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1. Introduction. Several attempts have been made in recent years to clarify

and axiomatize the theoretical foundations of quantum mechanics. While the

physical significance of these efforts remains unclear, they have yielded some highly

interesting mathematical problems. In this paper we are going to discuss one of

these problems—the question of additivity of the expectation-functional on the

algebra of observables.

Basic in any modern treatment of quantum mechanics is the family of observables

associated with the physical system under consideration, and the set of states in

which the system can be found. The choice of an adequate mathematical model

may be made in several ways. In his recent approach [16], Mackey identifies the

family of observables & of a system with the set of all question-valued measures on

R. A question is an element of a logic ä? (an orthocomplemented, complete lattice).

The states y of the system correspond to a convex set of probability measures on

¿P. A priori, no global assumption concerning the algebraic structure of <S is made,

although a certain local algebraic structure exists. Indeed, if xe(9, and / is a real

Borel-function on R, then/(x) is the observable given by/(x)(¿)=x(/_1(¿)),

where E is an arbitrary Borel subset of R. It follows that if y and z are Borel-

functions of a third observable x, then y+z and yz exist as observables in a natural

way.

If x is an observable and a is a state, then <xx(E) = a(x(¿)), E a Borel subset of R,

defines a Borel-measure on R. We refer to ax as the probability distribution of x in

the state a. The integral

Pa(x) = A dax(X),
J — 00

if it exists, is called the expectation of the observable x in the state a. It is easily

seen that the function pa defined on <B in this way is linear on each subset

®x = {/(*) : / Borel : R -> R}.

Moreover, if xu x2e<3 are given, there exists at most one x3 e 6 satisfying

pa(x3) = P«(xi) + pa(x2)

for all a e y (assuming y to contain sufficiently many elements). If such an x3
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exists, we define it to be the sum of xx and x2, and write x3 = x1 + x2. It follows that

the expectation-functional pa is automatically additive whenever the sum of two

observables exists (which, of course, need not exist in general).

The final and crucial assumption made by Mackey, is that ££ shall be taken to

be (isomorphic to) the lattice of projections 3P on a separable Hubert space H.

The observables are then the projection-valued measures x: F-> x(F); x(F) eSP.

By the spectral-theorem we obtain a one-to-one correspondence between the

observables and the (not necessarily bounded) selfadjoint operators on H. The

states correspond to probability measures on á?

A remarkable theorem of Gleason [9] states that the probability measures on &

are exactly the ^-restrictions of the set of positive, normal linear functionals of

norm 1 on -S?ft/) (the set of all bounded linear operators on //).

This result makes several things fall into place. The expectation-functional pa

on G carries over to the selfadjoint operators on H, and if Ax is the selfadjoint

operator corresponding to the observable x, we have

pÁAx) = A dax{X).
J — oo

By Gleason's theorem it now follows that pa is linear on ¿¡?{H)h (the bounded

selfadjoint linear operators on //), and that the sum of two observables always

exists if the observables correspond to bounded operators.

Several reasonable modifications of Mackey's model suggest themselves :

(1) To take áC to be the lattice of projections in any factor—or more generally—

in any von Neumann algebra 91.

(2) To assume only finite additivity of the states a on ¿if.

In both cases, however, the development is severely hampered by a missing

analogue of Gleason's theorem. It remains true that the observables correspond to

selfadjoint operators affiliated with 2t, but we are no longer able to say that this

correspondence is additive (when the sum of two observables x and y exists), or

that pa is additive on the selfadjoint portion of 21.

In the more general and abstract approach taken by Segal, Kadison and others,

the bounded observables are identified with the selfadjoint elements of a C*-

algebra A, with the Jordan-algebraic structure accepted [11], [19]. Primarily, a

physically meaningful state is considered as an assignment of a probability measure

ax to the spectrum crft) of each observable x e Ah. This gives rise to a function

p{x) = A dax{X)
Ja(x)

on Ah, with the obvious consistency requirement imposed, that if/is a continuous

real-valued function on a{x), then

P{f{x)) =   f      /(A) dax{X).
Jaix)
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Hence, mathematically speaking, a physical state is a real-valued function p on Ah,

whose restriction to each singly generated C*-subalgebra is linear. It is far from

evident that p must be linear on Ah, so in the absence of a theorem to this effect,

the linearity of p on all of Ah is taken as an extra assumption.

The present paper is devoted to the study of linearity of a physical state p (as

described above) for an arbitrary C*-algebra A. If A is abelian, there is a completely

affirmative answer, a result which was proved in the author's paper [1]. If

A = J2"ë(H) = the compact operators on a Hilbert-space H, physical states again

turn out to be linear if dim H^3, and the same is true for any C*-subalgebra of

J£"tf(H). In the last part of the paper we show that, under the extra assumption

that p is continuous on A, p is linear for quite large classes of C*-algebras.

Needless to say, there is a close connection between this linearity problem and

the missing analogue of Gleason's result for general von Neumann algebras. This

connection will be made explicit in §3, and we shall see that Gleason's theorem

provides an affirmative answer to the linearity problem mentioned above in an

important special case, if A is a factor of type I on a Hubert space of dimension

S3. The situation where dim H =2 is exceptional, and is discussed separately.

We are indebted to R. V. Kadison for calling our attention to these questions,

for his helpfulness through several discussions on the subject, and for his steady

encouragement. We also wish to express our gratitude to J. M. G. Fell, E. G.

Effros and C. Akemann for valuable conversations.

We would like to point out that the problem of extending a measure on the

projections of a von Neumann algebra 91 to a normal state on 91, was first recognized

by Mackey [16]. Varadarajan [21] has a very interesting and illuminating discussion

of this problem from the point of view of a noncommutative probability theory.

In the case where the measure is the dimension-function on the projections of a

type IIj factor, the problem of extension is precisely the problem of the additivity

of the trace [12], [17].

Throughout this paper concepts and results from the theory of C*-algebras will

be used quite freely. Our general reference is the book by Dixmier [6].

2. Preliminaries. Let A be a C*-algebra. By a singly generated C*-subalgebra

of A we mean a norm-closed *-subalgebra A(x) generated by a single selfadjoint

element xe A (and the identity 1 if A has identity).

Definition. A positive quasi-linear functional is a function p: A->C such that

(i) p\A(x) is a positive linear functional for each x e Ah.

(ii) p(a) = p(üi) + ip(a2), when a = a1 + ia2 is the canonical decomposition of a in

selfadjoint parts aua2.

If in addition

(iii) sup {p(a): ae A, \a\ ^ 1, a 2:0} = 1, then we say that p is a quasi-state on A.

Consequently, the restriction of a quasi-state p to Ah is a physical state. The

reason for condition (ii) above is to avoid trivial complications. Indeed, as shown
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in simple examples in [1], there are functions p: A^-C which satisfy (i) and (iii),

and whose restriction to Ah is linear, but still fails to satisfy (ii). As our interest

centers around the linearity of physical states, condition (ii) imposes no restriction

on the problem.

Observe that if A has an identity, then (iii) is equivalent to the condition p{\) = \.

We may also note that if two positive quasi-linear functionals p and y coincide on

each singly generated C*-subalgebra of A, then p — y by (ii). Clearly (i) implies

that p is real on selfadjoint elements; so by (ii) it follows that pft*)=pft) for all

a e A. Let us use the notation

||p|| = sup{pft) : aeA, \\a\\ ̂  1, a ^ 0}.

It is easily seen (by [6, 2.1.5vi]) that if A does not have an identity, then a positive

quasi-linear functional p may be extended to a positive quasi-linear functional ß

on Ä ( = the C*-algebra obtained by adjoining an identity to A), by defining

p{\) = K, if K^\\p\\. In particular a quasi-state on A extends to a quasi-state on Ä.

In [1] the following theorem was proved.

Theorem 1. Any positive quasi-linear functional p on an abelian C* -algebra A is

linear.

The following results are all preparatory for §§5 and 6. Let A be a C*-algebra.

g = the set of all positive quasi-linear functionals p such that ||p|| ^ 1. We give Q

the topology of pointwise convergence on A.

Proposition 1. Q is a compact convex set.

