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FINITELY GENERATED IDEALS OF DIFFERENTIABLE

FUNCTIONSO

BY

B. ROTH

Abstract. In some spaces of differentiable functions, the finitely generated ideals

which are closed are characterized in terms of the zeros of the generators. Applications

are made to problems of division for distributions.

1. Introduction. Let <fm(ü) denote the algebra of real-valued «i-times continu-

ously differentiable functions on an open set Q. in Rn equipped with the topology

of uniform convergence of all derivatives of order ^mon all compact subsets of Í2.

Here O^w^oo and <f°°(Q) will often be denoted ê(Q). Sm(Q) is a Frechet space,

that is, a complete metrisable locally convex topological vector space.

Which finitely generated ideals in Sm(Q) are closed ? Since êm(iï) is topologically

isomorphic to the cartesian product of the algebras <fm(£2¡) where the ü¡ are the

components of £2, we assume always that £2 is connected.

In §3 we show that for m<co, /=(/,...,/„) is a closed ideal in Sm(il) if and

only if/i2+ ■ • • 4-/? never vanishes or/?+«'••• +fp is identically zero. Thus there

are no proper closed finitely generated ideals in cfm(Q.) when m is finite.

In ¿>(Q) the situation is not so simple and the question remains open for Q.<^Rn,

«> 1. However, in §4 we show that for QcJ?1, the following are equivalent.

(a) /=(/,.. .,/„) is closed in *(ii).

(b) f2+ • ■ ■ +fP satisfies the Lojasiewicz inequality.

(c) fx + ■ • ■ +fp has zeros of finite order or/?+ • ■ • +fp is identically zero.

And in §5 we show that for £2 <=/?", «> 1, (a) implies (b), (a) implies (c), and

(c) does not imply (a). Whether or not (b) implies (a) seems to be an open question.

Interest in closed principal ideals in <fm(£2) stems from their connection by duality

with problems of division for distributions. In §6 information about certain finite

systems of division problems is obtained from our study of closed finitely generated

ideals.

The ideas involved in one of the methods of proof employed here are more
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evident without the presence of differentiation; consequently, we begin with a

brief look at closed finitely generated ideals in C(X).

2. Finitely generated ideals in C(X). If A' is a topological space, let C(X) be

the algebra of continuous real-valued functions on X. Gillman and Henriksen [2]

examine spaces X, called F-spaces, such that C(X) has the property that all finitely

generated ideals are principal. The class of F-spaces is not very extensive (for

example, a metric space is an F-space if and only if it is discrete). However, if X

is a compact Hausdorff space and C(X) is given the sup norm topology, then the

following theorem implies that all closed finitely generated ideals in C(X) are

principal.

Theorem 2.1. Let X be a compact Hausdorff space and provide C(X) with the

sup norm topology. Then /=(/,...,/,) is a closed ideal in C(X) if and only if

Z(I) = {x e X : f(x) = 0for allfe 1} is open.

Proof. Suppose   / is  closed.   Define   F: [C(X)f -> C(X)   by   F(gu ...,gp)

=figi+■ ■ ■+fPgp and for g = (gu .. .,gP), define ||g|| =max{||g1||,..., ||gp||}.

Then F is a continuous linear mapping of the Banach space [C(A')]P onto the

Banach space im (F) = / and therefore F is an open mapping. Hence there exists

C > 0 such that if « e /, then there exists g e F ~ x(«) with || g || ̂  C || « ||.

By Urysohn's lemma, for each x$Z(I) there exists hxe C(X) with hx(x)=l,

hx = 0 in a neighborhood of Z(I), and ||AX|| = 1. Since hx e I for each x$Z(I),

there exists g=(gx,...,gP)eF~1(hx) with ||g|| ÚC\\hx\\ = C. And

F(g)(x) =fx(x)gl(x)+ ■ ■ ■ +fP(x)gp(x) = hx(x) = 1

so for some i, 1 á i£p, we have \fi(x)g¡(x)\ ä l/p. Thus

1/l/WI ûp\gt(x)\ ¿pM $pM ipc

Therefore for each x$Z(I) there exists /', Ifki^-p, such that \f(x)\^l/pC, and

hence

Á2(x) +■■■ +fí(x) ä (\/pC)2   for all x i Z(l).

Clearly

Z(I) = {xeX: fx2(x)+ ■ ■ ■ +f2(x) < (1/pC)2}

and therefore Z(I) is open.

