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TWO-SIDED SEMISIMPLE MAXIMAL QUOTIENT RINGS
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Abstract. Let R be an associative ring with singular right ideal zero and finite

right Goldie dimension; F. L. Sandomierski has shown that the (R. E. Johnson)

maximal right quotient ring Q of R is then semisimple (artinian). In this paper

necessary and sufficient conditions are sought that Q be also a left (necessarily the

maximal) quotient ring of R. Flatness of Q as a right Ä-module is shown to be such a

condition. The condition that R have singular left ideal zero and finite left Goldie

dimension, though necessary, is shown to be not sufficient in general. Conditions of

two-sidedness of Q are also obtained in terms of the homogeneous components

(simple subrings) of Q and the subrings of R, they induce.

0. Introduction and notation. Let R be an associative ring and M a right

/?-module. The module M is of finite dimension over R [6, p. 202] if every direct

sum of nonzero submodules of M contains only a finite number of summands.

Finite dimension over R for a left A-module is defined similarly. The ring R is of

finite right (left) dimension according as the module RR (resp. RR) is of finite

dimension over R. We say R is finite dimensional if R is of finite right and of finite

left dimension.

Suppose M is of finite dimension over R ; if an integer n ( = 0) exists such that

(a) every direct sum of nonzero submodules of M has at most n summands, and

(b) there is a direct sum of nonzero submodules with n summands, then n is the

dimension of M, in the sense of Goldie [6, p. 202], denoted d(MR) (d(RM) in case

M is a left /î-module).

The rings R considered in this paper (nonsingular) in particular, if they are

finite dimensional, then they have a right dimension d(RR) and a left dimension

d(RR) [6, Theorem 1.1, p. 202].

We denote by Z(RR) (Z(RR)) the singular right (resp. left) ideal of R (e.g., [2,

Introduction]) and we say R is nonsingular if Z(RR)=Z(RR) = (0).

In case R is a semiprime, finite dimensional, nonsingular ring, the maximal

right quotient (MRQ) ring of R [7, p. 106] is also the maximal left quotient (MLQ)

ring of R and in particular d(RB) = d(RR) [10, Theorem 1.7], [6, Theorem 5.5],

[5, Theorem LI].

Received by the editors June 20, 1969 and, in revised form, September 15, 1969.

AMS Subject Classifications. Primary 1680; Secondary 1644, 1656.

Key Words and Phrases. Singular right ideal, Goldie dimension, maximal right quotient

ring, classical right quotient ring, injective hull of a module, flat module, tensor product of

modules, semisimple artinian ring, von Neumann regular ring.

Copyright © 1970, American Mathematical Society

339



340 V. C. CATEFORIS [May

In this paper we look at the question of two-sidedness of the MRQ ring Q of an

arbitrary (not semiprime) finite dimensional nonsingular ring £. In this case Q is

semisimple (with d.c.c.) [10, Theorem 6, p. 115].

Throughout this paper semisimple (ring) means semisimple with d.c.c.

In §2 (Theorem 2.3) it is shown that Q is also a left quotient ring and hence the

MLQ ring of £ if, and only if QR is flat.

In §3 (Theorem 3.3) it is shown that if t/(£B) = t/(B£) = 2 then Q is also the MLQ

ring of £; if, however, t/(£B) = t/(B£) ^ 3 this need not be true (Theorem 3.4).

In §4 conditions for the two-sidedness of Q are obtained in terms of the simple

components of Q.

In §5 we look at the case £ is a rational subdirect sum of a finite collection of

rings (Theorem 5.2). The concept of rational subdirect sum is an extension of the

concept of irredundant subdirect sum of a collection of rings [9, p. 65].

Although by a ring it is meant an associative ring, it is not assumed that a ring

has identity 1, as in some cases, notably in §4 (the subrings £¡ = £ n Q¡), this may

not be the case. If a ring does have an identity, the modules over it are, of course,

considered unitary.

