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1. The main theorems.    The object of this note is to prove the following:

Theorem 1.1. Assume that (i) Md is a d-dimensional (d^2), complete Riemann

manifold of class Ck, k^2, with nonnegative sectional curvatures; (ii)/: Md -> Ed + e

is a Ck isometric immersion of Md into a Euclidean space Ed + e, e>0; and (Hi) the

relative nullity v(p) of the immersion f at the point p e Md satisfies v(p) > Ofor all p.

Let w = min v(p)forp e Md. Then f(Md) is Ck~1 m-cylindrical; that is, there exists

a complete Riemann manifold Md~m of class Ck~1 such that Md, Ed + e, f have

factorizations Md = EmxMd-m, Ed + e = Emx Ed + e-m, f=ixg, where i: Em-> Em

is the identity map and g: Md~m -> Ed + e~m is a Ck~1 isometric immersion. Also,

f(Md) is not (m+ l)-cy/indrical.

A vector in Tp(Md), the tangent space of Md at p e Md, is called a relative

nullity vector (with respect to /) if it is annihilated by all second fundamental

matrices at p. The relative nullity v(p) is the dimension of the linear space of relative

nullity vectors in Tp(Md); Chern and Kuiper [3].

The conclusion of Theorem 1.1 is stated with a slight abuse of language which

will be followed consistently below. The statement "Md = Emx Md~m" means that

"there exists an isometric diffeomorphism / of EmxMd~m onto Md (so that

IeCkl; [2]) "and correspondingly "f=ixg" should be replaced by "/° I=ixg".

An example of Sacksteder [12, p. 623], shows that Theorem 1.1 is false if

"nonnegative" is replaced by "nonpositive" sectional curvatures.

Theorem 1.1 was proved in Hartman [6] under the additional assumption

v(p) = m>0 for all jt? 6 Md; cf. O'Neill [10] and Stiel [13] for corresponding results

under additional assumptions on the curvatures of Md and/(Md). For the case of

hypersurfaces (e= 1), Theorem 1.1 is contained in a result of Sacksteder [12]. In the

case that Md is locally flat and d>e, Theorem 1.1 has the following consequence.

Corollary 1.1. Assume that (a) Md is a d-dimensional (d^2), complete

Riemann manifold of class Ck, k^2,  with vanishing sectional curvatures; (b)
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/: Md -> Ed + e is a Ck isometric immersion; and (c) d>e. Then m = minv(p) is

positive and the conclusion of Theorem 1.1 holds with Md~m, g e Ck.

In fact, (a) and (b) imply that v(p)^d—e; [3]. If e=l (so thatf(Md) is a hyper-

surface in Ed + 1), then v(p)^d— 1 >0 and Corollary 1.1 reduces to a theorem of

Hartman and Nirenberg [8].

On a Riemann manifold Md with a continuous curvature tensor, a vector

z e Tp(Md) is called a nullity vector atp if R(x, y)z = 0 for all x, y e Tv(Md), where

R(x, y) is the curvature transformation associated with x, y; the nullity p.(p) is the

dimension of the linear space of nullity vectors in Tp(Md); Chern and Kuiper [3].

On a complete Riemann manifold Md, Toponogov [15] defines a "line" to be a

complete geodesic with every subarc of minimal length. Corollary 1.1 has the

following generalization.

Corollary 1.2. Assume (i), (ii) of Theorem 1.1 and that the nullity satisfies

¡j.(p)>e for all peMd (for example, that there exists ¡j.0 linearly independent

"lines" through some point p0 e Md and p.0 > e). Then m = min v(p) is positive and

the conclusion of Theorem 1.1 holds.

Corollary 1.1 is the special case where ¡x(p) = d for all p (by virtue of the local

flatness). In general, Chern and Kuiper [3] prove that p.(p)^v(p)^p.(p) — e. As to

the parenthetical part of Corollary 1.2, results of Toponogov [15] imply that

p.(p)^fj,0; cf. Proposition 4.2 below.

It is easy to see (cf. Proposition 4.1 below) that if assumptions (i), (ii) of Theorem

1.1 hold and L1 is a geodesic arc on Md such that L1=f(L1) is a line segment in

f(Md)<^Ed + e, then a vector on FP(F1) atp eL1 is a relative nullity vector at p and

the normal space off(Md)<=Ed + e is constant (i.e., parallel) along Lx. This implies

that f(Md) cannot be (m+ l)-cylindrical.

