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INJECTIVE AND PROJECTIVE HEYTING

ALGEBRAS^)
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RAYMOND BALBES AND ALFRED HORN

The determination of the injective and projective members of a category is

usually a challenging problem and adds to knowledge of the category. In this

paper we consider these questions for the category of Heyting algebras. There has

been a lack of uniformity in terminology in recent years. In [6] Heyting algebras

are referred to as pseudo-Boolean algebras, and in [1] they are called Brouwerian

lattices. We would argue for retaining the name Heyting algebras for the reasons

given in [2, p. 162], reserving the name Brouwerian algebras for the algebras dual

to Heyting algebras. The fundamental paper on Brouwerian algebras (and there-

fore Heyting algebras) is [4].

We shall show that a Heyting algebra is injective if and only if it is a complete

Boolean algebra. The determination of projective Heyting algebras is, as usual, more

difficult. We shall characterize all projective Heyting algebras which are finite or

are chains. Some other results on projective algebras are given.

1. Definitions and preliminaries. If S is a subset of a lattice L, then 2(5) denotes

the least upper bound in L of S, and fl(S) denotes the greatest lower bound of S.

If S={x, y}, then 2(S) and 11(5') are written x+y and xy. The largest and smallest

elements of a lattice L are denoted by 1 (or 1L) and 0 respectively.

A Heyting algebra is a lattice with 0 such that for any elements a, b there is an

element a->b such that axúb if and only if x^a->¿>. We use -¡a to denote

a —> 0. Every Heyting algebra is a distributive lattice. The lattice of all open sets

of a topological space is a Heyting algebra. We state without proof some elementary

properties of Heyting algebras.

Theorem 1.1. If a, b, and c are any elements of a Heyting algebra, then the

following hold:

(1) a = b if and only ifa->è=l.

(2) l->a = a.

(3) a->b^b.

(4) Ifb = c, then a^-b = a-^-c andc -^a = b -^-a.

Received by the editors October 4, 1968.

0) The research and preparation of this paper was supported in part by NSF GP-9044

and by an assistant professor research fund grant from the University of Missouri-St. Louis.

Copyright © 1970, American Mathematical Society

549



550 RAYMOND BALBES AND ALFRED HORN [April

(5) a -> ib -> c) = ab -> c.

(6) Ifia^c and a -+b = b, then c -> b = b.

il) ia + b)^c = ia->c)ib-*c).

(8) ag(a->6)_>6.

(9) iia^b)-*b)^b = a->b.

(10) ((a-»-6)->6)->-(a-*-o)=a-)-6.

(11) (a^¿)->((a^¿>)^¿>) = (a->Z>)^£

(12) Ifa^b,aib^c) = ac.

From the point of view of universal algebra, Heyting algebras are regarded as

algebras <//, +, -, —>, 0> with three binary operations and a distinguished element.

Accordingly subalgebras and homomorphisms of Heyting algebras are subsets

and functions which preserve the operations and 0. A Heyting homomorphism/is

one-to-one (that is, /is a monomorphism) if and only if/(w)=l only for w=l.

We shall usually refer to Heyting homomorphisms by using the word homomor-

phism without qualification. A Heyting algebra H is said to be injective (in the

category of Heyting algebras) if for any Heyting monomorphism/: B-» A and

any homomorphism « : B -»■ H, there exists a homomorphism g: A —> H such that

gfi=h. A Heyting algebra H is called projective if for any Heyting epimorphism

/: A -> £ and any homomorphism «: H -> B, there exists a homomorphism

g: #-> A such that/g- = /;.

The identity map of a set /I is denoted by IA. A Heyting algebra H is a retract

of an algebra £ if there exist homomorphisms /: £ -s- H and g : // -> £ such that

fg = IH. A retract of a projective Heyting algebra is projective. A Heyting algebra

is projective if and only if it is a retract of a free Heyting algebra. If/: £—>- £ is a

Heyting epimorphism and H is projective, then £ is a retract of £.

