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COUNTABLE PARACOMPACTNESS

AND WEAK NORMALITY PROPERTIES

BY

JOHN MACK

In [4], Dowker proved that a normal space X is countably paracompact if and

only if its product with the closed unit interval is normal. In this paper, we prove

an analogue of Dowker's theorem. Specifically, we define the term 8-normal and

then prove the following:

Theorem 1. A topological space is countably paracompact if and only if its

product with the closed unit interval is 8-normal.

After proving this theorem, we obtain similar results for the topological spaces

studied in [7] and [11]. Also, cogent examples are given and the relation this note

bears to the work of others is discussed.

We shall follow the terminology of [5] except we shall assume separation prop-

erties for a space only when these assumptions are explicitly stated.

For an infinite cardinal m, a set A in a topological space will be called a Gm-set

(respectively, a regular Gm-set) provided it is the intersection of at most m open

sets (respectively, at most m closed sets whose interiors contain A). If m = S0, we

shall use the familiar terms GVset and regular C-set.

It is clear that the zero-set of any continuous real valued function is a regular

(/¿-set and that the intersection of no more than in such zero-sets is a regular Cm-

set. In the remaining part of this paper, we shall use these facts without explicitly

mentioning them.

Definition. For an infinite cardinal nt, a topological space is m-normal if each

pair of disjoint closed sets, one of which is a regular Cm-set, have disjoint neigh-

borhoods. For m = S0, we shall use the more suggestive term 8-normal.

Note that a normal space is m-normal and that a regular space is normal if

and only if it is m-normal for every infinite cardinal m. On the other hand, a

compact Fi-space that is not Hausdorff is m-normal for every infinite cardinal

but yet it fails to be normal.

Recall that a space is m-paracompact if each open cover having cardinal less

than or equal to m has a locally finite open refinement. Characterizations of m-

paracompact spaces may be found in [14] and [8].

Theorem 2. Each m-paracompact space is m-normal.
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Proof. Suppose X is m-paracompact and let A and B be disjoint closed sets

such that £ is a regular G,„-set. Then there is a family <$, having cardinal less

than or equal m, consisting of open neighborhoods of B such that B is the inter-

section of {G : G e &}. Let T be the set of all finite nonempty subfamilies of 'S.

For a e T, define Ga to be the intersection of {G : G e a}. Then £<=Ga and B =

H Ga. The family of sets X\A n Ga is a directed open cover of X. By Theorem 5

in [8], there exists a locally finite open cover {Vtt} such that Va r\ A n Ga= 0 for

all a in T. Now let U be the union of all sets Va\Ga and V be the union of the sets

Ga\U {^ : ß is not a subset of a}. Clearly, Í7 is open, contains A and is disjoint

from V. Since {Va} is locally finite it follows that V is open. For x e £, let y =

U {j8 : x e F„}. Since the cover {Va} is locally finite, y e F and x <£ [J {Vß : ß<£y};

whence xeV. Therefore £<= V and the proof is complete.

For the important special case where m = X0, we have:

Theorem 3. Each countably paracompact space is 8-normal.

The local weight of a topological space is the least cardinal m such that each

point has a neighborhood base consisting of at most m elements.

Theorem 4. (i) A Hausdorfif m-normal space having local weight = m, is regular.

(ii) A Hausdorfif m-normal space having cardinalim, is regular.

Proof. Under the hypotheses in each case, a singleton is a regular Gm-set.

For emphasis, we state the following special case:

Theorem 5. If a 8-normal Hausdorfif space is either countable or satisfies the first

axiom of countability, then it is regular.

Corollary 6 (Aull [1]). Each countably paracompact, first countable, Hausdorfif

space is regular.

Example. For each infinite cardinal m, there is an m-normal, Hausdorff space

which is not regular. Given m, let wa be the least ordinal having cardinal greater

than m. Denote by W* the set of ordinals less than or equal to wa and by W, the

set W*\{wa}. In W* x W*\{\wa, wa)}, identify all points of Wx{wa}. The quotient

space X is Hausdorff but not regular (the images in X of the upper edge and the

diagonal are not separated by disjoint open sets). Nonetheless, X is m-compact;

hence it is m-paracompact and m-normal.