In Theorem 1.1, let p0 be a point of Md where v(p0) = m. Then v(p) = v(p0) for all

p near p0 and, hence, by Lemma 3.1 of Hartman [6, p. 98], there exists for such p

a Euclidean space Em(p) satisfying f(p) e Em(p)<=f(Md) (and, in fact, the spaces

Em(p) are parallel; [6, pp. 100-101]). Thus, Theorem 1.1 is contained in the

following

Theorem 1.2. Assume (i), (ii) of Theorem 1.1 and that f(Md) contains m linearly

independent lines, 0<mfíd. Then the conclusion of Theorem 1.1 holds.

The assumption that f(Md) contains m "linearly independent" lines L\,...,Lm

means that translates of Lu ..., Lm through the origin of Ed + e span an «î-space.

In any of the statements above, there is no loss of generality in supposing that

Md is simply connected, for otherwise it can be replaced by its universal covering

manifold. If, in addition, the sectional curvatures of Md vanish, then it can also be

supposed that Md = Ed cf., e.g., [8, p. 913]. Thus the reduction above of Theorem

1.1 to Theorem 1.2 shows that the flat cases of these theorems are contained in
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Lemma 1.1. Let f: Ed —> Ed + e be an isometric immersion of class Ck, k^l, such

that f(Ed) contains m linearly independent lines. Then there exist factorizations

Ed = EmxE"-m, Ed + e = EmxEd + e-m, and f=ixg such that i: Em -» Em is the

identity map andg: Ed~m -> Ed + e~m is a Ck isometric immersion.

In contrast to the case e=l, where necessarily m^d— 1, the situation w = 0 can

occur in Lemma 1.1 when e > 1. For example, if u = (u1,..., ud) e Ed and e = d,

one can choose the isometric immersion/: Ed —> E2d to be of the form

f(u\ ...,ud) = (Mu1), g^u^Mu2),. . .,gd(ud)),

where (/, gk): E1 -> E2 is an isometric immersion for fc= 1, ...,</. It is easy to see

that iffk, gk are suitably chosen, then f(Ed)^ E2d contains no lines. Actually, «?>0

must hold only if d>e.

Below, we shall first prove Lemma 1.1 in §2. (In fact, it will essentially be

sufficient to consider only the case d=2 and m=l.) Theorem 1.2 will then be

deduced in §3 from Lemma 1.1 and a factorization theorem of Toponogov [15]

which is the "intrinsic" analogue of Theorem 1.2. This gives a rather short proof

of Theorem 1.1 and of the corresponding part of Sacksteder's result. Actually, the

brevity is somewhat misleading for, in contrast to Sacksteder's proof, we employ

Toponogov's theorem.

The arguments in the proof of Theorem 1.2 also give the following theorem (in

which there is no assumption on the relation between curvatures of Md and Md + e):

Theorem 1.3. Let (i0)Md + e e Ck + 1 be a complete Riemann manifold with non-

negative sectional curvatures (d¡^2, e>0, k^2); (i) Md e Ck a complete Riemann

manifold with nonnegative sectional curvatures; (ii) /: Md -> Md + e an isometric

immersion of class Ck such that f(Md) contains m (>0) linearly independent "lines"

of Md + e. Then there exist factorizations Md + e = Emx Md + e~m, Md = EmxMd-m,

and f=ixg such that Md + e~m e Ck~1, Md~m eCk~1 are complete Riemann

manifolds, i: Em -> Em is the identity map, and g: Md~m -*■ Md + e~m is a C'1

isometric immersion.

The reader not interested in the question of differentiability conditions should

read the assertions and proofs with all differentiability classes replaced by C™.

For other readers, §5 will contain remarks and clarifications of the differentiability

classes which occur in the statements and proofs. For locally flat manifolds, there

is no difficulty. In general, what is involved is a determination of conditions suffi-

cient for the validity of Rauch's comparison theorem [11] and of Toponogov's

comparison theorem [14] and factorization theorem [15].

