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1. Introduction. A pair of nonempty sets (Eu E2) will be called twin-convergence

regions for continued fractions

(i.i) «S.1WD-T+T+T+--.

if the conditions

(1.2) «an-ie-2i.       a2neE2,       an # 0,       «=1,2,3,...,

insure the convergence of (1.1).

The first significant twin-convergence region result is due to Leighton and Wall

[12] who proved in 1936 that |a2n| = 1/4, |«2n-il=25/4 is sufficient for the con-

vergence of (1.1). Since then a great many other twin-convergence regions have been

obtained [2], [3], [4], [11], [14], [15], [17]. When we refer to earlier results here we

occasionally state them in a form different from but equivalent to that given origi-

nally. The best result known so far is the theorem of Lange and Thron [9], [10]

which states that if we set an = c2 then the conditions

k2n + zT| Ú p, |c2n-iT| ^ p,

|c2„-i+/(/+r)| ^ p,     |c2n_i-/(i + r)| ^ p,

where T is a complex number and |r|<p<|l+r|, are sufficient for the conver-

gence of (1.1). A result of a different type originally due to Cowling, Leighton and

Thron [3] and later improved by one of the authors [17] gives

(1-4) |a2n| Ú p,        \a2n-i\ ^ 2(p-cosarga2n_i),       p > 1,

as twin-convergence regions.

In the present paper we are first of all concerned with the exposition of a new

method which yields a very large number of twin-convergence regions, including

most of the known results. The number is so large that we must try to come to

grips with the problem of eliminating redundancies. One means of accomplishing

this is by developing necessary conditions, in terms of value regions, for a pair of
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regions to be twin-convergence regions. This is done in §3, using ideas originally

employed by one of the authors [16] to derive necessary conditions for simple-

convergence regions. It may be of interest to note that Theorem 3.1, which

plays a key role in this context, cannot be extended to «-tuple-convergence regions.

This may be a reason why so much more is known about «-tuple-convergence

regions when «=1,2 than when « > 2.

We return to the problem of eliminating redundancies in §6. There we assume

that the value regions under consideration satisfy

(1.5) -1 £ JV u V2   and    V1 n (- 1 - V2) = 0

and we make the conjecture that all such regions can be eliminated except those

for which Vy — — 1 — C(V2). We are able to prove the conjecture in some cases.

In view of what has been said above, it must be pointed out that there may still

be some overlap in the convergence results contained in this article. However, it is

shown in §5 that the theorem of Lange and Thron is a special case of Theorem 5.4.

Furthermore, the results obtained from Theorem 5.4 for

(1.6) |r1|<ftl     \i+r1\<Pl,     |i+r.| < As|r.|,

are new, except for r1 = (l + r2) = 0, p2=\, which is the theorem of Cowling,

Leighton and Thron referred to earlier. The proof given for the best form of this

result in [17] is so complicated that it seemed hopeless to obtain the extension to

arbitrary Ft) F2. Thus we believe that by making this important new result possible

our method has proved its worth.

In 1956 Wall [20] gave a twin-convergence region type condition for the con-

vergence of the even part of (1.1). Further results along this line were obtained

by Perron [13] and one of the authors [17], [19]. An easy by-product of our method

are numerous results of this type.

The methods used formerly in deriving twin-convergence regions (Eu E2) have

been quite varied. However, many of them make essential use of the assumption

that there exist value regions Vx and V2 such that

(1.7) 5jte^ £ v2   and    ^- £ Vx   if a2n.,e E1 and a2n e E2.

An elementary approach has been to observe that the sets Sn( Vkn), where kn = 1

if n is odd and kn = 2 if n is even, form a nested sequence of circular disks (for the

definition of the functions Sn see §2). This sequence can either shrink to a point,

the limit point case, or to a disk, the limit circle case. If the limit point case holds

for the continued fraction, then the continued fraction converges (at least if

0 g Vx n V2). Thus in some instances [7], [9], [10], [14], [17] the strategy has been

to show that the limit point case will occur under the conditions imposed on the

elements of the continued fraction. This was done by estimating the radius rn

of the «th nested disk.
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If the limit circle case occurs, the continued fraction may, or may not, converge.

Our present strategy, previously used in [6], [8], [18], is to determine sufficient

conditions for convergence of the continued fraction in the limit circle case, and

to make sure that the element regions are so chosen as to incorporate these con-

ditions. In this we make essential use of the basic fact that

(1-8) Sn + 1(-l) = Sn(oo) = Sn_i(0)

holds for all continued fractions (1.1). It is for this reason that the location of the

points —1, oo, 0 with respect to the pre-value regions Vx and V2 plays such an

important part in Theorem 4.3. It is noteworthy that the method employed in this

article is both simple and elementary in the sense that no deep function-theoretic

results are used. Moreover, by virtue of its wide range of applicability, the method

provides a unified approach to the twin-convergence region problem.

Finally, a word on notation. By Int (A), A and C(A) we mean the interior,

closure and complement, respectively, of the set A in the extended complex plane.

If/is a function of k variables, we mean by f(Au ..., Ak) the set

{/(*i,..., xk) : xm e Am, m = 1,..., k}.

The symbol ° stands for functional composition; i.c.f°g(z)=f[g(z)].

2. Basic concepts. In this section we summarize the definitions and basic

properties of continued fractions that are needed. An (infinite) continued fraction

is an ordered pair of sequences [{an}"=1, {/n}"=i], where au a2,... are complex

numbers, anJ=0, «= 1, 2,..., and where the/n are elements in the extended complex

plane defined as follows: If sn denotes the linear fractional transformation (l.f.t.)

(2.1) sn(z) = aj(l+z),       «=1,2,...,

and

(2.2) S1(z) = s1(z);       Sn(z) = S..M4       « = 2,3,...,

then

(2.3) fn = Sn(0),       « = 1,2,....

