R1).

The set of functions

/:    2    irJk{x)f'\x)fk\x)dx
l,k = 0 J

< oo

modulo Nr = {f: r(/,/) = 0} can be identified with an appropriate subspace of

Hr. (N.B. Derivatives always refer to distribution derivatives.)

Proposition 3.1. IfT{-,) is of the form (3.1), then H2-NINraHr.

Proof.

TV

¡f\\r=    2    f   ruk{x)f\x)fk\x)dx
i.k = 0 J - °°

^ 2 fo*l- rV'W^wi^
j,k = 0 J-oo

N / /.oo \ 1/2    / /•*, \ 1/2

^   2   lky.*IU(        ifU)ix))2dx) ifkKx))2dx)
j,k = 0 W  - OO / \J - OO /

by Schwarz's inequality

< 2 lk*ILI!/lli.*-
J,Jc = 0

The proof is completed by noting that 3 is dense in H$-N. (We do not consider

here the question of when Hr = H2-N but it is related to Gârding's inequality

[22, VI. 8].)
The mapping <j> ~* X{<f>) of 3 into L2{Q., 3*,P) extends naturally to an isometry

of Hr onto a closed subspace of £2(£2, ^,P) such that

E{x{f)-x{g)) = r{fg).

This extension is called the second order extension of X.

Example 3.1. Let A'be the first derivative, B, of the Brownian motion process B.

Then £ is a second order generalized process with independent values at every

point and correlation functional

r(^)= P <f,{x)^{x)dx.
J — 00

B is usually known as the Gaussian white noise generalized process. The Itô

integral J" K f{t) dB{t) is a linear isometry of L^R1) into £2(D, S^P) which is

defined for a simple function/(•) = 2?= i AX[a,,ö,) by

f f{t)dB{t)= ̂ fci{B{bi)-B{af).
J -x, i = 1
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It is well known that if (f> e 3, then

/•OO /»CO

<t>{t) dB{t) = -        B{t)f>{t) dt   a.e.
J — CO J — CO

= -B{f) = È{<j>).

Hence the usual stochastic integral is the second order extension of the Gaussian

white noise process È.

In the study of stochastic differential equations it is also necessary to consider

the indefinite integral

ff{t)dB{t) = jxc^As)fis)dB{s)+ c

where c is an arbitrary random constant. In the general case with X playing the

role of B the function x(_ x¡a may not belong to Hr so that we may not be able to

define the indefinite integral in this manner. However, in this case we first define

the productfX as a distribution and then consider the primitive, J"f{t)X, off{t)X

as a distribution. We now proceed to do this.

If <I> : 3 -*■ Hr is a continuous linear mapping, then so is the composition

<D X
3 —► Hr —> L2{Q., 3?, P).

It is easy to verify that this yields a generalized stochastic process and hence there

is a modification which is a second order random distribution with correlation

functional

r(s¿, 0) = f 2 '^wrt'wrw dx.
•I - œ i.k = 0

Following Fernique we call X<X> the second order transformation (or ^transforma-

tion) of X by <S>. We next apply this to obtain £-products.

For fixed/consider the linear mapping <X> from 3 to Hr defined by <j> ~+f-<f>.

Proposition 3.3 If assumption 3.1 is satisfied and iffe H$-2, then the mapping O

is continuous.

Proof.

Il/*II? =   2    f   rUk{x)if4>r{x){f<pfk\x)dx
j,k = 0 J - »

= 2 2 2 f r^x)(i\(k)\f%x)^-\x)r\xwk-i){x)dx
j,k = 0 i = 0  1 = 0 J-v> \'/\'/

á ll^l!2^ 2 i 2 H Wk{x)(ji)(k¡)fiKx)f'Xx) dx

^ a||^||«fN||/||l,ir   for an appropriate constant a.

Therefore if <f>n -*■ 0 in 3, then |/^„||r -»■ 0 and the proof is complete.
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Therefore the second order transformation of X by the mapping <f> ~-f<j> gives

us a ^transformation which we call the P-product, Xfi off and X. Xffe3, then

for almost every to, Xf{w) is the product off with the distribution X{co) in the usual

sense of the theory of distributions. In addition Xf{f) is the stochastic integral of

cj> with respect to Xfi If assumption 3.1 is satisfied, then Proposition 3.1 implies

that E{{Xf)2)^a\<f>\2N which in turn implies that the A'-marginal measures can be

concentrated on H2-~{N + 2) (Theorem 2.13). Hence the usual distribution product

X{co)f is defined for almost every to only iffe H2,N + 2. Thus we would not expect to

be able to multiply X by an arbitrary/e H2-N. The fact that we have defined such a

£-product can perhaps be explained by the fact that if fn -»-/ in H2,N, f e 3,

«=1,2,..., then for each <f>e3, Xf{f) -> Xf{<f>) in £2 but not necessarily almost

surely. However, by Theorem 2.3 there is a subsequence Xfik-^ Xf'm 3' almost

surely.

Remark 3.1. If/e H2¿f, then by a minor modification of the above argument

we can define Ay restricted to any relatively compact open set.

Remark 3.2. L. Schwartz [15] has shown that it is impossible to define multi-

plication for all pairs of distributions in such a way as to maintain the usual rules

of differentiation.

The primitive of the random distribution Xf is denoted by J"' Xfi that is, if

<pe3 then (f Xf){f)=-Xf{f). If we ñx<j>0e3 which is not of the form <¿ for

¡/i e 3, then we can allow (ff Xf){<f>0) to be an arbitrary random constant.

Proposition 3.4. For any fe H§-N and any ¡f>e3, E{Xf{f)) = 0, that is, the mean

of Xf is zero.

Proof. By definition there exists ipne 3, n=X,2,..., such that >jin ->f in 7/2,lv.

But E{Xi/jn{(f))) = E{X{ipn^>)) = 0 since X has zero mean. By Proposition 3.3.

Xi/>n{<f>) -> Xf{<f>) in L2{Q, 3F, P) which implies that X<J*n{<f>) -> Xf{f) in L\Q, 3*, P).
Therefore E{Xf{<f>)) = 0.

Proposition 3.5. Iffe H^¿N then the K-marginals of the measure induced by Xf

on 3' can be concentrated on H20-c~(-N + 2\ that is, Xf can be concentrated on H20-c~iN + 2).

Proof. Consider a relatively compact open set U, and assume that Spt (<£)<= [/.

Then

E{{Xf{f))2) = 11/0 ¡|F

=  2   f" nAxMrW)™ dx
i,k = 0 J - =°

= 2 2 2 r (iKÍW-r^-^,^

= \\f\u\\i.N 2 Í 2 r (';)(í)k^wiirw^("(x)[jx
j,k = 0 i = 0 1 = 0 J-&   \'/\*/

^   4f\v\\l.NU\\lN.
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The result then follows from Theorem 2.13.

4. Stochastic integrals. II. In this section the notion of stochastic integral is

extended to the case of random integrands. As in the previous section this requires

a consideration of £-transformations of 3' and in this section these transformations

will in general be nonlinear. We will first review the approach of K. Itô in the case

of Example 3.1 (refer to J. L. Doob [1, IX, 5] for the details).

Let V=L2{R1 x Q, 38{R}) xS^dtxP) and let

\\f{t,co)\\2=   [^E{[f{t, co)]2) dtj'2.

Let VM={f{-,-):f{-,-)eV; Vi, f{s,-) is J^_^-measurable}. A (/, co)-step

function is a function of the form

/(/, co) = 0, t < au

= /aV)>        a¡ -¿t < aj+u   j < n,

= 0, anú t,

where ai<a2< ■ ■ ■ <an and/,() is ^_oo^¿-measurable. It can be shown that the

0, co)-step functions are dense in VM. For such a {t, co)-step function the stochastic

integral is defined by

P f{t,co)dB{t) = n2f{co){B{ai+i)-B{a>)).
J  -  CO j a 0

Then the mapping /— /"„/(/, co) dB{t) can be extended to an isometry from

VM to £2(0-, 3F, P).

