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RINGS FOR WHICH CERTAIN FLAT MODULES

ARE PROJECTIVE

BY

S. H. COX, JR. AND R. L. PENDLETON

1. Introduction. All rings are assumed to have a unit element 1#0, and all

modules and ring homomorphisms are unitary.

Let « be a nonnegative integer. A ring R is said to be a left A(n) ring if given any

exact sequence 0 -* M -> Ex —> ■ ■ ■ -> En of finitely generated left ^-modules

with M flat and E¡ free for each i, then M is projective. Commutative ,4(0) rings

have been studied by S. Endo [8], K. Mount [16] and D. Lazard [12]. In fact

Lazard has obtained a characterization of commutative A(0) rings in terms of the

topology of the prime spectrum. Left A(0) rings have also been studied by F.

Sandomierski and D. E. Smith [20]. S. Cox has proved that every commutative

ring is an A(2) ring [7, Theorem 2.9]. A(\) rings have been considered by M.

Auslander, to whom the authors wish to express their gratitude for several helpful

conversations.

The present paper is concerned primarily with commutative A(\) rings.

In §2 we state those results which are valid for rings which may not be commuta-

tive. The arguments in this section are basically homological. Proposition 2.2,

due to M. Auslander, states that if R' is a submodule of a flat right ,/?-module

for any set /, then R is a left A(l) ring. A product of rings is a left A(n) ring if and

only if each factor is a left A(n) ring; for « = 0, the index set must be finite (Theorem

2.5).

Starting with §3 we deal only with commutative rings; the arguments become

more ideal-theoretic. A ring is an A(l) ring if and only if each cyclic flat submodule

of a free module is projective (Corollary 3.3); this statement is translated into

ideal-theoretic language in Theorem 3.8. Self-injective rings, absolutely flat rings,

and rings of Krull dimension zero are all A(l) rings.

§4 is concerned with the stability of property A(n) under various ring-theoretic

constructions. R is an A(n) ring if and only if the ring of polynomials over R in an

arbitrary number of variables is an A(n) ring (Theorem 4.3). If the associated reduced

ring of R is an A(n) ring, then so is R (Theorem 4.5); the converse is false for «= 1

(Example 5.18), and hence there is no purely topological characterization of ,4(1)

rings. We define the connected component rings {Ra \ a e S} of a ring R; these are

flat /^-modules, and if S is finite, then R = Y[RG and Theorem 2.5 applies. However
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if S is infinite there is no good relation between property A(n) for R and property

A(n) for the connected component rings of R (Examples 5.16 and 5.21).

§5 consists of eight counterexamples, four of which have been mentioned above.

Example 5.1 is a noncommutative ring which is not a left A(n) ring for any «.

Three sufficient conditions for a ring R to be an A(l) ring are: (1) R is an A(0)

ring; (2) R is a C-ring, meaning that any exact sequence 0—>M—> F-> N ^0

of finitely generated 7?-modules with M flat and F free splits ; and (3) R is a 73-ring,

meaning that for any index set 7, R' is a submodule of a flat module. Examples

5.2, 5.3, and 5.6 show that these three conditions are logically independent and

hence that none of them are necessary for R to be an A(\) ring.

Our notation is basically that of [3]; in addition we use "f.g." for finitely

generated and "f.p." for finitely presented. ls is the identity function on a set S;

» stands for all kinds of isomorphism; Si; is the Kronecker delta; Zis the ring of

integers, and N is the set of positive integers.

2. General results. This section includes all those statements about A(n) rings

which we know to be valid for rings which are not necessarily commutative.

Propositions 2.1 and 2.2, as well as the essential ideas in the proofs of 2.3 and 2.4

are all due to M. Auslander. Proposition 2.3 and Theorem 2.4 were first proved

by S. Endo [8] for the special case when R is commutative and T is a ring of

quotients of R with respect to a multiplicative system of regular elements.

2.1. Proposition. Let R be a ring, M a left R-module. For each set I, put

M' = \~\iei M, and let a(M): R1 g) M —>■ M1 be the canonical homomorphism. Then

(i) M is f.g. o a(M) is surjective,for all sets 7(l).

(ii) M is f.p. o c(M) is bijective,for all sets I.

Proof. First suppose o(M): RM ® M'-> MM is surjective. Then 3/j,...,

fkeRM, and xx,.. .,xke M such (hat <j(M)(^fi ® x¡)=lM. It follows that

Xx, ■.., xk generate M. Now let E—> F—> M -> 0 be exact with E and F free left

modules. Note that A" is an exact functor of TV, o is functorial, and o(H) is bijective

whenever H is f.g. and free. If M is f.g., we take F f.g., so o(F) bijective implies

o(M) surjective. If M is f.p., we take E and F f.g., so o(E), a(F) bijective imply

o(M) bijective. Finally, if o(M) is bijective for all sets 7, we may take F f.g., and

let AT=ker (u). Then a(M), o(F) bijective imply o(K) surjective, so K is f.g., so M

is f.p.    Q.E.D.

2.2. Proposition. If for each set I, R1 is a submodule of aflat right module, then

R is a left A(\) ring.

Proof. Suppose u : M -*■ E is an injective morphism of f.g. left modules, with

M flat and E free. Let 7 be a set and select an injective morphism v: R' -> N,

(') The related assertion in [3, §1, Exercise 2a] is incorrect as worded.
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where N is a flat right module. Since 1N ® u and v ® 1M are injective and ® is a

bifunctor, l(Bi) (8) m is injective. Thus, since o(E): R' g) E —^ £' is bijective and <r

is functorial, a(M) is injective. Therefore M is f.p. by Proposition 2.1, so M is

projective [5, Chapter I, §2, Exercise 15].    Q.E.D.

The implication of Proposition 2.2 cannot be reversed (Example 5.6); moreover,

the hypotheses of Proposition 2.2 do not imply that R is a left A(0) ring (Example

5.3).

2.3. Proposition. Let c: /?—>-Tbe an injective ring homomorphism. If M is a

fig. flat left R-module such that T ®B M is projective as a T-module, then M is a

projective R-module.

Proof. Let / be a set, and consider the commutative diagram :

R< ®BM-► T' ®RM-► T> ®T (T <g)B M)

a(M) o(T®RM)

M1-> R <g>B M'-► T (g)B M'-► (T ®B M)'

Since M is R-ftat, a = c' <g> 1M is injective. ß is bijectjve, and since T ®RM is T-

projective, a(T®RM) is bijective. Thus a(M) is injective, so by Proposition 2.1,

M is f.p. and hence projective.    Q.E.D.