Proof. Convexity is obvious. For each x e A, let Ix={r e R : \r\ ^2||x||}, and let

Z= X{IX : x e A}. By the Tychonov theorem, / is compact. We consider the map

4>: Q-> I given by {<f>p)x = p{x): p e Q, x e A. We must verify that <f>p e I. Note

that if x e Ah, then |p(x)| ^ ||x||, since p\A{x) is a positive linear functional of

norm £1. In general x=x1 + /x2; with xux2eAh and ||xx||, ||x2|| á ||x||. Hence

|pft)| Ú |pfti)| + |p(x2)| g llxil + ||x2| ^2||x||, so {<f>p)x e Ix and <f>p e I. The map <p

is clearly one-to-one, and by the definition of the topology on Q, a homeomorphism

of Q into /. It remains to verify that <¡>{Q) is a closed subset of /. Let a e I be in

the closure of <f>{Q), and let ftv}^ Q be a net such that <f>pv -*■ a. Take an arbitrary

element a e Ah, and let x, y e A{a). Then

ax+y = lim {<ppv)x+y = lim Pvft4-j) = lim pv(x) + lim pvft)
V V V V

= limftpv^+limftpv)^ = a^o^.
V V

The other properties ce must have, to belong to <j>{Q), are equally simple to verify,

and we conclude that <f>{Q) is closed in /, so Q is compact. The proof is complete.

Note. The set S of positive linear functionals on A of norm less than or equal

to one is contained in Q as a closed convex subset. The relative topology for S

coincides with the w*-topology for S as a subset of the norm-dual A* of A.
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Let us say that a quasi-state p is pure if each element y e Q such that y Up (i.e.,

p — y e Q) is of the form y=Ap, with Oá Aí£ 1; A e R.

Proposition 2. A quasi-state p is pure if and only if p is an extreme point of Q

different from 0. 0 is an extreme point of Q.

Proof. Let p be a pure quasi-state, and suppose p = Xp1 + (l- X)p2 with 0 < A < 1,

Pi, P-2. e Q- We claim that || px | = || p21| = 1. Suppose not, so for example || px || = a < 1.

For any x e A+ ; \\x\\ ̂  1 we get

p(x) = APl(x) + (l-A)p2(x) g A« + (l-A) = l-A(l-cc).

Since |jp|| = 1, this is a contradiction, and the claim is proved. Now pä Xp1; so by

assumption, Apj = p.p; O^p.^1. Now A= ¡lApJ = ||p.p|| =/*, so pi = p, and hence

p2 = P- This shows that p is an extreme point of Q.

Conversely, let p^O be an extreme point of Q. Clearly ||p|| = l. Suppose

p>Pi>0; pi g (2, and put p2 = p — pi', p2^Q- Let A=||p1||. By an argument

similar to that given above, ||p2|| = l—A. Let yi = Pi/A and y2 = P2/0 — A)> s°

p = Ay1 + (l —A)y2 with yi,y2eQ. Since p is extreme, we obtain p = yi=y2, and

hence px = Ap, which shows that p is a pure quasi-state.

Finally, suppose that 0 is not an extreme point of Q. Then there is p/0 in Q,

such that — p also belongs to Q. Hence p(x) = 0 for all x^O in A. If x e Ah, then

x = x+—x~, with x + , x" eA(x) + , so by linearity of p on A(x) we get p(x) = 0.

But then p=0 by (ii) in the definition of quasi-states. This is a contradiction, so 0

is an extreme point of Q. The proof is complete.

Note. The proofs of Propositions 1 and 2 are, with small modifications, the

standard arguments used for states. For a model of Proposition 2, in the case of

states, see, for instance, [6, 2.5.5].

The next result is supposedly well known. The proof is included for the sake of

completeness.

If P is a positive linear functional on a C*-algebra A, the function

n0 : x -> p(x*x)112 ;       xeA,

is a seminorm on A. We have

(1) |p(x)|^|p||-«0(x)2;x6,4

[6, 2.1.5], so p is always continuous with respect to np. Also

(2) np(xy)ú \\x\\ -np(y); x, y e A.

In fact,

np(xy) = p((xy)*(xy)y2 = P(y*x*xyY2 Ú |!x*x||1'2-p(j*>')1'2 = \\x\\-np(y)

[6,2.1.5].

Lemma 1. Let A be a C*-algebra, J a closed two-sided ideal in A. Suppose that

pe A*; p^O and \\p\J\\ = \\p\\. Then J is np-dense in A.
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Proof. Let ft¡}¡e/ be an approximate identity for /. If A does not have an identity,

adjoin one, and define p(I)= ||p||. It then follows that n0{uz-1) -*■ 0; / 6 / [6, 2.1.5]

since ||p|y|| = ||p||. Let x be an arbitrary element in A. Then xuz ej for all ie I, and

n0{x-xu,) = «„(xft-Hi)) ^ ||x|| • «„(I-tt¡)

by (2). Hence xw¡ -*■ x with respect to the seminorm n0, and the proof is complete.

Proposition 3. Let A be a C*-algebra, J a closed two-sided ideal in A. If p is a

positive linear functional on J, then p has a unique extension p to A such that p is a

positive linear functional on A satisfying ||p'|| = ||p|.

Proof. Let {w¡}ie/ be an increasing approximate identity for /. We claim that for

any xe A, the net {pftiXMOfie/ converges. Let i,j e I:

| pftiXMj) - p{u,XU,) |   ^   | p{u¡XUi - UiXUj) | + | p{utXUj - UjXUj) |

=   | pftjXftj - U¡)) | + | p(ft, - UjXUj) |

á n0{x*ut)n0{Ui - u,) + np{xUj)np{Ui - u¡)

^(llpl^-llx^ll + llpll^-llx^lKfti-t/,)
^ 2- |pir-iix|i •«„(«.-%)■

By [6, 2.1.5], np{Ui — uj) -> 0 as 1,7 become large in /, and the claim follows. Now

define p'(x) = limie7 pftjXUj), xe A. We observe that p'\J=p. Indeed, p is continuous

on/[6, 2.1.8] and

¡X —I/fXMjl   ^   ||X — Uzx\ + ||w¡X — «(XI/jII

^ ||x—k(x||-I-||x—xi/(||->0   ifxej.

p is clearly linear on A, and if xeA; x^O, then «¡xm^O for all i el, so p' is

positive. For any xe A:

\P{UiXUi)\ g ||x||p(«f)2¡ \\p\\-\\x\\.

Hence |p'(x)| á ||p|| ■ |ft||, so ||p'|| = |p||. The uniqueness of p follows from Lemma 1

and formula (1). The proof is complete.

3. Quasi-states and probability measures on projections. An immediate conse-

quence of Theorem 1 is that if p is a quasi-state on a C*-algebra A, then p is linear

on each maximal abelian C*-subalgebra of A.

Let A be a von Neumann algebra and let SP denote the lattice of projections in A.

A function p.: a" -> R+ such that p.(0)=0 is called a finitely additive measure on

á»if
(n        \ n

2 ei = 2 p-(e¿

for any finite family ft¡}j=!,...,„ of mutually orthogonal projections e¡ eSP. p. is a

completely additive measure if

^(2 ei] = 2 /*(««)
Vie/     / ie/
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for any family {e¡}¡6/ of mutually orthogonal projections, p. is a probability measure

ifp.(i) = l.

Proposition 1. Let A be a von Neumann algebra. There is a natural one-to-one

correspondence between the quasi-states p on A and the finitely additive probability

measures p. on ¿P. This correspondence is given by

p.(a) = Xdp.(eA);       p. = p\&,
Ja(a)

where {eh} is the spectral resolution of the selfadjoint element ae A.

Proof. Let p he a quasi-state on A, and let p,=p\& If {e¡}¡ = 1.„ is a finite family

of mutually orthogonal projections, then they commute with each other, and are

consequently contained in an abelian C*-subalgebra of A. Hence p, is additive. Let

a e Ah, and let {eK} be the spectral resolution of a. Let B he an abelian C*-sub-

algebra of A containing a and {eA} (and hence also 1). p\B is a state, and is therefore

norm-continuous. The Riemann-Stieltjes integral a = ja(a) XdeA exists in the norm

topology of B, so

p(a) = X dP(eA) = A dp.(e>),
Jaia) Ja{a)

where the integrals now are ordinary Riemann-Stieltjes integrals. This shows that

the map p ->■ p\8P is injective.