Throughout this paper / will denote the closed unit interval. In the proof of

Theorem 1, we shall use the following lemma.

Lemma 7. For any topological space X, the following are equivalent:

(a) X is countably paracompact.

(b) If g is a strictly positive lower semicontinuous function on X, then there exist

real valued functions I and u with I lower semicontinuous and u upper semicontinuous

such that 0 < /(x) á w(x) 5 g(x) for all xeX.
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(c) If A is a closed subset of Xxl and K is closed in I such that A and XxK

are disjoint, then A and XxK have disjoint neighborhoods.

Proof. The equivalence of (a) and (c) is due to Tamaño (Theorem 3.9 in [16])

while the equivalence of (a) and (b) is an easy consequence of Theorem 10 in [7].

Proof of Theorem 1. If X is countably paracompact, then Xxl is countably

paracompact (Theorem 1 in [4]). By Theorem 3 above Xxl is 8-normal. Con-

versely, suppose £is closed in /. Since /is metrizable, AT is a regular Gó-set. There-

fore XxK is a regular C-set in Xxl. In view of Lemma 7, the 8-normality of

Xxl will imply that X is countably paracompact.

Theorem 8. A closed continuous image of an m-normal space is m-normal.

Proof. Observe that a continuous inverse image of a regular Gm-set is regular

Cm. Using this fact, the standard proof that a closed continuous image of a normal

space is normal, becomes applicable here.

Remark. In general, it is not true that preimages of m-normal spaces are m-

normal even for perfect maps (i.e., continuous closed maps for which the pre-

images of compact sets are compact). Note that in view of Theorem 1 and the fact

that a space X is always the perfect image of Xxl, it follows that if every perfect

preimage of X is S-normal, then X is countably paracompact.

Many of the standard examples of nonnormal spaces, also, fail to be 8-normal.

Here we give a partial list of such examples, (i) The space Sx S where 5 is the

reals with the half-open interval topology [15]. (ii) The space Xx F constructed

by Michael [12]. (iii) The space RR where R is the space of reals, (iv) The spaces

constructed in problems 3K, 51, 6P, 6Q of [5]. We shall use the space Sx S to

illustrate a technique that can be used to verify that these spaces are not 8-normal.

In Sx S let A be the set of points (x, —x) where x is rational and B be the set of

such points for irrational x. Then A is closed and £ is a regular C-set while these

sets do not have disjoint neighborhoods. To show this, one can exploit the fact

that the irrationals are not an F<,-set in the reals (cf. [12]).

Definition. A space will be called 8-normally separated if each closed set and

each zero set disjoint from it are completely separated. A space will be termed

weakly 8-normally separated if each regular closed set (i.e., the closure of an open

set) and zero-set disjoint from it are completely separated.

Remark. The properties of being 8-normal and 8-normally separated are,

unfortunately, not comparable for arbitrary topological spaces. In a space where

every regular C-set is a zero-set, 8-normal separation implies S-normality, but

not conversely (see the example at the end of this paper). On the other hand,

Hewitt's example [6] of an infinite regular Hausdorff space on which each con-

tinuous real-valued function is constant, is a 8-normally separated space which is

not S-normal (cf. Remark following Theorem 13). The author does not know

whether among completely regular spaces, 8-normal separation implies 8-

normality.
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Clearly each normal space is S-normally separated. Likewise, 8-normal separa-

tion implies weak 8-normal separation and the converse is true for 8-normal

spaces.

The concept of S-normal separation is not a new one. P. Zenor introduced this

idea in [17] and used the term Property Z.

The 8-normal separation of a space A'can be characterized in terms of properties

of the ring CiX) of a real-valued continuous function on X.

Theorem 9. A topological space X is 8-normally separated if and only if for each

fie CiX) and each closed set A on which fi is strictly positive, there exists a unit u

of the ring CiX) such that fu is identically one on A.

Proof. Assume X is S-normally separated and that / and A have the given

properties. Then there exists a nonnegative element n of CiX) which vanishes on

A and assumes the value 1 everywhere on the zero-set off. Then the ring inverse

of l/l +h is the desired unit. The converse is obvious.