2.4. Theorem. Let c: R^-Tbe an injective ring homomorphism.

(i) If T is a left A(0) ring, so is R.

(ii) If T is a left A(n) ring (n j£ 1), and T is flat as a right R-module, then R is a left

A(n) ring.

Proof. Let 0 -*■ Af—>- Ex -^- ■ ■ ■ -> En be an exact sequence of f.g. left A-modules,

with M flat and E¡ free, V7. Extend the scalar ring to Tto obtain a sequence of f.g.

left T-modules 0 -> M <g>B T^ Ex <8>B T^->En®RT with M ®RT flat and

Ei®R Tfree, Vi. For «^ 1 this sequence is exact by the flatness of T, while for « = 0

the condition of exactness is vacuous. In either case, M ®R T is T-projective, so

M is Ä-projective by Proposition 2.3.    Q.E.D.

2.5. Theorem. Let {R¡ | i el} be a collection of rings, and R = Y[ Ri- Then

(i) R is a left A(0) ring if and only if I is finite and R¡ is a left A(0) ring, Vi e /.

(ii) For n ̂  1, Ris a left A(n) ring if and only ifRt is a left A(ri) ring, Vi e /.

Proof. Each Rt is a projective left /^module, so it follows easily that if R is an

A(n) ring, n^O, so is each Z?{.

Now suppose each Rt is a left A(n) ring. For each i e I, and each left .R-module

N, let Ni = Ri<giRN. Let 0 -*■ M -> Ex -> • • ■ -> En be an exact sequence of f.g.

left Ä-modules with M flat and E} free, Vy. It is clear that Mt is /î-projective,

V¿ e I. If/is finite, then M=@ M¡ is projective. Otherwise, let «^ 1, and consider

the functor T which associates to each left A-module N the left .R-module \~I Nt.
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It is easy to see that when restricted to the category of f.g. submodules of free

modules, Tis naturally equivalent to the identity. Let T7-*- M->- 0 be exact with F

f.g. and free. By the remark above, this sequence may be identified with

PI Et -> n Mi —> 0. But this latter sequence splits, since F¡ —> M¡ —^ 0 splits for

each ie I. Thus M is projective. Finally, if R is a left ,4(0) ring, define ei = (oij)j(¡,,

for each i, and let A be the left ideal of R generated by {e¡ | i e I}. Since A is generated

by idempotents, R/A is flat by Corollary 3.5 and hence projective. Thus A is f.g.,

which implies I is finite.    Q.E.D.

2.6. Proposition. Ifn^O andk^ 1 are integers, then a ring R is a left A(n) ring

if and only if Rk, the ring ofk x k matrices over R, is a left A(n) ring.

Proof. This is an immediate consequence of the results in [11].

For the case « = 0, Proposition 2.6 is related to [20, Theorem 2.7].

3. Commutative A(n) rings. From now on, all rings are assumed to be com-

mutative. Thus our study of A(n) rings reduces to the cases « = 0, 1. We reduce the

problem to a consideration of cyclic modules, using the methods of Mount [16]

applied to the invariant ideals of Auslander and Buchsbaum [1]. We then consider

sufficient conditions for a ring to be an ,4(1) ring.

Henceforth, in addition to the conventions listed in §1, we employ the terminology

of commutative algebra as given in [5], except that we use Rs instead of S_1R

to denote the ring of quotients of a ring 7? with respect to a multiplicative system S.

We use rad [A] for the radical of an ideal A, and AnnÄ (M) for the annihilator of

the 7?-module M. By a prime component of an ideal A in a ring R we mean a

minimal element of the set of prime ideals of R containing A.

We wish to obtain a reduction from finitely generated modules to cyclic modules

for the purpose of determining whether or not a ring is an A(n) ring. For « = 0, this

reduction was first proved by Mount [16] using the Fitting invariants of a f.g.

module, and later by Lazard, using his topological characterization of ,4(0) rings.

For our purposes it is more convenient to use the related invariants defined by

Auslander and Buchsbaum [I].

If 7? is a ring, M a f.g. 7?-module, and «^ 1, we put an(M) = AnnB (f\nM) and

Fn(M) = R/an(M)(2). The following result, similar to [16, Theorems 2 and 3], is an

easy consequence of [1].

3.1. Proposition. If R is a ring and M is a f.g. R-module, then M is flat (resp.

projective) if and only ifFn(M) is flat (resp. projective) V«^ 1.

3.2. Lemma. Let R be a ring, M a f.g. flat R-module. If M is a submodule of a

free module, then so is Fn(M), V« ̂  1.

(2) If, fory'äO,/(/; M) is the/th Fitting invariant of M as defined in [16], then it can be

shown that /(«-1 ; M) and FLs» <*,{M) have the same radical, although they are not equal in

general.
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Proof. Let v: F^¡-M be surjective and u: M^-Ebe injective, where E and F

are f.g. free /{-modules. Put w = uv, and let «äl. Since /\n u is injective [14,

Corollary to Theorem 2] and /\" t> is surjective [4, §5, no. 7], we have aJM)

= Ann (A" M) = Ann (/\n y) = Ann (/\n w). Thus

0-► aJM)-> R -^-> Horn (An F, f\n E)

is exact, where /(1) = f\n w. Thus FJM) = R/aJM) is a submodule of a free

module.    Q.E.D.

3.3. Corollary. A ring R is an A(\) ring if and only if each cyclic flat submodule

of a free module is projective.

At this point it is convenient to state various criteria for a cyclic module to be

flat. If R is a ring and A'=Spec (R), let D be the equivalence relation on A'generated

by the relation of inclusion (see [12]). A subset y of X is said to be Z)-closed if it is

closed in the topology of X and closed under the relation D. The following prop-

osition can be found in [5] and [12].

3.4. Proposition. Let R be a ring, A an ideal of R, and put S=\+A, a multi-

plicative system in R. Let i: A -»■ R andy: R-> Rsbe the,canonicalhomomorphisms.

Then the following are equivalent:

(1) R/A is flat.
(2) ae A => 3b e Asab = a.

(3) A = ker (<p).

(4) IfP is aprime (resp., maximal) ideal of R containing A, then AP = 0.

(5) 0 -> A i> R A- Rs -> 0 is exact and V(A) is D-closed.

Moreover, if V(A) is D-closed and B = ker (<p), then R/B is flat and V(B)= V(A).

We note that the equivalence (1) o (2) is valid for left ideals in noncommutative

rings as well. Following [18], we say that A is a *-ideal of R if the conditions of 3.4

are satisfied.