For each right (left) £-module 'MR (resp. RM), £(A/B) (resp. £(BM)) denotes the

lattice of large submodules of MR (resp. RM). For further notation and definitions

the reader is referred to [2, Introduction and notation].

This paper constitutes a portion of the author's doctoral dissertation at the

University of Wisconsin. The author is deeply indebted to Professor F. L. Sando-

mierski, his advisor, for supplying many of the ideas included in what follows.

1. Nonsingular rings without identity. In this section we give a simple result

by which most questions about the maximal right quotient ring of a nonsingular

ring, which does not necessarily possess an identity, can be reduced to ones about a

nonsingular ring which has an identity.

Let £ be a nonsingular ring not necessarily with 1. If Q and S are the maximal

right and left, respectively, quotient rings of £, then they have identities 1Q and ls,

respectively, such that for any aeR, alQ=lQa = a and als=lsa = a [4, II, Prop.

6.2, p. 161]. If Z denotes the ring of integers, we let R*={r + mlQjr e R, m eZ}

and A*={r+777ls/r e £, 777 eZ}, subrings of Q containing £ and with identities

lQ and ls respectively. We now have:

Theorem. Let R, Q, S, £*, A* be as in the paragraph above. The following

statements are then true :

(a) B£ e ¿(B£*), i.e. Ras a left R-module is large in the left R-module R*.

(b) £* = A* by a ring isomorphism <j>, which extends the identity map on R.

(c) Q and S are the right and left, respectively, maximal quotient rings of R*.

Proof, (a) Let 0=¿x = r + /?7lo e £*. Now Z(B£) = (0) implies that Z(Bg) = (0)

and since O^xe Q, it follows £x#0 so that there exists aeR such that 0#tzx

= ar + aimlQ) = ar + ma e R. Clearly B£ e£(B£*).
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(b) Define <f>: A* ->- R* by <f>(r + mls) = r + mlQ. If r + wls = 0 then for every

aeR, 0 = a(r + mls) = ar + ma = ar + a(mlQ) = a(r + mlQ) so that R(r + mlQ) = (0)

and hence r+mlQ = 0. Thus <f> is well defined and easily seen to be a ring isomor-

phism, extending the identity map of R.

(c) It is clear that /?£. eL(QR.) since R% e L(QR) by [2, Proposition 1.1]. Now

if A and B are right /?*-modules (unitary of course) then it is easy to check that

UomR(AR, BR) = HomR. (AR., BR.), so that QR. is /?*-injective since it is R-

injective. It follows [7, p. 106] that Q is the maximal right quotient ring of R*.

From (b) it follows that S is (up to isomorphism) the maximal left quotient ring

of R*. The proof of the theorem is now complete.

We remark that statement (a) of the theorem implies that R has a two-sided

maximal quotient ring if and only if R* has.

2. The MRQ ring flat as a right A-module. Necessary and sufficient conditions

that Q, the MRQ ring of ring R with 1 and Z(RR) = (0), be flat as a left /?-module

were obtained in [2]. The nature of the question of flatness of Q as a right R-

module (as far as symmetry is concerned) appears to be quite different. Some

partial results in this direction, in particular Proposition 2.2, are obtained in this

section.

Lemma 2.1. Let R be a ring with 1 and Q a right quotient ring of R, flat as a right

R-module. Assume 2 Pt ® <7¡ -*■ 2 PíQí is an isomorphism Q ®ßß—>- Q (as Dé-

modules) and let RA, RB be submodules of RQ. Then Q(A nfi)= QA n QB (the left-

right symmetric of this also holds).

Proof. For any submodule RA of RQ we have Q ® A- QA (by the given iso-

morphism) and now the proof proceeds as that of [2, Lemma 1.10].

Proposition 2.2. Let R be a ring with 1 and Q a right quotient ring of R, flat as a

right R-module. If Q <g>B <2= Q canonically (as in Lemma 2.1) then Q is also a left

quotient ring of R.

Proof. It is sufficient to show that for every 0/<7 e Q, we have R n Rq^(0). By

Lemma 2.1 Q(R n Rq)=QR n QRq=Q n Qq= Qqï(0). It follows that RnRq

#(0).