Conversely, suppose Z(I) is open. Consider the function g which is equal to

zero on Z(I) and ll(f?+■ ■ ■+fP2) on X-Z(I). Since Z(I) and X-Z(I) are

separated, geC(X). Then /= (fx2 +■■■ +f?)g e I so (/) C I. Moreover, if « e cl (/),

then « =/« e (/). Therefore / is closed and we have proved

Corollary 2.1. If I is a closed finitely generated ideal in C(X), then I is principal

and generated by an idempotent.

Corollary 2.2. IfXis connected, then there are no proper closed finitely generated

ideals in C(X).
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Proof. Suppose /=(/,...,/,) is a closed ideal in C(X). Then Z(I) is both

open and closed in the connected space X. If Z(I) = 0, then /= C(X) since

fix2 H-h/p2 e / is a unit, and if Z(I) = X, then / is the zero ideal.

3. Finitely generated ideals in Sm(ü), m<oo. We here show that there are no

proper closed finitely generated ideals in <fm(£2), w<co. Our proof uses the space

<f'm(£2) of distributions of order ^m with compact support, the dual space of

<^m(£2). The proof relies on a theorem of Whitney [9] which describes the closed

ideals in «fm(£2) and the closed range theorem for Fréchet spaces due to Dieudonné

and Schwartz [1].

We begin with two lemmas, the first of which will be needed again in §5 when

m = oo.

Lemma 3.1. Let fx,...,fpe <fm(£2), 0^/n^oo, and define F: [ifm(£2)]p -»■ «?m(£2)

by F(gx,..., gp)=fxgx+ ■ ■ ■ +fpgp- Suppose there exists a sequence {xk} in £2 with

xk *-*■ a e £2 such that (fx(xk),.. -,fp(xk))^(0,..., 0)for all k. Then there exists

T=(cx8a,...,cp8a)e[ker(F)Y

where some c{ is nonzero.

Proof. For any gx,...,gp with gi = (giX,.. .,gip) e ker (F) for 1 úiúp, we have

det(g(Xxfc))isi,ysp=0 for all k since (fx(xk),.. .,/p(xfc))#(0,..., 0) for all k.

Hence det (gij(a))x s,, ¡ s „ = 0.

If for all gt = (gn,.. .,gip) e ker (F) we have ga(a) = 0, then T=(8a, 0,..., 0)

e [ker (F)]1 and the proof is complete. Otherwise choose gx, ■ ■ -,gi with g{ =

(gn, ■ • -,^ip)eker(A for 1^/^/so that i/=det (g(y(a))1Si/sl^0 with /maximal.

Clearly 1 ̂ ¡lúp— 1. Then for any A = (A1;..., hp)e ker (F), we have

(gxx(a) ■■■ gu(a) gxo+x)(a)

gix(a) ■■■ g„(a) gKl + xÁa)

hx(a)     ■■■    h,(a)     hl + 1(a)

Hence for any A=(A1;..., hp)e ker (F),

Cxhx(a)+ ■ ■ ■ +clhl(a) + cl + xhl + 1(a) = 0

where ct is the cofactor of A,(a) and cl + 1=d^0. Therefore

T = (cA,..., c,80, cl +A, 0,..., 0) e [ker (F)Y

and this completes the proof of Lemma 3.1.

Lemma 3.2. Let flt ...,fpe ¿""(£2), «i<oo, and define F: [¿""(£2)]" -> cfm(Cl) by

F(gi, ■ ■■,gp)=Agi+- ■ • +fpgp- Suppose I=(fx,.. .,fp) has a zero of order k,

= 0.
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0^k<m, at a — (ax, ■.., an) e Ü, that is, (L/)(a) = 0 for all i, lúiúp, and all

constant coefficient linear partial differential operators L of order ^k, but

(S%)(a) = (ôfi- • 8&m * 0

for some i, say i=j, and some a = (ctj,..., <xn) with aj-f • • • +an = k+1. Then there

exists

T=(Tx,...,Tp)e[ker(F)V

where order (Tt)^m-k and supp (T()<={a}for l^i^p, and order (Tj) = m-k.