Now let p. be a finitely additive probability measure on á? Let ae Ah have

spectral resolution {eA}. The function A -> p(eA) is monotone increasing, and

0^¿i(eA)áp.(i)=l. It follows that the Riemann-Stieltjes integral ¡aia)^dp.(eÁ)

exists, and we put p(a) equal to its value. We extend p to all of A putting p(a) = p(a±)

+ ip(a2), if a—al + ia2 is the canonical decomposition of a in selfadjoint parts. To

show that p is a quasi-state on A, let b e A(a)h. There is a real continuous function

/on o(a) such that b=f(a). Let {e'y} he the spectral resolution of b. Then we have

ey = C/-i(]_ W|y]) so

p(b) = ydp.(e'y)= 7#/-'(]-»,»i))=        f(>)dp(e„).
Ja(b) Jatfi) Ja(.a)

This shows that p\A(a)h is linear, and consequently p\A(a) is linear. p|^4(a) is

clearly positive, and p(l)=l, so p is a quasi-state on A. Evidently p\0> = p., so

P ->- p\0> is surjective. The proof is complete.

Note. Proposition 1 remains true for any C*-algebra A which contains the

spectral-projections of each of its selfadjoint elements.

As mentioned before, the main problem under consideration is to determine

when a quasi-state on A is linear on A. The result above tells us that for von

Neumann algebras this problem is equivalent to the following problem : If p. is a

finitely additive measure on the projections 3P, does there exist a state p on A such

that p\0>=p.1 Moreover, if such a state exists, then it must satisfy p(a)=jgia) Xdp.(e¿),
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a e Ah, and is therefore uniquely determined on Ah—and hence on A since p is a

linear.

Let us say that a positive quasi-linear functional p on a von Neumann algebra A

is normal, if p is ultraweakly continuous when restricted to any maximal abelian

*-subalgebra.

Proposition 2. Let p be a quasi-state on a von Neumann algebra A. Then p is

normal if and only if its associated measure on 3P is completely additive.

Proof. Suppose p = p|^ is completely additive, p is linear on any maximal abelian

*-subalgebra, so it follows by a well-known result [20] that p is normal. Conversely,

let p be normal. Since each family ft¡}ie/ of mutually orthogonal projections is

contained in a maximal abelian *-subalgebra, the result follows.

Note. If A is countably decomposable, a quasi-state p is normal if (and only if)

it is ultraweakly continuous on any singly generated sub-von Neumann algebra.

Indeed, let this condition be satisfied, and let {ei}teN be any family of mutually

orthogonal projections. Let a = Ji¡xL12'iei. This series converges in norm, and

represents the spectral resolution for a. Hence {et}ieN is contained in the singly

generated sub-von Neumann algebra of A containing a. The claim now follows by

the proposition above.

4. Quasi-states on &{H) and 3«ë{H). £{H) denotes the C*-algebra of all

bounded linear operators on a Hilbert-space H, ¿¿*#{H) is the C*-subalgebra of

all compact operators on H.

The main result of this section is that if p is a quasi-state on &{H), then a

Lebesgue-decomposition is possible: p = Pi + P2 where px and p2 are positive

quasi-linear functionals on ¿f{H), with px normal and linear, and p2{J¿*i£{H)) = 0.

In particular, it follows from this that a quasi-state on ¿¿"£{H) is always linear.

We obtain this by a slight extension of Gleason's result [9], which we now restate

in terms of quasi-linear functionals.

Theorem 2. A normal positive quasi-linear functional p on ^C{H) is linear if

dimZ/^3.

Proof. We may suppose p(I) = l. If p is normal then its associated probability

measure p = p|^ is completely additive (Proposition 2, §3). Then, by [9, Theorem

4.1], there is a normal state <f> on &{H) such that <£|^ = p.. By Proposition 1, §3

we obtain p = oS and the proof is finished.

A central role in Gleason's paper is played by the so-called frame-functions:

Definition. A real-valued function/on the unit sphere S=ft e H : ||||| = 1} of

H, is called a frame-function of weight w if 2i6/ /ft ¡) = w for any orthonormal basis

{ftW in H.
Gleason goes on to prove that each nonnegative frame-function/on a separable
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real or complex Hilbert-space of dimension ^ 3 is regular in the sense that there

exists a positive operator a of trace-class on H, such that

(*) /(¿) = (aí,f);       teS.

A scrutiny of his arguments makes it clear that the assumption about separability

is unnecessary, and is really never used in the proof. The requirement that dim //^ 3

is more essential. For dim//=l, every frame-function is trivially regular; the

irregularity occurs for dim H=2. It is not hard to see why. We can obtain a frame-

function for R2 by defining it arbitrarily on the first quadrant of the unit circle.

Such a function need not be continuous, a condition which evidently must be

fulfilled if the relation (*) is to hold. From this observation it follows that if p is a

quasi-state on the algebra of 2 by 2 matrices (real or complex), then p need not be

linear on the set of hermitian matrices. In what follows, we will therefore assume

that dim H ä 3.

Proposition 1. Let f be a bounded, nonnegative function on the unit sphere of H,

and suppose that fis a frame-function when restricted to any finite-dimensional sub-

space of H. Then there is a bounded, positive operator a on H, such thatf(£) = (a(;, £)

for each unit vector Ç e H.

Proof, /preserves its properties by restriction to completely real subspaces of H

(a real-linear subspace K of H is completely real if the inner product is real on

KxK). Every completely real two-dimensional subspace can be imbedded in a

completely real 3-dimensional subspace, since dim 7/^3./is a nonnegative frame-

function on each such subspace (xR3) and is therefore regular there—and then

also, by restriction, on any two-dimensional completely real subspace of H.

Lemmas 3.2 and 3.3 of [9] go through without modification, so / is a regular

frame-function on every two-dimensional subspace of H. The proof of Lemma 3.4

of [9] goes through without modification, and the proof is complete.

Proposition 2. Let p. be a finitely additive measure on the orthogonal projections

SP in H. There exists a unique completely additive measure v on 3P such that v^p,

and p. — v vanishes on finite-dimensional projections.

Proof. For f e H, let e{ denote the orthogonal projection on the one-dimensional

subspace containing £. Let g(£)=p.(e?) for each unit vector £ e H. If e is a finite-

dimensional projection on H, let {£¡}¡ = i.„ be an orthogonal basis for e(H).

Then

2 g(Q = ï Keit) = vit et,
f=i ¡ = i \í=i

so g is a frame-function on each finite-dimensional subspace of H. g is nonnegative

and bounded, since g($)=p.(ei)¿¡p.({) for each unit vector £ e H. So g satisfies the

conditions of the preceding proposition. Hence there is a positive operator a on H

such that g(£) = (af, £), i^H, Il f 11 = 1- We prove that a is of trace class. Let

= PAß),
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fti}ieí be an orthonormal basis for //, and let F be the collection of finite subsets of

the index set /. For y e F put ay=2iey s(i. Then pfty) is a monotone, ascending net

of real numbers satisfying pfty)^p(I) for all y e F, so that limyer pfty) = ct^p.(l)

exists. Consequently

2 (a&> íi) = 2 s(£)= 2 ^eii) = lim P-^y) = « < °°.
ie/ ie/ ie/ 7<=r

where we have used finite additivity of ¡x on 3P. So a is of trace class on H, and the

sum 2ie/ gfti) ¡s independent of the basis ftj}ie;. Hence g is a regular frame-function

of weight a ^ pft) on //. Let e be an arbitrary element of 8P, and let fti}ie/ be an

orthogonal basis for e{H). Define »'ft) = 2ie/gfti) = Atft)- Then v is easily seen to be

a completely additive measure on SP, and p. — v vanishes on finite-dimensional

projections. The uniqueness of v is obvious and the proof is complete.

Let us say that a positive quasi-linear functional p on áf{H) is singular if p

vanishes on £e<ë{H).

Lemma. A quasi-state p is singular if and only if its associated measure vanishes on

finite-dimensional projections.

Proof. If p is singular, then clearly p = p|^ vanishes on finite-dimensional

projections, since these are compact. Conversely, suppose that p vanishes on finite-

dimensional projections. If a e ^^{H) is selfadjoint, then the eigen-manifolds of a

are all finite-dimensional. From the construction of the spectral resolution and the

formula of Proposition 1, §3 it follows that pft) = 0, and the proof is complete.

Theorem 3. A quasi-state p on £f{H) may be written uniquely as a sum p = pi + p2

with pi, p2 e Q, pj normal and linear and p2 singular.

Proof. Let ¡x be the finitely additive measure on 0 associated with p. Apply

Proposition 2 to obtain the completely additive measure v on 0*. By Gleason's

theorem there is a positive, normal linear functional px on ¿P{H) such that p1\0l = v.

Since ¡>|(iwe clearly get pi^p. p2 = p — pi is the quasi-linear functional associated

with the measure p. — v, so p2 is singular by the lemma above. The uniqueness of px

is a consequence of the uniqueness of v, and the one-to-one correspondence

between quasi-states and measures established in Proposition 1, §3. The proof is

complete.