It is appropriate to note here that the condition that Q <8>R Q be canonically

R- (or Q-) isomorphic to Q, in Proposition 2.2, need not be, in general, satisfied.

In fact in case Z(RR) = (0) and Q is the MRQ ring of R, the condition imposes

rather strong restrictions on R [3].

Theorem 2.3. Let Rbea ring with Z(RR) = (0) andd(RR)<ao. Then Q, the MRQ

ring of R, is also the MLQ ring of R if and only if QR is flat.

Proof. Observe that the epimorphism 2p¡ <8> 9í->2p¡9¡ °f Q®bQ onto Q

is a monomorphism if and only if Q ®R Q is a nonsingular right Q- or ^-module.
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Indeed suppose ^piqi = 0. The right ideal I={r e Rjqj e R, all /} is large in £B

[2, Proposition 1.1] and for every / e / we have

(2 Pi ® »O' = 2^ ® (*o= 2^(*o ® ' = (2m)í ® i = o.
It follows that 2/*i ® ?i=0 since Z(g ®B ß) = (0). Now by assumption Q is

semisimple [10]and hence Q (g)B ß S ß since every ß-module is projective [l,p. 11]

andZ(ß) = (0).

If QR is flat, ß is a left quotient ring by Proposition 2.2. It follows from a result

of Utumi's [10, 1.16, p. 4] that ß is (up to isomorphism) the MLQ ring of £.

If ß is also the MLQ ring of £, it is flat as a right £-module, e.g. [2, Theorem

2.1, Remark, (iii), p. 247]. This completes the proof of the theorem.

Remark (£ and ß as in Theorem 2.3). If MQ is a module of finite dimension,

say 77, and AB is a submodule of MR such that AReLiMR) then diAR) = diMQ).

Indeed any submodule £B of AR has an £-injective hull £B which may be chosen

to be a right ß-module as well [10, Theorem 2.6, p. 118]. Since Z(A/B)=Z(A/Q) = (0)

it is easy to show that HomB (£B, MR) = HomQ (£Q, MQ) so a copy of the injective

hull of £B can be found in M as ß-submodule of M. It follows that any direct

sum of nonzero submodules of AR has at most 77 summands ; on the other hand

there are simple ß-submodules Mx,..., Mn of MQ such that M= Mx © • • • © Mn

and it is clear that iMx r\A)(&---@ (A/n n A) is large in AR and also t/((A£ n A)R)

= 1, 7=1,...,77. Thus we have diAR) = diMR) = diMQ) = n. In particular t/(ß0)

= diQR) = diRR) and since ß is semisimple (ring) we have diQQ) = diQQ).

So if ß is the MLQ ring of £ as well, then necessarily Z(B£) = (0) and

diRR) = diRR).

3. Finite dimensional nonsingular rings. If £ is a finite dimensional nonsingular

ring such that í/(£b)= 1, then, by the last remark, diQQ)= 1, where ß is the MRQ

ring of £. In particular any nonzero right ideal of ß is large in ß and since ß is

semisimple [10, p. 115] it has no proper to(0), Q) right ideals and hence it is a

division ring. It follows that £ is a prime ring which is right uniform (i.e. t/(£B) = 1)

and since Z(B£) = (0) and </(B£)<oo, ß is also the MLQ ring of £ [5, Theorem 2,

p. 594]. In this case Q is also a classical quotient ring of £.

Our first main result of this section shows that if í/(b£) = i/(£B) = 2, £ non-

singular, then the MRQ ring of £ is also the MLQ ring of £.

We need the following :

Lemma 3.1. Let R be a nonsingular ring iwith 1) with a semisimple MRQ ring Q.

The following statements are then true:

(a) IfBIeLiBR),thenQI=Q.

(b) If RB is any R-module and RA e £(B£), then the left Q-homomorphism

1 ® /: Q (g) A —> Q 0 B is an epimorphism.