Proof. We use induction on the number p of generators of /. Suppose p = 1

and gx e ker(F). Then/gj=0 so gj(a) = 0 since/ is not identically zero in any

neighborhood of a. Since ax+ ■ ■ ■ +an = k+l, some a^O, say a,. By Leibnitz's

rule expand

(¿fv • .g»-«*—-«,--«... -a^x/gi).
Divide each term in the expansion by 8$».*« • fif».Ta* ■ -on"/!, which is nonzero at

(aj,..., x,..., an) for all x in (a¡, a¡ + e) for some e>0. Now let x^-af. The

result is that a linear combination of the values at a of the partial derivatives of

order ^m — k of gx equals zero. The coefficients in the linear combination depend

only on aj,..., an, m, and/j. And (&C~kgx)(d) has a nonzero coefficient, namely

m — a-x— ■-&¡- ■ ■ ■ -an\     im-ax--a,-an\

Therefore there exists Tj e [ker (F)]L with order (Tx) = m — k and supp (7\) = {a}.

Now suppose the lemma holds for p—\ generators and consider generators

fx, • • -,/p as in the statement of the lemma. For simplicity we assumey'= 1, that is,

(o°/iX«)#0.
Case 1. Suppose for some g = (gx, ■ ■ ■, gP) e ker (F), (gx(a),..., gp(a)) =£ (0,..., 0).

Ifgi(a)#0, then

A   =   ~(g2lgl)f2-(gp/glVp

in some neighborhood of a. Hence

(Safi)(a) = -(g2/gi)(a)(«a/2)(a)-(gPl gù(a)(BafP)(a) * 0.

Thus gi(a)^0 for some i with 1 <i^p, say for simplicity i=p. Hence

a = -(gjgP)fi-(gp-i/gp)fp-i

in a neighborhood U of a.

Let /' = (/,.. .,/p_j) and define F': [<f "•(")?-1 -> <f-(i2) by F'(«l5.. .,h,-x)

=/i"i+ - • • +/p-i«p-i- By the induction hypothesis there exists

F=(T1,...,Fp_j)e[ker(F')]±

where order (Ti)-¿m- k and supple {a} for l£i£p— I, and order (Tx) = m—k.

Therefore

(Tu ...,Tp_x, -(gJgp)Tx-(gP-Jgp)TP-x) e [ker (F)V-.

(
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For if (hx,..., Ap) e ker (F), then by choosing 9 e <#m(£2) with supp (<p)<= ¡j and

95 = 1 in a neighborhood of a, we have

<p[«i - (gx/gp)hp,..., Ap _ ! - (gp _ x/gp)hp] e ker (A)

and thus

[Tx, ...,Tp_x, -(gx/gp)Tx-(gp-i/gP)A-iPi>..., Ap)

= [A, • • -, A-i, -(gJgp)Tx-(gp-Jgp)Tp-x](cphx,..., <pAp)

= (A, • • -, Tp.x)[cp(hx-(gxlgp)hp),..., <p(Ap-i-(gp-i/gp)Ap)] = 0.

Letting A= ~(gi/gp)Tx-(gp-i/gp)A-i, we nave tne desired conclusion.

Case 2. Suppose (gx(a),..., gp(a)) = (0,..., 0) for all g = (gx, ...,g„)e ker (A-

Since ax+ ■ ■ ■ +an = k+1, some «¡#0, say a,. By Leibnitz's rule expand

(0fi.. .ep^i-.-««--«.. • •3^x/1g1 + • • • +/pgp),

which is identically zero for (gl5..., gp) e ker (F). Divide each term in the expan-

sion by

which is nonzero at (a1; ..., x,..., an) for all x in (ah a, + e) for some e>0. Now

let x -> a¡+. The result is that a linear combination of the values at a of the partial

derivatives of order ^m-k of gx,..., gp equals zero. The coefficients in the linear

combination depend only on ax,..., an, m, and/,.. .,/p. And (df~kgx)(a) has a

nonzero coefficient, namely

¡m-ax-a,-txn\      lm-ax-\-&,-an\

I «,-i r\ «i l

This implies that

T=(Tx,...,Tp)e[Yer(F)Y

where order (T¡)^m-k and supp (A)c{a} for l^iSp, and order (A) = >«-£.

This completes the proof of Lemma 3.2.

Theorem 3.1. Suppose/,...,/, e Sm(íl), m<<x>. Then /=(/,...,/,) » a closed

ideal in <fm(£2) if and only iff?(x) +■■■ +f2(x) >0for all x e £2 or/f(x) + • • • +/p2(x)

= 0/ora//xeD.

