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INSEPARABLE GALOIS THEORY OF EXPONENT ONE

BY

SHUEN YUAN

Abstract.   An exponent one inseparable Galois theory for commutative ring

extensions of prime characteristic p / 0 is given in this paper.

Let C be a commutative ring of prime characteristic p^O. Let g be both a

C-module and a restricted Lie ring of derivations on C and denote by A the kernel

of g, i.e., the set of all x in C such that dx = 0 for all d in g. We say C over A is a

purely inseparable Galois extension of exponent one if and only if C is finitely

generated projective as y4-module and C[Q] = HomA(C, C). In this paper, we

present a Galois correspondence between the restricted Lie subrings of g which

are also C-module direct summands of g and the intermediate rings between C

and A over which locally C admits /»-basis. The Galois hypothesis C[g] =

HomA (C, C) used here is an analog of the separable Galois hypothesis used in

[7] and [8]. In case C is a field, our theory reduces to Jacobson's Galois theory for

purely inseparable field extensions of exponent one.

In a subsequent paper [6], we shall present the attendant Galois cohomology

results. Among other things, we shall show that there is an exact sequence

0->L(CM)->P(i4)-».P(C)-^i(o,C)->5(CM)-»-0, where B(C¡A) is the

Brauer group for C over A, <í(g, C) is Hochschild's group of regular restricted Lie

algebra extensions of C by g, P is the functor of taking rank one projective class

group and L(C¡Á) is the logarithmic derivative group. We also show that the

Amitsur cohomology groups Hn + 2(C¡A, Gm), n^O, are isomorphic to Hoch-

schild's groups cf(Cn ®A g, Cn + 1) of regular restricted Lie algebra extensions of

Cn+1, the n+ 1-fold tensor product C®A--- ®AC,by Cn ®A g.

All rings in the following are assumed to be commutative with 1. If A is a sub-

ring of a ring C we understand that both A and C have the same identity. By an

/f-algebra C we mean that A is a subring of C. Finally all ring-homomorphisms

and modules are unitary.

1. Lemma. Let C be a ring of prime characteristic p/0, and let A be a subring

of C such that tv e A for all t in C. Then Spec C is canonically homeomorphic to

Spec A.

Received by the editors July 8, 1968 and, in revised form, October 2, 1969.

AMS Subject Classifications. Primary 1370.

Key Words and Phrases. Restricted Lie ring, derivation, /»-basis.

Copyright (© 1970, American Mathematical Society

163



164 SHUEN YUAN fMay

Proof. We have two ring homomorphisms between A and C.

A^C;       C->A,

x->x;        x->xp

which produce continuous mappings inverses to each other between Spec A and

Spec C.

2. Remark. In view of the above lemma, we may regard the structural sheaf

Ä associated to Spec A as a subsheaf of the structural sheaf € associated to Spec C.

Moreover given any q in Spec A, we shall always denote by O the corresponding

element in Spec C and vice versa.

Another simple fact which we repeatedly use is the following

3. Lemma. Let C be a ring of prime characteristic p^=0 and let A be a subring

of C such that tp e A for all t e C. If £h is any prime ideal in C then

Mo, = M ®AAq

for all C-modules M.

Proof. We have a map

C ®A A<¡ -> Co,

x (g> iajs) -> iax)js       (j e A — q).

Given any xjt in Co with te C-O, then xjt is the image of (x/p_1) (g> (l//p).

So the map is onto. Now every element 2 xt <8> iajs) in C <S>A Aq can be written

in the form x (g) (1/s) with x=2i ^XiiYJj^iSj) and s=Y~[t .$,. If x ® (1/j) goes to

zero in Co then for some / e C—O, tx is zero in C. So x ® (l/s) = (/px) <g) (l//pi)

is already zero in C (gu Aq. This shows C ®A Aq may be identified with Co- If M

is any C-module, we have

Afo = M <g>c Co = M ®c C <gu ̂q = M <g)A ¿t„.

This completes the proof of the lemma.