The an are called elements of the continued fraction [{an}, {/„}] and/, is called the

nth appproximant. A continued fraction is said to converge if its sequence of

approximants converges and, in this case, /= lim/„ is called the value of the con-

tinued fraction. For convenience the continued fraction [{an}, {/,}] is sometimes

denoted by (1.1), K"=1(ajl) or, more simply K(aJ\), and the «th approximant

by K£=1(ak/i). The symbols (1.1), K„=1(aji) and K(aJ\) are also commonly

used to denote the value of the continued fraction when it converges. The notion

of a continued fraction as an ordered pair of sequences was suggested by Henrici

and Pfluger [5].
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The following standard formulas are stated for later reference :

(2.4) SM = ia-1ltin'       «=1,2,...,
Un-1z + an

where

,„„       ^o = 0,        A1=a1,       An = An.1 + anAn_2,
(2.5) « = 2, 3,...,

B0 =1,        Bx = 1,         Bn = Bn_1 + anBn.2,

and

(2.6) AnBn_x-BnAn_x = (-1)» + 1 f] ak.
fc = i

Let Ex and E2 be sets of complex numbers. Nonempty sets Vx and V2 in the

extended plane will be called pre-twin-value regions corresponding to the pair of

sets (Ex, E2) if

(2.7) s(Ex, Vx) £ V2,       s(E2, V2) £ Vx,

where

(2.8) s(a, z) = a/(\+z).

When this is the case, we shall write (Ex, E2) — m(Vx, V2). We shall write (Ex, E2)

= M(Vx, V2) if (Ex, E2) is a pair of maximal sets satisfying (2.7); that is, if (Ef, £*)

= m(Vx, V2) implies E*^En, «=1,2. Pre-twin-value regions Vx, V2 corresponding

to (Ex, E2) are called twin-value regions corresponding to (Elt E2) if

(2.9) Ex £ V2,       E2 £ Vx.

Twin-value regions Vly V2 corresponding to (Ex, E2) are called best if Vx, V2 are

minimal; that is, if F„Ç Kn*, n= 1, 2, for every pair of twin value regions Vf, V*

corresponding to (Ex, E2). It is easily seen that pre-twin-value regions Vx, V2

corresponding to (Ex, E2) will be twin-value regions if 0 g Vx n V2.

The characteristic property of twin-value regions Vu V2 corresponding to (Ex, E2)

is that Vx and V2 contain all finite continued fractions

(2 10) —   — —^■W) 1 + 1+..-+1

0 in Ox    a^ Am
(¿Al) 1 + 1 +•••+!

Û2n-le^l» «2ne^2.

respectively. Furthermore, Kt and K2 are best twin-value regions corresponding

to (Elt E2) if they contain no other elements. Thus the limit (if it exists) of a

continued fraction K(an/l), with elements satisfying a2n-x^Ex, a2neE2, lies in

V2, the closure of V2. In this context the sets (Eu E2) will be referred to as element

regions (or more precisely, twin-element regions) for continued fractions of the
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form K(an/\). The properties stated above are immediate consequences of the

following

Theorem 2.1. Let Ex and E2 be sets of complex numbers. Let

K = {w ■ w = sn + 1 o ín + 2 o •.. o sm(0), m ä «+ 1, a2k-i e Eu a2k e E2},

« = 0, 1,

where sm(z) = am¡(\ +z) and V2= Va. Then Vx, V2 are best twin-value regions corre-

sponding to (Eu E2).

Proof. First we show that Vu V2 are twin-value regions corresponding to (Eu E2).

From (2.12) it follows that an + i=sn + 1(0) e Vn for all an + 1 e En + 1, « = 0, 1 ; hence

(2.9) is satisfied. To verify (2.7) suppose that w e Vn and ane En, «=1 or 2. It

follows from (2.12) that there exists an integer m^n+l, and for each k, n+\

^k^m, there exist elements ak e Ekimod2) such that

w = sn + 1 °sn + 2°- ■ -°sm(0).

Therefore (2.12) implies that sn(w) e Vn_x and hence (2.7). Now to show that Vx

and V2 are best, let V*, V* denote arbitrary twin-value regions corresponding to

(Eu E2). It suffices to prove that Knç V*, «=1,2. It is easily shown by induction

that for « = 1, 2 and m ä «

(2.13) ín o sn +1 o • • • o SJ V* (mod2)) S K*_ !,

for arbitrary ak e Ek(moi2). Here we have set V¿*= K2*. Since JE^ç v$ and E2^ Vf,

sm + i(0) = am + 1eV*(moi2) for arbitrary am + 1 e Em + Umoi2)- Combining this with

(2.13) gives sn° ■ ■ ■ ° sm° sm +1(0) e K^_ t and this completes the proof.

Throughout this paper we assume that the elements an do not vanish. However,

a few brief remarks can be made for the case when an = 0 for some «. Suppose

that am # 0 for m < n but an = 0. If -1 £ Vx u V2, then it follows that S JO) = Sn-1(0)

for all m^n. Thus we obtain a "degenerate continued fraction" converging in a

trivial manner. The condition — 1 £ V± u V2 is imposed in almost all of the

convergence theorems to be given. The main exception to this is Theorem 4.3,

Case 3(A) and results derived from it (part of Theorem 5.4 and Corollaries 5.7

and 5.8). If — 1 e Vx but —I $ V2, then a2n = 0 can still be admitted in Case 3 of

Theorem 4.3.

Finally, twin-convergence regions (Ex, E2) are said to be best if there do not

exist twin-convergence regions (E*, E2) such that

(2.14) £n =  £n*, «=1,2,

where containment is proper for at least one of the sets. It is well known that

00

(2.15) 2 Kl =°o,       d± = aï1,       dn = (<4-iûn)"\       « = 2, 3,...,
n=l

is a necessary condition for convergence of K(ajl). Thus (Eu E2) are called

conditional twin-convergence regions for continued fractions of the form K(ajl)
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if convergence is implied by (1.2) and (2.15) together. It follows from (2.15) that

both members of a pair of twin-convergence regions cannot be unbounded. This

is not true, however, of conditional twin-convergence regions. It also follows from

(2.15) that subsets of conditional twin-convergence regions will be twin-convergence

regions if at least one subset is bounded.