Proof. Suppose /=(/,..., /,) is a closed ideal in «f m(£2). We suppose/2 + •• ■ +/p2

takes on both zero and nonzero values in £2 and we obtain a contradiction. Let

Z={xe £2 :/i2(x)-f- • • • -t-/p2(x) = 0}. Then Z is a nonempty proper closed subset

of £2. Therefore, since £2 is connected, bd (Z) is nonempty. Choose a = (ax,..., an)

e bd (Z) and let k be the order of the zero of / at a, that is, let k be the largest

integer ^m such that (Lfi)(a) = 0 for all i, i^iúp, and all constant coefficient

linear partial differential operators L of order ^ k.



218 B. ROTH [July

Define F: [Sm(Çï)f ̂  Sm(Çl) by F(gl,.. .,gP)=Agx+■ ■ ■+fPgP- Then there

exists

T=(Tx,...,Tp)e[ker(F)Y

where order(T¡)^m — k and suppige: {a} for 1 ̂ i^p, and for some i, say / = /,

order (Tj) = m — k. For if k = m, then Lemma 3.1 guarantees the existence of T,

while if k<m, then Lemma 3.2 guarantees the existence of T.

Since im(F) = I is closed, the closed range theorem for Fréchet spaces [1,

Theorem 7, p. 92] implies that

im (F') = [ker (F)]L

where F' : é"m(£¿) -» [ff'm(Q)]p is the transpose of F. Therefore there exists

Seê'm(D) v/ithF'(S) = T.

Let/(xj,..., xn) = (xx—ax)l+ • ■ ■ +(xn — an)' where / is an even integer greater

than m — k. Then

F'(fS) =fF'(S) =fT= (fTx, ...,fTp) = (0,..., 0).

Thus /5eker(F')=[im(F)]1 = /1  and  hence  Se(fI)L  where // is  the  ideal

{fg-gzl}.
Let g(xx, •.., xn) = (xx— fli)"*" • ■(*„ — an)a« where ec1(..., «„ are chosen so that

aj+ • • • +an = m — k and 3fi- • -d"n8a appears with a nonzero coefficient in 7^.

For x e Q, let /" denote the ideal in <f m(Q) consisting of all functions which

vanish at x together with all derivatives of order g m and let F™ denote the natural

mapping of <?m(i2) onto <rm(i2)//™. Then the local ideals T?(fl) and r™(g/) are

both the zero ideal in <%m(Q)IJ™, since both // and gl have zeros of order m at a.

And for xe Ci, x^a, any function in gl is equal to a function in// in a neighbor-

hood of x since/(x)#0 and therefore T2(gl)<=-T2(fl). By Whitney's theorem

[9, Theorem 1, p. 636], we conclude cl (gl)^cl (//) and hence (fl)1<=(gl)1.

Therefore S e (gI)L and hence gS e I1 = ker (F'). Thus

(0,..., 0) = F'(gS) = gF'(S) =gT= (gTx,..., gTp).

But gT^O since 3"i- • -3""8a appears with a nonzero coefficient in T¡. This is a

contradiction.

Conversely, suppose f2+ ■ ■ ■ +fP never vanishes or /j2 + • • • +/p2 is identically

zero. If /j2-l-+f2 never vanishes, then I=(fx,.. .,/p)=«ím(ü) since f?A-

+/p2 e / is a unit. And if/j2+ • • • +fp is identically zero, then / is the zero ideal.

This completes the proof of Theorem 3.1 and also proves

Corollary 3.1. There are no proper closed finitely generated ideals in cfm(Q.)

when m is finite.

Suppose I=(A, ■ ■ .,/„) is a closed ideal in êm(ÇÏ), m<co. Using the open
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mapping theorem as in Theorem 2.1 (and later in Theorem 4.1), one can show that

for each compact set K<= £2 there exists a constant C > 0 such that

max {|/(x)|,..., |/p(x)|} ^ C[d(x, Z)f   for all xeK,

where Z={xe £2 :/2(x)+ • • • +/|(x) = 0}. When «z = 0, a proof of Theorem 3.1

can be based on this inequality, but in general more than this inequality is needed

in order to prove that f\ + ■ ■ ■ +fp never vanishes or f\ + ■ ■ ■ +fp is identically

zero.

4. Finitely generated ideals in <?(£2), Q<=A. Consider <f(£2), Qc/?n. For

each compact set K<^ £2 and integer A 0, let

|/|K>1 = sup {[3fi.. .Blnf(x)\ : x e K, ax+ ■ ■ ■ +an ^ 1}

forfe <?(£2). The seminorms | ■ 1^,, define the topology of <?(£2).