Corollary 1. If p is a quasi-state on ¿£{H) which is an extreme point of the

convex set of quasi-states Q, then either p is a normal state or a singular quasi-state.

Proof. By Theorem 3 there is a positive normal linear functional <j> on ^C{H)

satisfying 0 ̂  <f> S p. By Proposition 2, §2, </> = Xp ; 0 :£ A ̂  1. If A = 0 then p is singular,

if 0 < A á 1 then pisa normal state.

Remark. Combined with Proposition 1, §2, and with the aid of the Krein-

Milman theorem [15], this last result reduces the question of whether a quasi-state

on <5?(Z/) is linear, to the same question for the pure, singular quasi-states.
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Corollary 2. If p is a quasi-state on ^(H), then p is linear.

Proof. We consider the C*-algebra A generated by ^(H) and 1, and put

p(l) = l so p becomes a quasi-state on A. For each unit vector £ e H we put

g(0 — p(et), which is possible since e( e A. By the same argument as in the proof of

Proposition 2, we see that g is a nonnegative, regular frame-function on H, and

therefore determines a unique positive normal linear functional <f> on ¿C(H).

Clearly <f> = p on the finite-dimensional projections, so p = <f>.

Later (Corollary 4, §6) we shall see that linearity is also automatic for quasi-states

on C*-subalgebras of <e<€(H).

The next results are immediate consequences of Theorem 2, and are included

here for later reference. A C*-algebra A is called uniformly hyperfinite (UHF) if

there is an increasing sequence of factors M1^M2^ • • • S^4 of types IBl, I„2,...

such that A is the norm-closure of Ui™ i M- It is assumed that «¡ -> oo as i -*■ co.

A von Neumann algebra R is said to be hyperfinite if R is the weak closure of a

uniformly hyperfinite C*-algebra A acting on a Hilbert-space H [10].

Proposition 3. If p is a norm-continuous quasi-state on a UHF-algebra A, then

P is linear.

Proof. Immediate from the definition of UHF-algebras, and Theorem 2.

Proposition 4. If p is a weakly continuous quasi-state on a hyperfinite von

Neumann algebra R, then p is linear.

Proof. Evident.

We also record the following generalization of Theorem 2.

Proposition 5. Let Abe a type I von Neumann algebra with discrete center and no

type I2 factor. Any normal quasi-state p on A is linear.

Proof. A is the direct sum of factors {A^}iEl, with At of type In, « i= 2. Each element

xeAh may be written x = 2ie/x¡; x, e(At)h, in the weak operator topology. We

may regard x and all the x¡ as contained in an abelian sub-von Neumann algebra

of A. Since p is normal we have p(x) = 2i6/ p(xd- Since p\At is linear for all i e I by

Theorem 2, it now follows that p is linear on A. The proof is complete.

5. Quasi-states on the central extension of a C*-algebra. The rest of this paper

is devoted to the question of linearity of quasi-states on more general C*-algebras

than those previously considered. On the basis of what we already know, it is

natural to ask whether quasi-states on tensor products of the type B <g) ̂^(H) ;

where B is an abelian C*-algebra, are linear. It turns out that much is gained by

looking at this problem more generally—that is to say, in terms of fields of C*-

algebras. While norm-continuity for ordinary states on a C*-algebra is automatic

[6, 2.1.8], this is far from clear for quasi-states. However, if continuity is assumed,

quasi-states prove to be linear on quite large classes of C*-algebras.
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The present section is mainly preparatory for §6.

Let A be a C*-algebra; F=Prim A, its structure space with the hull-kernel

topology. T is locally compact, and compact if A has an identity [6, 3.3.8]. Let

^"{T) be the abelian C*-algebra of all bounded, continuous, complex-valued

functions on T, and let ^°{T) be the closed *-ideal of ^"{T) consisting of the

functions vanishing at infinity. If A has an identity, ^"{T) is canonically isomorphic

to the center of A [3]. If A has no identity, the situation is more complicated. In

fact, if Ä is the C*-algebra obtained from A by adjoining an identity, and f = Prim Ä,

then ^{f) may be reduced to scalar multiples of the function equal to one on f,

while ^"{T) is quite large. This is due to the fact that while we may identify T with

the complement of a closed point co in T, it may happen that co is in the closure of

every point of T.

However, as shown in [7], there is an extension A' of A, in general larger than Ä,

such that A' is a C*-algebra with identity, and with center Z' isomorphic to (€h{J).

Moreover, A' = A+Z'; A n Z' is the center of A, and A is a closed two-sided ideal

in A'. If A has an identity, we have A' = A. We shall call A' the central extension

of A, and Z' the ideal center of A.

The main tool in Dixmier's proof of this theorem is the following recent result

[3], which will be used extensively in the following: If A is a C*-algebra, xe,4

and « e ^"{T), then there is an element y e A such that y mod t = h{t) (x mod t)

for all t e T.

Theorem 4. Let A be a A*-algebra with F( = Prim A) Hausdorff. If p is a positive

quasi-linear functional on A, then p extends to a positive quasi-linear functional p

on Ä such that

(0 Ip'I-IpI;
(ii) p' is continuous if and only if p is continuous;

(iii) p is linear if and only if p is linear;

(iv) p is pure if p is pure, and in this case p is unique and p'\Z' is pure.

The proof of this theorem will be broken up in several steps. Note that if A has

an identity, then the only thing to prove is that the restriction of p to the center of

A is pure if p is pure.

For each t e T, let

A{t) = Ajt if A\t has an identity,

= {A\t)~       if A\t does not have an identity.

Hence A{t) becomes a C*-algebra with identity t(/) for each t eT It will be con-

venient for our purpose to realize A as a C*-algebra of vector-fields on T with

values in the A{t); i.e. asa C*-subalgebra of r = rj(er^(í) = the C*-direct product

of the C*-algebras A{t) [6, 1.3.3]. For each t e T, let <j>t: A -> A{t) be the canonical

mao A -> y4/ifollowed by the injection of A¡tin A{t). Foreachxe^, letx{t)=<f>t{x);

teT. Since ||ç4((x)|| ¿ ||x|| for all teT, the vector-field t -+ x{t) belongs to F. In
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this way each element xe A defines an element of T, and it is easily verified that

the map $: A -*■ Y is a *-homomorphism, since each </>t is a *-homomorphism.

<1> is also injective, since (~){t : t eT} = (0) [6, 2.7.3], so <P is an isometry [6, 1.8.3].

We may therefore identify A with a C*-subalgebra of T, and will denote by x the

vector-field /->x(i); teT, for each xe A. We observe that

||x|| = sup l|x(i)|;       xe A.
tsT

Now let he<g\T), and consider the vector-field t -> h(t)• !(/). Since h(t)l(t) e A(t)

for all t e T, and

\\h(t)\(t)\\ = \h(t)\ ̂  \\h\U;       teT

we see that h defines an element of V which we also will denote by «. This is per-

missible, since the correspondence function -» vector-field is an injective *-homo-

morphism of£b(T) into T. We identify ^b(T) with its image in T and observe that

|| «|| =supiET \h(t)\. At this point, it is rather easy to get hold of the central extension

of A. Indeed, let A' = A+^b(T) in V. The Dauns-Hofmann result, quoted above,

now tells us that if xe A and « e WÇT), then y=hx belongs to A. Hence A' is a

*-subalgebra of Y. Let A" he the closure of A' in Y, so A" is a C*-algebra. A is a

closed two-sided ideal of A". In fact, Z is evidently a closed *-subalgebra of A"

since A is complete, moreover, if xe A" then there is a sequence x„4-A„ -> x, with

xn£/4; hne1^b(T). Hence, if ye A, then xj=limn (xn,y-r-«nÉy) e A, and similarly

j>x e A. ̂ b(T) is a C*-subalgebra of A", so /r^+^ir) is closed in A" [6, 1.8.4].

Hence A" = A' and .4' is a C*-algebra.

■^"(r) n ^4 is clearly contained in the center Z of A. On the other hand, let zeZ.

For each t eT, A/t is primitive, so the center of A\t is either (0) if Aft does not have

an identity, or equal to scalar multiples of the identity of A\t. Now <j>t(z) is central

in Aft for each t eT, so there is a complex valued function hz on T such that

z(t) = hz(t)\(t);       teT.

Dixmier's argument in the proof of Theorem 5 in [7] show that «s e ^b(T), and

that the map z -> «2 is a *-isomorphism. Consequently Z=<ë"'(7') n A. It follows

that /4' is the central extension of A, and that ^(T) is the center Z' of ^4'.