3. Necessary conditions. In the following sections we shall employ twin-value

regions and, more generally, pre-twin value regions to obtain a large number of

twin-convergence regions for continued fractions of the form K(aJ\). It will be

important to eliminate redundancies and convergence regions which are not best.

For this purpose some helpful results are developed in the present section.

Theorem 3.1. Let

(3.1) (Eu E2) = m(Vx, V2)   and   (Ef, E$) = m(Wx, W2)

where

(3.2) Wx = - 1 - C( V2),        W2 = -\- C( Vx).

Then the following statements are true:

(A) (Ex, E2) = m(Wx, W2)and(E?,E2*) = m(V1, V2),

(B) (Eu E2) = M(Vx, V2) and (Ef, E*) = M(Wx, W2) imply En = E*, »-1,1

Proof. The transformation v(z)= — 1 — z is idempotent (i.e. v = v_1) and satisfies

(3.3) sn = v o s~1 o v,

where sn(z) = aj(l +z). Letting V0= V2 and WQ= W2, we obtain for each «=1,2

and an e En,

(3.4) sn(Wn) = sn o v[C(Vn_x)] = v c s-^C^.x)] c v[C(Vn)] = Wn.x-

Here we have used (3.2), (3.3) and the fact that (3.1) implies s~1[C(Vn_x)]'^ C(Vn).

But (3.4) gives (Ex, E2) = m(Wx, W2). The second part of (A) follows in a similar

manner, since Vn= — 1 — C(Wn_x), «=1,2. (B) follows from (A) since (Ex, E2)

and (Ef, £*) are maximal. This completes the proof.

Remark. The preceding theorem shows that if Vx, V2 are pre-twin value regions

corresponding to twin element regions (Ex, E2), then Wx, W2 defined by (3.2)

are also pre-twin-value regions corresponding to (Elt E2). This result is used

extensively in the proof of Theorem 4.3.

Theorem 3.2. If Vx, V2 are best twin-value regions corresponding to nonempty

element regions (Ex, E2), then at least one of the following must hold:

(3.5) -leVxW2,

or

(3.6) Vxn(-l-V2) = 0.
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Proof. Let Wlt W2 be defined by (3.2), so that (Ex, E2)=m(Wx, W2). Suppose

that

(3.7) Ex £ W2   and   E2 £ Wu

so that Wx, W2 are twin-value regions corresponding to (Ely E2). Since Vx, V2 are

best, we obtain V2ç W2= — 1 — C(VX), which is equivalent to (3.6). On the other

hand, suppose that (3.7) is false. Then for «= 1 or 2, there exists an e En such that

an i Wn-x = v[C(Vn)], where v(z)= -1 -z and W0= W2. It follows that v(an) e Vn

and hence by Theorem 2.1 v(an) may be written in the form

v(an) = jB + 1 o • • • o Sm(0),   ak e Ek(moä2),       m £ «+1.

But from (3.3) we obtain v(an) = v o sn(0) = sñ1 ° v(0) and hence

v(0) = sn o sn + 1 ° • • • ° 5m(0) G Vn_x

by Theorem 2.1. This implies (3.5) and completes the proof.

Theorem 3.2 gives a necessary condition for best twin-value regions correspond-

ing to nonempty element regions. Our next theorem gives a necessary condition

for best twin-value regions corresponding to conditional, twin-convergence regions.

The proof makes use of the following two lemmas. A proof of the first lemma may

be found in [1, Theorem 2.1].

Lemma 3.3. If the two periodic continued fractions

(18) T+...+T+T+..-,

V'»> l+.-.+ l + 1+...,

converge to limits wx and — (1 + w2), respectively, then Wx and w2 are the fixed points

of the transformation w = Sn(z) defined by (2.4).

Lemma 3.4. If

(3.10) -!=T-l       .T'       a«*0'       la» am,

then

am ax
W -1=T + ...+ i

Proof. Let sn(z) = aj(l +z), n=l,...,m, and v(z)= -\-z. Then from (3.10)

and (3.3) we obtain

v(0) = Sx ° ■ • ■ » ím(0) = t)oi¡'1o...oín;1o v(0),

from which (3.11) follows since vmv~\
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Theorem 3.4. If Vu V2 are best twin-value regions corresponding to conditional

twin-convergence regions (Ex, E2), then

(3.12) -\$VXC\V2.

Proof. Assuming — 1 e Vx n V2 we shall prove the existence of at least one

divergent periodic continued fraction K(an/\) with elements satisfying an e E„(mod2),

an=£0. This is sufficient for our purpose since a periodic continued fraction always

satisfies (2.15). It follows from the assumption and from Theorem 2.1 that there

exist integers « and k and there exist nonzero elements au .. .,a„ and d2,..., dk

such that

i  - ai a" ÍT
i —  i _, .    I '       ane nm (m0(12),

(3.13)
_ 1    —   _2 _ ri     a   F

1    —     i     .    ...    i     1   ' "m       £« (mod 2)-

It will suffice to consider the following three cases: (1) If« is even, we consider the

periodic continued fractions of period « + 2

n 14^ — —    —   —   —
K      ' 1 ■+.'•• + 1+T+l+l + •••

and

,, .,, £2    £l    £n £l    i?
y      ' 1 + 1 + 1 +■•■+ 1 + 1 +•••,

where xx and x2 denote arbitrary nonzero elements of Ex and E2, respectively.

(2) If k is odd, we consider instead the periodic continued fractions of period

k+\
1-, , £-, "2 ak    z2    zx d2
(116) T+--.+T+T+T+...+T+...

and

n 17) —   —   — —   —y      ' 1 + 1 + 1+...+ 1 + 1 + ...,

where zx and z2 denote arbitrary nonzero elements of Ex and E2, respectively.