Boolean algebras will be regarded as algebras <£, + , -, "> where ä denotes

the complement of a. There are certain connections between Heyting algebras

and Boolean algebras which we shall use. If <£, +, -, "> is a Boolean algebra,

then <£, +, -,-*-, 0B> is a Heyting algebra, where a^ b = a + b. If Bx and £2

are Boolean algebras then a map/: Bx -> £2 is a Heyting homomorphism if and

only if it is a Boolean homomorphism. If H is a Heyting algebra, let /?(£) be the

set of regular elements, that is, £(//) = {x e H : x= —, -, x}. The following theorem

is well known.

Theorem 1.2. If H is a Heyting algebra, then <£(//), + ,-,—,} is a Boolean

algebra, where a + b= —, -, (a + ¿>). The canonical map ¡p: H-> £(//) defined by

<p(x) = —i —, x is a Heyting epimorphism.

If £ is a Heyting algebra, then <//, +, -, -i> is a Boolean algebra if and only

if -i x = 0 only for x = 1. This follows immediately from the identity -, (x H—, x) = 0.

A linearly ordered set with 0 and 1 will be called a chain. Every chain is a Heyting

algebra in which x->j=j for x>y and x->y=l for x¿y. By a subchain of a

Heyting algebra, we mean a subalgebra which is a chain.
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If F is a lattice and x e L, let L<x) denote {y e L : yúx} and L(x) denote

{yeL : y^x}.

2. Injective Heyting algebras.

Lemma 2.1. Let fi: H -»■ K and g: K-> H be order-preserving maps of partially

ordered sets such that gfi=IH. If K is complete, then H is complete.

Proof. Let {xa : ae 1} he any family of elements of H. Let y=Yl{f(xa) : a el).

Then g(y)^gf(xa) = xa for all a e I. If z e H and z^xa for all a, then f(z)ê/(xa)

for all a. Therefore /(z)^v and z=gf(z)^g(y). Hence g(y)='L{xa : ae I}.

Theorem 2.2. If H is an injective Heyting algebra, then H is a complete Boolean

algebra.

Proof. Let K be the set of all ideals of H. Then A" is a complete Heyting algebra

[1, p. 129]. For xeH, let fi(x) = H{x). Then/: //-> K is a monomorphism. Since

H is injective, there exists a homomorphism g: K-> H such that gfi=IH- By 2.1,

H is complete.

To prove H is a Boolean algebra, we must show -, x = 0 only for x= 1. Suppose

there exists ae H such that -, a = 0 and a< 1. Then (0, a, 1} is a subchain of H.

Extend it to a maximal subchain C of H. Let g: C—> H be defined by g(x) = x.

Let D be the chain obtained by adding to C a new element a such that 0 < a < x for

all x e C—{0}. Then C is a subchain of D. Since H is injective, there exists a homo-

morphism n: D -> H which extends g. Now h(D) is a subchain of H containing C.

By the maximality of C, h(a)eC. But n(a)^0, since-, n(a)=«(-,a) = n(0) = 0.

Also //(a)Sh(a) = a< 1. If xeC-{0}, then n(a)^x and x-s-n(a) = n(x^a)

= n(a)< 1. Therefore h(a) < x for all x e C—{0}by 1.1 (1). Thusn(a)<£Candwehavea

contradiction.

Lemma 2.3. Let h: H-+ B be a Heyting homomorphism from a Heyting algebra

H to a Boolean algebra B. Then there exists a Boolean homomorphism hx : R(H) -¥ B

such that hx<p = h, where cp: H ->■ R(H) is the canonical map of 1.2.

Proof. Since //(-, x) = n(x), we have A(-> -, x) = n(x) for all x e H. Let hx be the

restriction of n to R(H). If x,y e R(H), h(x+y) = h(-, -i(x+y)) = h(x+y) = hx(x)

+hx(y). Therefore hx is a Boolean homomorphism. Also hx<p(x)=h(-y —, x) = h(x)

for all x e H.

Lemma 2.4. Let fi: Hx -> H2 be a Heyting homomorphism. Then there exists a

Boolean homomorphism fi : R(Hx) -> R(H2) such that <p2f=f'<px, where «pl5 cp2 are

the canonical maps of 1.2. If fis one-to-one, so isfi.