Now let A' be a generalized process with independent values and correlation

functional r(-,) of the form 3.1. A function/: R1xQ^ R1 is said to be 3CX-

progressively measurable if for each t e R1, the mapping /: ( — co, t] x D -=► Rl is

measurable with respect to 38{ — co, t] x^"f_Bl].

Let

H/w = {/: /is ^-progressively measurable, fe H2-N a.s., £(||/||l,w) < co},

and let

For ae R1 let

Wa = {f: Spt if) c [a, co) a.s.,/0,) e H2-» a.s.,

/(•,•) is á?(ií1)x^f_0O>ormeasurable, E{\\f\\lN) < co}.
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We define the inner products

</(••), g(-,-)>r = El f      f   n-.k{x)f'\x, œ)g™{x, co) dx],
LJ - x, !¡k = o J

</(-,- ),g{ •, • )>r,s = £ [ P       2   rUk{x)f'\x, co)g«\x, co) dx]
LJ-oo ¡,k = o J

in WN. The spaces If" and Wa completed with respect to < •, • >r are denoted by

W*, W* respectively. It is easy to verify that W*jN* is a Hubert space where

N*={f : fie W*, </,/>r = 0}. Let W*° denote the set of U^-functions of compact

support.

Let

f m

Wa = \f:fe W*,f = 2 XA.fi, Spt (/) <= [a, oo), A¡ e JFf_ „,a], i=l,...,m,
I ¡ = i

A¡ r\ A,- = 0 if i ^ j, f e Hr, i = 1,..., m

We now proceed to define the P-product fix for/e W*. In order to do this we

begin by defining the stochastic integral X{f) for fe Wa, a e R1. For fie Wa,

f=I?=iXAtf, ^e^f-«.,aj, i=X,...,m, AiC\ A¡=0 if i+j, f e Hr, i=\,...,m,
we define X(f) by

m

(4.1) AX/) = 2 XAjifd
i = l

where X{f) is the second order extension of AX) which is defined in §3.

Proposition 4.1. The mapping from Wa to L2(fl, 3?, P) defined by equation

A. X preserves inner products.

Proof. Let /= 2f» i XaJí and g = 2f. ± xbSí- Since X has independent values, it

follows that xai and X(ft) are independent and xb, and X{g.) are independent.

Therefore

£(AT/).ATg)) = £ 2 2xAinBj-{X{fi)-X{gJ))
= i i=i J

= 2 JJP{Air,B^E{X{fi)-X{gj))
¡=iy-i

m      n /»co W

= 22 ^n B¿\    2 ^.iW/s^^w ¿*
i = l J = l J - oo  k,¡=0

= £ÍÍ°°     2   rKl{x)fikXx,oS)g«Xx,co)dx
LJ -°°   fc.¡ = 0

= < 2, &«*/> Z xbi9i > •
\l=l 1 = 1 /    V
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Proposition 4.2. Wa is dense in W*-

Proof. Let/e W* and let & be the a-field of subsets of Q generated by/con-

sidered as a //r-valued random variable. It can be shown that 'S is generated by

sets of the form {w : {f{co),<f>)e B, BeSStR1), <f>e3, Spt (¿)c [a, co)}. Since

Fubini's theorem implies that (/, <j>) is J^f..*,^-measurable, ^ is a sub-cr-field of

J^_ooia]. Since Hr is a separable Hubert space, S? is countably generated. Hence

there exists a sequence of finite cr-fields, @n f ^. Let W%, W%n, n= 1, 2, 3,..., be

the Hubert subspaces of W* consisting of those fie W* such that for each <f> e 3,

(f, </>) is ^-measurable, ^„-measurable, respectively. Note that for each n, W%ncz Wa

and that W£ f W%. Therefore if £y„(/) is the projection of / on W%n, then

/«lim^« £¿0 in W* (Doob, [1, IV, Theorem 7.4]).

Hence the isometry given by equation (4.1) can be extended to an isometry

from W* to£2(fí, 3F,P).

Proposition 4.3. If fie W*, then E{X{f) | J^(x_0O,o)) = 0.

Proof. It suffices to show this for f{t, co) = xAiiCÜ)f{t), At e3*x_^iCCi, f{t)eHr.

But then

E{X{f) | *?_„.*) = E{XAi{co)X{f){co) | ^_„,a])

= X.1(-)£W/)l^-oo,al)

= XA,{)E{X{f))   since X{J) is &fa< „ ,-measurable

= 0   by Proposition 3.4.

Proposition 4.4 £Aere ex/sís ö A'«ear mapping X{■ ) from W*°r\ WN toL2{LX, ß\P)

which preserves inner products and which agrees with that given by equation A. 1 on

W*, a e R\

Proof. Consider/e W*°nWN and let a0,..., am be a partition of Spt (/). Let

/o = Projection off on   If*,,

f = Projection of/-/0 on W*v

fm = Projection of {f-fi ■ ■ ■ ~/»-i) on W*m.

Then set

(4-2) fai){t, «.) - J /«('• ")•
i = 0

We now prove that the mapping J¿L0ft~* 2f=o X{f) preserves inner products,

that is
(m m \ •  m m        \

2 *(/<)• 2*(&> = < 2/'2^> •
i = o j = o I \i = o       j = o     /  r

To prove this, it suffices to show that if/= xAf g = Xsl^/and g e Hr with appropriate

supports, A e gr*_ aah b &Ff_w>N, a < 6,/J_ g in /Yr, then E{X{f) ■ X{g)) = 0. Since
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^7-oo,6-i/n] t-^o-oo,!,) as n f co, there exist Bn, «=1,2,3,..., such that Bn e

3^x_ ce ,„ _ 1/n] and Xb„( • ) -> Xs( ■ ) a.s. Then Xb„{ • )g -* XbÍ m <•,• >r and xbbAY.£) -*

XBA(g) in L2(£¿, J^£). Hence it suffices to show that E{{XAX{f)){xBnX{g)) = 0 for

each «.

Any/with support in [a, co) can be decomposed as f=f +f2 with Spt {f) c [a, A)

and Spt (/¡Ac [b-1/n, co), fi and/2 e H2-n. Then

£((x^0/))-(xB„*(s)) = £((x^(/i))(xB„ *(£)))

+ £((x^(/2))(xB^(g))).

But

E{iXAX{f))-{XBnX{g))) = E{E{{XAX{f)){XBnX{g)) I *i-.m»

= E{xAX{fi)xBß{X{g)\3ri_<aM))

= 0   by Proposition 4.3.

We have
/•co n

x¿HxB»        2 ^W/fWf^Wdx\
J - œ l\k = 0 J

= 0   since Spt {f) n Spt (g) = 0

and therefore <[xAf2, xB„c?>r = 0- But by Propositions 4.1 and 4.2,

£((XAA-(/2))-(xB„A-(f))) = <x,/2, XB„f >r = 0,

since both xjz and XbJ are in Wf-iln.

To complete the proof we must show that

(4.3) lim/(0l) =/   inW*°

where 0* is the directed set of partitions.

We first show that the C°°-functions in W*° n WN are actually dense in W*°.

Consider pe{x) = {lje)p{xle— X) where

P{x) = a exp iyirrTp)    for 1*1 < l>

= 0 for |x| £ 1.

where

Then for any fe W*°, {f*pe){-,co)->f{-,co) in Hg-N for almost every w as

£ 10 (cf. Trêves [20, p. 328]). In addition

11/* /».-/!«.*<«) ^ II/I|2,nH[1 + UpM    for a.e. ».