We shall now proceed to state and prove the analogue of Theorem 1 for the

S-normal separation and weak 8-normal separation properties. To achieve this,

we need to recall the definitions of cè-spaces and weak cb-spaces. A space X is a

cb-space (respectively, weak cb-space) provided every locally bounded real valued

function on X (respectively, every locally bounded lower semicontinuous function

on X) is bounded above by a continuous function. Information concerning cb-

spaces and weak cÄ-spaces may be found in [7] and [11 ], respectively. In comparing

Theorem 1 with Theorem 11 below, it is useful to remember that a space is cb

if and only if it is weak cb and countably paracompact.

Lemma 10. (a) Each cb-space is 8-normally separated.

(b) Each weak cb-space is weakly 8-normally separated.

Proof. We shall prove (a) and make parenthetical comments to indicate the

proof of (b). Let A be closed and Z be a zero-set disjoint from A. Given a non-

negative function n in CiX) such that Z is the zero-set of h, define g(x)= 1 +«(x)

for x not in A and g(x) = n(x) for x belonging to A. Then g is lower semicontin-

uous (normal lower semicontinuous if A is regular closed). Clearly g is strictly

positive. By Theorem 1 in [7] (Theorem 3.1 in [11] for (b)) there is a strictly positive

real valued continuous function/such that/^g. Then the function «//completely

separates A and Z.

Theorem 11. Let X be a topological space. Then

(a) X is a cb-space if and only if Xxl is 8-normally separated.

(b) X is a weak cb-space if and only if Xxl is weakly 8-normally separated.

Proof. The necessity follows from Lemma 10 above; the sufficiency from Corol-

lary 12 and Theorem 13 in [9].

Remark, In both Theorems 1 and 11,7 may be replaced by any infinite compact
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metric space. Also, note that Theorem 10 in [9] implies that a variation of (a) in

the above theorem is valid when / is replaced by an infinite product of intervals.

Corollary 12. (a) Each countably compact space is both 8-normal and 8-

normally separated.

(b) A completely regular, pseudocompact space is weakly 8-normally separated.

Proof. Since countably compact spaces are cb (Corollary 3 in [7]) and completely

regular pseudocompact spaces are weak cb (Corollary 3.8 in [11]), this theorem

follows immediately from Lemma 10.

It is well known that a normal pseudocompact Hausdorff space is countably

compact. In [17], Zenor shows that normality may be replaced by S-normal

separation. Here we show the condition can be further weakened to 8-normality.

Theorem 13. A completely regular space is countably compact if and only if

it is 8-normal and pseudocompact.

Proof. By Corollary 12 above, a pseudocompact 8-normal space is also S-

normally separated. This theorem now follows from Zenor's result (Theorem 3 in

[17]).
Remark. In Theorem 13, it is essential that the space be completely regular;

for there exist regular, countably paracompact, Hausdorff spaces, that are not

countably compact, on which every real valued function is constant [10]. Such a

space can be obtained by altering slightly the construction used by Hewitt in [6].

For a completely regular space X, let vX denote the Hewitt realcompactification.

In [5, p. 120], it is noted that the normality of X and of vX are independent of

each other. The same is true for 8-normality and 8-normal separation. To see this,

first, let A' be a completely regular pseudocompact space that is not countably

compact (the Tychonoff plank will do nicely). Then vX is compact and hence is

both 8-normal and 8-normally separated, but X has neither of these properties.

On the other hand, let P be the product RR of c (c = card £) copies of the reals R

and let X he an associated 2-product. Then X is normal, and vX=P (see [3]) but

F is not countably paracompact. Whence it follows from Theorem 1 that F is not

8-normal and from Theorem 11 that F is not 8-normally separated.

The situation for weak 8-normal separation is entirely different as Theorems

14 and 17 below will show.

Theorem 14. If a completely regular Hausdorff space X is weakly 8-normally

separated then vX is as well.

Proof. If A is regular closed in vX and Z is a zero-set in vX, then A n X is

regular closed in X and Z n X is a zero-set in X. Moreover, A and Z are the

closures in vX of A n X and Z n X respectively (for the latter see 8.8(b) in [5]).