Proof. The existence of/' follows immediately from 2.3. Assume/is one-to-one.

Suppose xeR(Hx) and/'(x)=l. Then 1 =f'(x) =/'(-, -» x) =/Vi(x) = <p2/(x)

= -i -i/(*)=/(-, -i x). Therefore -, -, x= 1 and so x= 1. Hence/' is one-to-one.
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Theorem 2.5. A Heyting algebra H is injective if and only if it is a complete

Boolean algebra.

Proof. The necessity was proved in 2.2. Suppose H is a complete Boolean

algebra. Let/: Hx -> H2 be a Heyting monomorphism, and let « : Hx -*■ H be a

Heyting homomorphism. Let <pf. Ht-> R(H) be the canonical maps, z'=l,2.

By 2.3 there exists a Boolean homomorphism hx: R(HX) -> H such that hx<px=h.

By 2.4 there exists a Boolean monomorphism /': £(/£) ->■ R(H2) such that

<p2f=f'<px. Now Sikorski's theorem implies that H is injective in the category of

Boolean algebras [3, p. 141]. Therefore there exists a Boolean homomorphism

gx : RiH2) -> H such that gxf'=hx. Let g=gl(p2 : H2->H. Then gf=g1<p2fi=g1f'<px

= hx<px=h.

3. Star sums of Heyting algebras.

Definition 3.1. If L is a lattice, then £ © 1 denotes the lattice obtained by add-

ing a new element 1 such that 1 > x for all x e £.

Definition 3.2. A pre-Heyting algebra is a lattice L such that x -*■ j> exists

whenever x, j e£ and x$y.

Definition 3.3. A pre-subalgebra of a pre-Heyting algebra £ is a sublattice S

such that x —>- y e S whenever x, y e S and x$y.

If £ is a pre-Heyting algebra with 0 and 1, then L is a Heyting algebra by 1.1 (1).

If £ is a pre-Heyting algebra with 0, then £ © 1 is a'Heyting algebra and L is a

pre-subalgebra of £© 1.

Definition 3.4. If Lx is a pre-Heyting algebra and L2 is a Heyting algebra, a

function/: Lx ->L2 is called a pre-homomorphism iff is a lattice homomorphism

and /(x -> j>) =/(x) ->fiiy) whenever x $ y.

Definition 3.5. An element a of a lattice £ is called a node if a is comparable

with every element of £.

Theorem 3.6. If a is an element of a Heyting algebra H, then (Hia), +, •,->,«>

is a Heyting algebra. If a is a node, then H{a) is a Heyting algebra which is a pre-

subalgebra of H.

Proof. The proof is easy and is omitted.

Definition 3.7. Suppose S is an ordinal such that 0< S^u>, and Hn is a Heyting

algebra for each «, 0 :£ « < 8. By £*< ôHn we mean a lattice H with nodes 0H = a0

<ax< ■ ■ ■ <aô=lH such that for each «, Hn is isomorphic with

H'n = {xeH:an<: x Ú an+1}.

We will usually identify Hn with H'n, so that an=0Hll and an+1 = lHn. If 8 is finite,

then S*<a/ín is written H0* Hx * ■ ■ ■ * Hà_x.

Theorem 3.8. If £f=S*<i/Yn, /-«en # z'j a pre-Heyting algebra, and for each n,

Hn is a pre-subalgebra of H. If 8 is finite, H is a Heyting algebra.
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Proof. Suppose x e Hn, y e Hm and x$y. It is easy to verify that if m=n, then

x-+y has the same meaning in H as in Hn, while if m<n and y<0Hn then

x-*y=y.

Lemma 3.9. Suppose fi0: H0^-KQ is a Heyting isomorphism and fi: Hx->Kx

is a Heyting homomorphism. Then the function g: H0* //i —>- K0* Kx defined by

g(x) =/(x) for x e H¡, 1 = 1,2, is a Heyting homomorphism.

Proof. This follows easily from 3.8 and its proof.