Proof, (a) Since g is semisimple, QI=Qe for some e2 = ee Q. Now Qeif—e)

=(0) so that /(l -e) = (0) and since Z(Bß) = (0) it follows that 1 -e=0. We have

Qi=Q-
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(b) The set F={1 <g) b:beB} clearly generates Q ® B over Q. Let 1 <g> b e E;

since RA e L(RB), RI={r e Rjrb e A) eL(RR) [2, Proposition 1.1] and by (a) QI= Q.

It follows that 1 = 2 a¡Xx, <Ii e Q, Xxel and 2 Ii ® \° 6 ß ® A since Ib<=A. Now

2Ii ® \b = ̂ qxXi ® ¿> = 1 <g> è so that (1 (8) 0(2 <7i ® A,6)= 1 <g> ¿> and 1 (8) /' is an

epimorphism.    Q.E.D.

A left /«-module M is uniform if d(RM) = 1, equivalently M^(0) and every non-

zero submodule of M is large in M; a left ideal (7 of R is uniform if the module

RUis.

We need the following characterization of flatness of QR :

Proposition 3.2. Let R be a nonsingular ring with 1 and d(RR) = d(RR) = n <co;

let Q be the MRQ ring of R. The following statements are equivalent:

(a) Q ® U is uniform as a left Q-module,for every uniform left ideal U of R.

(b) QR is flat (Q is then the MLQ ring of R also).

Note. In the interest of simplifying notation in the proof that follows as well

as the proof of Theorem 3.3 we write d(M) for d(QM), whenever M is a left

ß-module.

Proof (of Proposition 3.2). (a) implies (b). In view of [7, p. 135, Ex. 1] it suffices

to show that for any large left ideal /, 0->ß®/-»-ß<8).Ris exact. Let RI e L(RR).

By [6, Theorem 1.1, p. 102] d(RI)=n and there exist uniform left ideals of R,

Ux, ■ ■ -, Un contained in B/ such that the sum Ux + ■ ■ • + Un is direct and large in

BI. Since ß ® (Ux © • • • 0 Un)^(Q ® Ux) © ■ ■ ■ © (Q ® Un) and d(Q ® UA
= 1, i = 1,..., n, it follows that d(Q <g> (!/».©••• © Un)) = n. Now by Lemma 3.1

the following maps are epimorphisms :

Q <g> (ük© • • • © t/„) -> Q ® /-» Q <g> R - Q.

This gives

/» = d(Q ® (Í7, © • ■ • © !/„)) ä i/(ß ® /) ^ d(Q ®R) = d(Q) = n

so that d(Q ® /) = «. Now if öAT=ker(ß ® /-> ß ® /?), the exact sequence

0->K->Q®I^-Q®R—>0 splits over ß as ß is semisimple. It follows

[6, p. 202] that n = d(Q® I) = d(K) + d(Q) = d(K) + n so that d(K) = 0 or K=(0).

Thus 0-^ß®/^ß®Äis exact for any RIeL(RR).

(b) implies (a). Let U be a uniform left ideal of R. By [6, Theorem 1.1] there

exist uniform left ideals U2,..., Un such that the sum Ux + ■ ■ ■ + Un is direct and a

large left ideal of R, where UX = U. Since í/¡/(0) and 1 e ß we have QU^(0)

and thus from the canonical epimorphism ß ® £/¡ -> ßC/( we obtain d(Q ® U¡)

ä 1, /= 1,..., n. On the other hand we have

ß = Q(Ux © • • • © i/n) = ß ® (Ux © ■ • • © Un)

S (ß ® Ux) © • • • © (Q ® t/J

(the first equality by Lemma 3.1, the first isomorphism by flatness of QR). It follows
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that diQ <g> Ux)+-\-diQ <g> Un) = n, which implies diQ <g) Í/¡) = 1 for each /,

and in particular diQ <g) £/) = 1 for any uniform left ideal of £.    Q.E.D.