2. Proof of Lemma 1.1. Case 1 (d=2andm= 1). LetLbea line in/(F2)<=F2 + e.

Since/is an isometry there exists a line Lx in/_1(F)<=F2 which/maps homeo-

morphically onto L. Choose coordinates (u, v) = (u1,..., u1 + e; v) e E2 + e such that

L: « = 0, where we write u = (u1,..., u1+e) and v is real-valued. Choose coordinates
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(r, s) in F2 such that L1:r = 0 and that if/(r, s) = (u(r, s), v(r, s)), then

(2.1) i/(0, j) = 0   and    v(0,s)=s.

In order to complete the proof in Case 1, it suffices to show that u(r, s) = u(r) is a

function of r alone and that v(r, s) = s,

(2.2) f(r, s) = (u(r), s)    for —oo < r, s < oo.

Below \f\, \u\, \v\,... denote Euclidean norms and a dot means scalar multi-

plication. Thus if fr = dfjdr and fs = 3f\3s, then

(2.3) \fi\ = l/J = 1    and   ¿;jfs = 0.

We have, by (2.3) that \f(r, s)-f(0, s)\ ^ \r\, i.e.,

(2.4) \u(r, s)\2+\s-v(r, s)\2 ^ r2.

In particular,

JI[l-vs(r,t)]dt á |fC-,0)| + |r|

Since the inequality

(2.5)

is clear from (2.3),

(2.6)

In particular,

(2.7)

l-vs(r,s) ^ 0

\\-vs(r,s)\ ds £ |i?(r, 0)[ + |r| < oo.
J —   CO

v±(r)—   lim   [i-^, i)]    exist.

From |ws|2 = |/s|2-|i>s|2 = (l+i.s)(l-i>s)S2(l-rs) and from (2.6),

(2.8) f+"|«s(r>5)|2ífeá2(Kr,0)| + |r|)
J — CO

< oo.

By   (2.3), fr-fs = ur-us + vrvs = 0  or,   equivalently,   »r= — wr-ws + (l — Ds)yr.   Hence

H2^2(H2+|l-us|2)^2|«s|2 + 4|l-i>s|,sothat

/» + oo

|cr(r,J)|2<fr á 8(|i7(r,0)| + |r|) < oo.
J - oo

Consequently, by Schwartz's inequality,

/» + oo I   /v 2 /»+oo/»r

vr(t,s)dt     ds ^ \r\  I |tv(r, s)|2 í/í eis < oo.
J — oo    I Jo J - oo    JO

Hence t?(0, ,s) = s gives
i*+ oo

\s—v(r9 s)\2 ds < co.
J — 00
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It follows from (2.7) that v±(r) = 0. But, for fixed r, s—v(r, s) is a nondecreasing

function of i by (2.5), so that v(r, s) = s.

The relation 1 = \fs\2= |«s|2+ K|2=|ws|2+ 1 shows that us(r, s) = 0, i.e., u(r, s)

= u(r) is a function of r alone. This proves (2.2) and Case 1 of Lemma 1.1.

Case 2 (cF¿2 and 0<m^d). The proof for the Case 1 shows that if L is a line

in f(Ed)^Ed + e, then through every point of f(Ed) there passes a line in f(Ed)

parallel to L. In particular, there are factorizations Ed = DmxEd'm such that

/(Fmx{0}) contains m linearly independent lines through the point f(0, 0) of

Ed + e. Since/is an isometry, it follows that/|(Fmx{0}) is a linear (isometric) trans-

formation of Fmx{0} into an «j-dimensional subspace of Ed + e. The proof of Case

1 now implies the general case.

3. Proof of Theorem 1.2. Following Toponogov [15], we call a complete

geodesic in Md a "line" if every subarc is minimizing. He shows that if L is a

"line" in Md, then, under the condition of Theorem 1.2 on Md, through every

point p £ Md, there is a unique "line" L(p) "parallel" to L(i); cf. §5.

If two "lines" L1, L2 in Md are "parallel" in the sense of Toponogov, they

possess arclength parametrization gu g2: E1 -> Md and there exists a homotopy

g: E1 x [0, F] -> Md such that g\(E1x{0}) = g1; gfE1 x{T}) = g2; g(s, ■): [0,T]

-> Md is an arclength parametrization of a minimizing geodesic orthogonal to

L1, L2 at / = 0, F, respectively; and g(-, /): F1 -> Md is an arclength parametriza-

tion of the unique "line" in Md parallel to L1 and L2 through the point g(s, t).