Definition 3.10. Let B2 and Bé denote the Boolean algebras with two and four

elements respectively.

Observe that if H is a Heyting algebra, then H@ 1 = H * B2.

Lemma 3.11. Let H be a Heyting algebra with a node a such that Hia)={a, lH},

and let F be a Heyting algebra. Suppose g : H{a) -> F is a pre-homomorphism, and

x is any member of F. Let h: H—>■ F be the extension of g such that h(lH) = x +

(x —> g(a)). Then h is a pre-homomorphism.

Proof, n is obviously a lattice homomorphism, since n(lH)^g(a) by 1.1(3).

If u e Hw we have

h(lH)^h(u) = (x + (x->g(a)))->g(u)

= (x -► g(u)) ■ ((x -» g(a)) -> g(u))   by 1.1 (7)

- (x-> g(u))-g(u)   by 1.1(4) and (12)

= g(u)   by 1.1(3)

= h(u) = h(lH->u).

Lemma 3.12. Let H be a Heyting algebra with a node a such that H(a) = {a, ß, y, 1H}

is isomorphic with j54. Let F be a Heyting algebra, let g: H(a) —>- F be a pre-homo-

morphism, and ¡et y be any member of F. Let h: H —> F be the extension of g such

that h(B) = (y^g(a))-+g(a), h(y)=y-> g(a), and h(l„) = h(ß) + h(y). Then h is a

pre-homomorphism.

Proof. Since h(ß), h(y) and h(lH) are all äg(«), and h(ß)h(y)=g(a) by 1.1(12)

and (3), it is easily seen that n is a lattice homomorphism. Note that ß —> a=ß —>- y

= y and y —»• a = y -> ß = ß.

If w<a, then h(ß)^h(ü) = h(ß)^g(ü)=g(u), by 1.1(6), since h(ß)^g(a) and

g(a)^g(u)=g(a-+u)=g(u) by 3.6. Therefore h(ß)-^h(u) = h(ü) = h(ß-+u) by

1.1(6). A similar argument shows h(y) ^- h(u) = h(y -> w). Also h(ß) -*■ h(a) = h(y)

by 1.1(9), and so h(ß)->h(a) = h(ß-+a). Obviously h(y)-+h(a) = h(ß) = h(y -» a).

Next h(ß)^h(y) = h(y) = h(ß^y) by 1.1(10), and h(y)-+h(ß)=h(ß) = h(y -> ß)

by 1.1(11). Finally, by using 1.1(7), it is easily seen that h(lH) -»■ h(a) = h(a) =

h(lH-+a),    h(lH)^h(u) = h(u) = h(lH->u)   for    U<a,    h(lH) -+ h(ß) = h(lH -> ß),

and h(lH)^h(y) = h(l„-*y).

Theorem 3.13. Let H=(Z*<6Hn)@ I, where 0<8¿co and, for each n, Hn is

isomorphic with B2 or B±. Then H is a projective Heyting algebra.
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Proof. Let 0H = a0<ax< - ■ ■ <a6 = lH be the nodes of H. Let

N = {« < 8 : Hn s £J.

For ne N, Hn = {an, ßn, yn, an+1}, where ßn and yn are the atoms of Hn. For n $ N,

£„={a„, a„+1}. Let £ be a free Heyting algebra with the set {xn : 0<«<S}

u {yn : ne N} of free generators. There exists a homomorphism /: £-> H such

that/(xn) = an for 0<«<8 and fiiyn) = ßn for neJV. Clearly/is an epimorphism.

We wish to show H is a retract of £. For each n, let £n = UiSn #1 and £-1 ={0H}-

For — 1 á « < S, define gn: £„ -> £ inductively as follows.

Let ^_1(0H) = 0f. If «2:0, let gn be the extension of gn_x such that for n$N,

gn(a„+i)  = *n+l+C*n+l->gn-l(an)),

and for neN,

gn(ßn)  =  Un -> £n - l(«n)) ~> gn - l(«n)

gn(yn) = yn -* gn - i(«n)   and

gnK+l)  = gn(/Sn)+gn(yn).