(3) If « is odd and k is even, and if j>i e Ex and v2 e E2 (y¡ # 0), then

-] =a± <K   y_2   y_\    <k a\
1 +■■•+ 1 + 1 + 1 + 1 +•••+ 1

involves an even number of elements and hence could be used to construct periodic

continued fractions of the same type considered in case (1). We shall show that in

case (1) either (3.14) or (3.15) diverges for some xx e Eu x2 e E2 (x^O). The proof

for case (2) is completely analogous.

The continued fractions (3.14) and (3.15) are so constructed that the approxi-

mants of order « + «!(« +2) of the first are all — 1 and the approximants of order
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w(n + 2) of the second are all zero. The last statement follows from Lemma 3.4.

Since Ex, E2 are conditional twin-convergence regions, the continued fractions

must converge to — 1 and 0, respectively. Thus by Lemma 3.3, Wx = — 1 and w2

= — 1 are the fixed points of the transformation w = Sn + 2(z) defined by (2.4) and

(2.5). It follows that the quadratic equation

(3.18) Bn + 1w2 + (Bn + 2-An + 1)w-An + 2 = 0

has a double root — 1, and so we must have

(3.19) An + 2/Bn + 1 = -1    and   (Bn + 2-An + 1)/Bn + 1 = 2.

But from (2.5) we have An + 2 = An + 1 + x2An and Bn + 2 = Bn + 1+x2Bn. Hence (3.19)

becomes

(3.20) x2Bn = (An + x + Bn + 1)   and   x2An = -(An + 1 + Bn + 1).

These equations can hold for more than one x2 if and only if An = Bn = 0. But from

(2.6)

An + 1Bn-AnBn + x = axa2- ■ -anXx ^ 0.

Hence there is only one choice for x2 and so E2 must consist of only one point.

From (3.20) it follows that x2(An + Bn) = 0 and so An + Bn = 0 and AnBn^0. Again

using (3.20) and (2.5) we obtain

„      _  ^n + l+ffn + l   _  (An + XxAn_x) + (Bn + XxBn _ x)  _   ,,    An-x+Bn-x

*-~~sr~ ~b~t       --Xi-—b:

It follows that there is but one choice for x± and so Ex must consist »of only one

point. But if Ex and E2 both consist of only one point, then the continued fraction

(3.14) is of period 2. Thus its approximants of order (m+1)(« + 2) are all 0 and so

the continued fraction diverges. This completes the proof.

Our use of value regions and pre-value regions in the remaining part of this

paper will be restricted to regions of the following three types: (1) circular disks,

(2) complements of disks, and (3) half-planes. The point at infinity is always in the

interior of the complement of a disk and on the boundary of a half-plane. There

are a number of other such conditions which must be satisfied by pre-twin-value

regions (of the types listed above) corresponding to nonempty element regions

(Ex, E2). These are summarized in Table 1 for later use in §4.

Remarks. The results listed in Table 1 may be easily verified by considering

the image of z = co under the transformation s(a, z). It is easily seen that cases

(4) and (5) may be reduced to cases (2) and (1), respectively, by using the corre-

sponding pre-twin-value regions Wx, W2 defined by (3.2).

4. General convergence criteria. We shall now establish a method by which

a large number of twin-convergence regions may be derived. Our main convergence

result is given in Theorem 4.3; however, in a remark following that theorem it is
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Pre-twin-value regions Necessary conditions for

Case Vi s(Eu Vx) <= V2 s(E2, V2) £  V,

disk disk -l*Pi -1*V2

disk half-plane - 1 £ Int Vx 0 e Vt, -1 $ ra

disk complement

of disk

0 e Int Vu -\i V2

half-plane complement

of disk

Oe V2 0 e Int Vu -1 i Int V2

complement

of disk

complement

of disk

0 e Int V2 0 e Int Fi

6       half-plane        half-plane        0 e V2, - 1 £ Int Vx    0 e Vu -1 £ Int V2

Table 1. Necessary conditions for pre-twin-value regions V\, V2 corresponding

to nonempty element regions (Eu E2). Note: s(a, z) = a/(l +z).

pointed out that other convergence regions are obtainable from the method. The

proof of the main theorem is based on the following two lemmas which deal with

convergence of sequences of linear fractional transformations.

Lemma 4.1. Let {Tn} be a sequence of I. fit.'s of the form

(4.1) TJz) = Cn + RJz + Gn)/(Gnz +1),       «=1,2,...,

satisfying

(4.2) \Rn\ = rn\ r > 0,        |C.-q,_,| Ú rn_x-rn,        \Gn\ = gn < 1.

(A) Suppose that there exists a sequence of points {£„} in the extended complex

plane such that

(4.3) T2n + 1(i2n + 1) = T2JUn),    IWiI ^ 1,    IUJ á 1.       «il.

If for some e>0, |£2n + i| è 1 +s, «^ 1, then

(4.4) 2 (l-g2n+i)<co.
n = l

If for some e>0, |£2n| á 1 — e, »fcl, r/ien

(4.5) Í(l-g2n)<00.
n=l

(B) Suppose that there exists a sequence of points {£ñ} in the extended complex

plane such that

(4.6) T2Jt2n) = T2n_ia2n_i),    l&J ^ 1,    |£2n_!| il,       »il.
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If for some e>0, |£2n| = 1 + e> "= L then (4.5) holds. If for some e>0, |£2n-i| = 1 —e.

n^l, then (AA) holds.

Proof. Consider case (A) in which (4.3) is satisfied. From (4.1) and (4.3) we obtain

(4-7) C2n + i + 7?2n + iA2n + 1 = C2n + R2nA2n,

where

A„ = «n + Gn)/(GnC+l).