Let S be a sheaf of rings over a topological space X. By a derivation d on £

we mean a sheaf map d: S+ ->£+ such that for any open set U in X, diU):

SiU) -> £(£) is a derivation where S+ is the underlining sheaf of abelian groups

of £. If £ is a subsheaf of S, then the set =S?(t/, S/£) of all ^-derivations on the

sheaf Sv has an obvious £(i/)-module structure. We shall call the sheaf &S¡R

= <£i   , SJR) the S-module of all £-derivations on S.

Given a derivation d on a ring C, then for any multiplicatively closed subset

S of C there is a unique derivation, which we again denote by d, on Cs making the

diagram
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commutative. Thus a derivation d on C is completely determined by <i(Spec C) :

C -> C. So we have the following

4. Lemma. Let C be a ring of prime characteristic p^O. Let A be a subring of C

such that tv e A for all teC. Then the correspondence d-> ¿(Spec C) is an iso-

morphism between the C-module jS?(Spec C, CjÄ) and the C-module QÍC/A) of all

A-derivations on C.

5. Lemma. Let C be a ring of prime characteristic p^O. Let Abe a subring of C

such that C admits a p-basis over Ai1). Denote by QÍC/A) the C-module of all A-

derivations on C. Then the sheaf ^Cg/Â is isomorphic to i$iCjAj).

Proof. Given any distinguished open set D(/) in Spec Cifie A), we have

¿?iDif), CjÄ) s J?(Spec C„ CjjÄj)

= Q(CfIAf)

= Q(CIA)f.

The last isomorphism follows from the fact that C has a /7-basis over A. This

completes the proof of the lemma.

6. Definition. Let A be a ring of prime characteristic p^O. An ^4-algebra C

is called a Galois extension of A provided

(i) C is finitely generated projective as ^4-module,

(ii) tp e A for all t e C,

(iii) Given any prime ideal O in C, then Co admits a /7-basis over A<¡.

The equivalence of this definition with the one given in the introduction is a

consequence of Theorems 9 and 10 below.

7. Lemma. Given a Galois extension C over A, then for any prime ideal q 777 A,

there is somefe A — q such that C¡ admits a p-basis over Af.

Proof. Since C is a finitely generated projective ^-module, there is an a e A — q

such that Ca is a free /la-module of finite dimension. Let tx,..., tm be elements in

Ca such that their images in Cq = C <&a Aq form a /i-basis over Aq. If {y,} is an

/4a-module basis for Ca, then there is an 777p by tt7p matrix p, with entries from Aa

which takes {y¡} to {ff1- ■ -t£m | 0^e¡<p} because if1- • •r^m can be expressed as a

linear combination in the y,'s with coefficients from Aa. Write (determinant p)

=ßjae where e is a nonnegative integer and ß is from A. Putfi=aß. It is clear that

feA — q and the images of tx,..., tm in Cf form a /7-basis over Af.

As an immediate consequence of Lemma 7 and [2, p. 90, Theorem 1.4.1] we get

8. Lemma. Let C be a Galois extension over A. Then the C-module ^SiX of all

Ä-derivations on C is isomorphic to (qíC/A)).

i1) By a /»-basis of Cover A we mean a subset {tx,..., tr} in C such that {?{i • • -t°' \ 0ëei</>}

form an ^-module basis for C.
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9. Theorem. Let C be a Galois extension over A, and denote by g = g(C/^4) the

C-module of all A-derivations on C. Then

(1) the C-module g is finitely generated and projective;

(2) A={teC\ 8t=0for all 8 e q(C/A)}=kernel g;

(3) HomA(C,C) = C[g].

Proof. Only the last two statements are not already proven. That the inclusion

map A <^> kernel g must be onto follows from the fact that at each prime q, the

map A,, ̂ > kernel go = (kernel g)q is onto [1, p. Ill, Theorem 1]. By the same

token the inclusion map C[g] c> Horn,, (C, C) is onto because the corresponding

map at each q e Spec A is onto.