3.5. Corollary. Let Rbe a ring. If A is an ideal ofR generated by a set C, and if

ceC => 3b e A ■ 3 ■ cb = c, then A is a *-ideal. In particular if A is generated by a

set of idempotents, then A is a *-ideal.

Corollary 3.5 is valid for left ideals in noncommutative rings as well.

3.6. Corollary. Let R be a ring. If A and B are *-ideals of R such that V(A)

= V(B), then A = B. Hence there is a 1-i order reversing correspondence between

*-ideals of R and D-closed subsets of Spec (R).

Proof. Let P e Spec (R). If P^A, then AP = BP = 0 by 3.4(4); otherwise AP = BP

= RP. Thus A and B induce the same sheaf of ideals over Spec (/?), so A — B

[9,1.3.10]. (This may also be proved directly using 3.4(2).) The second assertion

follows from the first, using 3.4.   Q.E.D.
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3.7. Corollary. Let R be a ring and N=vad [0], the nilradical of R. If A is a

*-ideal of R, then rad[A] = A + N.

Proof. Let i: A + N -> rad [A] be the canonical injection, and take P e Spec (R).

If P^A, then (A + N)P = RP = (rad [A])P, so iP is surjective. If P^A, then AP = 0

by 3.4, so (A + N)P = NP = (rad [0])P = rad [/lP] = (rad [A])P, and again iP is sur-

jective. Hence i is surjective.    Q.E.D.

If A is an ideal of a ring R, then R/A is projective if and only if A is generated

by an idempotent of R if and only if V(A) is open and closed in Spec (R) [5,

Chapter II, §4, Proposition 15]. Moreover, R/A can be imbedded in a free module

if and only if A = Ann (B), where B is some finitely generated ideal of R. Using

these facts together with Proposition 3.4, Corollary 3.3 may be stated in more

concrete terms.

3.8. Theorem. A ring R is an A(\) ring if and only if each *-ideal of R which is

the annihila tor of a finitely generated ideal of R is generated by an idempotent.

3.9. Proposition. A self-injective ring is a C-ring.

Proof. Let 7? be a self-injective ring. Then dualizing is an exact functor, from

which it follows easily that any f.g. submodule of a free module is reflexive.

Furthermore, if Fis a flat module and G is an injective module, then Horn (F, G)

is injective [5, Chapter I, §2, Exercise 13]. Now let M be a f.g. flat submodule

of a free module. Then M* is injective, so M* is a direct summand of a f.g. free

module, and hence M* is also flat. Thus M~M** is injective.    Q.E.D.

A ring R is absolutely flat if every /^-module is flat [5, Chapter I, §2, Exercise 17].

3.10. Proposition. An absolutely flat ring is a C-ring.

Proof. Suppose 0^M->F->N->0 is exact with M and F f.g. Then N is

flat and f.p., so A'is projective [5, Chapter I, §2, Exercise 15] and hence the sequence

splits.    Q.E.D.

Further sufficient conditions for a ring to be a C-ring may be found in [2] and

[13].

4. Stability. Next we consider questions of the following type: if 7?j and R2

are rings related by some standard ring-theoretic construction, how does property

A(n) for Rx relate to property A(n) for R2? In §2 we have already answered several

questions of this type (Theorems 2.4, 2.5 and 2.6). Theorem 4.3 states that 7? is an

A(n) ring if and only if the ring of polynomials (in arbitrarily many variables)

over 7? is an A(n) ring. Theorem 4.5 states that if the associated reduced ring of a

ring Ris an A(l) ring, then so is R, although the converse is false.

Finally we discuss the connected component ideals {Aa \ a e S} of a ring R, and

the associated connected component rings {Ra = R/Aa | creS}. The 7?„'s are flat

7?-modules, and R is imbedded in [~] Ra. If Spec (R) has only finitely many con-

nected components (in particular if 7? is an A(0) ring), then R x YJ Ra and Theorem
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2.5 applies. These results fail in general for rings whose spectra have infinitely

many connected components.

Several other stability questions have negative answers.

Let R be a ring. If A' is a set of indeterminates, we let R[X] denote the ring of

polynomials in the elements of X with coefficients in R. Iffe R[X], we let Af be

the ideal of R generated by the coefficients off, and <p(f) be the constant term off,

so that cp: R[X] -» R is a ring homomorphism. The following proposition is the

keystone of our arguments.

4.1. Proposition. Let R be a ring, and let f g e R[X]. Iffg = 0, then

3« > 0-3-AfAg = 0.

Proof. Let B = AnnB (Ag). We must prove Af^rad [B]. In case R is a local ring

with maximal ideal P = rad [B], the conclusion is immediate by induction on

[17, Lemma 6.13, p. 17]. In general, let P be a prime component of B and localize

at P to reduce to the case above.    Q.E.D.

Proposition 4.1 can also be proved by direct calculation.

4.2. Lemma. Let R be a ring, A a *-ideal of R[X]. Then:

(1) AfçA,VfeA.
(2) A n R = <p(A).

(3) A = cp(A)-R[X].

Proof. (1) LetfeA, and choose g e A so that/(l — g) = 0. By Proposition 4.1,

AfA?x_g) = 0, for some «>0. Since the coefficients of (1—g)n belong to A*x-g),

Ar(\-g)n = 0. Now (l-g)n=l-h, for some h e A, so A, = A fh<=,A.

(2) Clearly A n.Rçz^A). LetfeA; then cp(f)eA,<^A by (l), so <p(A)^A n R.

(3) Clearly A^<p(A)R[X], by (2). LetfeA; then AfçA n R = cp(A), so

fecp(A)R[X}.    Q.E.D.

Note in particular that Lemma 4.2 implies that the idempotents of R[X] are

precisely the idempotents of R.

4.3. Theorem. Let R be a ring. Then R is an A(n) ring if and only if R[X] is an

A(n) ring.

Proof. The if part is a consequence of Theorem 2.4. Suppose R is an A(0) ring,

and let A be a *-ideal of R[X]. Then clearly <p(A) is a *-ideal of R, so cp(A) = Re,

for some idempotent e e R. Thus by Lemma 4.2, A = <p(A) ■ R[X] = R[X]e, and hence

R[X] is an ,4(0) ring. Now suppose R is an .4(1) ring. Let F be a finite set of poly-

nomials of R[X], and put AF = ^ {A, \fe F}, a f.g. ideal of R. If A = AnnB[X] (F)

is a *-ideal of R[X], then by Lemma 4.2, cp(A) = A n R = AnnB (AF) is a *-ideal of

R, so again cp(A) = Re and A=R[X]e, where e is an idempotent of R. Thus R[X]

is an ,4(1) ring.    Q.E.D.