A certain mapping of A into the center of A' turns out to be useful. For each

xe A, let kx be the function on T defined by kx(t)= \\x(t)\\ ; t eT. The function

kx vanishes at infinity [6, 3.3.7], and since T is assumed to be Hausdorff, it is

continuous on T [14]. Hence kxe^°(T) for each x e A. For later reference we

record some properties of the map x ->■ kx:

(1) Ifx£^4ft, then — kx^x^kx.

(2) kx+y^kx+ky; khx=\X\-kx; x,y e A, XeC.

(3) \\x\\ = \\kx\\ so kx=0o x=0.

(4) Ifx, ye Athen \\kx—ky\\¿\\x—y\\.
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Proof of (1). For each / e F we have

-i(0- WO I ^ *(0 = WOHft);   i.e. -kx{t) ú x{t) g kx{t).

Hence (1).

Proof of (4). \kx(t)-kv{t)\ = \ WOII-WOII \í\\x{t)-y{t)\\a\\x-y¡ for all
teT. Hence (4) is true. (2) and (3) are almost evident and are left to the reader.

Lemma 1. Let B be an abelian C*-algebra of A, closed under multiplication by

%b{T). Then B'= B+<€\T) is an abelian C*-subalgebra .of A', and B is a closed

ideal in B'.

Proof. Argue as we did to show that A' {=A+(êb{T)) is a C*-algebra.

In what follows we assume that p is an arbitrarily given pure quasi-state on A.

Let us temporarily fix an element xe A; x>0 such that p(x)>0, and let B be a

fixed abelian C*-subalgebra of A which is closed under multiplication by %>b{T),

and contains the element x. Let B' = B+<€h{T). By Theorem 1, §2, p|ß is a nonzero

positive linear functional. Then, by Lemma 1 and Proposition 3, §2, p|/j has a

unique extension p to B' such that p'ft)= \\p\B\\.

Define, for he<^\T):

/5(Ä) =  ||p|Ä||-Vft)

so p becomes a state on ^"{T). We are going to show that p is pure, and inde-

pendent of the choice of x and B.

Lemma 2.IfT is Hausdorff, then there is a point t0eT such that

p{h) = h{t0);       heW{T).

Proof. We first observe that ||p|<^°(7")|| = 1. In fact: let {x¡}ieW be a sequence of

positive elements in B; ||x(||^l for all ieN, such that pftj) -> \p\B\. Now

0 á Xi ¿ kx¡ ; kxt e <£\T) and \\kXi\ ̂  1 for all /" g N. Hence 0 ú pft,) Ú p'{kXi) ̂ p'(l),

so p'{kx)-^- \\p\B\\. Hence

||p|ZJ|| í \\p'\V°{T)\\ í p'ft) = |¡p|Z?||

so ||pi^0(F)|| = l.Let

J = {heV°{T):p{h*h) = 0}.

y is a closed ideal in <ê°{T), so there is a closed set Fs T such that J={« e %°{T) :h=0

on F}. Since p|^°(F)^0; F±0. Suppose tu t2 e F; tx^t2. Let Uu U2 be disjoint

neighbourhoods of tlt t2 respectively. Choose functions hu h2 in ^°{T) such that

0^«i(0^«ift)=L hi = 0 outside ft; i=l, 2. We observe that pft¡)>0; i=\,2.

Indeed, if pft¡)=0, then

0^pft2)^pfti)-||/îill =0

so «j ej—contradicting «¡ft)=l. Now define, for /= 1, 2;

Hy) = pfti>0;     yzA-
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Since A is closed under multiplication by ^"(T), and «¡.y2:0 if y^O, <p¡ is well

defined, and becomes a positive quasi-linear functional on A. If y e A and j>S0;

then h{y^y since Aj-1, «¡.y and y commute and belong to an abelian C*-subalgebra

of A ; so

<M>0 = p(h¡y) ̂ p(y),

i.e., 0-¿<t>i^p; i'=l, 2. Since p is pure, it follows that there are constants 0^A¡g 1

such that (¡>i = A,p; /= 1, 2 (Proposition 2, §2). Let {«,}JE; be an increasing approxi-

mate identity for B. Then, by Lemma 1, and Lemma 1, §2 we see that <j>i(u,)

= p(hluj) -> p'(hi)=\\p\B\\p(hi)>0. It follows that <pt¥=0, i-e-, A>>0; *'=1> 2. Thus,

for some je I: 0<<p2(uj) = p(h2Uj) = (llX1)<p1(h2uj) = (llX1)p(h1h2uj)=0; since clearly

h1h2uj = 0. This is a contradiction, so F={t0}, and it follows that p(h) = h(t0) for all

he<£°(T). Since ||p|^°(r)|| =p(l) = l, p is uniquely determined on ^\T) by its

values on %°(T) (Proposition 3, §2). Thus p(h)=h(t0) for all h e %%T). The proof is

complete.

Before we can show that p is independent of B, we need another lemma.

Lemma 3. Let B be as above.

(i) IfyeB andy(to)=0, then p(y) = 0.

(ii) IfyeB, he %b(T) and h(t0) = 1 then P(y) = P(hy).

Proof, (i) p|i? is a positive linear functional, so 0^ [p(^)|2^ ||p|5|| -p(y*y) by

2.1.5(i) [6]. Let z=y*y^0. Then z(f„) = 0 and

Oáza^OS p(z) = p'(z) S p'(K) = \\P\B\\kz(t0) = 0.

Hence p(j)=0.

(ii) If yeB and he%b(T); then hyeB, so p(j)-p(A>') = p((l-«)j')=0, since

(i-h)y(t0) = 0.

The proof is complete.

Now let Xx e A he any positive element such that p(xx) > 0, and let Bx he an

abelian C*-subalgebra of A such that xxeB and hB^B^V he ^b(T). Let B[ = Bj_

+ 'tfb(T), and extend p\By uniquely to a positive linear form p[ on B[, such that

p;(i)=l|p|Js1||.Letp1=|!p|51||-i.p;inn

Lemma 4. px = p.

Proof. By Lemma 2, there is a point ^ e Tsuch that p1(h) = h(t1) for all « e ^"(T).

Suppose t0^ti. Choose functions h0, hx in ^\T) with support in disjoint neigh-

bourhoods of t0, ti respectively, such that 0^ht(t)^«¡(/,) = 1 ; /'=0, I, teT. Then

«0x and «!XX are positive with product 0, so they are contained in a common

abelian C*-subalgebra B2 of A, closed under multiplication of ^"(T). Extending p

from B2, we obtain p2 on B'2 = Ä2+^\(T) and another point t2 e T.

Case 1. t2 is different from tx and /0. Choose disjoint neighbourhoods U¡,

i=0,1,2 around /0,  'i  and f2, and functions kie<£b(T), 0 ££,(*)£&,(*,)=!;



616 J. F. AARNES [June

1 = 0, 1, 2, with the support of k¡ contained in ft. Put z = k0h0x + k1h1x1e B2.

Lemma 3 applies to B2, so

pft) = p{k2z) = p{k2k0h0x + kjcjixxj = 0.

On the other hand, since p\B2 is linear, and Lemma 3 applies to B and Bu

pft) = p{k0h0x) + p{k1h1x1) = p(x) + pftj) > 0,

a contradiction.

Case 2. t2 is equal to tQ or tu say t2 = t0. Let z=«0x+«1x1. Then p{z) = p{h0z)

= pft2x+«o«iX1) = p(«§x) = p(x). On the other hand

pft) = pft0x) + pft1x) = p(x) + p(x1) > pft),

a contradiction. The proof is complete.

So, the point t0 e Fand the pure state p on <£b{T) are uniquely determined by p.

To proceed, we first need:

Lemma 5. p|Z=p|Z.

Proof. Z, the center of A, is a closed ideal in ^0{T), so there is a closed set

Fç F such that

Z = {he <£°{T) : « = 0 on F}.

There are two possibilities:

(1) t0eE. In this case, p(«) = rt(io)=0 if heZ. Let ZJ be any abelian C*-

subalgebra of A, Z^B, and Z? closed under multiplication by t?b{T), such that

||p|F||^0. Letp' be the extension of p to B' = B+^b{T). If y = heZ, then y{t0)=0.

Hence p{y) = 0 by Lemma 3. Hence, in this case p|Z=p|Z=0.

(2) t0 $ E. There is a function h e ^°{T) such that 0á«(í)^«ft,)= 1 ; « = 0 on F.