We can now state and prove the following:

Theorem 3.3. Let R be a nonsingular ring (with 1) and diRR)=diRR) = 2. If Q

is the MRQ ring of R then it is also the MLQ ring ofR.

Proof. We shall show that ßB is flat. The conclusion will then follow from

Theorem 2.3. It, hence, suffices to show that ß <g> U is uniform as a left ß-module

for every uniform left ideal U of £ (Proposition 3.2). Now if O^we U, then

Ru e£(B[/) since t/(Bi/)= 1, and we have epimorphisms

(*) Q® Ru^Q®U^QU

the first one (left) by Lemma 3.1, the second (right) canonical. Since diQ ® Ru)

^diQ® U)^diQU)^l, it follows that diQ® U) = l if diQ ® Ru) = l. In

particular (*) says ß ® £»^(0). Observe that B(0:w) = {x e Rjxu = 0}^(0) since if

B(0 : u) = (0) then s(0 :«) = {/ e Sjtu = 0} = (0) where S is the MLQ ring of £, and semi-

simple [10]; it follows that m is a nonzero divisor of £ [8, Lemma 2.8, p. 139] and

RueLiRS) or 1 = t/(£i/)=2. Now the map q^qÇÇu is an epimorphism of ß

onto Q® Ru and by semisimplicity of ß we have Q = QA® [Q ®QRu]. The

module QA cannot be zero, since if it is we have: ß=ß <g> £t/£ ß <g> £/B(0:a)^

ß/a(0:w)sße for e2 = eeQ, e^l,0. This implies 2 = t/(ß) = t/(ße)=l so that

Q^#(0). Since ß <g> Ru^iO) we have t/(ß (g) £w) = l and hence diQ <g> £)=1,

which was to be shown.

ßB is flat and the MLQ ring also.    Q.E.D.

If 2 < diRR) = t/(£B) < oo in the preceding theorem, then ß is not necessarily

the MLQ ring also. We proceed with an example followed by a more general result

in that direction :

Let £ be a division ring and D3 the complete ring of 3 x 3 matrices over D.

Consider all matrices in D3 of the form

(a   0   x\

0   a   y I,       x,y,z,aeD.

0   0    zj

They form a ring £ with identity (of D3). If ey denotes the matrix of D3 with 1

in the (/,/) position and zeros elsewhere, we have as usual

e„ekl = 0    if j # k,

= eu   if j = k,

and if a is any element of £ then

(1) a = iexx+e22)a+e33z + eX3x+e23y,       x,y,z,ae D.

If 0^8 = idij) e D3 with say they'th column nonzero then 8ej3 is an element of £
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with the 3rd column =¡¿ 0, so we have RR e L((D3)R) and D3 is the MRQ ring of R,

as D3 is its own [11, 1.16, p. 4]. In particular this shows that Z(RR) = (0) and

d(RR) = d(QR) = d(QQ) = 3.

Now the left ideals /?(<?!».+ e22), /?<?13, Re23 are easily shown to be simple;

furthermore I=Re © Re13 © Re23, e = exx + e22, is large in RR. If z=0 in (1) then

a e/ so suppose z + 0; then e23a=e23z±0 and e23ze Re23'=L Now d(RI) = 3 and

since RIe L(RR) it follows that d(RR) = 3. Since a large ideal of /? must contain all

its simple left ideals, the (left) annihilator of any element a of Z(RR) contains

e = exx + e22, e13 and e23. We thus have 0 = ea = ea + e13x + e23y so that a = x=y = 0,

and a = e33z. But we have 0 = e13a=ex3e33z = e13z so that z = 0 and a = 0. Thus

Z(RR) = (0). Finally we show that D3 is not an essential extension of R as a left

/«-module, hence D3 is not the MLQ ring R. For example 0^e21eD3 and

ae2i = e21a for all ae R, but e21a $ R.

We thus have a ring /< with the properties : Z(RR) =Z(RR) = (0), d(RR) = d(RR) = 3

and Q, the MRQ of R is not the MLQ ring R.