By 3.11 and 3.12, it follows by induction that gn is a pre-homomorphism for

— 1 ̂ «< S. Let g be the union (common extension) of all the gn to E*<ä//n. Then

g is a pre-homomorphism. Extend g to all of H by defining g(l#)=!*■• Then

g: £/"->-£ is obviously a homomorphism.

To showfg=I„, first note that fig. iff) ¿)=f(0F) = 0H. Suppose «2:0, and we have

shown fgn-x=IKn_1. \fn$N, then/^n(an+1) = an+1 + (an+1 -> a„) = an+1. IfneN,

then

./£n(A)  = (ßn ~> «n) ~> «n  = 7n ~* «n  = A» ^n(yn)  = ßn ~* «n  = 7n,

and

/fnK+l) = fti + Vn = «n+1-

Therefore fgn = IKn for all «< 8. Sincej/g(lJ/) = 1», it follows that/g=/H. Thus H

is a retract of a free Heyting algebra, and so H is projective.

4. Finite projective algebras.

Lemma 4.1. Suppose H0 and Hx are Heyting algebras and H0 * Hx is projective.

Iff: A ̂ *B isa Heyting epimorphism such that fix) = 0 only for x = 0,andh: //, -> B

is a homomorphism, then there exists a homomorphism g: Hx-> A such that fig = h.

Proof. Let /' : H0* A-> H0* B be defined by f'(x) = x for x e H0 and fix)

=/(x) for x e A. Let «' : H0 * Hx -> H0 * £ be defined similarly. By 3.9, /' and A'

are homomorphisms and/' is an epimorphism. Since H0 * Hx is projective, there

exists a homomorphism g' : H0 * Hx -^ H0 * A such that fig'= h'. Since fig'i0H])

=h'iOHl)=0B, we have g'iOHl) = 0A. Hence g'(x) e .4 for all xe Hx. Let g be the

restriction of g' to Hx. Then g: /ij -> ,4 is a homomorphism. Clearly /?(*) = /»(*)

for all x e Hx.
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Lemma 4.2. Let F be a filter in a Heyting algebra H. Then the following are

equivalent :

(1) £ is a maximal filter.

(2) The function f: £f —>- £2 such that fix) = 1 // and only if xe F is a homo-

morphism.

(3) For each xe H, exactly one of x, —, x is in F.

IfaeH, then a is an atom if and only if H(a) is a maximal filter.

Proof. This is any easy consequence of [6, Chapter I, 13.10].

Lemma 4.3. Let bx,...,bn be all the distinct atoms of a finite Boolean algebra B.

Let ax,..., an be atoms inot necessarily distinct) of a Heyting algebra H. Then

there exists a homomorphism h: H-^- B such that «(x)=2{7j¡ : a¡ á x} for all xe H.

Proof. By 4.2 there exist homomorphisms g¡ : H -> £2 such that g¡(x) = 1 if

and only if x^a^. Let g: H-^iB2)n be the homomorphism defined by gix) =

(gi(x), ■ ■ -, gn(x)). There exists an isomorphism /: (£2)" -+ B such that fie) = bi,

I Si ^ «, where e¡ is the element whose jth coordinate is 1 if and only ify'=i. Then

h=fg is the required homomorphism.

Let £ be the free Heyting algebra with two free generators x, y. Then £(£) is the

free Boolean algebra with free generators -, -, x, -, -, y. This follows from the

fact that the canonical map <p: £->-£(£) is an epimorphism, and the elements

—i —, x —i —\y, —i —, x —¡y, —, x —, —, y and —, x —,y are all >0 (as can be seen by

mapping £ onto the free Boolean algebra with two free generators). These four

elements are the atoms of £(£).

Theorem 4.4. The subalgebra of F generated by —, —, x —, —, y and —, —, x —, y

is infinite.

Proof. We shall construct a Heyting algebra H containing two elements xx, yx

such that the subalgebra generated by —, -, xx -, —, yx and -, -, xx -, yx is infinite.