If/is a continuous real valued function on A'which completely separates A C\ X

and Znl, then its extension to vX clearly separates A from Z.
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Corollary 15. Any product of complete separable metric spaces is weakly

8-normally separated.

Proof. In [3], it is proved that any such product is uATor some normal space X.

In order to obtain a partial converse of Theorem 14, we prove the following

lemma which seems to be of independent interest. A point x of a space A" is a

q-point [13] if it has a sequence {£„} of neighborhoods such that if {x„} is a sequence

of distinct points with xn e Un, then this sequence has an accumulation point.

Lemma 16. If every point ofivX\X is a q-point ofivX, then every pair of disjoint

sets A, Z where A is regular closed in X and Z is a zero-set in X, have disjoint

closures in vX.

Proof. Suppose on the contrary that p belongs to the closure of both A and Z

and let {£„} be a sequence of open neighborhoods of p given by the definition of

fl-points. Let G denote the interior of A in X and fie CiX) be a function whose

zero-set is Z. By our assumption p belongs to the closure of G n {x : |/(x)| < 1/n}

(call this set Hn) for each positive integer n. Whence Un n Hn is nonempty for

each n. Pick xn from this set. Clearly, we may assume that the xn are distinct. Since

A and Z are disjoint, it follows that {//„} is locally finite. Thus the sequence {x„}

has no accumulation point. But this is impossible since p is a a-point.

Theorem 17. If vX is locally compact imore generally, if each point in vX\X

has a compact neighborhood in vX), then X is weakly 8-normally separated if and

only if vX has the same property.

A converse for Theorem 14 is not possible, without some sort of restriction on

vX. This is shown in the example below.

It is natural to ask what relation the above results bear to the well known

unanswered question [4, p. 221]: Must the product of a normal Hausdorff space

with the closed unit interval be normall In this regard, first, observe that if X is

normal, then Xx I is normal provided it is S-normal. This fact suggests the follow-

ing question : If X is a regular, 8-normal space, must Xxl be 8-normal! Except for

noting that without the assumption that the space is regular, the answer to this

question is negative (see p. 221 in [4]), the author has not obtained any significant

clues concerning the answer to this question. On the other hand, the answer to the

corresponding question for S-normal separation is negative. This is the sub-

stance of the following example.

Example. Let X and X* be the spaces constructed on pp. 240, 241 of [11].

There it is pointed out that X is locally compact, countably paracompact but not

a c¿>-space while X* is a-compact but not locally compact and that X* = vX. It

is a simple matter (using Theorem 9 and the special relation that X bears to X*)

to show that X is also S-normally separated. Since X is not a cè-space, it follows

from Theorem 11 that Xxl is not S-normally separated (or even weakly 8-

normally separated). It is, however, S-normal.
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Also, in view of Theorem 2.8 in [2], note that v(XxI) = vXxI. Now since

vXx 1= X* x I is Lindelöf and regular, it is normal. Nonetheless Xx I fails to be

weakly 8-normally separated. This shows that the restriction on uAin Theorem 17

cannot be entirely suppressed.

In [14], Morita obtained the following generalization of Dowker's theorem [4]:

A space X is m-paracompact and normal if and only if Xxlm is normal. In view

of Morita's result, it is natural to ask: What condition on X is necessary and

sufficient for Xxlm to be m-normal? Theorem 2 implies that m-paracompactness

of X is a sufficient condition; however the author has been unable to determine

whether nt-paracompactness is also necessary. The chief stumbling block is the

lack of a characterization of nt-paracompactness similar to that for countable

paracompactness given by Tamaño (Lemma 7 above).

In contrast to the obstacles encountered in attempting to obtain an analogue of

Theorem 1 for uncountable cardinals, Theorem 11 (as pointed out in the Remark

following that theorem) can be extended by merely giving an appropriate meaning

to the term m-normal separation. Specifically, define a space to be m-normally

separated provided the intersection of any family consisting of at most m zero-sets

is completely separated from any closed set disjoint from it. Then for any space X,

Xxlm is m-normally separated if and only if X is an //(m)-space in the sense

of [9].
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