We note that {A2n +1} is bounded. This follows from (4.7) and the fact that rn\ r > 0,

{Cn} converges and |A2n| 5S1. From (4.2) and (4.7) we obtain

'-2n + i|A2n + i| = r2n —r2n + i+/'2n|A2n|

and hence

(4.8) r2n + x/r2nú\-Hn,

where 0-¿Hn = (\\2n + 1\ -|A2n|)/(l + |A2n + 1|)< 1. It follows from (4.8) and r2n/r2n_x

^ 1 that

(4.9) r2n + 1 ÚLY\(\-Hk)
k = l

where L is a constant independent of «. Therefore the series 2 Hn converges, for

otherwise the infinite product \~[ (1 — 77„) would diverge to zero and thus contra-

dict the hypothesis rn\ r>0. Since {A2n + 1} is bounded, we conclude that

2 (I A2n + il - I A2n|) converges and hence both of the series

(4.10) 2(|A2n + 1|-l)   and   %(\-\^n\)

converge, since |A2n + 1| 2; 1 and |A2n| ̂  1.

Now suppose that for some e>0, |£2n| ̂  1 — e, »¿ 1. In this case it suffices to

show that

(4.11) (i-g2n)Kè 1-IU       nil,

for some positive constant K sufficiently small. But for 0 < K< \, (4.11) is equivalent

to

(4.12) |£2n + G2„| ^ [\-K(l-g2n)]\G2n(2n+l\.

Squaring both sides of (4.12), collecting terms and dividing by (1 — g2n), we obtain

the equivalent inequality

(4.13) K[2-K(\-g2n)]\G2nt2n+\\2 Ú (l-|£2„|2)(l+g2„).

The right side of this inequality is positive and uniformly bounded from zero.

The left side is bounded above by 87C. Hence if K>0 is sufficiently small, (4.13)

will hold for all «. It follows that (4.11) and hence also (4.5) are satisfied. By a
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similar argument it can be shown that (4.4) holds if |£2n + i| = 1 +£, «i 1- Case (B)

follows from (A) by a change of index. This completes the proof.

Lemma 4.2. Let {Tn} be a sequence of I.fit's of the form (4.1), (4.2).

(A) Suppose that there exist sequences of points {£„} and {r]n} in the extended

complex plane such that for some e>0

(4.14) T2n + 1(U = T^.^J,     ||f,|-l|  ä e,     \\Vn\-l\  ^ •, »il-

VU (1 — g2n-i) <°°, then {7"2n + i(z)} converges for all z in the extended plane such

that \z\ # 1 and

(4.15) limT2n + 1(z) = lim [C2n + 1 + R2n + 1/G2n + 1],       \z\ * 1.

(B) Suppose that there exist sequences of points {$'n} and {r¡'n} in the extended

complex plane such that for some e > 0

(4.16) 7W&) = T2n(v'n),    ftfn\-l\ ^ E,    \Wn\-l\ i «,       »il.

If 1,(1 —g2n) < °°, then {T2Jz)} converges for all z in the extended plane such that

\z\ #1 and

(4.17) lim T2Jz) = lim [C2n + R2n/G2n],        \z\ * 1.

Proof. Case (A). From (4.14) we obtain

l-g2n + l
R2n + iG2n + i — R2n-iG2n-x — (C2n_! — C2n + i) — R2n + içn

.   D                        ~g2n-l

+ -«2n-iVn ft-     ,   i"

G2n + iÇn+ 1

From summing equations of this form we obtain for m < «

i-ñk+i
R2n + lG2n + i—R2m + lG2m + X  — (C2m + 1 — C2n + i)—       y       R2k + 1 ~p ,   i i¿

k = £+l tr2fc + l + t/Cfc

_L      V        I? ~g2fc-l
+   2_    J<afc-i;

Gas-i + lAfe

Thus it is readily seen that {/?2n + iC/2n + i} will be a Cauchy sequence provided

2 (1 — ̂2n + i)<0°- For then we have g2n + 1 -*■ 1 so that by (4.14) the sequences

{Gafc + i + l/ffc},       {Gafc-i + l/^fc}

are bounded from zero for large enough k. The proof of (A) is completed by

observing that (4.1) may be written in the form

(4.18) T^ = C^k[l-£vi\

It suffices to note that (B) follows from (A) by a change of index. We mention

here that it would be possible to weaken the hypothesis of Lemma 4.2 to allow
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|f„| ->- 1 and |i7„| -v 1. However, the resulting conditions would be far more

complicated, and such a strengthening of the lemma has not been needed. We are

now ready to state and prove the main convergence theorem.

Theorem 4.3. Let Vx, V2 be pre-twin-value regions corresponding to a pair of

element regions (Ex, E2), where Vx and V2 are regions in the extended plane of the

following types: circular disks, complements of disks or half-planes. Vx and V2 may

contain all, none or part of their boundaries. Let K(an/\) be a continued fraction

with elements satisfying

(4.19) a2n^xeEx,   a2neE2,   an ^ 0,       «=1,2,...,

and let fn denote its nth approximant. Then the following statements are true:

Case 1. Let Vx and V2 be disks. Then K(aJ\) converges if 0 $ dVx, Oe V2 and

-l^FiU V2.

Case 2. Let Vx be a disk and V2 be a half-plane. Then

(A) K(ajl) converges ifO e Int Vx and - 1 i Vx u V2.

(B) {/2n-i} converges if one of the following holds:

0 e Vx n Int V2   and    -1 i Int Vx u V2.

Case 3. Let Vx be a disk and V2 be the complement of a disk. Then

(A) K(ajl) converges ifOe Int Vy n V2 and -1 $ %VX u F2,

(B) {/2.1-1} converges ifOe Int Vx and — 1 <£ Vx u V2.