Hence heZ. We claim that p(«) = l. Suppose that p{h) = a< 1. Since p is a quasi-

state of ,4, we can choose xe A; x>0 and ||x|| ¿1, such that p(x)>a.

Let B be an abelian C*-subalgebra of A containing x and Z, closed under

multiplication by ^b{T). By Lemma 3,

pft) = pft«),    so pft)2 = pft«)2 Ú Pft2)-pft2) á p(x)pft).

Hence p(x)^pft) = a—a contradiction. Since pft)=l, heZ, it follows that ||p|ZJ|

= 1 ; p'|'^i'(F) = p. Hence p = p on Z; and the proof is complete.

We are now in a position to extend p to all of A'. Suppose first that x' e A'h,

and that x' = x+h=y+h, x,y e Ah, h, k e ^\T).

Lemma 6. p(x) + p(«) = pft>) + pft).

Proof. Since x+h=y+k, we have x-y=k-h eZ. Thus x and y commute and

belong to an abelian C*-subalgebra of A on which p is linear. So, by Lemma 5

p{x)-p{y) = p{x-y) = p{k-h) = p{k)-p{k),

and the lemma follows.
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Definition. If x' = x+h e A'h, let p'(x') = p(x) + p(h). For arbitrary x' in A', let

p'(x') = p'(x[)-\-ip'(x'2), where jc'=xí + /x2 is the decomposition of x' into self-

adjoint parts.

Lemma 7. p is a quasi-state on A' and p'\A = p.

Proof. That p'\A = p is clear. Let x' = x+« be a selfadjoint element of A';

x e Ah; he ^b(T); and let Bx he the C*-subalgebra of A' generated by x' and 1.

Let B he the C*-subalgebra of A generated by {xk;k e%b(T)}, and put B' = B

+ '£b(T). B' is abelian, and clearly B^B'. Consequently, to see that p' is a quasi-

state on A', it is sufficient to show that p'\B' is a state. p'\B' is linear. Indeed, let

y',z' eB'\ XeC. We have y'=y+h, z'=z + k; y,zeB; h,ke%b(T). Note that

p\B is linear by Theorem 1, §2. So

p'(Xy'+z') = p'(Xy + Xh + z + k) = p'(Xy + z + Xh + k) = p(Xy + z) + ß(Xh + k)

= Xp(y) + p(Z) + Xp(h) + p(k) = Xp'(y') + p'(z').

We have p'(l) = p(l) = 1, so it remains to verify that p \ B' is positive. Let y'=y + h ä 0

in B', ye B, he T>(T).

Case 1. h(t0) ä 0. If p(y) = 0, then p'(y') = h(t0) ̂  0, and we are finished. If p(y) ± 0,

then ||p|5|| ^0 and p|5 extends uniquely to a positive linear functional px on B'

such that p1(l)=||p|Ä||. Hence

p'(y') = p(y)+p(h) = p(y)+h(t0) ^ p(j)+||p|5||«(¡0)

= p(y)+pÁh) = PÁy') ̂  o,

which shows that p'(y') is positive in this case.

Case 2. h(to)<0. Then there is a neighbourhood U of t0 such that h(t)< —a

for all te U, for some a>0. Hence j(0= -h(t)>ai(t) for all te U. Let y^ =

ma\(a{, y) in B' which is abelian. We claim that y1(t)=y(t) if t e U. Fix an

arbitrary t e U, and let <f> be the homomorphism x -> x(/) of Ö' into A(t); x e B'.

We may identify B' with ^(A"); where X is a compact Hausdorff space. Let C be

the image of B' under <f> in /í(/), so C is an abelian C*-algebra with identity i(t).

If y is a pure state on C, then y<f> is a positive, multiplicative linear functional on

B', and (y/>)(l)= 1, so y -^ is a pure state on B' = C€(X). Hence there is a unique

point se X such that

x(s) = (y-f)(x);       xeB'.

Now teU, so XO >«•*(')• Thus, (y •<£)(>>) ^ (y-0)(a-i ), so y(s)^a\(s) = a. It

follows that yi(s)=y(s) for all points se X obtained from pure states y on C.

But then y(yi(t)) = y(y(t)) for all pure states y on C, so yi(t)=y(t). The claim is

proved.

Now yx has an inverse u e B', and we define x=uy. Since 5 is an ideal in B' and

y e B, x belongs to B. Moreover, if t eU:

x(t) = u(t)y(t) = u(t)yi(t) = 1(0,
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since y and yx coincide on U. Let k e ^"{T) be chosen such that 0 á k{t) á k(t0) = 1

for t e U, ksO outside U. Then kh has support in U, kh=khx e B. Hence

ky' = ky+kheB,   and   ky' à 0.

Finally

pft/) = 9{ky) + p{kh) = pft) 4-«ft,) = p'(y')   by Lemma 3.

Since p|ZJ is positive, p'ft') is positive in this case also. The proof is complete.

Lemma 8. Let y be a quasi-state on Ä and suppose y'\A = p. Then y =p .

Proof. Put CT=y'-p'. Then ct|^ = 0. We claim that o\Vb{T) is ^0. Let n^O;

« g ^"{T). Take an abelian C*-subalgebra Bx of A, closed under multiplication by

^"{T), and assume p1 = p|F1^0. Let B1 = B1+<gb{T). py extends uniquely to a

positive linear functional p[ on B[ such that pift)= ||pi||. Moreover, if {u,}ç5 is a

positive, increasing approximate unit for B, then pi(«) = lim¡ p(«M¡). Clearly

hUi^h for all iel so y'ft)^y'(A«,) = P{hut) for all ie/. Hence y'(«)£pift) =

¡Pill '«ft>) = \\pi\\ •/''ft)- Now Zii may be chosen so that flpj is arbitrarily close to 1 ;

hence o-ft) = (y' - p'){h) ̂  0. But c(l)=y'(l)-p'(l)=0. Since <r is a positive linear

functional on ^b{T), a = 0, i.e., y = p'. The proof is complete.

Lemma 9. p' w a /?«re quasi-state.

Proof. Let OSy'úp'l where y' is a positive quasi-linear functional on A'. Let

y = y'\A, so O^y^p. Since p is pure we get y = Ap; O^A^l. Put y" = Ap', so y"

becomes a positive quasi-linear functional on A', extending y. As in the proof of

Lemma 8, we obtain y'^y". Put o = y -y". Then O^a^p', and p'\W{T) is a pure

state, so <T\%b{T)=p.{p'\%»{T)); O^p^l. Pick a sequence {xi}ieW£^+, W|ál,

such that p(x¡) -> 1. Now 0^p(x()^p'{kx¡)^ 1, so p'ft:*,) -> 1. Let yt= — Xi+kx¡;

so ji^O for all i e N. a\A=0, so or(_vi) = crftJC|)=p-p'ft*(). Hence aft¡)->p. On

the other hand 0^a{yt)^ p'ft¡) -> 0, so p=0. Consequently, a|«'!,(F)=0; and,

since ct|^=0, it follows that cr=0. This implies that y'=y" = Ap', and the proof is

finished.

Let us summarize what we have obtained so far : If p is a pure quasi-state on A,

then there is a unique quasi-state p on A which extends p. p is pure and p'l^F)

is pure.

Proof of Theorem 4. By the preceding remark, (iv) is proved. Let {pu ..., pn} be

a finite set of pure quasi-states on A. Each p( extends to a pure quasi-state p[ on A'.

Let p = 2?. i A¡p¡ be a convex combination of the pt's, and define p = 2"= i \p[.

Clearly p becomes a quasi-state on A' which extends p. Now let p#0 be an arbi-

trary positive quasi-linear functional on A. Put p1=||p|ft1-p, so 1^11 = 1. If we

can extend px to a quasi-state on A', then we can also extend p to a positive quasi-

linear form p on A' with p'ft)= ||p||. So we assume ||p|| = 1. By Proposition 1, §2
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and the Krein-Milman theorem, there is a net {pv}£ Q, such that pv^~ p pointwise

on A, and where each pv is a convex combination of 0 and pure quasi-states on A.

Let Q — {positive quasi-linear functionals on A' of norm ^ 1}. Each pv extends to

an element p\ e Q'. Since Q' is compact, there is a subnet p'Vi -*■ y' e Q'. Let

y=y'\A and let x e A be an arbitrary element. Then p'Vi(x) -»■ y'(x) = y(x). On the

other hand p¡,.(x) = pVi(x) -»■ p(x), so y=p. Now 1 = |/»|| _ ||y'|| =y'(l)â 1, so y' is a

quasi-state on A' extending p. This proves (i).