Hence by the bounded convergence theorem,/* p„^/in W*. To complete the

proof note that for e>0, f* pee W°* n WN and for almost every co, /* pe(-, w)

is Cœ. Hence it suffices to verify equation (4.3) for an a.s. C°-function in XVo* n If".
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If h>0,fh{t, co)=f{t-h, co), then for each t, fh{t, co) is J^jL œ >( _„r measurable.

Hence it is clear that lim&fiha¡)=fh in W°*. On the other hand, if/is a.s. C°°, then

||/-/h||r-^0a.s. asA^O [1, p. 441].

Since ||/—/"||r^Kl|/||2,N a.s., the bounded convergence theorem implies that

/" -*/in W*, as A -> 0. Hence if/e IVo* is a.s. Cm,

(4.4) Wf-faAr è \\f-fh\\v+ ||/ft-/Ä(,llr+ W&à-fmïr.

But the right-hand side of (4.4) can be made less than e > 0 by first choosing A so

that \\f—fh\\r< e/3 and then choosing {a¡} so that \fhf{kt)llr< e/3. The proof is then

complete.

Remark 4.1. If we had not assumed that IX,-) were of the form of equation

3.1 but rather had tried to deal with the general form of Theorem 2.4, in which

the measure p need not be absolutely continuous with respect to Lebesgue measure,

then the proof of Proposition 4.4 would not go through as given. This corresponds

to the situation which has arisen in the extension of the Itô integral to the stochastic

integrals with respect to square integrable martingales. This has been carefully

studied by P. Courrège and P. A. Meyer [13] and requires the investigation of

rather delicate measurability considerations.

Propositions 4.1, 4.2 and 4.4 can be summarized in the following theorem.

Theorem 4.1. There exists a linear isometry X{) from W* to L2{Q, 3F,P) such

that iff, geWN

E{X{f)X{g)) = (f{-,-),g{-,-)}r.

Proof. This follows immediately from the proof of the above proposition since

W°* r\ WN is dense in W*.

Proposition 4.5. Iffe W* and Spt {f)<= [a, co), then E{X{f) | 3^x_a3_ai)=0.

Proof. It suffices to show this for a sum of the type (4.2) where a0 = a. Then

E{X{f) | ̂ _..e]) = 2 E{X{fi) | .F* „,„,)

= 2 E{E{X{fd | ̂ f_...,]) | ̂ -..0])
í

= 0   by Proposition 4.3.

If <!> : 3 ->- W* is a continuous linear mapping, then so is the composition

<D            X
3-► W*-> L2{¿1, &, P).

The composition then yields a generalized stochastic process which has a modifi-

cation which is a second order random distribution with correlation functional

ro¿, #) = e
/•oo N "I

2 r(lw$(ffwo(r(#
» " °° J,k = 0 J
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We now apply this to obtain the £-products of/e WN and X. For fixed fe WN

consider the linear mapping from 3 to W* defined by <f> -~ <j>f

Proposition 4.6. If fie WN, then the mapping <j> ~+f<¡> is continuous.

Proof. The proof is essentially the same as that of Proposition 3.3.

Therefore the £-transformation of X by the mapping <f> ~^fif> yields a random

distribution which is called the P-product off and X. If/e 3 a.s., then for almost

every to, Xf{co) is the product off{co) with the distribution X{co) in the usual sense

of the theory of distributions. In addition we then have {Xf){<j>) is the stochastic

integral of <f> with respect to Xf. We denote by J! Xf the primitive of the random

distribution Xf; that is, if <f> e 3, then

(f */)(# = -{Xf){</>), where <p{t) = d<p{t)¡dt.

If we fix <f>0 e 3 which is not of the form ¡/> for >p e 3, then we can allow (f ' Xf){rf>0)

to be an arbitrary random variable with finite second moment.

Note 4.1. A note on the calculus of £-transformations.

As we have seen above the definition of a stochastic integral with respect to a

generalized process with independent values is an extension of the Itô calculus.

From such a point of view it is desirable to establish the rules satisfied by the

calculus. However, in this section we settle for demonstrating that the rule for the

differentiation of a product is satisfied (which is also the basis for integration by

parts).

Proposition 4.7. lfife WN + 1, then

(4.5) d{Xf)\dt = Xdfdt+fdXjdt.

Proof. Let/n=/* plln where pe is as defined in the proof of Proposition 4.4.

Then /„-»-/ in WN + 1 and fn ->/ in WN. Now by a theorem of Schwartz [16,

Chapter IV, Theorem 4],

(4.6) d{Xfn)jdt = Xdfjdt+f dX\dt   for each n.

But  for  any  <f>e3,  {X dfldt){<f>)^{Xdfdt){<f>)  in £2(Q,^£),  {findX¡dt){<f>)
-> {fdXldt){f) in £2(Q, 3F, P), and {Xf){f) -> {Xf){f) in £2(Q, 3F, P).

Therefore, by Theorem 2.3, there exists a subsequence {nk} such that

X dfjdt -> X dfidt in 3'      a.s.

(4.7) fik dX/dt ̂ fdX/dt in 3'      a.s.

{XfJ^Xf in 3' a.s.

and therefore

d{Xfk)ldt -> d(Xf)\dt in 3'   a.s.

Equation (4.5) then follows from equations (4.6) and (4.7).
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Corollary. Iffe WN + 1 has compact support, then X{f)= -X(f).

Proof. Let <f> e 3 such that <f>{x)= X for x e Spt if).

Then by 4.5

-{XfM) = -X{ff>) = {X{dfidt)){4>) + {{dXldt)f){<p).

But/<¿ = 0, and therefore

{x {dfdt)){<¡>) = -{{dxidt)f){<f>).

Therefore,

x{{dfdt)<f>) = -(dxfdtXft).

But {dfldt)<f> = dfildt andf<¡>=f and therefore X{dfdt)= -{dX¡dt)(f).
Remark 4.2. It should be noted that in general the stochastic calculus is not

identical to ordinary calculus. For example, putting K. Itô's formula for stochastic

differentials [8] into our setting, one can show that

dem)/dt = $eBU) + eBm dB\dt a.s.

4.8. Connection with the Itô integral. We now show that the stochastic integral

defined above agrees with the Itô stochastic integral when X=B. In this case

W* = VM. Hence it suffices to show that the two integrals agree on (/, co)-step

functions.

Let/0, w) = 2"=o Xiai.a^i){t)fiw) where each//-) is 3\_„,^-measurable. Then

since the functions xia,.a, + 1)f{') are orthogonal in W*, it suffices to show that the

integrals agree for xiaj.al + At)f{co). But Xia,,ait,i¿.t)f¿m)e XV* and//») can be

approximated in L2{L\, 3?, P) by functions of the form 2"= i ^iXBi(ü>) where the

£ieJ^_œ>aj]and£in£k=0 if i^k.

Hence it suffices to show that the integrals agree for functions of the form

blXB^Xlaj.a^AOe Wa¡.

But then

B{biXBi{co)xia¡,a¡ + l)) = biXBi{co)È{xlal,al + 1))-

But it is shown in Example 3.1 that

/•CO

¿(Xta„a, + !)(•)) = Xla^ + AO dB{t).
J — CO

5. Stochastic equations.

5.1. Introduction. K. Itô and M. Nisio [9] have studied stochastic integral

equations of the form

X{t) = A\0)+ í a{s, X)ds+  f b{s, X)dB{s)
Jo Jo



488 D. A. DAWSON [February

with past condition X{t)=X—{t) for t^O where a{s, X) and b{s, X) are pro-

gressively measurable. In general, the stochastic integral equations of Itô deal with

the case in which the processes integrated with respect to are either Brownian

white noise or random measures.

On the other hand the concept of stochastic differential equations can be ex-

tended to any equation of the form

m J'Y

(5.1) 2 «««) -¿ = x
i=l "'

where A' is a generalized process and the aft) are Cœ-functions.