Proof. Let vx and v2 be linear fractional transformations with the properties

(4.20) vk(Vk)=U,       A: =1,2,

where U denotes the closed disk |z| <, 1. Let v2n + 1 = vx, v2n = v2, « = 0, 1,..., and

let V0= V2. Define sequences of l.f.t.'s {/„} and {Tn} by

(4.21) tn = v„.1o sn o vñ1,       «=1,2,...,

and

(4.22) Tx = tx;       Tn = Tn_x°tn,       « = 2,3,...,

where sn(z) = s(an, z) = aj(l+z). It follows from (2.7) and (4.22) that

(4.23) Tn(U) £ Tn_x(U) SU,       « = 2, 3,....

Thus as shown in [18], Tn(z) has the form (4.1) satisfying (4.2) with the additional

possibility of r = 0. It is further shown that C=lim C„ exists and that {Tn(U)} is a

nested sequence of closed disks; Cn is the center and rn the radius of Tn(U). The

case with rn\ r = 0 is referred to as the limit point case, since {Tn(U)} converges

to the point C. When rn\ r>0, {Tn(U)} converges to the closed disk with radius

r and center C. This is called the limit circle case.
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From (2.2) and (4.22) we obtain

(4.24) fin = SJ0) = voioTn[vJ0)],

so that {/,} converges if and only if {Tn[yn(0)]} converges. Thus in particular {/,}

will converge if the limit point case occurs and if 0 e Vx n V2 since then |t>n(0)| ̂  1,

n= 1, 2. It also follows from (2.1) and (2.2) that

(4.25) 5n(- 1) = Sn_i(cx>) = Sn_2(0),       « = 3, 4,...,

from which we have

(4.26) T2n + x[vx(-l)] = T2n[i>2(co)] = Tto-dvJP)],
« = 1,2,....

(4.27) T2n + 2[v2(-1)] = T2n + i[t>i(oo)] = T2n[t;2(0)],

Now consider Case 1, with Vx and V2 both disks and suppose (a) Oelnt Vx.

In view of the preceding remarks it suffices to consider the limit circle case. To this

end let £2n-i = £n = ^i(-l), ^ = ^2(00) and -qn = vx(0), «=1,2,-Since |t>a(-l)|

> 1, |i>2(co)| > 1 and |^i(0)| < 1, it follows from Lemma 4.1 (B) that 2 (1— g2n-i)<a0

and hence from Lemma 4.2(A) that {T2n + i(z)} converges for all z such that |z| =£ 1.

Thus from (4.15) and (4.27)

Hm T2n_i[t;i(0)] = lim [C2n + i + /?2n + i/G2n + i]

= lim T2n + i [»1(00)] = limT2n[t;2(0)];

whence {/„} converges. In the alternative situation (b) 0 $ Vx, we consider the

corresponding pair of pre-twin-value regions Wx, W2 defined by (3.2). Here Wx

and W2 are both complements of disks and it is easily verified that

0 e Int ITi n Int IT2,       -1 i Int Wx,       -le Int W2.

Now we choose l.f.t.'s vx and v2 with the properties

(4.28) vk(Wk) =U,       k=l,2,

and proceed as above. Again it suffices to consider the limit circle case and we let

£2n+i = í>i(-l), Í2n = v2(<x>), ̂̂ (-^and^t^O), « = 1,2.Since |i>i(-l)|

il, |tf2(oo)|<l, \v2(—1)| <1 and |t;2(0)| < 1 it follows from Lemma 4.1(A) that

2(1— g2n)<°o so that from Lemma 4.2(B) (T2n(z)} converges for z such that

|z| ^ 1 and (4.17) holds. Thus using (4.26) we have

lim T2n[t;2(0)] = lim [C2n + R2n/G2n]

= lim T2n[v2(co)] = lim T2n_i[t;i(0)],

so that {/,} converges.

Next we consider Case 2 with Vx a disk and V2 a half-plane. First suppose

that

(4.29) 0 e Int V1 nV2   and    -1 £ Vx u F2.
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Letting Vx and v2 be l.f.t.'s satisfying (4.20), we proceed as in Case 1. Again it

suffices to consider the limit circle case and we set £,2n + x = €n = Vx(— 1), Í2n = v2(oo)

and ^„ = ^(0), «= 1, 2,.... Since \vx( —1)| > 1, |tf2(°°)| = 1 and |t>i(0)| < 1, it follows

from Lemma 4.1(A) that J.(l—g2n + i)<cc and hence from Lemma 4.2(A) that

{T2n + 1(t)} converges for |z|^l and that (4.15) holds. Therefore using (4.27) and

1^(00)1 > 1, we obtain

lim T2n + 1[vx(0)] = lim [C2n + 1 + /?2n+1/G2n + 1]

= lim r2n + 1K(co)] = lim T2n[v2(0)];

whence {/„} converges. The alternative situation under Case 2(A) is that

0 g Int IV,       0¿F2,       -l^FiUF,.

In this situation we use the alternate pre-twin-value regions Wx, W2 defined by

(3.2), which satisfy

(4.30) 0 g Int Wx n Int W2,        -le Int Wx   and    -1 £ W2.

Here Wx is a half-plane and W2 the complement of a disk. As in Case 1 we choose

l.f.t.'s Vx and v2 with the properties (4.28) and it suffices to consider the limit circle

case. Let £2B +1 = 0i(°o)> Í2n = ri'n = v2(0) and i'n = v2(-l), «=1, 2,.... Since |«i(oo)|

= 1,| v2(0) I < 1 and | v2( — 1) | < 1, it follows from Lemma 4.1 (A) that 2(1— #2n) < °°

and hence from Lemma 4.2(B) that {T2n(z)} converges for |z|#l and that (4.17)

holds. Therefore from (4.26) and |tf2(oo)| < 1 we obtain

lim T2n[v2(0)] = lim [C2n + R2n/G2n]

= lim r2n[t;2(oo)] = lim T2n_x[vx(0)],

so that {/„} converges. This proves Case 2(A). In the proof of Case 2(B) we proceed

as above using the pre-twin-value regions Wx and W2. The properties of Wlt W2

corresponding to Case 2(B) are

(4.31) 0 g Int Wx nW2   and    -1 £ Wx U Int W2.