We here return to the method of proof demonstrated in §2. However, due to the

complications introduced by the presence of differentiation, the following fact is

needed (Urysohn's lemma played an analogous role in the proof of Theorem 2.1).

For any compact set K<^Q, integer A0, and nonempty closed set Z in £2 there

exists a constant C>0 such that if xeK—Z, then there exists hxet?(ü) with

Ax(x) = l, hx=0 in a neighborhood of Z, and

\hx\K,iè C/[d(x,Z)]'.

Here d(x, Z) = inf{d(x, z) : zeZ} where d is the Euclidean metric. Merely let <p

be an infinitely differentiable function on Rn with support in the unit ball and

<p(0)=l. Then hx(y) = <p((y — x)/8) has the desired properties when 8 = d(x,Z)/2.

Suppose/e ^(£2), £2<= A. We say that/has zeros affinité order if at every point

x e £2 where/(x) = 0 some derivative of/is nonzero.

Theorem 4.1. Suppose fx,...,/, e <f(£2), £2<= A. TAe« the following are equivalent.

(a) /=(/,... ,/p) is closed in <?(£2).

(h) fx + • ■ ■ +fP2 satisfies the Lojasiewicz inequality, that is, for each compact

set K<= £2 there exists a constant C> 0 and an integer A 0 such that

fx(x) +■■■ +fi2(x) ^ C[d(x, Z)]'   for all xeK■

where Z={x e £2 :/?(*)+ ■ ■ • +/p2W = 0}. (Here d(x, Z)=\ for allx ifZ=0.)

(c) fi + • ■ • +fip has zeros of finite order or f2+ •"• • +/p2 if identically zero.

Proof, (a) implies (b). Suppose /=(/,...,/,) is closed and Z is nonempty. Let

icQ be a compact set. Define F: [^(£2)]" -* <f(£2) by F(gx,.. .,gp)=fxgi+- • •

+fpgp and for g=(gt, ■ ■ -, gP) e K(£2)]p, define Ig^.^max {\gx\K.i, ■•-, \gp\s.il-

Then F is a continuous linear mapping of the Fréchet space [<^(£2)]p onto the

Frechet space im (F) — I and therefore F is an open mapping. Hence there exists a

constant C>0, an integer A0, and a compact set A<=£2 such that if he I, then

there exists g eF-\h) with \g\K.oúC\h\K-,l.
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For the compact set K" = Ku A<=£2, the integer AO, and the nonempty

closed set Z<=£2 there exists a constant C>0 such that if xe K" — Z, then there

exists hx e cf(Q.) with hx(x) = 1, hx = 0 in a neighborhood of Z, and

|*«|r..i â C'/[d(x, Z)]'.

For each x e K—Z, we have A* e /since Ax = 0 in a neighborhood of Z. Therefore

there exists g = (gx,.. .,gp)e F-\hx) with

If ka ^ C\hx\K.,i Ú C\hx\K,.,i Ú CC'/[d(x,Z)\.

But

*"(fX*) =fAx)gx(x)+ ■ ■ ■ +fP(x)gp(x) = hx(x) = 1

so for some i, 1 á i á/?, we have |/(x)g¡(x)| ä 1//?. Thus

1/l/WI Sp\g¿x)\ úp\gi\K.o úp\g\K.o úpCC'/[d(x,Z)\.

Therefore for each x e K—Z there exists /', 1 ̂  i&p, such that

|/(x)| ^ C"[rf(x, Z)]'.

Hence/2 + • • • +/p2 satisfies the Lojasiewicz inequality.

(b) implies (c). Suppose f=fx + ■ ■ ■ +fp satisfies the Lojasiewicz inequality. We

suppose that/is not identically zero but has zeros of infinite order and we obtain

a contradiction. Consider A e £2 with/(A) #0. Let a be a zero of infinite order

off closest to A, say a< A.

Case 1. Suppose/has no zeros in (a, a + e) for some e>0. By Taylor's theorem,

for each integer k there exists Ck>0 such that

|/(x)| ¿ Ck\x-a\k = Ck[d(x,Z)f

for all x e [a, a + e/2], which contradicts the Lojasiewicz inequality.