In the case where « = 0 and X reduces to one element, Theorem 4.3 appears in

[22, Corollary 2.2].
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Given a ring 7?, we let 7?red denote the associated reduced ring, i.e., Rred = 7?/rad [0].

Since Spec (7?rec¡) ~ Spec (R) [9, Corollary 1.1.12], it follows from [12, Theorem 5.7]

that 7? is an ,4(0) ring if and only if Rreä is an A(0) ring.

4.4. Lemma. Let B be an ideal of a ring R. If A= Ann (B) is a *-ideal of R,

then A = Ann (Bn), V«>0.

Proof. Let n>0, and suppose xe R with xBn + 1=0. Let y e Bn. Then ;cy7J = 0

so xyeA, so 3aeA-3-xy=(xy)a = x(ya) = 0. Hence xBn = 0 and the lemma

follows by induction.    Q.E.D.

4.5. Theorem. Let Rbe a ring and put R' = Rrei. IfR' is an A(\) ring, then so is R.

Proof. Let <p: R^-R' be the canonical homomorphism. Suppose B is a f.g.

ideal of R such that A = AnnB (B) is a *-ideal of R. Then <p(B) is a f.g. ideal of 7?',

and <p(A) is a *-ideal of 7?'. We claim <p(/l) = AnnB, (<p(B)). Let xe R, with <p(x)<p(B)

= 0. Then xB^rad [0], and since B is f.g., x"Bn = 0, for some «>0. Therefore

xn e Ann (Bn) = A by Lemma 4.4, so x erad[A] = A+Tad[0] by Corollary 3.7,

and hence <p(x) e <p(A) as claimed. Under the homeomorphism Spec (7?) s: Spec (R),

V(A) corresponds to V(<p(A)). Since R' is an ,4(1) ring, V(<p(A)) is open, so V(A)

is open in Spec (7?). Thus R/A is projective, so R is an ,4(1) ring.    Q.E.D.

The converse to Theorem 4.5 is false (Example 5.18).

Let 7? be a ring, and let I— 7(7?) denote the set of idempotents of R. For 7ç 7,

let A(J) denote the ideal of R generated by J, and V(J)= KL4(7))^Spec (7?). 7 is

called proper if A(J)^R.

4.6. Lemma. Let R be a ring, J^I(R).

(1) / is a maximal proper set of idempotents of R if and only if J is proper and

for any idempotent e e R, either eeJor 1—eeJ.

(2) IfJ is a maximal proper set of idempotents ofR, then:

(a) A(J) = {re \ r e R, e eJ} = {x e R | x = xe,for some e eJ}.

(b) J=A(J) n 7.

(c) V(J) is connected.

Proof. (1) The if part is clear. For the rest, it suffices to prove that if e e I and

e$J, then l-eeA(J). Let J'=J\J{e}. By the maximality of J, A(J') = R, so

1 =2 rifi + re, with ru r e R,feJ. Multiplication by 1 — e yields the desired result.

(2a) follows easily from (1) and the fact that an ideal generated by a finite

number of idempotents is generated by a single idempotent.

(2b) is clear from (1).

(2c) Suppose x e R and x2 — xeA(J). By (2a) 3e eJ-s-x2 — x = (x2 — x)e, and

hence x(l -e)=x2(l -e) = x2(l -e)2 so x(l -e) e I. If x(\-e) eJ, then x = x(l-e)

+ xee A(J), while if 1 — x(l — e) e J, then 1 — x=l— x(l— e) — xee A(J). Thus

R/A(J) has no nontrivial idempotents, so V(J) « Spec (R/A(J)) is connected

[5, Chapter II, §4, Corollary 2 to Proposition 15].   Q.E.D.
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4.7. Proposition. Let R be a ring, A'=Spec (R). If A is an ideal of R such that

Y= V(A) is a connected subset of X, and ifJ( Y) = An I(R), then J( Y) is a maximal

proper set of idempotents of R, and V(J( Y)) is the connected component of X con-

taining Y. The function 7t->- V(J) defines a bijective correspondence between

maximal proper sets of idempotents of R and connected components of X.

Proof. Suppose Y=V(A) is connected. Clearly J(Y) is proper. If eel, then

either eeA or 1—eeA, since R/A has no nontrivial idempotents, and hence

7( Y) is maximal. Now let J be any maximal proper set of idempotents of R.

By Lemma 4.6, V(J) is connected, and since V(J) = (~) {V(e) | e eJ} is an inter-

section of open and closed subsets of X, V(J) is a connected component of X.

The rest of the proposition follows easily from the statements above and Lemma

4.6 (2b).    Q.E.D.

Much of Proposition 4.7 is purely topological ; the sets V(J), being nonempty

intersections of maximal families of open and closed sets of A", are quasi-components

of X. Lemma 4.6 (2c) establishes that the quasi-components of X are connected,

and hence coincide with the components of X (cf. [10, pp. 46^47]).

If 7? is a ring, Ar=Spec (R), and {Ya \ o g S} are the connected components of

X, let {7^ | aeS} be the corresponding sets of idempotents, and put A„ = A(Ja).

The Ac's are called the connected component ideals of 7?. By Corollaries 3.5 and

3.6, for each <jeS, A„ is the unique *-ideal of R-3-V(Aa)= Ya. Thus A is a

connected component ideal of 7? if and only if A is generated by idempotents and

V(A) is connected.

4.8. Proposition. If {A„ \ a e S} are the connected component ideals of a ring

R, then f) {Aa | <reS} = 0, and hence the canonical homomorphism R—>]~1 R/A„

is injective.

Proof. Let xeÇ\Aa and suppose Ann (x) is proper. Select P e Spec (R) so that

Ann (x)cp, and choose a e S so that PsAa. Since Aa is a *-ideal of 7? and x e A„,

3y e A„3-x(l+y) = 0. Thus l+ye Ann (x)^P, and ye Aa^P, a contradiction.

Q.E.D.
If S is finite, then 7? -*■ \~l R/A„ is bijective [5, Chapter II, §4, Proposition 15].

4.9. Corollary. Let {Aa | <r e S} be the connected component ideals of a ring R.

Then R is an A(0) ring if and only ;/S is finite and R/Aa is an A(0) ring, for all

a eS. IfL is finite, then R is an A(\) ring if and only if R/Aa is an A(\) ring, for all

o eS.