Let S be an infinite set which is partitioned into a triply infinite sequence of non-

empty disjoint sets an, bn and cn, 0^«<cu. That is,

at n bj = a{r\ c¡ = bt n c¡ = 0    for all i,j,

a¡ n a¡ = bt n b¡ = c¡ n c, = 0    for í # /',

and

S =    U   («n U K U Cn).
n<œ

Let Xn = a0, y0 = b0, z0 = c0, and for each « < w, let

sn = U fe ^ bi U c), xn+1 = an+1 u bn u cn VJ sn,
i<n

Jn+i = an u ¿?n+1 uc,u îb,       zn+1 = an u bn u cn+1 u sn.

We have

xn c xm   for «z 2: « + 2,    and   xn <= ym, xn c zm   for w 2: n+l,
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as well as similar inequalities obtained by permuting x, y and z.

Also for all n

xnr\xn+1 = yn-i^> zn-i,   and   xn n yn = zn_1 u zn_2

(with the convention xn=yn = zn= 0 for n<0), and similar equations obtained by

permutation. Therefore we may use {xn : n<cu} u {yn : n<co} u {zn : n<a>} as a

basis for a topology of S. Clearly, every infinite union of distinct basic open sets

is equal to S. Let H be the algebra of all open subsets of S. It is not difficult to see

that for n^O, xn -+(yn UzB)=xB+1, yn -> (xn u zn)=yn + 1, and zn-^(xnUyn)

= zn+1. Therefore H is generated by x0, .Vo, and z0. But -,x0 = x1, —,y0=yi,

-,z0 = Zx, -ix1 = x0, -\yx=yo, and -, Zx=z0. Therefore -, -, Xx-, -,j1=z0and

-, -, Xx -, yx =yo, and j>0 and z0 generate 7/ because x0 = -, j0 -» z0.

Theorem 4.5. Suppose a is a node in a projective Heyting algebra H. If a has

more than two immediate successors, then H(a) is infinite.

Proof. Let F be the free Heyting algebra with two free generators x, y. Let

bx=-, -i x -, -, y, b2= -i -i x -, y, b3=-,x -, -,y, and ¿>4 = -, x -, y be the

atoms of R(F). Let ax, a2, a3 he three distinct atoms of Hia), and let a4 = a3. By 4.3,

there exists a homomorphism h: H(a)—> R(F) such that h(u)=zZ{bi : u^a¡}. Let

<p: F->R(F) be the canonical epimorphism. By 1.1(8), <p(w) = 0 only for u = 0.

Since H=HW* Hia), 4.1 furnishes a homomorphism g:/Fa)->-F such that

<pg=h. Now g((aj -> a) ->- a)= —, —¡g(a1)=cpg(ax) = h(ax) = b1, and similarly

g(fe -► «) ->■ «) = è2. Therefore g(//(a)) is infinite by 4.4. Hence /Fa) is infinite.

Lemma 4.6. Fer H be a Heyting algebra and C be the three-element chain {0, ß, 1}.

Then there exists a homomorphism h: H-+C such that Fx={xeH: h(x)^ß}

and F2={x e H : h(x) = 1} if and only if:

(1) Fj is a maximal filter.

(2) F2 is a prime filter.

(3) F2<=Fx.

(4) For allxeH, if'x$Fx then -, x e F2.

(5) For all x, y e H, if x, y e Fx — F2, then x ->y e F2.

Proof. This is easily checked by straightforward verification.

Lemma 4.7. Suppose H is a finite Heyting algebra, a is an atom of H, y is an

immediate successor of a, and a is the only atomSy. Let C be the three-element

chain {0, ß, 1}. Then there exists a homomorphism h: H-> C such that h(a)=ß.

Proof. Let Fx = Hia) and F2 = Hiy\ Then F2^Fx and F». is a maximal filter by

4.2. To prove that F2 is a prime filter, suppose «^j. Thenyu = 0 oryu^ some atom

of H. Therefore since yu < y, either yu = 0 or yu = a. If u % y and v%y, but u + v = y,

then y=yu+yv^a, which is a contradiction. To prove condition (4) of 4.6,

suppose x $ Fx. Then xy cannot be  >  any atom of H. Hence xj> = 0 and so
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y S —, x. For condition (5), suppose u, v e Fx — F2. As before, yu=a. Hence yuf^v,

which implies y^u-^v. Lemma 4.6 now yields the desired homomorphism.