10. Theorem. Let C be a ring of prime characteristic p^O. Let g be a C-module

of derivations on C. Put A = kernel g and assume that C is finitely generated projective

as A-module. If HomA (C, C) = C[g] then C is a Galois extension over A. If in addi-

tion g is a restricted Lie ring, then g = g(C/^4).

Proof. Let q be any prime ideal in A. We have, by [1, p. 98, Proposition 19],

Hom^ (Co, Co) = Cc[go]- For simplicity of notations write .4 =/lq/q/lq, C=

Cc/qCo, and denote by g=the image of go ®A A in

HomAq (Co, Co) ®a^ I = Horn,» (C, C).

So Horn,» (C, C) = C[g]. This means no nontrivial ideal in C is stable under g.

Since C is finite dimensional over A, it follows from [5, Corollary 2.8] that C

admits a/»-basis over A. Hence Co admits a/»-basis over A<¡ [1, p. 107, Corollaire 1]

and C is a Galois extension over A.

It remains to show the inclusion map g -> q(C/A) is onto. In view of [1, p. Ill,

Theorem 1], it suffices to show that at each prime O e Spec C, the corresponding

map go -> g(C//l)o is onto. Now g is a free C-module [5, Lemma 3.2]. Let

0i,..., 8r he a C-module basis for g. The fact that g is a restricted Lie ring implies

that the set {Sf1- • -der' \ 0fiex<p} form a set of generators for the C-module

Horn,» (C, C) = C[fl]. But g(C/,4) is also a free C-module because C admits a

/»-basis over A. Let r' he the dimension of g(C//l) over C. Then [C:A]=pr'. Now

as vector spaces over A, g is a subspace of q(C/Ä), so rp'=[q: A]¿ [g(C/Z):Z]

= r'pr'. Hence r-¿r'. On the other hand the Z-module Hom¿ (C:C) is of dimension

p2r but has a set of generators of cardinality pr + r' f^p2r'. This shows r = r'and there-

fore g = g(C/^). So 0j,..., 8, form a C-module basis for q(C/Ä). Let dt be a pre-

image of 0, in go- Then 8X,.. .,8r form a Co-module basis for g(Co/-4q). This

proves that go = 9(Ce/.4q) because gocg(Co//fq) = 2 Co^ge,. Consequently

gc = g(Co//lq) = g(C/^)o because C is a Galois extension over A.

11. Theorem. Let A^B^C be a tower of rings such that C is a Galois extension

both over A and over B. Then

(1) B is a Galois extension over A.
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(2) Let \)={de QÍC/A) \ dB<=B}. Then there is a B-module homomorphism

g(£/yl)—>-h which followed by the restriction map ft —> QÍBJA) given by d-^-d\B

is the identity map on QÍBJA).

(3) Let GiBjA) be the image ofqiBjA) in h. Then

C-GiBIA)@QiCIB) = qiCIA).

Proof. Let O be a prime ideal in C and denote by q and q the corresponding

prime ideals in A and B respectively. Since C is finitely generated projective both

as y4-module and as £-module, there is a e A — q such that Ca is a free module of

finite dimension both over Aa and over Ba. The ,4a-module Ba as a direct summand

of Ca is therefore finitely generated projective. So £ is finitely generated projective

as ,4-module. We would like to show that Bq admits a/7-basis over Aa. For simplicity

of notations, write A=A0jqAOl, B = BqjqBq and C=Co/qCo- Let bx,...,br be a

basis for the free £-module C. Let d be an ^4-derivation on C. For any xeB,

dx may be expressed in the form idxx)bx + • • • + (3rx)6r with d,x e B. It is easily

seen that the map x -*■ 3,x is an ^4-derivation on B. By Theorem 9 we have

C[g(C/A)] = HomA (C, C) and hence

C[g] = Hom¿ (C,C)

where g = g(C/^)o/qg(C//l)o. So no nontrivial ideal in C is stable under g. Let /

be a nonzero proper ideal in B. Then there is an ^-derivation d on C such that

S(/C) is not contained in IC. This means dj cannot be contained in / for some i.