Proof. If R is an ,4(0) ring, then {V(A„) | a eS} forms an open partition of the

compact space Spec (R) and hence S is finite. The remainder of the corollary

follows from the remark above and Theorem 2.5.    Q.E.D.

When S is infinite, the conclusions of Corollary 4.9 are not necessarily true.

Indeed, Example 5.16 gives an ,4(1) ring 7? for which not all the rings R/Aa are
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,4(1) rings, and Example 5.21 gives a ring R which is not an ,4(1) ring and yet

R/Aa is an ,4(0) ring for each a el,.

We conclude this section with a brief discussion of some negative stability

results. If R is an A(n) ring, and A is an ideal of R, is R/A an A(n) ring ? The answer

is yes, trivially, if A happens to be generated by an idempotent, by Theorem 2.5.

If A is merely a *-ideal, the answer is in general no. Indeed, as we have remarked

above, Example 5.16 gives an ,4(1) ring R and a connected component ideal A

such that R/A is not an ,4(1) ring. Attacking this question from a different point of

view, suppose R' is a ring which is not an ,4(1) ring (Example 5.21). Then we may

write R' = R/A, for some integral domain R and some ideal A^R. Thus R is an

A(0) ring, yet R' is not an ,4(1) ring. Continuing, we may let R" = RxR', which is

not an ,4(1) ring by Theorem 2.5. However the canonical morphism R^-RxR'

= R" is injective and makes R" into a finite R-algebra. This shows there is no hope

for stability under integral ring extensions. Finally, we note that Example 5.17

gives an ,4(0) ring R and a multiplicative system S^R such that Rs is not an ,4(1)

ring.

5. Counterexamples. The conventions of §3 remain in effect throughout this

section, with the sole exception of Example 5.1. In addition, if T is a subset of a

ring R, then (T) denotes the ideal of R generated by T.

5.1. Example. A ring R such that R is not a left A(n) ring, V«^0.

Let S denote the set of sequences s=[ils..., sn] of positive integers such that

ji + 1#5'i+1, V/\ Let k be a field, and define R to be the ^-vector space with basis

{e} u S u {cA | A e N} u {¿4>s | A e N, s e S, sx # 1}. Define multiplication on the

basis elements of R according to the following rules :

(1) ex=xe = x, Vxe R.

(2) Suppose 8—[Si,...,sn] and t=[tx,..., tm]e S. Define st = 0 if sn+l=tx,

and st= [sx,..., sn, tx,..., tm] otherwise.

(3) sch = sdKt = 0, VA e N, Vy, t e S.

(4) cAi = 0 if sx = 1, caj = dx-s otherwise.

(5) cÁcll = 8Kuclí.

(6) cA(/(1,s = 8A>X.s-

(7) í/a,sí = 0 if sn+1 =tx, and dKt¡¡t = dK¡st otherwise, where st is given by (2).

(8) d„_scu = dKsdu,t = 0, VA, p e N, Vj, t e S.

This multiplication is associative on the basis elements of R, so R becomes a k-

algebra with identity e.

Put an = [«] e R, V« e N, and let C be the left ideal of R generated by {cA | A e TV}.

Then one verifies directly that Ran = left Ann (an + x), n ^ 1, and that C=left Ann (ax).

Put M=Rax. Since C is generated by idempotents, C is a *-ideal of R by Corollary

3.5, and hence M is a cyclic flat left /?-module. Moreover, there is an exact sequence

of left jR-modules
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where g is the canonical injection andfn(x)=xan, V«^2. Finally, it is easy to see

that C is not f.g., and hence M is not projective.

Thus 7? is not a left A(n) ring for any «.    Q.E.D.

5.2. Example. A ring 7? such that R is a D-ring and an ,4(0) ring but not a

C-ring.

Let 7? be any coherent domain which is not a field. Then R is clearly an ,4(0)

ring and not a C-ring. R is a D-úng by [6, Theorem 2.1].

5.3. Example. A ring R such that R is a C-ring and a D-úng but not an ,4(0)

ring.

Let F be a finite field and Zan infinite extremely disconnected Boolean topological

space (see [19]). Let 7? be the ring of locally constant functions from X into F.

R is absolutely flat [5, Chapter II, §4, Exercise 17b] and 7? is an injective Ä-module

[19, Corollary 24.2]. Thus R is a C-ring by Proposition 3.9 or Proposition 3.10.

For any index set 7, 7?' is a projective 7?-module [19, Theorem 24.5], so R is a Tu-

ring. Now Spec (R)xX [5, Chapter II, §4, Exercise 17a], and since Zhas infinitely

many connected components, 7? is not an ,4(0) ring by Corollary 4.9.    Q.E.D.

5.4. Proposition. Let Rbe a local ring with maximal ideal M. Then the following

are equivalent:

(1) R is perfect.

(2) M is T-nilpotent, i.e., for any sequence {fn} of elements of M, there exists a

positive integer m such that ff2- ■ -fm = 0.

(3) A direct limit of projective R-modules is projective.

(4) Every flat R-module is free.

Proof. (1), (2) and (3) are equivalent by [2, Theorem P]. (3) and (4) are equivalent

by [14, Theorem 2] and [5, Chapter II, §3, Exercise 3c].

5.5. Lemma. Let R be a ring such that RR is a submodule of a free R-module.

Then for any ideal ,4c 7? there exists a f.g. ideal Bç R such that Ann (A) = Ann (B).

Proof. Let RR^F, where F is free with basis S. Define x: R -» 7? by x(r) = r if

r e A, x(r) = 0 otherwise. Write x = ^asse F, and let B be the ideal generated by

{as | s e S}. Then Ann (A) = Ann (x) = Ann (j5), and 7i is f.g.

5.6. Example. A ring R such that R is a perfect local ,4(0) ring and a C-ring

but not a 7J)-ring.

Let Rx=k[Xx, X2,...] be the ring of polynomials in countably many indetermi-

nates Xt over a field k, and let/= ({X^ | i^j} u {X}*1 \ i^ l}).Then put R=Rx/J

and let <p: 7?j ->-7? be the canonical surjection. Put Xi=<p(Xt). Clearly R has but

one prime ideal, namely P=(xlt x2,...). Thus 7? is an ,4(0) ring.

We claim that P is T-nilpotent. Let {/„} be a sequence of elements of P. Using

the defining relations we may select for each « a representation /„=/„, j+ •• ■

+/n,S(n), where fnJ is a polynomial in x} alone, having constant term zero. It then
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follows that for m = s(\)+\,fx- ■ fm = 0, which establishes the claim. Thus R is a

perfect local ring, by Proposition 5.4.