In this situation it suffices to consider the limit circle case and we let £2„+i = f„

= Ui(— 1), lïn = v2(<x>) and r¡n = Vx(0), «=1,2,-Since |«1(-rl)|>l, |d2(co)|<1

and |^i(0)| < 1, it follows from Lemma 4.1(A) that 2 (1— ̂2n + i)<°° so that from

Lemma 4.2(A) {T2n+1(z)} converges for |z| ^ 1.„Therefore

lim T2n+1[vx(0)] = lim [C2n+1 + 7?2n+1/G2n+1],

and we deduce the convergence of {/2n+1}. In this situation we are not able to

conclude that {7Vn[t>2(0)]} converges as in the previous cases considered, since now

1^(00)1 = 1.
Finally, we come to Case 3, where Vx is a disk and V2 the complement of a disk.

Again we let Vx and v2 denote l.f.t.'s satisfying (4.20) and proceed as in the previous

cases. In part (A) it suffices to consider the limit circle case. Let i2n+i = Vx(°o),
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Í2n = ^(0), £„~0i(-l) and r¡n = vx(0), «=1,2,.... Then since |t?i(oo)|>l, \v2(0)\

^ 1, h(- 1)1 ¥= 1 and |t;i(0)| < 1, it follows from Lemma 4.1(A) that 2 (1 ~g2n-i)

<oo and hence by Lemma 4.2(A) {T2n + X(z)} converges for |z| # 1 and (4.15) holds.

Thus, using (4.27) and |tfi(oo)| > 1, we obtain

limT^ + iMO)] = lim [C2n + i+/?2n+1/G2n + i]

= UmT2n + x[vx(co)] = UmT2n[v2(0)];

whence {/„} converges. In the proof of part (B) we are able to deduce only the con-

vergence of {/2n_i} in the limit point case, since no assumptions are made regarding

v2(0). The limit circle case is handled by the same methods used above. Let £2„ + i

= L = Vi(-l), Í2n = v2(<x>) and ^„ = ^(0), «=1,2. Then since |»X(-1)|>1,

|y2(oo)|<l and |i?i(0)J<l, we obtain from Lemma 4.1(A) that 2 (1—^2n-i)<°o

and hence from Lemma 4.2(A) that {T2n + i(z)} converges for |z|^l. Therefore

{Ï2n + i[i'i(0)]} converges and so also {/2n-i}- This completes the proof of Theorem

4.3.

Remarks concerning Theorem 4.3. In stating conditions sufficient for con-

vergence we have eliminated those cases which fail to satisfy the necessary conditions

for nonempty element regions listed in Table 1. We have tried to give an exhaustive

set of twin-convergence criteria for continued fractions of the form K(ajl)

obtainable from Lemmas 4.1 and 4.2 applied to (4.25). Some additional twin-

convergence criteria could be obtained by applying the method to the equations

(4.32)    Sn + x(-l-an + x) = SJ-l) = Sn_x(co) = Sn.2(0) = Sn^3(an.2),

and introducing additional restrictions on the elements an. It is also possible to

obtain convergence criteria from Lemmas 4.1 and 4.2 applied to a sequence of

value regions {Vn}. A number of results of this type have already been given in

[7], [8]. Without further modification the method does not give twin-convergence

criteria for the case with Vx and V2 both half-planes. This is due mainly to the fact

that infinity is on the boundaries of these regions so that we get | t>n(oo) | = 1, « = 1,2,

in the notation of (4.20). However, this case has been extensively developed in the

two preceding references. The cases with Vx a half-plane, V2 the complement of a

disk and with Vx, V2 both complements of disks are included in Cases 2 and 1,

respectively. This is done by using the alternate pre-twin-value regions Wx, W2

defined by (3.2). This allows a more concise formulation of the results and the

elimination of certain ambiguities.

5. Twin-convergence regions. This section is devoted to the development of

explicit twin-convergence regions obtained from Theorem 4.3.

Theorem 5.1 (disk-disk case). A continued fraction K(an/\) converges if its

elements satisfy

(5.1) a2n_xeEx,   a2neE2,   an =£ 0,       «=1,2,3.
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where

(5 2)    En = {w'- \w(l + Vn)-f,n-i(\l + rn\2-P2.)\+Pn\w\

=i ft.-i(|i + rB|a-Pï)},     « = i,2,

(5.3)   \Fx\ ± px < \\ + Tx\,     |r2| ^ P2 < |i + r2|,     r0 = r2,     Po = Pa.

Proof. It follows from Lemma 2.1 of [8] that Vx, V2 defined by

(5.4) Vn = {z: \z-Tn\ í Pn},       « = 1,2   (V0 = V2)

are pre-twin-value regions corresponding to the element regions (Ex, E2). Thus the

theorem is a direct result of Theorem 4.3, Case 1.

Theorem 5.2 (disk-half-plane case). A continued fraction K(ajl) converges if

its elements satisfy (5.1), where

(5.5) Ex = {w: |w|[p-|l + r|cos(argw-arg(l+r)-^)] ^ p[\l + T\2-P2]},

(5.6) E2 = {w : |w-2re'*(cos 4>-p)\ + \w\ ^ 2p(cos </>-P)},

(5.7) |T| < P < |l + r|,       0á/7<cos</-.

The sequence of odd approximants {f2n-xi converges if'the elements satisfy (5.1),

(5.5) and (5.6) with

(5.8) |r| á p g |l + r|,       0 </? < cos >/>.

Remarks. The element regions Ex and E2 are bounded by a hyperbola and an

ellipse, respectively. The proof of the theorem is an immediate consequence of

Theorem 4.3, Case 2 and the following lemma.

Lemma 5.3. Let Vx be a closed disk and V2 a closed half-plane defined by

(5.9) k1 = {z: |z-r| íí ,>}, ¡r| i*S..|i+rj,

(5.10) V2 = {z : Re (ze~^) ^ -p},       0 ¿, p < cos 4>.