When Md is of class Ck,k^2, with a curvature tensor of class Ck ~2, then g e Ck ~1 ;

cf. §5.

Suppose that Lx is a line of Ed + e in f(Md). Then there exists a "line" L1 in

/_1(F1) which/maps homeomorphically onto L1. The proof of Lemma 1.1 shows

that if {L^lp e Md, is the family of "lines parallel toL1", then L1(p)=f(L1(p)),

p e Md, is a family of parallel lines in Ed + e.

]fLu .. .,Lm are linearly independent lines of Ed + e in f(Md); V-(p),.. .,Lm(p)

corresponding families of "parallel lines" in Md; and L1(p)=f(L1(p)),..., Lm(p)

=f(Lm(p)) the related families of parallel lines in Ed + e, then L^p),.. .,Lm(p) span

an m-space at f(p).

According to the factorization theorem of Toponogov [15] (cf. (Tœxi) in §5),

there is a factorization of Md of the form Md = Emx Md~m, where Md~me Ck'1

is a complete Riemann manifold. Ifp = (p0,Pi) e Md, with/>0 e Em and/?! e Md~m,

then V-(p),..., Lm(p) span (Emx{Pl})^Md. The map f\(Emx{p1}) is a linear

isometric map of Emx{p0 onto an «j-dimensional subspace of Ed + e and,

f\({Po}xMd~m)=g(p1) is independent of p0; cf. the proof in Case 1 of Lemma

1.1 that ms = 0. This proves Theorem 1.2.

4. Nullity. The purpose of this section is to give two propositions which pro-

vide verifications for statements of §1 concerning nullity and relative nullity.
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Proposition. 4.1. Assume that Md is a d-dimensional (d¡t2) Riemann manifold

of class C2,f: Md —> Ed + e a C2 isometric immersion, and L1c-Md an arc of class

C1. Then the following are equivalent: (I) the tangent vectors to L1 are relative

nullity vectors and (2) the normal spaces of f(Md) are constant (i.e., parallel)

along L1=f(L1). If Md has nonnegative sectional curvatures and L1 is a geodesic,

then (I) and (2) are equivalent to: (3) Lx=f(L1)czf(Md)czEd + e is a line segment.

Proof. Fix a point Po^L1 and let w = (iF,..., ud) he local coordinates in a

neighborhood of p0 on Md and let /=/(«) =f(u1,..., ud) give the embedding of

this neighborhood. We shall use the following indices on the indicated ranges

1 ^ i,j,k Sd   and    1 £ k, X S e,

and observe the usual tensor summation convention. Let NA(u), A= 1,..., e, he a

C1 family of orthonormal normal vectors to f(Md) at f(u), so that, in terms of

Euclidean scalar products NA-NK=8XK andf-Nx = 0 for all /', A, where / = df¡du'.

Thus we have the Gauss and Weingarten derivation formulae,

(4.1 ) /„ = rkfk + h^N\ h% = /, • N" = -f • N?,

(4.2) ÑÍ = -h1}gimfm + b'>KNK,       biK = N?-NK = -bf\

Let u = u(s), O^s^c, be an arclength parametrtzation of a subarc of L1, u' = du\ds,

and/'' = df(u(s))\ds=fui'. Thus (1) is equivalent to

(4.3) hfj(u(s))u''(s) = 0   for all AandO^sSc.

The normal spaces (or tangent spaces) of f(Md) at f(u(s)) are independent of s

if and only if CNA(u(s)) = 0 for all A, s and all vectors CeEd + e tangent to f(Md)

at f(u(0)). Put

jA = C N\u(s)),   so that jA = 0 at s = 0.

From jA' = C- Nfur and (4.2),

(4.4) ja' = -«kuvnc-zj+^vy.

Thus, (4.3) implies that

yy = bfui-yK   and   j,(o) = 0,

and hence that j%s) = 0 for any vector C tangent to/(Md) at f(u(Q)). Consequently,

(1) implies (2). Conversely, let (2) hold, so that jA(s) = 0 for any vector C in the

tangent space to f(Md) at f(u(t)), O^t^c. Then (4.4) gives

0 = jA' = -h^g'm(C-fm).

Choosing C=fk(u(t)) gives (4.3). Thus (1) and (2) are equivalent.