Theorem 5.1. Equation (5.1) has a solution which is a generalized process. Any

two solutions differ by a solution of the homogeneous equations.

Proof. For each » e O, apply Theorem 2.15 to the equation

2 aft) -g T(») = AX»).
i = l "'

J. L. Strand [19] has studied the above equation and obtained conditions under

which the solutions have pth moments. In a similar way we could consider a

linear Volterra integral equation with an analytic kernel, for example,

Y{t)+      h{s, t)Y{s) ds = X{t),       A'a generalized process.

5.2. Generalized Itô equations. In this section we consider the family of stochastic

differential equations of the form

d Y L
(5.2) 'LLÍ = afY)+ 2 bk{Y)Xk,       i=l,...,m,

"' k = i

where {Xk} are a family of independent generalized processes with independent

values, and afY) and bk{ Y) are progressively measurable mappings from m3' into

a function space S.

A mapping ¡/i from m3' (the space of continuous linear functionals of 3

into Rm) into a space, S, of real valued functions on R1 is progressively measurable

if the mapping </j <= Et : {m3')x{ — co, t] -> R1 is measurable with respect to

3${m3', (-co, t])x3S{R1; (-co, t}) where Et is the "evaluation at i" mapping of

S into R1.

If S is a space of distributions a similar definition is used with £t replaced by

Ecf>, the "evaluation at </>" mapping of S into R1; that is, 4> ° Ecf> : m3' x3{ — co,t]

-> R1 is measurable with respect to 38{m3', (-co, t])x3g{3{-oo, t]).

By a solution to equation (5.2) we mean a £m-valued generalized process Y

defined over (D, 3? P) for which bk{ Y) and af Y) are defined for each i and k

and such that for every <j> and X^i^m, both sides of (5.2) evaluated at $ are equal
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almost surely. Note that this is all that can be expected since the right-hand side is

defined uniquely only up to modifications. We first study the case m=l,L=X and

then modify this to study the general case.

Theorem 5.2. Let X be a second order generalized process on (Q, ¡F, P) with

independent values and whose correlation functional F satisfies y = 2í,jc Ikí.fclU <co-

Assume that b: 3' -> H§,N is progressively measurable and continuous and that

a: 3' -> 3' is continuous and progressively measurable.Assume that Spt {X)<=- [0, co)

and that if Spt {<f>) c {— co, 0] then a{ ■ ){</>) is zero. Let V be an absorbing subset of 3

on which H^ll co,n is bounded. For s e Rl, let

| Ff.- sup E{Y{<f>))2.
$>eV;Spt<*) = (- co.s]

Assume that ||a(0) + A(0)Ar||s is finite valued. Assume that for any progressively

measurable second order generalized processes Yu Y2,

(5.3) \\b{Yi)-b{Y2)\\lN¡seKi{S    lYi-Y2
J — 00

_\\2ds
J — 00

and

(5.4) \\a{Yi)-a{Y2)\\2^K2[    \\YX-Y2
J — co

ds.

Then the stochastic equation

(5.5) Y=a{Y) + b{Y)X

has a unique solution.

Proof. Let Y0 = 0 and (5.6) Yn + i=a{Yn) + b{Yn)X. By (5.3) and (5.4) it follows

that Yi is a second order J^-progressively measurable generalized process. If <j> e

V and Spt {</>) c {- co, s], then by (5.6)

(FB+1-F„)#) = {a{Yn)-a{Yn.i)){<j>) + {b{Yn)-b{Yn.i))X{cf>).

Therefore

£[(Tn+i- Yn){f)}2 è 2E[{a{Yn)-a{Yn.i)m]2 + 2E[{b{Yn)-b{Yn.i))X{<l>)]2

ú2E[{a{Yn)-a{Yn_i)){<l>)]2 + 2yMl,N\\b{Yn)-b{Yn_i)\\22,N,s

ú2\\a{Yn)-a{Yn_1)\\2 + 2y\\<t>\\l,N\\b{Yn)-b{Yn_i)\\22,N,s

His ds

Therefore

^ 2£2 f    || Yn- Yn.i\\l ds + 2yU\\l_NKi P    || Yn- F,
J — 00 J — CO

= £3 II F„- yn_i||f ds   since ||<£||oo,n is bounded on K.
J - 00

llFn+1-Fn|s2^£3 f || ̂ -Fn_x||? ds.
Jo
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Hence by induction

II F.+ 1- FJ? ̂  £3n f   • • ■  f" " || Yi- 741 dtn dtn_i
Jo Jo

■    dtn

á^-|| F,-F0

For each <j>e3 there is an a e (0, co) such that a<¡> e V since V is absorbing. Then,

£((Tn+i- Yn)<f>)2 = -2 2E{{Yn+i- Yn)a<j>)2

^illn+l-Tn||S2^Sl|F-T0||s2.
a"«!

Hence

[E{{Ym-Yn)m< ?("2 {Yr+i-Yr)A2
\r = m J   .

J{E{{Yr+i-Yr)<l>)2r2
r = m

n-1"-1   //fr„r\ 1/2

Since the series 2™=i an,2/(«!)1/2 is convergent,

£(( Fm- Fn)£)2 -^ 0   as m, n -> co.

Therefore Theorem 2.3 implies that there exists a subsequence {FnJ such that ynje

converges almost surely to a generalized process Yx in the sense of convergence in

3'. Since a{) and A(-) are continuous, a{Ynf) ^^ a{Yx¡) in ^'a.s. and A(F„J

^A(Fo) in Ho'N a.s. Moreover (5.3) implies that b{YnJ is a Cauchy sequence

with respect to || • ||2jNjt for each t and therefore b{ Ynf) -*■ b{ F„) with respect to

I • ¡I 2,N,( for each t. Hence for each <j>e3,b{ Ynf)X{f) -> b{ 7a,)X{<f>) in £2(Q, F, P).

Equation (5.4) implies that for each </>, a{Ynk){f) -*■ a{Y„)(<£) in £2(Q, 3*,P) and

we have shown above that Ynic{<f>) -»■ Yx{<j>) in £2(D, 3^,P).

Therefore

E{{Yco-a{Ya,)-b{Yay)X){<f>))2 = 0

and

Yœ{</>) = a{ Yx){<f>) + {7„) X{f)   a.s.

Hence there is a modification of b{Yf)X such that F00=a(F00)-l-A(Fo)A'   a.s.

We next prove the uniqueness (up to modification).

Let Yi and Y2 be two solutions of (5.5). Then as above if <j>e V, Spt {<f>)c{ — co, s],

then

£[(F¿ - 72){f)f Ú ̂ ff || 71 - 711|?.
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Therefore,

K%sn
CO ||S

vi _ y2 il2 <   3   il y1 - y2 il2
J   00 J   00      S      = l -*00 JCOS*

Since for sufficiently large n, K^sn¡n ! < 1,

1 Y i - 71 |f - 0   and hence for each <pe3,        Yl{<{>) = Y2{<f>)   a.s.

Corollary. Under the above hypotheses the initial value problem

Y = a{Y) + b{Y)X,        7{<f>) = 0 if Spt {f) c (-oo, 0]

has a unique solution.

Example 5.1. The following is a very simple example of a mapping b{) which

satisfies the hypotheses of Theorem 5.2.