Let B be a f.g. proper ideal of R. Then it is clear that for « sufficiently large,

xnB = 0. This proves first that R is a C-ring by [2, Theorem 5.4 and Corollary 5.6]

and second that R is not a D-ring. For if R were a Z)-ring, then by Lemma 5.5

there would exist a f.g. ideal B such that Ann (B) = Ann (P), which would imply

xnP = 0 for n sufficiently large, an obvious contradiction.    Q.E.D.

Our next example is an ,4(1) ring R such that for some connected component

ideal A, R/A is not an A(\) ring. The example is easy to state; indeed

R = Z[ex,e2,...,yx,y2,...]

with defining relations ef = eh Vi, 2y¡ = 0, Vz, and e¡ji(l —yi) = 0, Vi</ However the

verification that R satisfies the stated conditions is quite technical, and it is con-

venient to discuss some auxiliary theoretical results along the way.

Let S be a set, 1 = 2s, and 1' = {a e 1 | a is finite}. 1' is a semigroup under union.

If D is an integral domain, we put Ds = D[l'], the semigroup algebra.

5.7. Proposition. Let S be a set and D a domain. Then:

(1) Given a commutative D-algebra A and a function f: S^A such that f(s)

is idempotent, Vî e S, there is a unique D-algebra homomorphism F: Ds-+ A which

extends f.

(2) Let D[S] be the ring of polynomials in the elements of S, and

1= ({s2-s\ seS}).

Then Ds and D[S]/I are canonically isomorphic D-algebras.

Proof. Both assertions are straightforward.   Q.E.D.

Maintaining the preceding notation, suppose t e 1. The characteristic function

Xt induces a homomorphism 0Z: -Ds->- D, by Proposition 5.7. Specifically, if

1=2 ¿> faeS'), then 0z($) = 2.£a (<*Çt). 0, is surjective, and Az=ker(0,) =

({s—I | s e t} u {s I s $ t}). By the remark preceding Proposition 4.8, the Az's are

connected component ideals of £>s. On the other hand it is clear that the Ax's are

precisely the minimal prime ideals of Ds. Thus the Az's are all the connected com-

ponent ideals of Ds. By Proposition 4.8 we have an injective ring homomorphism,

0 : Ds -> Ds, where 0(f), = 0,(£), Vt e 2.

5.8. Proposition. With notation as above,

lm(0) = {deDz\ 3aeH'-3-dt = CVtëS}.

Proof. If £=2 iPp (pel.'), we may take or=(J {p \ £„#0}. Conversely, suppose

deD* and o el' with dz = din!!, VreS. Then define f according to the rules

i0 = d0, fp=0 for p^o, and èp=dp-J, fe (p'^p, p'^p) for pSa. Then 0(£)=d.

Q.E.D.
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Next we study a family of rings {R" \ a^N} which will turn out to be the con-

nected component rings of the ring R of our counterexample. The notation intro-

duced hereafter will remain fixed until the proof of the counterexample is complete.

Let Rx = Z[Y] = Z[Yx, T2,...] be the ring of polynomials in countably many

variables with integer coefficients, and R{ = Rx/2Rx= Z2[Y] = Z2[Yx, Y2,...], and

y: Rx -> R'x the canonical surjection. Put Afj = (Tj, Y2,.. .)ç7?j, and M[ = y(Mx).

If ffÇ/V, define 7" = ({Ti(l- Ys) \ ieaJ>i}u{2Yt [ ieN}), and J"=y(P). Let

aa: Rx -*■ Rx/I" = R" be the canonical surjection, and put rfx=aa(Y^. When no

confusion can result we shall drop the superscript a, so that

R° = Z{n] = Z[rtx,y]2,...],

with defining relations %(1 — %)=0, V7 e a, V/> i, and 2^=0, Vi e TV.

5.9. Lemma. R"xZ+(Ml/J"), the ring obtained by adjoining a unit to the

Z-algebra M[/Ja.

Proof. Since Rx = Z+Mx, we have R"xZ+(Mx/I"). But the homomorphism

y: Mx -*■ M'x clearly induces an isomorphism MjJI'kMÍ/J'.    Q.E.D.

Next we study the minimal prime ideals of R". Let P" = ({2} u {T( | i e a}),

p° = aa(Pa), and Qa=y(P"). If iea, define

Pi = ({2} u {Yj \jea,j < 0 u {1- Y, \j > i}\

Pi=*APf), and Ôf=y(T7). Also put Ma = aa(Mx).

If (j^ 0 and/e Q", we define i(f) = min {/ear J fe ({ Y¡\je a, j^ /})}. The proof

of the following lemma is straightforward :

5.10. Lemma. If o^0 andfe Q" n QfU), then Bg e M{ such that g=f (mod J")

andi(g)<i(f).

5.11. Proposition. (1) /* is a radical ideal whose prime components are Q" and

{ßf I ie^}-
(2) Iffe M'x andf2-feJ", thenfeJ".

(3) Ia is a radical ideal whose prime components are P", {P° \ i e a}, and Mx-

(Except ifa = N, then P"sMx.)

(4) R" is a reduced ring whose minimal prime ideals are p", {p° \ i e a}, and M".

(Except ifa=N, thenp'^M".)

(5) Spec (Ra) is connected.

Proof. Throughout, the case <r= 0 is clear.

(1) Clearly Q" and {Q? \ iea} are the prime components of J". If /* is not

radical, then choose /erad [J'W with i(f) minimal and apply Lemma 5.10 to

reach a contradiction.

(2) life Ml and f2-feJ°, then/e Q°. Iff^J", then choose/so that i(f)

is minimal. Again a contradiction results from Lemma 5.10.
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(3) and (4) follow from (1), and (5) is a consequence of (2), using Lemma 5.9.

Q.E.D.
If p is a prime ideal of R", we say that p is of Type I if p ^ {r¡t \ i e a} ; otherwise p

is of Type II.

5.12. Proposition. (1) If a is infinite, then f| {Qï I iea}=Ja, (~){P? \iea}

= I" + 2RX, and f] {pi \ iea} = 2R".

(2) If a is finite, o=£ 0, and k is the greatest element of a, then (~]{Q1 \ ie a}

=J" + ({1 - Yj\j>k}), fl {P? | ieo}=I°+2Rx+({\ - Y, \j>k}),andf] {pi \ieo}
= 2R° + ({l-Vj\j>k}).