Case 2. Suppose a is a limit point of zeros off in (a, A). The zeros off in (a, A)

can have no other limit points, for such a limit point would be a zero of infinite

order of/ contradicting the choice of a. Therefore the zeros off in (a, b) are a

decreasing sequence {zk} with zk -»■ a.

Since/satisfies the Lojasiewicz inequality there exists a constant C>0 and an

integer A0 such that

|/(x)| ^ C[d(x, Z)]1   for all x e [a, A].

Since f(a) = 0, we have A 1.

Suppose /= 1. Let yk = (zk + zk + x)/2. Expanding /about zk by Taylor's theorem,

we obtain

C\yk-zk\ = C[d(yk,Z)] ï \f(yk)\ = \yk-zk\ \fi»(uk)\

where yk<uk<zk. Letting k^co, we obtain 0<C-¿\fa)(a)\, contradicting the

fact that/has a zero of infinite order at a.
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For /S:2, the argument is similar but somewhat more complicated. Choose a

subsequence {zkl} of {zk} such that for all i,

\Zkt~ zfcj + l|   =   \zk¡+j~zk¡+i + l\

for ally, 0^j^l—2. And for each /, choose

x}e(zkt + 1,zki) with      f1\xi) = 0,

xfe(zk¡ + 2,zk) with      f2\x2) = 0,

x\-1e(zki + l_x,zk)   with   r-'Xx'r1) = 0.

Now let Xi = zki and ^ = (zk. + zkt + J/2.

For each «', expanding/by Taylor's theorem about x¡, we obtain

C\yi-Xi\l = C[d(yi,Z)]'i \f(yi)\

â 2 (i/yOI^-^IV^OI+ii/zObi-^n/^)!

where ,y4 < tf¡ < xt.

For each /, expanding/(1) about x1, we obtain

fa\Xi)=fa\x1) + (Xi-x1)r2\ri)

where xf</-f<x¡. Since/(1)(xf)=0 and  \xt—x} \H\yt-Xi\, we have |/a)(x¡)|

^2\yt-x¡\ |/(2)(r¡)| for each i.

Expanding/<2) about xf, we obtain for each i

|/<2»(r,)| = \ri-xf\ |/<8>(*)| ¿ 4|*-*| |/«>fe)l

where xf <st< rt, and

i/<2'(xf)i = \xi-xt\ mdi í 4\yt-Xt\ \r3\ti)\

where xf <t{< x¡.

Continuing in this manner (the last step consists of expanding/""" about xl'1),

we find that for all i

C\yi-Xi\' â Cx\yi-Xi\'\fu\ui)\ + ■ ■ ■ +Ci\yi-Xi\'\f'\Vi)\

where zfc(+,_1<«l,..., Vi<zk=x{. Therefore for all i

0< C^Cx\fw(ui)\+.--+Cl\r'\Vi)\.

Clearly w¡ -> a,..., v¡ —> a as / -> oo. Therefore

0< Cá Cj|/<¡>(a)| + ---+q/<'>(a)|,

contradicting the fact that / has a zero of infinite order at a. Thus either /=/2

+ • • ' +fp has zeros of finite order or f=f2 + ■ ■ • +fP2 is identically zero.
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(c) implies (a). Suppose fx + ■ ■ ■ +fp has zeros of finite order or fx + ■ ■ ■ +f2

is identically zero. lffx + ■ ■ ■ +fp is identically zero, then I=(fx,.. .,fp) is the zero

ideal and hence closed. If/i2+ • • • +/p2 has zeros of finite order, then /=(/, ••.,/,)

has zeros of finite order. (The order of a zero x of/is the largest integer k such that

/w(x) = 0 for 1 S¡'¿/) and all j^k.) Since zeros of finite order are isolated, there

exist functions gQ, gx,..., gp e <?(£2) such that the function

/o = (/i2+ • • ■ +fp2)go+fxgx + ■ ■ • +/pgp 6 /

has precisely the zeros of / (with the correct orders). Since/0 e I, we have (/0)c/.

And if Aecl(/), then A//0e<f(£2) so there exists ge<?(£2) with A=/Oge(/0).

Therefore / is closed and we have also proved

Corollary 4.1. If I is a closed finitely generated ideal in «?(£2), £2<= A, rAe« / is

principal.

For p=\, Malgrange [6, p. 88] shows that (a) implies (b), and our proof is

essentially the same as his.