Let b{Y) = (f>0 * F for some <f>0e 3 with support in [0, oo). It is easy to verify that

b{) is progressively measurable and continuous from 3' to 3'. Then

||A(Fi)-A(F2)|||>K>s = £ P     2{{b{Yi)-b{Y2)r\x))2dx]
_ J - <e   } = 0 J

= e\ f 2 (W * (r* - F2)W))2 Äl
L J - co  ,■ = o J

=   f     2 £(( yi - Wift* - • )))2 dx.
J - co   ,■ = o

Since Spt (^(x — •))<=(— co, x], then if Fis any absorbing subset of ^containing

the functions <j>0j){t- ■), t e R1, X újúN, it follows that

\\b{Y1)-b{Y2)\\lN¡s g K f    || F- Fa||.a<&.
J — CO

Theorem 5.3. Let Xk, k= X,..., L be independent second order generalized pro-

cesses with zero means and independent values and correlation functionals Fk which

satisfy a = 2ij.k lk?;,(-)||co <co.

Assume that bk : M3' -> H2-Nk, i=X,..., M, k=X,.. .,L are progressively

measurable and continuous and that a¡: M3' —*■ 3', i= X,. . ., M are progressively

measurable and continuous. Assume that Spt (r*y)c [0, oo), i,j^Nk, k= X,..., L.

Assume that if Spt {</>)<= {-co, 0], then a¡()(0) = O, i=X,..., M. Let

|| F||? = sup {£(| F<¿|2) : 4> e V, Spt {$) c (-œ, s]}

and V is an absorbing set on which \\<f>\\ „jv^, k=X,..., L are bounded. Assume that

llai(0) + 2k = i bk{0)Xk\\s are finite valued. Assume that for any pair Yu Y2of3*xi.xi

progressively measurable second order RM-valued processes,

(5.6)    IW.y'i)-*«?«)!!»^ = Kl ¡\ Il F- Y2\\2 ds,

i = X,..., M; k = !,...,£,
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and

(5.7) ¡afYJ-afY,)!2 á Kf P    || F,- F2||? ds.
J — CO

Then the system of stochastic equations

(5.8) F = afY)+ 2 ¿f(te,       i = 1,..., M,
¡c = l

has a unique solution where Y= { F1,..., YM).

Proof. Put Y¿ = 0; i= X,..., M, and

«♦i = d{Yn)+ 2 bk{Yn)Xk,       i = 1,..., A/.
k = i

If cf> e K and Spt (¿) <= ( - oo, ¿J, then

(«ti- YÍM) = {affrf-afY^iW)

+ 2 ibtiYn)-bk{Yn_i))Xk{<¡>),       i=X,...,M.
fc = i

Hence

£((F!+i-FD0«)2 S (£+l)J£((ai(Fn)-fli(Fn_1))(^))2

+ 2 E[{bk{Yn)-bk{Yn.i))Xm2)
fc = l J

^(Ií+l)-í|oKF„)-aí(FB_1)|f

+« 2 H\\l,Njbk{Yn)-bk{Yn_i)\\lNk\
k = l J

¿(£+1)Jà?J^ \\Yn-Yn_i\\2ds

+ « 2 II * II - .rf* f     II ñ - Fn _ 11| ? A j.
fc = 1 J - CO J

Therefore if <f> e K and Spt 0¿)<=( — co, j], then

£(|(Fn+1- Yn){<¡>)\2) S K P    || Fn- r^xl? A
J — CO

where K is a constant. Therefore,

J — GO

We can then repeat the reasoning of Theorem 5.2 to show that F„k -> F» in

M<F almost surely for some subsequence {F„k} and that F„ satisfies the system of

equations (5.8).
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In Theorems 5.2 and 5.3 existence proofs were obtained by working on 3' and

using the basic properties of convergence of generalized processes. However, in

many cases one must work in a Sobolev space H2,~M instead of all of 3'. In such a

case, it is more difficult to prove the existence of a solution. In the remainder of

this section we will prove an illustrative existence theorem of this type, which is

analogous to the usual Itô equations. We will require the following lemma.

Lemma 5.1. Assume that X=d2B\dt2, b is 3*x progressively measurable with

Spt {b)<=[0, oo) and for each t, ¡A|||,1.i = £f0 {b2{t, w) + b2{t, w)) dt<œ.

Then for A>0 there exists constants £x and K2 such that

(5-io)     ^oiijn^'^^h^^^ii-"
and

(5.11) £[«!£ (f ¡bit, -)^f)2] S J»I¿kw

Proof. For t^O, let

4r{S) =  {t-s)     if 0 Si S S t,

= it + s)   if 0 ä s ä -t,

= 0 otherwise.

Then b-ft e W1 and by the corollary to Proposition 4.7,

{b{-){d2B/dt2)){^) = foJHf,w) ̂ßdt a.s.

Let    Yt = b{d2B¡dt2)<t>t.   For   s£t,   let    Yt=Ys+Ws.   Then   E{Yt\ 3^x_x¡s])= Ys

+ £W I •*?-»..]). Let

Zss£(F|^f_œ,s])   and    Ws = E{Ws\3?ix,s]).

Then YS=ZS- XVs. Therefore, supsSt F2a2(supsStZ? + supsât Wf).

Since Zs is a martingale, Z? is a submartingale and therefore by the submartingale

inequality (Doob [1, Chapter VII, Theorem 3.2]),

£(supZs2 2= A) ^ (1/A)£(Z2) = (1/A)£(F2)

= {X\X)E{{bd2B\dt2)W)\2

= (!/*)£[[' {{bV)2{s) + {bV)2{s)) ds]

= {KHX)E[j\b2{s) + b2{s))ds]

where K¡ is a constant. Now

W, = Yt-Ys = b{d2B¡dt2)W)
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where

>ps{u) = {t—is) for — s á u :£ s,

= {t-u) for    s á « á í,

= (í + w) for -í ^ w ^ -/,

= 0 otherwise.

We will now show that lVJ{t — s) is a martingale fot OSj^i. If íí <s2, then

E{rVJ{t-s2)- ¡VJit-sJ I *?_...j) = E{XVJ{t-s2)- W,J{t-Si) | J^f-co.s,,).

But

WI^_W11_ = J¿2£\/ ^       ^ \

r-s2   /-ij       Ui2/U--S2   f-ij

and

¡/<S2(M) i/,Sl(M)
- = 0   for —i, < w < +ji.

l-»i   l-ii i -     -

Therefore, by Proposition 4.5,

E{WJ{t-s2)- WsJ{t-Si) | ^f_oo,Sl]) = 0.

Hence, XVJ{t — s) is a martingale. Hence W2¡{t — s)2 is a submartingale. We sub-

divide the interval [0, t] into [0, tß], 0/2, 3í/4],.... The length of the ¡th sub-

interval is r/2*. Let the endpoints be denoted by t0, tt,.... Then ti = {{2'—X)ß')t.

Then by the submartingale inequality (Doob [1, Chapter VII, Theorem 3.2]),

W?.

Therefore

i sup AiiliWA).

1 E(W?)
PI   sup     H/s2 ̂ AO-^02) ^77^

Let A^AO-r^O2. Then

Hence

Let

PI     sun        1^2  >   \1\   <   Q-?i-l)2 ffi^tl)

4 - </ —r     Ï2
SáJW!)   since ̂gf

4
£( sup   Ifs2 ä A\ ^ ^ V £(H>2).

\ossst )      A ¡ti

= 0-?i)-2(W-O,        í¡á«í íi+1,

= 0 otherwise.

= 4.
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Since Spt (¿»(ô'i-^OJc: [tu t], Proposition 4.5 implies that

Wti = E{b{d2B\dt2)W)\3*x_xMù

= E{b{d2B\dt2W)\3Fx_„tif).

Therefore, by Jensen's inequality,

E{Wf) = E{E{b{d2Bldt2){6ti) | J^co.t,])2)

ï E{E{{b{d2B¡dt2){V))2 | &?.„M))

= E{b{d2B¡dt2){9t))2.