This example can be generalized to the theorem below, whose proof proceeds

in the lines of the argument used above :

Theorem 3.4. For each ordered pair (k, n) of integers k and n such that 3^«<oo

and n^k = 2(n— 1), there exists a ring R with 1 and the following properties:

(a) Z(RR)=Z(RR) = (0).

(b) d(RR) = k,d(RR) = n.

(c) The MRQ ring Q, of R, is not a left quotient ring of R (in case k^n, (c) is,

of course, a consequence of(b)).

Proof. Let D be a division ring and Dn the complete ring of nxn matrices over

D. The ring R is then the set of matrices (au) of Dn defined by:

an=a22=---=amm, m = 2n-k-l,

alh arbitrary for m<j-=n,

am, a2n, a3n, ..., aB_ljB arbitrary,

all other ax, are zero.

It should be remarked here that to show d(RR) = k suffices to show that the left

ideals:

-K(eU+ ' ' ' AemrA, Rem+1,m+x, ■ ■ -, Ren-l,n-l, R^m, ^e2n> • ■ •» Pen-l,n

are all simple (k of them) and their (direct) sum / is large in RR. The proof, other-

wise, proceeds as in the example.

4. The simple components of the semisimple MRQ ring. If the MRQ ring ß

of R is semisimple we write ß = Qx © • • • © Q„ where each Qx is a simple ring and

in fact ßi = eiß, e¡ a central idempotent of Q. Since

d(Q0) = 2 d(Q<*)
i = l
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we have n^diQQ). We set £¡ = £ n Q¡, a two-sided ideal of £, hence a subring

of £ not necessarily with an identity. We then have:

Theorem 4.1. If the MRQ ring Q of a ring R is semisimple then Q is also the

MLQ ring of R if and only if ß4 is the MLQ ring of Rtfior each i.

Before proceeding with the proof of this theorem we note the following : If ß

is a right quotient ring of a ring £ with Z (£B) = (0) and e2 = e is a central idempotent

of Q, then eQ is a right quotient ring of £ n eQ. Indeed let 0=£eq e eQ. For any

xeQ, the right ideal (£:x)={r e Rjxr e £} is large in £B and so in particular

(£:e), iR:eq) and (£ : e) n (£ : eg) [2, Proposition 1.1]. Since Z(ßB) = (0) there

exists r e (£:e) n iR:eq) such that O^eqr. Now 0^eqr=ieq)ier)e R n eQ and

er e R n eQ so that eQ is a right quotient ring of £ n eQ.

Now to return to the proof of Theorem 4.1 :

Only if. Follows from the argument (on the left) given above and the fact that a

self-injective quotient ring of a ring is the maximal one [11, 1.16, p. 4].

If. If O^q e ß we write q = exqx+ ■ ■ ■ +enqn. Since O^q, etq=£0 for some / and

since RiRieLiRiQ), there exists r¡ e £¡, hence r¡ e £, such that O^r^qe £¡s£.

Observe that riejq = 0 for /#/' so that 0^riq = rieiq e R. It follows that B£ e£(Bß)

and ß is the MLQ ring of £, also.   Q.E.D.

If in the preceding theorem diQQ) = n in Q = Qx © • • ■ © Qn, then ¿/(ßi<}i)= 1

for each i, so that each Q¡ is a division ring, by an earlier observation. In this case ß

is a classical right quotient ring and if t/(B£) < oo then it is also a classical left.

This is contained in the following:

Theorem 4.2. Suppose R is a finite dimensional ring with the MRQ ring Q, a

finite direct sum of division rings. Then Q is a classical two-sided quotient ring of R.

Proof. Let ß = Dx © • • ■ © ¿>n where each £, is a division ring. It follows

[5, Theorem 11, p. 604] that Dt is a two-sided maximal (classical) quotient ring of

£¡ = £ n D¡, for each i. Q is the MLQ ring of £ follows from Theorem 4.1.