Observe that if x'=x+he A', with xe A, he ^"(T), and p' is a positive quasi-

linear functional on A', then

(5) p'(x') = P(x) + p'(h).

Indeed, if x is selfadjoint, then x and « belong to the same abelian C*-subalgebra,

so (5) follows from Theorem 1, §2. For general x' in A', (5) then follows by a simple

computation, based on property (ii) in the definition of positive quasi-linear

functionals. From (5) we obtain directly that an extension p' of ape Q is linear if

and only if p is linear, and (iii) is proved. Finally, if p' is continuous so is p ; suppose

therefore that p is continuous on A. Since p'l^r) is linear, we know that it is

continuous. Let ¡f>: A' -*■ A'¡A he the canonical homomorphism, and let <j> =

<p\^b(T). Since A'=A+Vb(T) we have

(6) A'IAx^b(T)IAn^b(T).

Now suppose that x'n -> x' in A'. Since <p(x'n) -> <i>(x') in A'¡A, and <j> is open; there

is, by (6), an element h e ^b(T), and a sequence {hn}^^b(T) such that tp(hn)=<p(x'n)

for all «, i/j(h) = <p(x') and hn^h. Let x=x'-h, xn = x'n-hn; »=1,2,_Clearly

x, xn e /4 for all «, and x—xn = (x' — x¿) — (A—«„) -> 0. Hence, by (5):

P'(x'n) = p'(xn) + p'(An)^p'(x) + p'(A) = p'(*')-

This shows that p is continuous, and the proof is complete.

6. Quasi-states on general C*-aIgebras. In this section A is a C*-algebra with

or without identity, Prim A = Tis assumed to be Hausdorff. We regard A ( = A if A

has an identity) as a C*-algebra of vector-fields on T as in the previous section.

Let p be a pure quasi-state on A, and let p he its canonical extension to A', p

is pure and there is a unique point tQ e T such that p'(A)=A(/0) for all A e ^b(T).

Lemma 1. Let x e A,

(i) i/x(f0)=0 then p(x) = 0,

(ii) if h=h* e<eb(T) andh(t0)=l, then P(x) = p(hx).

Proof, (i) x=x1 + ix2 with Xi, x2 selfadjoint. If x(/0)=0; then x,(/0)=0, i—l, 2.

p(x) = p(Xi) + ip(x2), so it is sufficient to prove (i) when x is selfadjoint. Suppose this

to be the case. Then |p(x)|2á ||p||-p(x2), and y=x2^0, y(t0)=0 so it suffices to

prove (i) when x^O. In this case 0^x^kx, and kx(t0)=0 so 0^p(x) = p'(^)

up'(kx)=kx(t0)=0 so p(x)=0. This proves (i).
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(ii) Let xeA be arbitrary, «=«* e<£b{T) and h{t0)=\. Put y = hx-x. Then

j(/0) = 0 so by (i) pft) = 0. Write x = x1 + ;x2; with x1( x2 selfadjoint. Then

0 = pftx—x) = p{h{x1 + ix2) — {x1 + ix2))

= p{{hx1-xl) + i{hx2-x2))

= pftxi- X!) + ip{hx2- x2)

= p{hx1)-p{x1) + ip{hx2)-ip{x2)

= pftx! + ihx2) - p(xj + /x2)

= pftx)-pft).

Hence pftx) = pft).

Remark. The difficulties in proving that p is linear on A are now very much in

sight. The problems are the following: p vanishes on the kernel of the homo-

morphism x —»• x(/0) of A into A{t0) (Lemma 1 (i)). This kernel may be identified

with the primitive ideal t0^A, so it is reasonable to try to lift p to the quotient

algebra A¡t0. This amounts to the problem of showing that

(I) If x{t0)=y{t0), then p{x) = p{y), for x, ye A. By Lemma 1 (i) we obtain that

if x{t0)=y{t0), so (x—y){to)=0, then p(x—y)=0. However, since we lack linearity

of p, we cannot conclude that pft) = pft) at this point.

Let us disregard this for the moment, and assume that (I) is true. We then verify

rapidly that p lifted to Ajt0 becomes a quasi-state (Lemma 4). The remaining

problem can then be formulated as follows:

(II) If p is a quasi-state on a primitive C*-algebra B, is p linear? (A C*-algebra is

called primitive if it has a faithful irreducible representation.) Although (II)

remains very far from being settled in general, we know that special solutions exist:

Theorem 2, Corollary 2, §4 and Proposition 3, §4.

We will now discuss (I).

Lemma 2. Let x, y e A and suppose there is a neighbourhood U of t0 such that

x{t)=y{t)for all t e U. Then p(x) = pft).

Proof. Let 0 ̂  « e ^"{T) be chosen such that h{t0) = 1 and the support of « is

contained in U. Then hx = hy, so by Lemma 1 (ii): p(x) = pftx) = p{hy) = p{y). The

proof is complete.

Corollary 1. If Prim A is discrete, and x{t0)=y{t0)for x, y e A, then pft) = pft).

Lemma 3. Let x, y e A and suppose x{t0)=y{t0). If p is continuous, then pft) = p( y).

Proof. Let x, y e A be given ; x{t0) =y{t0). Let e > 0 be given. By continuity of p

there is a 8>0 such that ||x—z||^S, zeA implies |p(x) —p(z)| <e. Since T is

assumed to be Hausdorff, the function t-> \\x{t)—y{t)\\ is continuous on Fand

vanishes at t0. Hence there is a neighbourhood U of t0 such that t e U =>

\\x{t)—y{t)\\<o. Now choose a compact neighbourhood C of t0, C^U, and a
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function O^Aál; he^b(T) such that h(t)=l on C, A(/) = 0 on T\U. Let z = hy

+ (l-h)xeA. We get

\\x(t)-z(t)\\ = \\x(t)-h(t)y(t)-(l-h(t))x(t)\\

= h(t)\\x(t)-y(t)\\ < 8;       teT

by the choice of A. Hence ||x—z|| ^8. Moreover, z(t)=y(t) on the neighbourhood

C of t0, so p(y) = p(z) by Lemma 2. Hence \p(x) — p(y)\ = \p(x) — p(z)\<e. Since

£>0 was arbitrary, p(x) = p(y). The proof is complete.

Let </> : x -> x(i0) be the canonical homomorphism of ^4 onto ^/i0.

Lemma 4. If x(t0)=y(t0) implies that p(x) = p(y); x,yeA, then p lifts to a pure

quasi-state ß on A¡t0 such that p = ß<p.

Proof. For aeA\tü we define p(a) = p(x) if x(t0) = <j>(x) = a. By assumption p is

well defined. To show that p is a quasi-state on A¡t0, let first a=<f>(x) e A¡t0 he an

arbitrary element. If x=x1 + /x2 is the decomposition of x in selfadjoint parts

Xj, x2, then a=a1 + ia2; a1=<p(x1), a2=<p(x2) is the corresponding decomposition

of a. Hence ß(a) = ß(a1) + iß(a2), so (ii) in the definition of quasi-states is satisfied.

Now let B be a C*-subalgebra of Ajt0 generated by a single selfadjoint element

of a e A/t0. We will show that p\B is a positive linear functional. This will imply

condition (i) in the definition of quasi-states. Indeed, even in the case where Ajt0

has an identity this is sufficient; for if C is any C*-subalgebra of A¡t0 generated by

a selfadjoint element b and the identity l(i0), then it is easily seen that C is also

generated by the element ¿> + 2||A|| l(t0) which is invertible, so that C is singly

generated in the traditional sense. With B as above, choose a selfadjoint element

xe A such that <¡>(x) = a. Letting A(x) he the C*-subalgebra of A generated by x,

each polynomial in x is mapped into B by <f>; so that <f>(A(x))^B. Since <f>(A(x)) is

a closed *-subalgebra of B containing a, we must have <f>(A(x)) = B. Now p|^4(x)

is positive and linear by assumption, and it follows that ß\B is positive and linear.

Hence p is a positive quasi-linear functional of norm ^ 1 on A/t0. It remains to

see that ||p|| = l. Let 0^xne^; « = 1,2,...; ||xn||^l, be a sequence such that

P(xn)->1. Then 0í<j>(xn) e A¡ta; ||<¿(xn)||^l and p(<p(xn)) = P(xn)^ 1. Hence

¡p|| = 1, and p is a quasi-state on Ajt0.