But

E{b{d2B¡dt2){6t))2 = e({ '   ^{s)^^)+b{s)dti{s))2 ds\

/"CO /»CO

S 2£ (b{s)6t<{s))2ds + 2E \      {b^fs))2 ds
J — 00 J — 00

^ 2£ í (¿0))2í/s-4 + 8£ (i + 1 b2{s)ds.
Jo 2 L

Therefore

and

2 E{W?f g 2í£ f {b{s))2 ds+%E f b2{s)ds,
¡=i Jo Jo

£/sup   W2 ¡> A\ á f f((¿(5))2 + (A(5))2)*.

The result then follows by noting that

£/ s^up   Y2 ^ A\ ^ PI sup Z? ^ A/4\+£/ s^up   W2 ^ A/4)

and

£/ sup  | F,| ä A\ = £/ sup   Y2 ä A2\.
\0SsSf / \0ísá! /

We also have

£/sup 7f\ ^ 2£/sup Zf\+2E(sup XV2].
\0SsSf       / \05sS!       / (oSsSt /

Since Zs is a martingale, by applying a theorem of J. L. Doob [1, Chapter VII,

Theorem 3.4] to |ZS| we obtain

E(fgtZf\ Ú AE{Y2) = K}E[j\{b{s))2 + {b{s))2) ds]-

Similarly,

El   sup     XV2) ̂ XÓE^ft
Vi-iSsSíi /
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and

co

El sup  Wf\ S 16 y E{Wf)
loSsSf ) C="l

and therefore

£(sup   Y2) g K C{{b{s))2 + {b{s))2)ds.
lossst    ;       jo

Remark 5.1. Note that the proof of Lemma 5.1 is valid if d2B\dt2 is replaced

by any generalized random function with independent values for which

]|0]|r^A||^||2,i. However the following corollary depends on the sample path

continuity of B.

Corollary. The sample paths of the random function s ~» fs J b{t, co) d2B\dt2

are almost surely continuous.

Proof. Regularizing as above we can choose, for a given t, a sequence bn^b

in || ■ ¡2,1.4 such that each bn is almost surely C°°. Since the sample paths of B are

almost surely continuous, it is easy to verify that the sample paths of

j° jbn{t,co){d B\dt2) dt

are almost surely continuous.

But according to Lemma 5.1,

p(0sup |J*S j{b{t, co)-bn{t, «.)) ̂ f | à a) í £± ||A-An||2jli,

Hence we can choose a subsequence {nk} such that

iofiÁf Smo,)-K*(t'>))d2B

dt2
> *\ < ££.
- kl = 2kX2

But then by the Borel-Cantelli lemma

(/*S    I* .-72 D \ \

sup {b{t, co)-bnk{t, co)) -j-j   ä -r   for infinitely many & I = 0.

Hence

r r, ,    .d2B    r r,,    .d2B ,J   J M'. ") ̂ 2-> J   ]b{t,")^2dt

uniformly for s e[0, t] with probability one. Therefore s ~* |s J A(i, co){d2B\dt2) dt

has continuous sample paths with probability one.

Theorem 5.4. Assume that c{t) e C°° n Z/00,1 a«í/ Aas support in [0, oo). Assume

that a is a progressively measurable mapping from C1 into 3'2 where

rj = {T:Te3';T= D'fife C}
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and that

' è kt\f{s)-g{s)\   forOès^ t.

497

ÍH-fH

let

Also assume that for any f, Spt (a(/)) <= [0, co). Then the stochastic differential

equation

(5.12a) d3Yldt3 = a{Y) + c{t)Y{t){d2Bjdt2)

with past condition

(5.12b) Y{t) = 0   for t < 0

has a solution whose sample paths are concentrated on C1.

Proof. If we set Y0 = 0, then Yx = $ $ j a{0) e C1. For n = 1, 2, 3,

(5.13) Fn + 1 = JIJ [a{Yn) + c{t)Yn{d2Bldt2)] dt.

In order that the definition (5.13) of Fn+1 make sense we have to check that

II Fi|¡!,i;¡<co for each / and that Yne C1 a.s. Then the corollary to Lemma 5.1

implies that Fn+1 has C1 sample functions a.s. It will follow from what follows

below that || Fn+1||2il;t<oo for each t and hence the sequence {F„} is well defined.

It is also obvious that one can choose the arbitrary constants in (5.13) so that the

condition (5.12b) is satisfied. We assume below that Fn + 1 is so chosen.

Now

D3Yn+i-D3Yn = a{Yn)-a{Yn_i) + c{t){Yn- Yn^)d2B\dt2.

If Spt(£)c[0, /] then

E[{D3Yn+i-D3Yn){f)]2

Ú 2E[{a{Yn)-a{Yn^iW)]2 + 2E[c{){Yn- Ftt_ Jfo)]?

g 2£[(a(Fn)-fl(Fn_1))(^)]2 + 6£[|(cO)(Fn(0- Yn.i{t))<f>{t))2 dt]

+ 6E[J(c(0(FB(í)- Yn_i{t))<f,{t))2 dt]

+6£[J(c(0(Ftt(0- Yn_i{t))<j>{t))2 dt]

í 2E[{a{Yn)-a{Yn„i)){<f>)]2 + ki\\Yn- Y,-4lw\mm

for an appropriate constant kx.

Let $\ = <j>s as defined in Lemma 5.1 and </>!(«) = /"<„ >l>siu) du where

>Ps{u) = (¡>s{u), -s ¿u£s,

= -<j>s{-2s-u),       -s £ u^ -3s.
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It then follows that

£(Fn+1(r)-Fn0))2¿2£
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Then Spt(</4)<=(-oo, s] and Spt (#|)<=(-ao, s]. Since for each n, Spt{D3Yn)

c[0, co), it is easy to verify that (£3Fn + 1-£3Fn)(^), j= X, 2, are well defined

and that

JS jj{D3Yn + i-D3Yn) = {D3Yn+i-D3YnW2)   a.s.

J" j{D3 Yn+1 - D3 Yn) = {D3Yn+i- D3 Fn)(#)    a.s.

f j j{a{Yn)-a{Yn_i))]2 + k2\\Yn- Yn-i\\li.,t.

Hence by our hypotheses,

E{Yn+i{t)- Yn{t))2 á k3E^ J7n{s)- Yn_i{s))2 ds] +k2\\ Yn- Fn_x|||,lit.

Therefore

(5.14) E{Yn + i{t)- Yn{t))2 ¿ (*a+*3)l Fn- Yn_i\\lut.

Also

£(^n+i0)-F0))2 è 2£[JtJa(Fn)-ÍZ(Fn.1)]2 + A:4|¡Fn-Fn_1]|l1;í

á 2^2£[| Fn(0- r.-»(OÍ"]+**l y»- n-ill¡,i:t

á 2A:t2£[J' ^ | fn(0- fn-iCOI2*] +M Fn- FB.

á 2¿2|| F„- r.-xliw+fcj F„- y.-jjlw
Therefore for s ̂  /,

(5.15) £(Fn+10)- Fn(5))2 ¿ (*4+*b)| Fn- r.-x|l.ip.

From (5.14) and (5.15) we have for uSt,

||FB+1-FB||¡.1IU á A:6 f"    \\Yn-Yn_i\\li;sds.
J — CO

1II 2,l;t

Therefore for w g ?,
i.n-l,.n-l

V V II2 <     6 II V        V 112
In+1       J«   2,1!«  S  —7-      jT-¡-     -I i       -io||2,l:u

where k6 may depend on t but not on n.

Let gn¡m= || F„- Fm||>l!t and gj&jt/j-i. Then for w<n,

gn>m á 2-n   £   2^'
; = m + 1

, y 2^6-1

Ä  (y-i)!
J°     OJÍ.Í-líJ-1
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Therefore FB(-) converges in || • ||a>lii to F00(-) and

™  2iki = 1t'~1
gm.co   =   ^ 2_,      T~:      TTi     gl'

,ti   0"-D'.