(3) Any two prime ideals of R" of the same type are D-related.

(4) If a is finite, any two prime ideals of R" are D-related; otherwise Type I prime

ideals are not D-related to Type II prime ideals.

(5) R" is an A(\) ring if and only ifa^N.

Proof. (1) and (2) are straightforward calculations using Proposition 5.11.

(3) Clearly p" and M" are D-related, and if iandj are two adjacent elements of a,

with / </', then pi and p] are both contained in the prime ideal of R" generated by

{2}U{r¡k\kei}U{l-Vk\k>i}.

The proof of (4) is similar to that of (3).

(5) If a is finite, then R" is in fact an ,4(0) ring by (4). Now suppose a is infinite.

Let Y" denote the set of Type I prime ideals of R", Z" the set of Type II prime ideals

of R". It is easy to see that Z" is not a closed subset of Spec (Ra) ; in fact p" belongs

to the closure of Z". On the other hand, Y" = V(p" n M"), and p" n M" =

({t?¡ I ieo}), which is a *-ideal by Corollary 3.5. If a = TV, then p" n M" = M" = Ann

(2), using Lemma 5.9, so R" is not an ,4(1) ring by Theorem 3.8. Finally, if ct#N,

then it is straightforward to verify that p" n M" is not the annihilator of a f.g.

ideal, and hence by Theorem 3.8, R" is an ,4(1) ring.    Q.E.D.

If p^oçN, then P^I", yielding a surjective homomorphism <xp¡a: Rp -> R".

5.13. Lemma. Suppose pÇCTç/v, meN, and p n [1, m] = a n [1, m], where

[l,m]={l,2,...,»!}. Then J° n Z2[YX,..., Ym]^J°, I" n Z[YX,..., Ym]^I",

andZ[vi, ...,<] n ker (afli<r) = 0.

Proof. Straightforward calculation, using Proposition 5.12(1) and (2); the second

and third assertions follow in order from the first.    Q.E.D.

We are now ready to introduce the ring R. Begin with the polynomial ring

Z[E, Y] = Z[EX, En,..., Yx, Y2,...] and its subring Z[E] = Z[EX, E2,...]. Let C

be the ideal of Z[E, Y] generated by {Ef-Et\ ig 1} u {EtY¿l- Y,) \ lSi<;}

U{27¡|/^1}, and C0 = CrsZ[E], which is the ideal of Z[E] generated by

{Ef — Ei | iä 1}. Let A: Z[E, Y] -*■ Z[E, Y]/C=R be the canonical surjection, and

put ei = X(Ei), yi = X(Yt), so R = Z[e,y] = Z[ex, e2,..., yx, y2,...]. Let R0 = Z[e]

= Z\ex, e2,. ..]CÄ, so that R0 = X(Z[E])xZ[E]/C0.

If a^N, define fa: Z[E, Y] -> Z[Y] = RX by <A„(Ti)= T¡, fa(E,)=l if i e a, and
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i/ia(E¡) = 0 otherwise. Also let p.„: Z[E]-+Z denote the restriction of >/>a. Since

ipa(C) = I" and pa(Co) = 0, there are induced surjective homomorphisms <pa: R -*■ R"

and 9a : R0 -> Z, where <pa(yd = %, <pa(ei) = 1 if iea, q>a(^i) = 0 if i$a, and 9„ is the

restriction of <pa. Let ,4" = ker (<pa) = ({l —e¡ \ ie a}u {e¡ | i $ a}), and ,4j5 = ker (9a)

= Aa r\R0.

Each A" is a connected component ideal of 7? by the remark preceding Proposi-

tion 4.8; since Spec (R) = \J {V(A") \ a^N}, {A" | uÇiV} is the set of all connected

component ideals of R, and R/A"xRa, Ma. Similarly the A^s are the connected

component ideals of R0.

The proofs of the following two lemmas are straightforward.

5.14. Lemma. Given FeR, a^N, such that <pa(F) = 0, there is a finite subset

t<=lO such that <pp(F) = 0 whenever rÇp^a.

5.15. Lemma. Let m e N. Suppose FeR, where F may be expressed as a poly-

nomial in ex,..., em, yx, ■ ■ -, ym. Let p^a^N, with P n [1, m] = a n [1, m]. Then

9o(F) = ap,o(<Po{F))-

5.16. Example. An ,4(1) ring 7? such that all but one of the connected component

rings of 7? are ,4(1) rings.

7? is the ring defined after Lemma 5.13. By virtue of the preceding discussion, all

that remains to be proved is that 7? is an ,4(1) ring. Suppose Flt. ■., Fne R are

such that 7i = Ann (7^,..., Fn) is a *-ideal of 7?. By Theorem 3.8 it suffices to find

an idempotent e e R0 such that V(B) = V(e).

Let açN. By Proposition 3.4, RcxRSM, where S(a)=l+A", and hence B"

= <pa(B) = Bsw = Ann (<pa(Fx), ■ ■., <pa(Fn)) is a *-ideal of R". By Proposition 5.12,

B" = 0 or B" = R" for a^N, while for a = N, B° = 0 or B" = R" or B° = Ann(2).

Define «„ = 0 ifB° = 0, n„=l if B° = RJ, na = 2 if B° = Ann (2).

By Proposition 4.8, the homomorphisms {<p0 | ct£/V} induce an injective homo-

morphism q>: R->\~l{Ra \ oÇ.N}. Similarly 9: 7?0 —>- Zs is an injective homo-

morphism induced by {9„ | ctS/V}. (Here S = 2^.) 6 is clearly the restriction of 93.

The image of 9 was described in Proposition 5.8. We claim that the tuple (na)aZN

defined above belongs to the image of 9.

Select an integer «2>0 so that F, e Z[ex,.. -, em, yx, ■ ■ -,ym], Vy. Let aç/V, put

p = a n [I, m], and claim na = nB. If «„=1, then <pp(Fj) = 0, Vy, so by Lemma 5.15,

<pa(Fj) = 0, V/, and hence na=\. If «„#1, then «„ = 0, since P is finite. Suppose

«„/O. Then r¡xe B", so <pa(Y1Fj) = 0, Wj. By Lemma 5.14, there is a finite subset

t £ a so that <pu( YxFj) = 0, V/, where p. = t U p. Thus 171 e Ti", so Ti" = R", since p. ■£ N.