Suppose now that Md has nonnegative sectional curvatures and that L1 is a

geodesic arc. Then, by (4.1) and the fact that u(s) is a geodesic,

(4.5) /" = hîjNWu*'.
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The nonnegativity of the sectional curvatures of M" are expressed by the inequality

(4.6) (hUiêi)(hLvmVn)-(hhiiviWmnimvn) = 0

foralU = (P,...,íd),^ = (V,...,V)-

Since/: Md-> Ed + e is an isometric immersion, s is also arclength on the arc

f(u(s)),0^s^c. Thus Ll=f(L1) is line segment if and only if/" = 0 or, equivalently,

(4.7) Af/u^yV = 0   for \= \,...,eand0 ^ s S c.

If i = u' in (4.6), it follows that (4.7) holds if and only if hfjui'r¡' = 0 for all r¡ and A;

i.e., (3). This proves the equivalence of (1) and (3).

The next proposition concerns the parenthetical part of Corollary 1.2 and is an

obvious consequence of Toponogov's factorization theorem [15] (cf. (Fw) in

§5) on the product structure of complete manifolds of nonnegative sectional

curvature containing "lines".

Proposition 4.2. Let Md be a complete Riemann manifold of class C3 (or of

class C2 having a continuous curvature .tensor as, e.g., in [5, p. 283]) containing a

"line" L1 and having nonnegative sectional curvatures. Then a tangent vector in

TP(V-) for p e L1 is a nullity vector at p. In particular, if through one (hence every)

point p e Md, there passes p.0 linearly independent "lines", then the nullity satisfies

¡x(p) ä ¡x0 for all p £ Md.

The next proposition is unrelated to this paper, but is an "intrinsic analogue"

of the last part of Proposition 4.1.

Proposition 4.3. Let Md be a Riemann manifold of class C3 (or of class C2

having a continuous curvature tensor as, e.g., in [5, p. 283]). Let p e Md and suppose

that either Kp(Y,)^0 or Kp(£)fí0 holds for the curvatures Kp(£) at p of all 2-sections

21 through p. Let z e Tp(Md). Then z is a nullity vector if and only if KPCL) = 0 holds

for all 2-sections X through p with z e F„(2).

Proof. The definition of a nullity vector trivially implies that Kp(L) = 0 for all

2-sections through p with z e Fp(2).

Conversely, suppose that KPCL) for all such 2-sections. In appropriate local

coordinates, with z = (z1,..., zd),

Rijkmxixkzizm = 0   for all x = (x1,..., xd).

Since Kp(£)it0 or Kp(2,)fi0 for all 2-sections S through p, the vector z is a null

vector for the symmetric matrix (Rijkmx'xk) = (Rkmijxlxk), for j, m= 1,..., d,

RiikmXixkzm = 0   for all / and x.

Thus, for fixed /, this form in x is skew,

(4.8) (Rijkm + Rkiim)zm = 0   for all i,j, k.
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From the standard relation Riikm + Rkijm = Rkjim, we obtain

(2Rijicm + Rmím)2"1 = 0.

By (4.8), Rkiimzm= -Rjikmzm = RUkmzm, so that

Rijkmzm = 0   for all/, j, k.

Hence z is a nullity vector.

5. Differentiability  assumptions in  theorems  of Rauch  and  Toponogov.    The

assumption MdeCk implies that, in local coordinates, the metric tensor is of

class C'1. In general, k = 2 does not permit the definition of sectional curvature

on Md. But the existence of an isometric immersion/: Md -> Ed + e of class C2

implies that there exists a continuous curvature tensor expressible in terms of

second fundamental forms; cf., e.g., [5, pp. 283-284]. Thus the statements in §1

are meaningful even for k = 2.

When Md e Ck, k~^2, has a continuous curvature tensor of class C', Ö$/i§ft—2

(for example, if there exists an isometric immersion/: Md -*■ Ed + e of class C' + 2),

then there exist local geodesic coordinates of class C' + 1; cf. [5].

No further remarks are needed as to "differentiability" in the proofs of Corollary

1.1 and Lemma 1.1. The proofs of the other results of §1 depend however on the

factorization theorem of Toponogov [15], called (TœB) below, which in turn is

based on his comparison theorem [14], see (CT^,) below. Consider the validity of

the following two assertions, (Tw) and (CTfc):

(Tw) Assume that (i) Md e Ck is a complete Riemann manifold with non-

negative sectional curvatures and that (a) there exist m linearly independent "lines"

through some point p e Md. Then there exists a complete Riemann manifold

Md-meCJ suchthat Md = EmxMd~n.