Therefore, by Lemma 5.1,

p(sup  I P i(Fn+1-Fn
\0Ssit |J    J

MO
d2B

dt2

1 \      4"feg-1^"-1 „ „
= 2s] =     {n-}"    8lKl-1)

Since  the  right-hand  side  converges,  the  Borel-Cantelli  lemma implies  that

Js J Ync{-){d2B/dt2) converges uniformly on [0, t] with probability one. Also

P< sup
logsSi

ja{Yn+1)-^ja{Yn
2"

^ sup kt\Yn+l{s)-Yn{s)\ fc£

■UtJ" jFn+1(5)-Fn0)| 2; i

But by Chebyshev's inequality this becomes

Pio<F<t | f J*a( 7n+1} ~ f Ja( Fn)>I= 2"

á A:?í24"£

in-xy.

j* ^{Yn+i{s)-Yn{s))2ds]

Y — Y il2
/.2yiTi¿.n - l*n + 1

<    /t¡H ^6      ' W V  _ V \\.

Since

¿i     («-!)!
F        F0||2,l¡í

converges, the Borel-Cantelli lemma implies that Js j a{ FB) converges uniformly

for s e [0, /] with probability one. Since by hypothesis

Iff«Yœ)-a{Yn) á*,|F„(5)-FB(s)|,       0¿ sit,

it follows that j' / a{ Yn) -> f j" a{ Yx) uniformly for s e [0, t] with probability one.

To complete the proof that Yx satisfies equation 5.12, it suffices to show that

uniformly for î e [0, /] with probability one.
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According to Lemma 5.1

Í0mt\ílcit)iUt)-Y^t))d^dt\ = n)

in2Ki\\c{t){Yn{t)-Y^{t))\\li,t

< n2k 2~n V     6    '      L  a

where k7 is a constant. Since 2™=i «22~"<oo, the Borel-Cantelli lemma implies

that

JS JcO) FB(f) §f A -> J" JcO) Fo(0 ^f *

uniformly for se[0, i] with probability one.

Remark 5.2. It is important to note that in contrast to the case of Itô equations

the above methods do not easily extend to the general nonlinear equation

(5.16) d3Y/dt3 = a{Y) + c{t)g{Y(t))d2B¡dt2

where g is a real valued function. The reason for this is that to follow up the

analogous type of reasoning to that used for Itô equations would require that we

restrict ourselves to functions g which satisfy:

\g{Yi{t))-g{Y2{t))\ + \d{g{Y1{t))-g{Y2{t)))ldt\

âki\7i{t)-72{t)\ +k2\ti{t)-72{t)\.

But

\d{g{Y1{t))-g{Y2{t)))ldt\

= |g(F0))F0)-g(F20))F20)|

= \{g{Yi{t))Ut)-g{Yi{t))Y2{t)) + {g{Yi{t))Y2{t)-g{Y2{t))Y2{t))\

ê I |g(F10))(FO)-F20))|-|F20)(g(F10))-g(F20))| |.

But if for any 71{t)¥> Y2{t), ${7i{t))*g{72{t)), then | Y2{g{Yi{t))-g{Y2{t)))\ can

be made arbitrarily large under the constraints | Y^t)- Y2{t)\ + | Fx(i)- F2(/)| < K.

Therefore the only functions g satisfying (5.17) are those such that g{s) = c or

g{s) = cs + b where b and c are constants. In view of this, it appears that to prove

existence for equations of the type (5.16) different methods are needed. Such

existence theorems will be proved elsewhere.

6. Markov properties of solutions of stochastic equations. A generalized process

F is called a local process with respect to {^-».n : t e R1} if for t e R1, e>0,

Ae3^^4_ehBe3^t + £^hthen P{A n B | 3**) = P{A | 3**)P{B \ 3**) a.s. where

*?■ n.>o^-..i+« (cf- Urbanik [21]).

A generalized process is weakly Markov of order N with respect to the family

{J^_ „(j : t e R1} if there exist N random functions Z\,..., ZlN, such that for each
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t and i, Z\ is measurable with respect to 3^_x¡¡n and such that if Ae3\_x¡a,

Be3*¡t¡co}, then

PÍA n B J Z[,.. .,Zl) = P{A \Z[,.. .,Z^)P{B \Z[,.. .,Z'N)   a.s.

(cf. Hida [6]).

A mapping (l>:3'->3' is a local mapping if for TuT2e3', and any open

interval U, the property

Ti{<f>) = T2{<f>)   for every <f> with Spt {</>) <= [/,

implies that

or^) = oTaW  for every </> with spt {<!>) c t7-

Theorem 6.1. If X is a generalizedprocess with independent values,Spt (A0c[0,co),

Tw a continuous, linear, local transformation on 3' and if the solution ofTf=g are

analytic in the complement of Spt {g), then the solution of TY= X, F(</>) = 0 ;/

Spt (<£)c ( —co, 0], is a local process with respect to {3*J_ w(]}. (#7- ».a & ?^e cr-field

generated by the random variables Y{f), <f> e 3, Spt(<£)<=( —oo, t].)

Proof. Let 0^s<t<u1<u2<u3<v<w. Let Ae3^JStt)and Be3^Jv¡w). Then it

suffices to show that

P{AnB\ .^U1,U3)) = P{A | 3rjUitU3))-P{B I 0%^)    a.s.

It therefore suffices to show that if £ = {F((^0 e £i, • • -, F(<^B) e £B}, <f>i,.. .,(/>ne3,

Bi,...,Bne 38{RX), Spt (¿,) c (e, r>), then

£(£ | ß%uU3)) = P{B | J^>U3))   a.s.

Let Af= Af^ + Aty2 where ^1; i/<2 are Cœ and Spt 0À,)<=(wi, w2), / = 1, 2, Spt (00

c( —oo, w2], Spt (¡/r2)<=[«i, oo). Then in [u2, oo),

(6.1) TY = ATi/<2.

Let F2 be a particular solution of (6.1). Note that conditioned on J*^,,,,, F2 is

independent of 3*ZUl); in fact, since £ is local, F2 is measurable with respect to

&T*i,*>y Then F= Fj+ F2 where Fa is a solution of TY=Xi\>x. But Fj is analytic

in [u2, co) and therefore is uniquely determined by its restriction to (u2, u3). Hence

the restriction of Fj to {v, w) is measurable with respect to the o-field generated by

the restrictions of F and F2 to [ux, oo). Therefore

P{ 7{<f>i) eBi,..., Y{<j>n) e £B | ^>Ba)) = P{ F(^) e Bu .. ., Y{<f>n) e Bn \ 3%x,^

since we have shown that conditioned on Y restricted to (w1; u3), Y restricted to

(v, w) is independent of 3*fsuu. Hence the theorem is proved.

Corollary. IfP{D) is a polynomial in the differentiation operator D and if X is a

generalized process, then the solution of P{D)Y=X is 3^Y-local.
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Theorem 6.2. If X is the nth derivative of an ordinary stochastic process X with

independent increments, Spt (Á^) c [0, oo) and m>n, then the solution of the equation

(6.2) DmY+aiDm~1Y+ ■■■ +amY = X

with past condition Y{cf>) = 0 if Spt (</>)<=( —oo, 0] is weakly Markov of finite order

with respect to {3*J_Wi¡]; te R1}.

Proof.    Equation 6.2 can be transformed into an equation of the form

(m \ 0

F- 2 *.*m = 2 *»*"
i=-m I i=-m

where c¡'s and A¡'s are constants and

dfX
dó

ri<Y
jf«> = "_±    if / > o,

Ml

=     ...  IX, the i-fold indefinite integral   if i < 0.