Therefore yJÍFj) = 0, V/. Let/ = <pp(Fj). By Lemma 5.15, a0tU(f) = 0, V/, so by Lemma

5.13,Z = 0, V/'. But this implies B° = R°, so nB=\, a contradiction, so «ff = 0. Thus

by Proposition 5.8, there is ee R0-s-9a(e) = nc, Vaçi/V. Since 9 is injective, e is

idempotent. Finally V(B) = F(e) follows easily by intersecting each side with

V(A"), Va.    Q.E.D.
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5.17. Example. A ring R such that R is an ,4(0) ring, the Jacobson radical of R

does not contain a finite intersection of prime ideals, and there is a multiplicative

system S^R such that Rs is not an A(\) ring.

Let R = Z[f, xx, x2,...], with defining relations fxl(l—xj) = 0, l^i<j, and

2fXi = 0, 1 ¿i. Put S—{fn | «^ 1}. The proofs of the following assertions are either

straightforward or similar to the arguments given in paragraphs 5.9 through 5.12.

R is a reduced ring; the minimal prime ideals of R are p = (xx, x2,...), q = (f),

and for each fail, Pi, where pt = ({2} u {x¡ | /</} u {1-x, | />/})• Since the rings

R/p, R/q, and {R/pi | /^ 1} all have Jacobson radical zero, R has Jacobson radical

zero. Thus the Jacobson radical of R does not contain a finite intersection of prime

ideals. The minimal prime ideals of R are all D-related, so R is an ,4(0) ring with

connected prime spectrum. Let R' be the ring RN of the preceding example, and

let T be an indeterminate over R. Then RsxR'[T, T"1], a flat R'-module. By

Theorem 2.4, Rs is not an ,4(1) ring.    Q.E.D.

5.18. Example. A coherent, self-injective ,4(1) ring R whose associated reduced

ring is not an ,4(1) ring.

Put /?o = n5'=i Z, let P be a fixed positive prime, and define /? = n*=i Z/Px-

Let <p: R0->R and a: R->R' = Rrei be the natural surjections, and 0 = a<p. For

each x, Z/px is self-injective [15], and hence R is self-injective. For each x, Z/px

is a principal ideal ring. Thus any f.g. ideal of R, or the annihilator of any f.g. ideal

of R, is principal, and hence R is coherent. R is an A(\) ring by Proposition 3.9.

It remains to show that R' is not an ,4(1) ring. For this purpose it is convenient to

regard R' = R0/ker (0). If v denotes the /?-adic valuation, then

ker (0) = {fe R0 | 3n-3-nv(f(x)) ï x, V*}.

Define g e R0 by g(x) =p, Vx. We claim Ann (0(g)) is a *-ideal of R' which is not

generated by an idempotent.

Suppose fe R0, with 0(f) e Ann (0(g)). Select an integer « so that n(v(f(x))+1)

= nv(fg(x))^x, Vx. Define « e R0 by «(x)=/(x) for x ^2«, and h(x)= 1 for x<2«.

Then 2«(t>(«(x)g(x))) S x, Vx, so 0(«) 6 Ann (0(g)), and 2n(t<«(x)/(x) -/(*))) ê x,

Vx, so (0(«)-1)0(7) = 0. Thus Ann (0(g)) is a *-ideal of R'.

Now suppose there is e e R0 such that Ann (0(g)) = (0(e)). Select « so that

n(v(e(x))+l)^x, Vx, and define/e/?0 by/(x)=l for xá«+l and/(x) =/>* for

x>« +1. Then 0(f) e Ann (0(g)), so 3« £Ü„andm>0 so that m(v(f(x)-h(x)e(x)))

^x, Vx. Substituting x = «+1, we reach a contradiction.    Q.E.D.

The following two propositions pave the way for our final example.

5.19. Proposition. Let {Aa \ a el} be the connected component ideals of a ring

R, N=rad [0] be the nilradical of R, {N„ = rad [Aa]/A„ \ o e 1} the nilradicals of the

rings Ra = R/Aa, R' = R/N, and R'a = R„/N0, Va el. Then {Ba = rad [Aa]/N \oel}

are the connected component ideals of R', and hence (R')„ = R'a.

Proof. Let <p: R->R' be the canonical surjection. By Corollary 3.7, rad [A„]
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= A„ + N, VaeS. Thus B„ = cp(rad[Aa]) = cp(Aa) is a »-ideal of R', and  V(B„)

corresponds to V(A„) under the homeomorphism Spec (/?):£Spec (/?')•    Q.E.D.

5.20. Proposition. Let {Rt \ i el} be a family of rings such that Spec (R¡) is

connected, V¡ el, and put R = T~[ Rt. If ¡F is any family of subsets of I, put J(F)

= {xs | S $ IF}, where xs " the characteristic function of the set S, and put AUF)

= A(J(F)), the ideal of R generated by JUF). Then JUF) is a maximal proper set of

idempotents of R if and only if !F is an ultrafilter on I, and in that case, AUF)

= {fe R | Z(f) e ¿F}, where Z(f) denotes the set of zeros off.

Proof. Straightfoward.

5.21. Example. A ring R' which is not an ,4(1) ring, and yet each connected

component ring of R' is an ,4(0) ring.

Let R' = Riei = R/N, where R is the ring of Example 5.18. By Proposition 5.20,

the connected component ideals of R are of the form AUF), for some ultrafilter

& on N, so by Proposition 5.19, the connected component ideals of R' are of the

form B(&r) = rad [AUF)]/N. lfßr = {S^N\ xeS} is a fixed ultrafilter converging

to ïeJV, then it is easily verified that AUF) = {feR |/(x) = 0}, and hence that

R'/BLF)z,R/rad [A(^)]xZ/p, a field.

Now suppose !F is a free ultrafilter on N, let a : R' -> R'/BLF) = R"be the canoni-

cal surjection and define </r = ot0 : R0^- R". We regard !F as defining a finitely

additive measure p. on TV, where p.(S) =1 if S e !F and p.(S) = 0 if 5 <£ JT Using

"a.e." for "almost everywhere," we have ker (</i) = {fe R0 | (l/x)v(f(x)) is bounded

away from 0, a.e.}. It is then easy to show that ker (</f) is a prime ideal of R0, so that

R" is an integral domain. In point of fact it can actually be shown that for/, g e R0,

<¡>(f) e <l>(g)R" if and only if either </i(f) = 0 or v(f(x)) ^ v(g(x)), a.e., from which it

follows that R" is a valuation ring.

In any case, if ^ is an ultrafilter on N, then the corresponding connected

component ring K/BLF) is an integral domain, and certainly an A(0) ring. R' is

not an ,4(1) ring by Example 5.18.    Q.E.D.
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