5. Finitely generated ideals in <f(£2), D <^Rn. For £2 <=/?", «>1, the question

of which finitely generated ideals in <?(£2) are closed is more difficult and remains

unsolved. The results of Hörmander [3, Theorem 4, p. 568] on the division of

distributions by polynomials imply that polynomials generate closed principal

ideals in <?(£2); more generally, the work of Lojasiewicz [4, p. 130] on the division

of distributions by real analytic functions shows that real analytic functions generate

closed principal ideals in <^(£2). And Malgrange [5, No. 25, p. 1] shows that

I=(fi, ■ ■ •»/,) is a closed ideal in <?(Q) if/,...,/, are real analytic.

Several necessary conditions that /=(/,.. .,fp) be closed in é"(Q) can be given.

The first of these is that/2+ • • • +fp satisfy the Lojasiewicz inequality. In fact, we

have already proved this since the "(a) implies (b)" part of the proof of Theorem

4.1 made no use of the hypothesis that £2<= A.

Proposition 5.1. Ifl=(fx,...,/,) isa closed ideal in «^(£2), then for each compact

set A'c £2 there exists a constant C> 0 and an integer A 0 such that

fi!(x) +■■■ +/p2(x) ^ C[d(x, Z)]'   for all xeK

where Z={x e £2 : f?(x)+ ■ ■ ■ +f2(x) = 0}. (Here d(x, Z)= 1 for all x ifZ= 0.)

Whether or not the converse of Proposition 5.1 holds for Q<=Rn, «> 1, seems

to be an open question.

Suppose/e <^(£2), Cl^R". We say that / has zeros of finite order if at every point

x e £2 where/(x) = 0 some partial derivative off is nonzero.

Proposition 5.2. If I=(fx, •••,/,) » a closed ideal in <f(£2), iAe« /?-)-Vf2

has zeros of finite order orf12+ ■ ■ ■ +fp2 is identically zero.
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Proof. Suppose /=(/,...,/,) is a closed ideal in S(ÇÏ). We suppose/2-!- • • • +/p2

is not identically zero but has zeros of infinite order and we obtain a contradiction.

Let Zoo ={x e Q. : x is a zero of infinite order of/2+ • • • +/p2}. Then

Zco = {x e Q : x is a zero of infinite order of/,.. .,/„}

= {x e Q. : for all/e I, x is a zero of infinite order of/}.

And Zœ is a nonempty proper closed subset of Q. Therefore, since Ü. is connected,

bd (Zoo) is nonempty. Choose a = (aj,..., an) e bd (Z„). Then there exists a se-

quence {xk} in Ü such that xk -> a and for all £

(/iW.-./Wl/to.o).

Hence, by Lemma 3.1, there exists

r=(ClSa,...,cJA)e[ker(F)rL

where some c¡ is nonzero and F: [#(Í2)]P —> «?(íí) is defined by F(gj, ...,gp)

=Agi+ ■ ■ ■ +fPgP-

Since im (F) = /is closed, the closed range theorem for Fréchet spaces [1,Theorem

7, p. 92] implies that im (F') = [ker (F)]1 where F': S '(il) -» [«f'(ü)]p is the trans-

pose of F. Therefore there exists S e S"(Q) with F'(.S) = F.

Let /(xj,..., xn) = (xx - ax)2 + ■ ■ ■ + (xn - an)2. Then

F'(fS) = fF'(S) = fT = (cj/8a,. . ., cp/8a) = (0,. . ., 0).

Thus/S1 e ker (F') = [im (F)]1 = /1 and hence Se(fl)x.

For je e D, let/* denote the ideal in <?(Q) consisting of all functions which vanish

at x together with all derivatives and let Tx denote the natural mapping of cf(Q)

onto ê(ÇÏ)jJx. Then the local ideals Tx(fl) and TX(I) are equal for any x e Q.

By Whitney's theorem for infinitely differentiable functions [7, p. 506], we con-

clude that cl (//) = cl (/) and hence (fl)1 = 71. Therefore S e I1 = ker (F') and hence

F'(S) = T=0. But F=(cjSa,..., Cp8a)/(O,..., 0) since some c¡ is nonzero. This

contradiction completes the proof of Proposition 5.2.

An example due to Malgrange [6, p. 89] shows that the converse of Proposition

5.2 is false for Q.<=Rn,n>l.

Example 5.1. Let

f(x,y) = e-1'*°+y2,       x ¥> 0,

= y2, x = 0.