The right-hand side of (6.3) is an ordinary function f{t) and we can solve the

equations P{D)Z=f in the usual way. If for example, P{D) = Y]?=i {D—pd with

the pSs all distinct, then

™ ft
Z{t) = y ¿¿s**      e-vff{t)dt.

i = o Jo

It is then easy to verify that 7=^= .m ctXU) +Z{t) is weakly Markov of finite

order with respect to {3*f „„} with splitting variables jf_ x e~*¿f{t) dt, i=l,..., m

and Xw, -ma/au.

Examples. 6.1. (£>2 - 1 ) 7= cD2B, ceC°,Spt(c)c [0, oo), B= Brownian motion.

Then

7{t) = X{t)+^é f e-sX{s)ds~e-t f esX{s) ds

where X{s)= [s J" cD2B.  Y{t) is weakly Markov of finite order with respect to

{3*f K>a; t e R1} and is also local with respect to {3*f x¡n; t e R1}.

6.2. {D2 - 1 ) 7= cD3B, with c as in 6.1. Then

Y{t) = X+^e* i e-sX{s)ds + ^e-1 f esX{s) ds

where X{s) = js f f cD3B. This is an example of a weakly Markov process of finite

order which is not an ordinary process.

6.3. DY=c{DB+ D2B), with c as above. Then F is weakly Markov of finite

order and local with respect to {3*fxA^.

Theorem 6.3. The only local mapping $ from C[0, 1] to C^O, 1] is the constant

mapping.
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Proof. We first show that <P(/)(Xo) must be a function off{x0) for fixed x0. If

not, then there are two functions A(0 and f2{ •) such that f{x0)=f2{x0) but

$(/0(*o)#<ï>(/0(*o)
Then define

faix) = fi{x),    x á x0,

= f2{x),    X > x0.

But since O is local,

4>(/0(*) = Hf)ix)    for x < x0,

= ^(/OOO   for x > x0.

But since <!>(/) must be continuous, ^O/OO^o) = ®iA){xo) = ^C/zX-Xo) which yields

contradiction. Hence <&{f){x) = F{x,f{x)).

Since {djdx){<&{f)){x) is continuous in x for each/and is local, the same reasoning

implies that it is a function of x and f{x), say G{x,f{x)). But then F{x,f{x))

= ¡x0G{y,f{y))dy.

We now show that G{x, y) is bounded on a set of the form [0, 1] x [—yu yf]. If

not, let {Xi,yi) be a sequence of points such that G{xu yt)->oD. Since [0,1] x [—yi,yf\

is compact, there is no loss of generality in assuming that {x¡, y¡) -» {x0, y0).

Furthermore since for each y, G{x, y) is continuous in x, there is no loss of gener-

ality in assuming that the x¡ are all distinct. But then there exists a piecewise linear

function/(x) for which G{x,f{x)) is unbounded. But this contradicts the fact that

G{x,f{x)) is continuous on [0, 1]. Hence G is bounded on the set [0, 1] x [—yu yf].

We next show that for each x0, F{x0, y) is constant in y. Let yx <y2. Noting that

£(*o,v)= r°G{x,fi{x))dx
Jo

for any/00 sucn X.hatf{x0) = y we have

rxo
E{x0, yf) =   I     G{x, yf) dx

and for any e > 0,

E{x0, y2) = j*°  C G{x, yf,dx + p    G(x, yx + ÍZ^ZZil {x-x0 + e)^dx.

Let M be the bound of |G(jc,j)| on [0, l]x [-R;R] where £ = max(|y1|, |v2|).

Then \F{x0, yf)- F{x0, y2)\^2eM. Hence F{xa,yf) = F{x0,y2) which implies that

<l>(/)00 is a constant function independent off.

Theorem 6.3 shows that the coefficient b{■) considered in Theorem 5.2 cannot in

general be local. However, it may be that some derivative of b{■) is J^-local.

2><n) is 3?Y-local if for every interval (a, 38), ̂ ff^f ^3PY(a¡SBy

Theorem 6.4. If X is a generalized process with independent values and for

some m and n, a(M) and A(n) are ^-local and is a solution,  Y, of the equation
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Y=a{Y) + b{Y)X exists, then the vector generalized process {Y, a, b) is local with

respect to {3FxiY¿arf}.

Proof. Let 0 < Ui < u2 < u3 < v < w. It suffices to show that for B e &&'!$,

P{B | *3KS?) = P{B I 3rxiV*3))   a.s.

Let</>e C00(£x) such that Spt (0)<=(Ml)M2), Spt (</>)<=(«!, oo) and <l>{t)= X for t>u2.

Therefore by our hypothesis it follows that if Spt O/O^O^, H') then

a{YM) = a{^7){4>)+ f  p{t)<f>{t) dt
J — CO

wherep{-) is a polynomial of degree {m— 1) and

b{Y){<j>) = b{<pY){f)+ T   q{t)4>{t)dt
J — OO

where q{ ■ ) is a polynomial of degree {n — 1 ).

But/>0) and q{t) are determined by the set {b{ 7){<f>), a{Y){<f>), a{<pY){<f>), ¿#F)(£),

$e3, Spt {<{>)<=■ {u2, u3)}. Hence conditioned on Pfff^f, a{Y){f) and b{Y){f), are

independent of Ff/¿'¿ if Spt (</>)<= [w3, oo). But since F|1U2i00) is independent of

F|(-oo,uii, this implies that the set of random variables

{a{Y){<j>i) + b{Y)X{rf>i);   i=l,...,M}

conditioned on .F&£^f is independent of 3FfiY¿a^ if Spt (<&)<=(», w),i=l,..., M.

This implies that if B e &J¿°$, then

p{b | *3$¡sB) = /^ | *■£&••&).

Example 6.4. Theorem 6.4 implies that the solution F of the equation d3 Y\dt3

=f{t)(d2Y\dt2)+ Y{d2B\dt2) is ¿FY-B-local.

Remarks. 6.1. It is easy to verify that the stochastic process Y{t) of Example 6.1

induces a probability measure P on the measure space (C + , 3${C+)) where C+ is

the set of continuous functions on R1 which are identically zero on ( — oo, 0] and

38{C+) is the set of Borel subsets of C + . Theorem 6.2 implies that Y{t) is weakly

Markov of finite order and Theorem 6.1 implies that Y{t) is a local process. In

fact equation 6.4 implies that

7{t+h) = \{eh + e-h)Y{t) + \{eh-e-h){[ et~sX{s)ds+ f e-u->X{s)ds\

+ ieí + " Í      e-*{X{s)-X{t))ds-ie-« + » f +   es{X{s)- X{t)) ds

+ {X{t + h)-X{t))

where X{s) = ¡s ¡ cD2B. If

W{t) =  f et~sX{s)ds+ f e~(t-s)X{s)ds,
Jo Jo
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then {Y{t), W{t)) is a Markov process with values in £2, that is, Y{t) is weakly

Markov of order 2. Moreover for each t, W{t) is .^-„.tr-measurable. Let

fgrj*y = {A : Ae 3S{C+), 3Al e &J* such that P{A A Af) = 0}.

Since 7{t) is a local process with respect to {3^f^M : t e R1}, W{t) is {3^J*)C-

measurable for each t. One might expect that there exists a local mapping O on C +

such that W=<¡>{7). However since Wf-JeC1, this would yield a contradiction

to Theorem 6.3 and therefore no such mapping can exist. In fact since 7{t) is a.s.

nondifferentiable, it is more reasonable to conjecture that there does not even

exist a local mapping <J> such that W= <I>( F) a.s. (Although we do not attempt to

prove this statement here, it is made plausible by the fact that Theorem 6.3 remains

true if C[0, 1] is replaced by any sufficiently rich subset.) Essentially this means that

the splitting information is hidden by a noise effect in the local a-fields.

6.2. It may be that the distribution semigroups introduced by J. L. Lions [12]

will be useful in the study of processes such as those considered in the above

examples.
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