Finally, let y be a positive quasi-linear functional on Ajt0 such that y up- Let

y = y-<j>, so y becomes a positive quasi-linear functional on A such that yúp-

Since p is pure, we have y=Xp; 0 ^ A = 1. It follows that y = Ap, so p" is pure on Ajt0.

The proof is complete.

Proposition 1. If either Prim A is discrete, or p is continuous, then p lifts to apure

quasi-state ß on A/t0 such that p = ß<f>. If p is continuous then ß is continuous.

Proof. If Prim A is discrete, apply Corollary 1 and Lemma 4. If p is continuous,

apply Lemma 3 and Lemma 4. By definition p = ß<j>, and (f> is open, so p is con-

tinuous if p is continuous. The proof is complete.



622 J. F. AARNES [June

Theorem 5. Let A be a C*-algebra with Prim A discrete. Suppose that each

quasi-state on n{A) is linear, for each irreducible representation n of A. Then all

quasi-states on A are linear.

Proof. By Proposition 1 each pure quasi-state ponáis of the form p = ptr,

for some irreducible representation n of A. By assumption p is linear on -n{A),

hence p is linear on A. The conclusion now follows from the Krein-Milman theorem

applied to Q = the set of all positive quasi-linear functionals on A, of norm %\.

The proof is complete.

Theorem 6. Let A be a C*-algebra with Hausdorff primitive ideal-space, and

suppose that each pure, continuous quasi-state on n{A) is linear, for each irreducible

representation it of A. Then:

(1) Each pure, continuous, quasi-state on A is linear.

(2) If all quasi-states on A are continuous, then they are all linear.

Proof. The first part of the conclusion follows from Proposition 1, and the

second part is again a consequence of the Krein-Milman theorem applied to Q.

The proof is complete.

All the main results of this paper are now more or less immediate consequences

of the last two theorems.

Corollary 2. If A is CCR with Prim A Hausdorff, and dim7r^2 for each

irreducible representation n of A, then (1) and (2) of Theorem 9 hold.

Proof. If A is CCR, then Tr{A)xä"g{H) for some Hilbert-space H, for each

irreducible representation n of A [6, 4.1.11]. The desired result now follows from

Corollary 2, §4.

Before we can prove the next result, we need the following simple lemma.

Lemma 5. Let p be a quasi-state on a finite direct sum A = A1@---@ An of the

C*-algebras At; i=\,..., n. If p\A¡ is linear for each i, then p is linear.

Proof. It is sufficient to show that p is linear on Ah. Each xe Ah can be written

uniquely x = Xj+ ■ ■ • +x„, where x¡ e A¡ is selfadjoint; /= 1,..., n. The elements

x¡ all commute with each other, and will therefore belong to a common abelian

C*-subalgebra of A. Hence, by Theorem 1, §2 we have pft) = 2f. i pft¡), from

which the linearity of p follows easily. The proof is complete.

Corollary 3. If A is a type I von Neumann algebra of finite type, with no type

I2 part, or in particular if A is of the form ^{X) ® Mn ft ^ 2) ; X a compact Hausdorff-

space, then (1) and (2) of Theorem 9 hold.

Proof. Each finite type I von Neumann algebra with no type I2 part is of the

form 2n=i:níí2© -#n ® Mn, where Bn is an abelian C*-algebra, and Mn is the

« x « matrix algebra [5]. By Lemma 5 we may therefore restrict attention to a single

summand Bn ® Mn. By [18], Bn <g) Mn is isomorphic to the C*-algebra An of all
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continuous functions on a compact Hausdorff space X with values in Mn. Hence

An is CCR with Prim Anhomeomorphic to ^([6,10.4.3 and 10.4.4], or Proposition

2 below) so Corollary 2 applies. The proof is complete.

Before we can proceed we need a generalized version of the last result quoted in

the proof above. This will follow from standard methods, and the proof is included

for the convenience of the reader. The terminology is from [6, Chapter 10].

Proposition 2. Let ^ = {{A{t), 0) be a continuous field of simple C*-algebras on

a locally compact Hausdorff-space T. Let A be the C*-algebra determined by !F.

For each teT, let

t = {xe,4:x(f) = 0}.

Then t -> t is a homeomorphism of T onto Prim A.

Proof. Let / e F, and let <f>t: x -> x(i); x e A, be the homomorphism of A onto

A{t). Let n be any irreducible representation of A{t). Since A{t) is simple, ker 7r = 0.

■n-(pt is an irreducible representation of A, and ker Tr-<f>t = t. Hence t is a primitive

ideal of A. We show next that the map / —> tis injective. Suppose tx^t2; tu t2 e T.

There is a bounded complex continuous function « on F such that «(ft) = l,

h{t2) = 0. Choose an element xeA; x$,lx. By [6, 10.1.9(a)], hxeA. {hx){tx)

= xft)^0, and ftx)(?2)=«(i2)x(ft)=0, so «x £ flt but hx e f2. Hence ïx^ï2, which

shows that the map t-^-ï is injective. It is also surjective: Let IePrimA, and

define I{t) = <pt{I) for all t e T. Let Y={t e T : I{t)^A{t)}. By [6, Lemma 10.4.2] ;

IV 0- Suppose tx, t2 e Y; t1^t2. Let U1 and U2 be disjoint neighbourhoods of

tx and t2 respectively, and let

Ji = {x e A : x = 0 on F\ft};       i = 1, 2.

Ji is a closed two-sided ideal of A. We have Jx n /2 = (0), so by [6, Lemma 2.11.4],

I^JX (or I^J2). Hence I{t1)=<ph{I)2<f>tl{J1) = A{tx). This contradicts the assump-

tion that tx e Y. Hence Y={t0}. Now /ft,) is a closed two-sided ideal of A{t0).

Since A{t0) is simple, and I{t0)¥=A{tQ), we must have /(i0)=(0). By [6, Lemma

10.4.2] it then follows that

I = {xeA: x{t0) = 0}

i.e., /= f0. This shows that the map t -> t is a bijection of F onto Prim A.

Next, let Fç F; ty e T. Put

Y = {x e A : x{t) = 0 on Y}.

Clearly Y =f) {t : t e Y}. By the definition of the hull-kernel topology for Prim A,

we know that fj is in the closure of ft : t e Y} if and only if fx2 Y. If ty e Y, then

each xe Y vanishes on tu since / -> ||x(/)|| is continuous for each xe A. Hence

íi2 Y. On the other hand, if ty $ Y, then there is a bounded complex continuous

function h on F such that «ft)= 1, h{t) = 0 on Y. Hence there is an x e A such that
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x^T^O but x(i) = 0 on Y; i.e., x e Y, but x $ t^ Consequently F$?i, and the

proof is complete.

Recall that A is a dual C*-algebra if A has a faithful representation as a C*-

subalgebra of &"£(H), for some Hilbert-space H [14].

Corollary 4. Any quasi-state on a dual C*-algebra A is linear if dim -rr^lfor all

irreducible representations n of A.

Proof. If A is dual, then A may be written as the restricted C*-algebra product

of C*-algebras Ai x =S^(//¡) ; ie I [14, Lemma 2.3]; i.e., A is the set of all families

{x(}ie7 in Yliei Au such that, for each e>0, the set of indices for which ||jct|| >e, is

finite. If we give / the discrete topology, it is easily seen that ^ — ((A^lej, Y~[ieI A)

is a continuous field of (simple) C*-algebras, and that A is the C*-algebra defined

by J5". So Prim A is discrete by Proposition 2, and Theorem 5 applies. The desired

conclusion now follows from Corollary 2, §4.

Corollary 5. If A=(£(T) ® B, where T is a compact Hausdorff-space, and B

is a UHF-algebra, then (1) and (2) of Theorem 9 hold.

Proof. B is simple [10], and A is isomorphic to the C*-algebra of all continuous

functions from T into B [18]. Hence Primes;T (Proposition 2) is a compact

Hausdorff-space. By Proposition 2 we also obtain that A\t is isomorphic to B for

each primitive ideal tin A. Combining Proposition 3, §4 with Theorem 6, the proof

is complete.

Remark. Since the condition that Prim A is Hausdorff has been in force

throughout the last two sections, it seems appropriate to mention under what

circumstances this condition is fulfilled. A C*-algebra A with center Z is central

if the map / -> I n Z is an injection of Prim A into Prim Z. If A has an identity,

then it is central if and only if Prim A is Hausdorff. If A has no identity, then it is

central if and only if Prim A is Hausdorff, and no primitive ideal of A contains Z

([2] and [4]).
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