Then the zero of/2 is of finite order. However, by Proposition 5.1, we see that/

does not generate a closed ideal in S(R2) because/2 fails to satisfy the Lojasiewicz

inequality in any compact neighborhood of the origin.

6. Applications to problems of division for distributions. Let ^£(0) denote the

subspace of <fm(D) consisting of all functions with support in the compact set

K^Q. equipped with the relative topology and let ^m(Q) denote the inductive
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limit of the 3>k(Q), K a compact subset of £2. Here Oáwiáoo and ^°°(£2) will

often be denoted 3>(Q).

Suppose/,.. .,/p e <fm(£2), O^máoo, Q.^Rn. Define Fc: [^m(Q)]p -> 2m(D) by

A(gi, • • -, gp)=fxgi+ ■ • ■ +/pgp and let F'c : ¿2"»(£2) -¿ [^""(£2)]p be the transpose

of A-

Consider the system of equations

(*) fxS = Tx,...,fpS=Tp

where Tx,...,Tpe^""(£2). In order that there exist a solution Se3¡'m(Q) to (*),

it is necessary that

( A,.--, A) e [ker (A)]1-

For if S e 3¡'m(Q) satisfies (*), then

F'c(S) = (fxS,...,fpS) = (Tx,...,Tp)

andim(F'c)^[Yer(Fc)Y.

We are interested in those cases in which there exists a solution S e 3>'m(Q) to

(*) for every (A, • • -, A) G [ker (FC)Y and thus are led to the following definition.

Definition 6.1. [á>'m(£2)]p is divisible by fx,...,fp if for every (A, ■■■, A)

e [ker (A)]1 there exists Se3¡'m(Q.) with fxS= Tx,.. .,fpS = Tp.

Then [^""(£2)]p is divisible by/,... ,fp if and only if im (A) = [ker (FC)Y-

Define F: [^(il)]" -> <?m(Cl) by F(gx,..., gp) =fxgx + ■ ■ ■ +fpgp and let

A: S'm(Q) -> [<?'m(£2)]p

be the transpose of F. A simple partition of unity argument establishes that im (A)

= [ker (A)]1 if and only if im (F') = [ker (F)Y- The closed range theorem for

Frechet spaces now provides the link between problems of division and closed

finitely generated ideals. For it says that im (F') = [ker (F)]1 if and only if im (F),

which is the ideal generated by/,.. .,/p, is closed. Therefore [3>'m(Q)Y is divisible

by A,.. .,/p if and only if the ideal/=(/,...,/,) is closed in «fm(£2).

All our results on closed finitely generated ideals now translate into results

about problems of division. The most interesting are the following.

Proposition 6.1. Suppose/,.. .,fpe <fm(£2), w<oo, Ü^Rn. Then [â>'m(£2)]p is

divisible by fx,... ,/p // and only if f? + ■ ■ ■ +f2 never vanishes or fx + ■ ■ ■ +fp is

identically zero.

Corollary 6.1. Suppose feSm(Q), m<oo, £2c/c\ Then fS>'m(Q.) = ^""(£2) if

and only iff never vanishes.

Proposition 6.2. Suppose /,.. .,/pe«?(£2), Qcü1, Then the following are

equivalent.

(a) [S>'m(0)]p is divisible by fx,.. .,fp.

(b) f2+ ■ ■ ■ +f2 satisfies the Lojasiewicz inequality.

(c) /2H-h/,2 has zeros of finite order orfi2-]-Yfp is identically zero.
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Corollary 6.2. Suppose fe¿>(Q.), Çl^R1. Then the following are equivalent.

(a) f®'(QL)=®'(íl).
(b) f satisfies the Lojasiewicz inequality and fis not identically zero.

(c) fhas zeros of finite order.

Proof. If f@'(ri) = @'(a), then @'(Q) is divisible by/and/is not identically

zero. Hence, by Proposition 6.2, /has zeros of finite order. Conversely, iff has

zeros of finite order, then 3>'(Q.) is divisible by / and Fc is one-to-one, where

Fc: 3>(ü) -*■ 2>(CÎ) is multiplication by/ Therefore

JB'(Q) = im (F'c) = [ker (FC)Y = S'(Sl).

This establishes the equivalence of (a) and (c) ; the equivalence of (b) and (c) is a

consequence of Proposition 6.2.

It was L. Schwartz [8, p. 125] who first observed that if/has zeros of finite

order, then/2>'(Q) = .@'(Í2) for QeJ?1.
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