(CTfc) Assume that (i) holds. If abc is a triangle in Md with minimizing geo-

desies as sides and ABC is a triangle in E2 with corresponding sides equal to those

of abc, then corresponding angles of ABC do not exceed those of abc.

On the one hand, Toponogov's proof [15] of (Tœoo) makes it clear that if (CTk)

holds for Md and if there exist (local) geodesic coordinates of class C on Md with

jfík, then (Tfc;) holds. On the other hand, we shall point out below that the proof

of Toponogov's comparison theorem in [4, pp. 182-194], can be modified to yield

(a) (CT2) is valid, provided that Md has a continuous curvature tensor (for example,

in the sense employed in [5, p. 283]).

This gives, therefore, the following:

(b) (Tk,k-X) is valid for k}t2 provided that Md e Ck has a curvature tensor of

class Ck~2 (e.g., if there exists an isometric immersion f: Md -> Ed + e of class Ck).

In particular, (TkJ) is valid for k^3, lfkjlkk — 2.

These remarks indicate the correctness of the proofs above under the stated

differentiability conditions. It is clear that one can obtain assertions analogous to
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those of §1 if one replaces the assumptions "MdeCk and fe Ck, &&2" by

"MdeCk, k^3, and feC, l^j^k-2" and the corresponding part of the

conclusion by "Md~m e Ck~2 and g e Cj".

The remainder of this section is devoted to a verification of (a). The proof of

Toponogov's comparison theorem (CTM) in [4] depends essentially on two

results: Rauch's comparison theorem and a result of A. D. Alexandrov (d=2)

and Toponogov (<F=ï2). The latter is stated as Lemma 2 in [4, p. 187], and corre-

sponds to (b0) below with a Cm assumption. Thus the proof of (CTm) in [4] can

be modified to yield (a) if the following assertions (a0), (b0) are verified. (For other

proofs of (CT„) or related results, see [1], [9].)

(a0) Rauch's comparison theorem is valid for manifolds of class C2 having con-

tinuous curvature tensors.

(b0) Let Md e C2 be a complete Riemann manifold; p, q, r distinct points of Md;

ß, y minimizing geodesies from p to q andp to r, respectively; r fi ß; qx, q2,. . ., points

of ' ß, p + qn^ p as n -> oo; yn a minimizing geodesic from qn to r; 6 the angle from

y to ß at p; and 0n the angle from yn to ß at qn. Then lim sup 8nS 8 as « -*• oo.

On (a0). Let Md he a Riemann manifold of class C2 having a continuous curva-

ture tensor. Consider local coordinates u = (u1,.. .,ud) on a neighborhood of M".

Let u = u(s, t) he a 1-parameter family of geodesies having initial conditions

w(0, t), k'(0, t)=[du(s, t)lds]„= o of class C1 for small |/|. Then, by [5, pp. 283-284],

u(s, t) and u(s, t) are of class C1 in (s, t); furthermore, if Vj=gjkuk', then 32ui\3s 3t

= u\ and (va — rj^af )' exist, are continuous, and satisfy the system of differential

equations

(5.1) u\ + Y)ku{uk' = g»(vjt - rkmvkut),

(5.2) (vjt-Tkmvku?)'-T)k(vit-T?nvmu?)uk' = -ginK,^n "mX-

The left side of (5.1) is the rth component of Dut, the covariant derivative of the

covariant vector ut = 3u\8t along the geodesic u = u(-, t). The left side of (5.2) is

the /h component of the covariant derivative of a contravariant vector along the

same geodesic for fixed t. Since the covariant derivative of the metric tensor is 0,

(5.1) and (5.2) show that, for a fixed t, w = ut = 8u\3t satisfies the Jacobi equation

in the standard form

(5.3) D(Dw) + R(w, u')u' = 0.

(In particular, D(Dw) exists and is a continuous function of (s, t).) The standard

theory of existence, uniqueness, and disconjugacy for this type of normal, linear,

second order, selfadjoint system (cf., e.g., [7, pp. 384-396]) and the usual proofs

of Rauch's comparison theorem (cf., e.g., [4, pp. 178-181]) give (a0).