If a e R we write a = idx,..., dn), d¡ e Du and observe that a is a nonzero divisor

of £ if and only if dx=£0 for each i; it follows that if a is a nonzero divisor of £,

it is, then, invertible in Q. Let, now, q e Q; to show that q=ad'1, a e R, d a non-

zero divisor of £, suffices to show that iR:q) = {r e Rjqr e £} contains a nonzero

divisor of £. Write q = iqx,.. .,qn); since £JRj e¿(£ÍRf) there exists, for each i,

0/a¡ e £¡ such that O^t^a, e £¡c£. Clearly d=iax,..., an) is a nonzero divisor

of £ and qd=a e R. Hence q = ad~x. Thus ß is a classical right quotient ring of

£ and also a left one [6, Theorem 5.5, p. 217].   Q.E.D.

The following is a special result on finite dimensional rings.

Proposition 4.3. Let R be finite dimensional, nonsingular ring with t/(£B) =

í/(b£) = 3. If the MRQ ring Q of R is not simple, then Q is also the MLQ ring of R.
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Proof. If ß = Qx © ß2 © ß3, then d(QXQf) = 1 and the conclusion follows from

Theorem 4.3 above.

Assume Q = Qx@Q2 with, say, d(QlQj = 1 and o'(ß2o2) = 2. Now Rx © R2 is

large in RR where RX = RC\ ß(, so that

d((Rx © R2)R) = 3 = d(RlRl) © d(R2J.

Since aXßl0i)=l we have d(R¡Rx) = d(RlRl)= 1. We also have ¿U^i © /î2))

^d(RR) = 3 so that d(R2R2)^2. That ß2 is also the MLQ ring of R2 now follows

from Theorem 3.3 (as it is true if d(RR)^2 and d(RR) = 2), and hence ß is also the

MLQ ring of R.    Q.E.D.

5. Rational subdirect sums. Let R be any ring and let R# be the ring obtained

from R by formally adjoining the integers. If MR is a right Ä-module, a submodule

BR of MB is rational in MR (MR is a rational extension of 5B) if for every pair of

elements x, y of MR, with x / 0, there exists r g /?# such that xr ^ 0 and j>r e 5b.

If Z(BR) = (0), then 5S is rational in MR if and only if BR is large in A/B.

As in [9, p. 65] we say that a ring R is a subdirect sum of a set of rings {Ra : ae A}

if there exists an isomorphism h of R into the (complete) direct product \~[a R<x

such that nah(R) = Ra for each ae A, where 7ra is the usual projection of \~l_a -R«

onto Ra. The subdirect sum is irredundant if for every ß e A, the kernel of the map

h(ß): r^{nah(r) : a^ß) of R into Y\a*e R<¡ 's nonzero or equivalently h(R) n Rß

/(0) for each ß e A. It is easy to see that h(R) n Rß is a two-sided /?„- and A(/?)-

ideal. We say R is a right rational subdirect sum (right RSS) of the rings {Ra},

if h(R) n /?a is rational in Ra as a right /c^-ideal, for each a e A. If R is a right RSS

of the rings {/?J then R is an irredundant subdirect sum (ISS) of them, clearly,

since then h(R) n Ra^=(0) for each «ei. The converse is not true as the following

example shows:

Let D be a division ring and consider the following rings:

R

A

It was shown in the preceding section that D3 is the MRQ ring of R and it is easy

to check that D2 is the MRQ ring of A, also the MLQ ring. In particular Z(AA)

=Z(AA) = (0). The mapping:

(; :)■(» o
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is an isomorphism of £ into A(1)© A<2), A(0 = A, i =1,2, and determines an ISS

representation of £ in terms of A(1) and A(2). In fact

At = //(£) n A«) = |(°   dQy. deDJ^iO).

If At were rational in A(i) it would then be large in A<0. Since Z(A(i,) = (0) and

^¡^¡ = (0), it follows that A¡ is not rational in A(i). This shows that the isomorphism

77 does not determine a right RSS representation of £ in terms of the rings A(1),

Ac2). Proposition 5.1, below shows that £ is not a right RSS of A(i), /= 1, 2.