Theorem 4.8. If a is a node in a finite projective Heyting algebra H, and a has

exactly two immediate successors ax, a2 then ax + a2 is a node.

Proof. Suppose there exists an element z incomparable with ax+a2. Since a

is a node, we must have a<z. Without loss of generality we may assume ax<z

and so a2$z. Let y be an immediate successor of ax such that y^z. By 4.7 there

exists a homomorphism hx: Hia) -> C={0, ß, 1} such that hxiax)=ß. By 4.2 there

exists a homomorphism «2: H(a) -+B2 such that h2iu) = l if and only if u 2: a2.

Define «: £(a) -> Cx £2 by hiu) = ihxiu), h2iu)). Let £ be the free Heyting algebra

with one free generator x. Let /: £ -> C x £2 be the homomorphism such that

fx) = iß,0). Since -, iß, 0) = (0, 1) and -, (0, 1) = (1, 0), iß, 0) generates CxB2.

Therefore/is an epimorphism. In [5] there is a complete description of £. From it

we see that the only members of £ which are J -, x + -, -, x are 0, x, -, x, x + -, x,

—, —, x, and —, —, x —> x. Therefore /(w) = (0, 0) only for u = 0, and /(«) = iß, 0)

only for u = x. Therefore by 4.1, there exists a homomorphism g: ££a)->-Cx£2

such that fig = h. Since figia1) = hiax) = iß, 0), giaf) = x. But x generates £, and £

is infinite. Hence Hia) is infinite, which is a contradiction.

Theorem 4.9. If H is a projective Heyting algebra, then lH is join irreducible.

Proof. The map/: H@ 1 -+ H such that/(l)=lH and/(w) = w for me His an

epimorphism. Since H is projective, there exists a homomorphism g: H'->• £f© 1

such that fg=IH. Suppose lH=x+j. Theng(x)+g(>') = l. Since 1 is join irreducible

in if© 1, either gix) = 1 or #00 = 1. Therefore either x=fgix) = lH or y=lH.

Theorem 4.10. If H is a finite Heyting algebra, then H is projective if and only

if H is of the form H=H0 * • • ■ * Hn, where Hn^B2 and for each i<n, £f(s£a or

£r,s£4.

Proof. The sufficiency was proved in 3.13 for « > 0 and £2 is obviously projective.

Suppose H is projective. Let 0 = a0 < ax < ■ ■ ■ < an+x = 1 be the nodes of H, and let

H={x e H : a¡<^x^ai+x}, O^í^n. By 4.5, each node has at most two immediate

successors in H. If a¡ has only one immediate successor a, then a is a node and so

a = ai+x. Therefore H, = {a(, ai+x}, which is isomorphic with £2. If a, has two

immediate successors ax, a2, then ai+12:ai + a2. Since ax+a2 is a node by 4.8,

ax+a2 = ai+x. Therefore Hi={ai,ax,a2,ai+X}, which is isomorphic with £4.

Finally 4.9 shows that Hn cannot be isomorphic with £4.

5. Further results.

Lemma 5.1. If H is a projective Heyting algebra, then so are £4 * H and £2 * H.