On (b0). The theorem (b0), with C2 replaced by C°, is deduced in [4, pp. 187-189],

from a result similar to
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Proposition 5.1. Let Md eC2 be a complete Riemann manifold and M0<^Md a

compact set. Then there exist constants e = e(M0)>0, C=C(M0) with the property

that, for qeM0;x,ye Tg(M0); and \\x\\, |>¡á*,

(5.4) |dist(exp9x,exp,j)-||x-j||| fi C(||x||2 + ||>>||2).

In (5.4), exp, x — u(l), where u(s) = exr>Q sx is a (not necessarily unique) geodesic

satisfying u(0)=q, u'(0) = x.

The proof of (b0) in [4] uses a form of Proposition 5.1 in which C(||x||2+ \\y\\z)

in (5.4) is replaced by o(||x„||2+ \\yn\\2) if q=qn^P in Md and x = xn, y=yn

-^Oe Tp(Md) in T(Md). Actually, the proof of (b0) in [4] is valid if "o" is weakened

to"0".

Proof of Proposition 5.1. Let p e Md; «=(«*,..., ud) local coordinates on a

neighborhood N of p: u = 0; C72(w) = (gy(w)) the first fundamental matrix; and

G(u) the positive definite, symmetric square root of G2(u). Below, we shall identify

a point of N and its local coordinates. N will denote a suitable neighborhood of p

and Cx = C-ifN) a constant depending only on N; N and Cx are not always the

same.

Let dist (■, •) be the metric on Md; |£| the Euclidean length of ÇeRd; and

|f||u=|G(i/)f| the norm of £eTu(Md). For a suitable choice of N, there is a

constant C± = Ci(N) such that

(5.5) liJ/Ck S \G(u)è\ ík Cjfl,

(5.6) \[G(u)-G(v)]è\ ú Ci\u-v\-\t\

for all I e Rd and u,ve N. There also exists a constant ex = ex(N) > 0 such that if

u = u(s), 0^s-¿c, is an arclength parametrization of a geodesic of length c^e^

with u(0) e A', then, by the differential equations for geodesies, \u"\ ikCx and

è Cxc2,(5.7) f \G(u(0))u'(s)\ ds-i
I Jo

(5.8) \u(c)-u(0)-cu'(s)\ ^ Cyc2   forO ^ s ^ c.

Since

\c\G(u(0))u'(s)\-\G(u(0))[u(c)-u(0)]\ \ ^ C,c2,

we have

(5.9) \c-\G(u(0))[u(c)-u(0)}\ | ^ Cyc2.

In particular, c/C^CyC2^ \u(c)-u(0)\ ^CyC+C^2; so that if 0<c^£l, e^e^N)

is sufficiently small, and w(0) e N, then

(5.10) c/Cj ^ |w(c)-w(0)| ^ ClC.
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Let qeN, 0^xeTq(Md), and u(s) = expq(sxl\\x\\q) for 0Síá|x|,S«i. Then

(5.8) gives

\expqx-q-x\ ^ Cx\\x\\2.

This inequality is trivial if x = 0. From this inequality and a corresponding one for

j, j e Tq(Md) and |j|ea*i,

(5.11) |(expa.x-exPgj)-(x-j)| ^ d(||*|; + ||j||2).

Let w = w(.y), 0gíác = dist (exp, x, exp, j) be a minimizing geodesic joining w(0)

= exp, x and «(c) = expc j. Then, by (5.9), (5.10) and (5.11),

(5.12) |dist(exp9x,exp9j)-|G(M(0))[exp3x-expQj]| | ^ C1(||x||2+ flj||2).

The analogue of (5.10) applied to the geodesic exp, (íx/||x||,), O^s^ \\x\\q, gives

\x\JCi ^ |exp8x-^| f£ Cx\\x\\q,

and (5.6) applied to w(0) = exp„ x, v = q gives

\[G(u(0))-G(q)U\ Ú Cx\\x\\q\£\    for all í e Rd.

Thus, (5.11), (5.12) and \\x-y\\q=\G(q)(x-y)\ imply that

(5.13) |dist(exp9x,exp3j)-|jx-j|U í Cx(\\x\\2q+\\y\\2)

for qeN and x, y eTq(Md),  \\x\\q^ex,  \\y\\q^ex. Proposition 5.1  now follows

from the compactness of M0.
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