But £ is a finite dimensional vector space over A so by [5, Corollary 2.8], B admits

a/7-basis over A. Hence Bq admits a/7-basis over Aq [1, p. 107, Corollaire].

To show the identity map QÍB/A) -*■ QÍB/A) factors through the restriction map

ft ->- QÍB/A), it suffices to show at each prime ideal q in £ the identity map qiBjA)q

-> QÍB¡A)q factors through h, -> n,iBjA)q. Let tx,..., t, be a /»-basis for Co over

Bq and let f,+i,..., /,+>, be a /7-basis for Bq over Aq. If we denote by ii, the Ar

derivation on Co given by dttj= 8W, then the £„-module H" of all /^-derivations on

Co leaving Bq invariant is just

I A

2 CsA+ 2 BA+i-
i=l 1=1

It is obvious that the identity map on QiB/A)q = g(£„/y4,) factors through the

restriction map H" -^- QÍBjA)q. So it suffices to show i)q = H".

Given any open set U in Spec A, let //(£/) be the set of all ^-derivations on

Cv leaving Bv invariant. The set £(£/) has an obvious £(£)-module structure.

So the sheaf £/-»//(£) is a £-module and its fibre at a point q in Spec B is just

H". It is easily seen that if C admits a/»-basis over B and B admits a /»-basis over A,

then the sheaf H is just the sheaf % associated to h. Hence by [2, p. 90, Theorem

1.4.1] H is always the sheaf íj associated to h whenever C is a Galois extension

both over A and over £ because locally C admits a/7-basis over B as does £ over A.
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This shows the identity map on q(B¡A) factors through the restriction map

f)-+a(BIA). In particular i) = G(B¡A) ®n(C¡B). Hence q(CIA) = C-G(B/A)

+ fl(C/fi) because C-h = g(CL4). Assume 8 e [CG(B¡A)] n g(C/5). We claim that

0=0. It suffices to show the corresponding derivation 0q at q 6 Spec A is zero.

Now 0q as an element in [C-G(B¡A)\ can be written in the form 2?=i ux8l+i with

uxe Co where 8,+i is the image of dl+i in h,. So if/=(2*»i "i^i+<)'(+j = öqr»+y=0

because 0q e g(Co/Ä,) and tl+}e Bq. This shows 0q = O as desired.

12. Remark. Given a tower of rings A^B^C such that both B and C are

Galois extensions over A, in general C need not be a Galois extension over B

and not every ^-derivation on B can be extended to a derivation on C. As an

example, let C=K[[x, y]] be the formal power series ring over a coefficient field

K of characteristic p + 0. Put A = K[[xp,yp]] and 5=A:[[xp, jp, xy]]. The ^-deriva-

tion 8 on B given by 0(x_y)= 1 cannot be extended to C. So in view of the above

theorem, C cannot be a Galois extension over B. If d is the ^-derivation on C

given by i/x = x and dy=y, then i? = kerneli/ and HomB (C, C) = C[d], This

means that C is not a projective ß-module.

12. Theorem. Let C be a Galois extension over A. Let i) be a restricted Lie subring

of q(C I A) such that f) is also a C-module direct summand of <¡{C I A). Put B = kemeli).

Then C is a Galois extension over B and g(C/5)= h.

Proof. We shall first prove the theorem under the additional assumption that

C is a local ring(2). So C admits a/»-basis tlt. ■., tr over A. Let dx be the /4-derivation

on C given by dltj=8ij. Then dlt ■ ■ •, dr form a C-module basis for q(C/A). Now

the C-module h as a direct summand of q(C/A) is also free. Let 0iiO,..., 0¡>o

be a basis for h- We have 0i,o = Z5=i (^¡.o'jV;- Clearly given any /, 0iOr, must be an