It is shown in [4, II; Proposition 6.4, p. 162] that if £ has zero left annihilator

(i.e. a£ = (0) if and only if a=0) and A is a two-sided ideal of £, then A is rational

in £ as a right ideal if and only if A has zero left annihilator (in £).

We use this to prove the following, a generalization of a result of L. Levy's

[9, Proposition, p. 72].

Proposition 5.1. Let {Ra : a e A} be a family of rings Ra with zero left annihilator

and let Qa be the MRQ ring of Rafor each a. If R is a right RSS of the rings {£„},

then \~[a Qa is the MRQ ring of R. (£ is identified with its image in TT £a.)

Proof. Since \~~[a Qa is the MRQ ring of FT* R& U, P- 100] it ¡s sufficient to show

that £ is rational in \~[a Ra as a right £-module. The conclusion will then follow

by Utumi's Proposition 1.5 [11, p. 2]. Let x, y eYJa Ra with x#0. For some

ß e A, 7Ti(x)#0, TTSix) e Rß. Since Aß = Rr\ £s( = /»(£) n Rß) is rational in £¿, it

follows that 0=/=rreix)A, so there exists reAß^R such that 7r;8(x)r^0. Since AB

is a two-sided Rß ideal we have yr = trßiy)r e AB^R. Thus: there exists r e R such

that 0^xr = rrßix)r and yr e R, so that £s is rational in i\~[a Ra)R, and the proposi-

tion is established.    Q.E.D.

We see now that the ring £ is the example is not a right RSS of A(i), /= 1, 2 as we

would have D3 = D2 © D2.

In [9, Theorem 6.1, p. 74] L. Levy showed that a semiprime ring £ is an ISS of a

finite number of prime rings Rx, ...,£„ with a (classical) simple right quotient ring

Qit ■ ■ -, Qn (correspondingly) if and only if £ has a (classical) semisimple right

quotient ring Q, and then ß= ßi © • ■ • © ßn. In the proof of this it is shown

[9, Lemma 6.2] that £ is a right RSS of the rings Rx,..., £„. Replacing ISS by RSS

we can generalize this result to arbitrary rings and their maximal right quotient

ring. The generalization is otherwise false as the remark following Proposition

5.1 above shows. Hence we give:

Theorem 5.2. For any ring R the following statements are equivalent:

(a) £ is a right RSS of finite number of rings Rx,..., Rn with simple MRQ

rings ßi,..., Qn correspondingly.

(b) £ has a semisimple MRQ ring ß= ßi © • ■ • © Qn-
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Proof, (a) implies (b). Follows from Proposition 5.1.

(b) implies (a). For each i—1,..., n, let e¡ be the identity of Qx, a central idem-

potent of ß such that Qi = exQ. Set Ri = exR, i= 1, 2,...,«. It is clear that Rn Qt

ZetR = Ri so that Qx is the MRQ ring of Rt for each /' as it is the MRQ of R n Qx

(Theorem 4.1). Since 1 = ex + ■ ■ ■+ en, the mapping h: r^-exr+ ■ ■ ■ +enr of R

into /?!©••■© Rn is an isomorphism and determines an irredundant subdirect

sum representation of R in Rx © • • • © Rn. It remains to show that Rn R¡ is

rational in Rx as right /{¡-modules. Since Z(RXR) = (0), rational coincides with large

so we show that R n Rx is large in RiRi. Let 0^x=e¡r e Rx. The right ideal /=

{t e R\ext e R} is large in RR so that xl=£(0) and there exists tel such that xt^O.

Clearly xt e R n Rx and since xt = exrt=(eir)(eit) we have y = elteRl such that

0 # xy e R n Rx so that R n Rxis large in /?4.

It follows that R is a right RSS of Ru ..., Än.   Q.E.D.

It is easy to see that in the theorem above, ß is also the MLQ ring of R if and

only if each Qx is, and this gives another criterion of two-sidedness of the MRQ

ring in terms of its simple components in case it is semisimple.
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