Proof. Let ß and y be the atoms of £4. Let {a( : i el} be the set of members of

H-{0H}. Let £ be a free Heyting algebra with free generating set {x} u {x, : í e /}.
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There exists a homomorphism /: F->54 * H such that f(x)=ß and fi(xi) = ai,

i el. Wehave/(-, x) = y,f(—, —, x) = ß, and/(-, x+ —, -, x)=ß + y = 0H. Therefore

/is an epimorphism. Let K={u e F : u^ —, xH—, —, x}. Let fix be the restriction of

/to K. Since/(-, x-\—, -, x+x¡) = a¡, and by 3.6 K is a Heyting algebra which is a

pre-subalgebra of F, fi: K-> H is an epimorphism. By the projectivity of H,

there exists a homomorphism gx'. H^K such that/1g1=/if. Let C4={0¡?, -, x,

-, -, x, -, x+ -i -n x}. By 1.1(10), (11) and (7), C4 is a pre-subalgebra of F. Also

the map g0: 54 -> C4 such that g0(0) = 0F, g0(ß)= -i -i x, g0(y) = -i * and g0(l)

= -, x+ -, -ixisan isomorphism. Therefore, by 3.9, the map g: Ä4 * H -> C4 * A

defined by g(«)=gi(«) for ueH, and g(«)=g0(w) for » e ¿?4, is a homomorphism.

Furthermore C4 * K is a subalgebra of F, since if «S: —, x+ -, —, x, 1.1(5) shows

that «-> —i —ijc= —i —i x, m—>—, x = —i x and also u —>0F = 0F. Therefore g may

be regarded as a homomorphism g : Bé* H -> F. Clearly/g(w) = « for all ue Bé* H.

Therefore F4 * H is a retract of F, and so F4 * H is projective. The proof of the

other half of the lemma is similar. Let/: F ^ B2 * H he the epimorphism such that

f(x)=0H and/(x¡) = a¡, i e I. Let K={u e F : u = x+ —, x}. The restriction fix off to

K is an epimorphism of K onto H. There exists a homomorphism gx : H ^* K

such that/1gi=/íí. Let C2={0F, x+ -, x}. As before we can extend gx to a homo-

morphism g: B2* H -> F such that fg(ü) = u for all ueB2* H.

Theorem 5.2. If Hx is a projective Heyting algebra, and H0 is a finite Heyting

algebra such that H0 @ 1 is projective, then H0 * Hx is projective.

Proof. This follows from 5.1 and 4.10.

Lemma 5.3. Let H be a projective Heyting algebra. Suppose S is an infinite

subset of H which is closed under ->. Then 2(5—{1})= 1.

Proof. Suppose the conclusion is false. Then there exists ae H such that 1 > a = u

for all u e 5—{1}. Let /: F-> H he an epimorphism, where F is a free Heyting

algebra. There exists a homomorphism g: H-> F such that fg=IH. Let a=g(a).

Then a^l, since /(a) = a < 1. Also a^g(w) for all ueS—{I}. Since g is a mono-

morphism, g(S) is infinite and g(S) is closed under ->►. By [4, Lemma 2.22], there

exists a finite Heyting algebra K, and a homomorphism h: F^-K such that

h(a)^l. Since g(S) is infinite and Ais finite, we have h(v)=h(w) for some v, weg(S)

such that v^w. If, say, v$w, then v->w^l. Hence h(a)^h(v -^w) = h(v)^-

h(w)=l, which is a contradiction.

Theorem 5.4. Let H be a chain. Then H is a projective Heyting algebra ¡fand only

if H is either finite or has order type co+l.

Proof. The sufficiency follows from 3.13. Suppose H is projective. Let aeH,

a=£\. Then Hia) u {1} is closed under ->. By 5.3, Hia) is finite. Since H(aX is finite

for all a<\, the conclusion follows.

A partial converse of 5.2 is the following.
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Theorem 5.5. Suppose H0, Hx are Heyting algebras such that H0 * Hx is projec-

tive. Then H0 is finite and H0 © 1 is projective.

Proof. Let S=H0 u {1HJ. Then by 3.8 and 5.3, H0 is finite. Let £be a maximal

filter in Hx. By 4.2, there exists a homomorphism gx: Hx-+ B2 such that giu)= 1

if and only if u e F. By 3.9, there exists a homomorphism g: H0* Hx^- H0* B2

such that giu) = uforueH0 and g(«) =g1(«) for ue Hx. Therefore H0 * £2 = H0 © 1

is a retract of H0 * Hx, and so H0 © 1 is projective.

We have not been able to decide whether the projectivity of HQ * Hx implies

that of Hx.
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