invertible element in C for at least one j (l^j^r). We claim that there exist

0i,..., 0| a basis for i) and elements yit...,ytmC such that 8iy, = 8ij. Suppose

we have already proven yt,.. .,ys in C and a C-module basis 0liS,..., 0(i, for h

such that 8Usyj=8lj for l^/¿/ and 11sj = s. If s</, then there is an element

js+i in C such that 0s+i,sJ's+i is invertible in C We set

0s+l,s+l   = (0s+l,s3's+l)      0j+l,s

so that ô,+i,«+i,y»+i = l. For every y^s+1, we set

0;.s+l  = 8,¡s — (0y,sJs+l)0s+l,s+l-

Then we have 0i,s+i>'; = S¡í for 1 =i^l and 1 ̂ j = s+l, and that 0(>s+i are still a

basis for h- Proceeding in this fashion, starting from the case s = 0, we finally

obtain yr,.. -, yt in C and 8x = 8ul which satisfy the requirements of our assertion.

(2) Hochschild's proof of the main theorem of Jacobson's Galois theory for purely in-

separable field extensions of exponent one is used here practically without change; (cf. [4,

Lemma 2.1] and [5, Theorem 1]).
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Writing [8t, dj] = Z's = x vsds with vs e C, we get vs=[8u dj\ys = Q whence [8¡, 3,] = 0.

In the same way we find that df = 0. It is clear that yx, ■ ■ -, y¡ form a /»-basis for

P[yi, ■ ■ ■, y)- It remains to prove that C = B[yx,..., y,]. Suppose that this is

false, i.e., that there is an element ux in C which does not belong to B[yx,..., yj\.

Assume inductively that we have already found an element us of C which is not in

P[yi, ■ ■ -, y) and which is annihilated by every 8i with i<s. Since 3P = 0 there is an

exponent e (0^e<p) such that 8\+1 but not 8\ mapsusinto B[yx,...,yj\. We have

^i^s("s) = dfd,(Hs) which is zero for i<s. Hence replacing us by 8esiu), we may

suppose that ds(ws) e B[yx,..., yj\. Since 3s(ws) is annihilated by each 3, with i<s

it follows then that ds(ws) e B[ys,..., y¡]. Write 8sus as a polynomial of degree

/» — 1 in ys with coefficients in £[.ys+i,..., yt]. Since this polynomial is annihilated

by 8P ~1 (for 8P = 0) the coefficient of yp 'x must be 0. Hence we can integrate this

polynomial with respect to ys, i.e., there is an element ueB[ys,..., y¡] such that

8sius) = 8su. Now put us+x = us-u. Then us+x$B[yx,..., y) and o¡(ms+1)=0 for

all /<5+l. We can repeat this construction until we obtain «,+1 $ B[yx,..., y¡]

such that 3i¡v¡+1=0 for all i=l,..., I. But then ul+xe B, and we have a contra-

diction. Hence C=B[yx,..., y). Moreover, if 8 is any £-derivation on C we have

(3 = 2 (3jt)öi e h. This proves the theorem when C is local.

To complete the proof of the theorem, it remains to show that C is finitely

generated projective as £-moduIe and that g(C/£) = b. Since C is finitely generated

as ^4-moduIe so surely finitely generated over B also. At each prime O in C, Co

admits a /7-basis over Bq with q= uní. Moreover, the dimension [Ca:£„] is

equal to the [ho : Co]th power of p. So [Co : £„] is locally constant in Spec C

because [ho : Co] is. Hence C over B is finitely generated projective and therefore

must be a Galois extension. Finally ho is equal to g(C/£)o at every ¡Q e Spec C.

So the inclusion map b -> g(C/£) must be onto.

Summarizing the above results, we get

13. Theorem. Let C be a Galois extension over A and denote by gCM the C-module

of all A-derivations on C. Put

0 = (£|£ is an A-subalgebra of C and CjB is a Galois extension},

S = {g I g is a restricted Lie subring and a C-module direct summand of Qcia}-

Then the mappings E -p* 0, 0 -^- E given respectively by g —> kernel g ; B -> gc/B

are inverses to each other.
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