Then Vx, V2 are pre-twin-value regions corresponding to the element regions (Ex, E2)

defined by (5.5), (5.6).

Proof. It suffices to verify (2.7). First we note that

s(w, V2) = {z: \z-D2\ ^q2}

where

D2 = we~""/2(cos 4>— p),       q2 = |w|/2(cos *f>—p).

Thus s(w, F2)£ Vx if and only if \D2 — T\+q2^P, which is equivalent to the in-

equality in (5.6) and which further proves that E2 is maximal. Next we consider

two separate cases.

(1) Suppose /><|l-rT|. Then s(w, Vt) = {z : \z — Dx\úqx), where

Dx = w(i + r)/(|i + r|2-p2),     qi = P\w\/(\i + r\2-P2).
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Thus a necessary and sufficient condition for s(w, Vx)çz V2 is that

Rfl [2>i«-*}-F¿ i ft,

which is equivalent to the inequality in (5.5) and therefore proves that Ex is maximal.

(2) In the alternate case, p= |1 +T|, s(w, Vx) becomes the half-plane

s(w, Vx) = {z : Re[zexp[-/(argw-arg(l+r))]] ä |w|/(2|l + T|)}.

Therefore we will have s(w, Vx)ç^ V2 if and only if

(5.11) argw = arg(l+T) + 0.

But the inequality in (5.5) reduces to (5.11) when p=|l+r|. This completes the

proof.

Theorem 5.4 (disk-complement of disk case). A continued fraction K(an/\)

converges if its elements satisfy (5.1), where either

(5.12) ex = {w. |H<i+r1)+r2o,f-[i+r1|«)|-/i1|H'| ä p.di+rii2-,,2)},

(5.13) e2 = {w : Wi+^+r^-li+r^i+^iH ú Pi(pl-|i + r2|2)},

(5.14) |r\| <Pl < li+iu     |i+ra| <Paá |ra|,

or E2 is defined by (5.13) but

(5.15)    Ex = {w : px\w\-\w(l + Tx) + T2(p2x-\l + rx\2)\ ä ^(Pi-ll + Til2)}

and

(5.16) \rx\ < Px,     |i + r\| < pi,     |i + ra| < P2 ¿ |ra|.

The sequence of odd approximates {/2n-i} converges if the elements satisfy (5.1),

(5.12) and (5.13), where

(5.17) |fif<Vi<|i+r1|;     |i+r2|<P2.

Remarks. Again the proof is an immediate consequence of Theorem 4.3,

Case 3 and the following lemma :

Lemma 5.5. Let Vx and V2 be defined by

(5.18) Vx = {z : \z-Yx\ ^ Px},        |r,| < Px # ll + T^,

(5.19) V2 = {z : |z-T2| ä P2},        |l + ra| < P2.

If px<\\ + Tx\, then Vx, V2 are pre-twin-value regions corresponding to (Ex, E2)

defined by (5.12) and (5.13). If\\ + Tx\<px, then Vx, V2 are pre-twin-value regions

corresponding to (Ex, E2) defined by (5.15) and (5.13).

Proof. It is easily shown that s(w, V2) is the circular disk \z — D2\^q2, where

JD2=-w(l+r2)/[pi-|l + r2|2] and 92 = p2|w|/^-|l + r2|2]. Thus s(w, V2)^VX

if and only if \D2 — Yx\+q2-^px, which is equivalent to the inequality in (5.13)
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and therefore shows that E2 is maximal. If px < 11 + Fx\, then s(w, Vx) is the disk

\z-Dx\Mi, where Dx = w(\ + Tx)/[\\ + Y,\2-p2} and qx = px\w\/[\\+Tx\2-p2l

Thus s(w, Vx)ç=V2 if and only if \DX — F2\ ̂ qx + p2, which is equivalent to the

inequality in (5.12) and thus proves that Ex is maximal. On the other hand, if

ll + lM^i.theniOv, Vx) = {z: \z-D'x\ ^q'x}, where D'x = w(\ + Yx)/[\\ +YX\2-P2]

and9l = Pl|w>|/[p2-|l+ri|2]- Thusí(w, Vx)çV2 if and on\y if \D'X-Y2\+ p2-¿q'x,

which is equivalent to the inequality in (5.15) and which further proves that Ex is

maximal. This completes the proof.

The following corollary is an interesting special case of Theorem 5.4, obtained

by using (5.12) and (5.13) with px = p2 = p and r\= —(l+r2) = r. It was proved

in 1960 by Lange and Thron [16]. We note in passing that for the case of real V,

T > — i, they were able to prove that the convergence is uniform over the element

regions and to obtain useful estimates of the speed of convergence. Lange [9] has

subsequently been able to extend uniform convergence to include complex values

of T with Re(T)> —¿.

Corollary 5.6. A continued fraction K(aJ\) converges if its elements satisfy

(5.1), where

(5.20)  ex = {w : Ki + r)-(i+r)o>2-|i + iT)|-p|H ^ ^í+r^-p2]},

(5.21)    E2 = {w: |wT-rO>2-|r|2)|+p|w| ï P[P2-\ T\2]},

(5.22) |r| < p < |i + r|.

Remarks. The notation used here differs slightly from that of Lange and Thron.

A brief explanation will aid in comparing the results. We must verify that the twin-

convergence regions (1.3) are the same as (5.20) and (5.21). For this it suffices to

consider the corresponding value regions. The element regions (5.20) and (5.21)

are determined by

s(Ex, Vx) ç V2,   s(E2, V2) ç Pi,    where s(a, z) = a/(l+z),

and where the value regions Vx, V2 are given by

Vx = {z: \z-T\ ip},    V2 = {z:\z+l + r\^p},       \T\ < p< \l+T\.

The element regions (Ef, E%) of (1.3) are determined by

s*(E?, V?) s V$,   s*(E$, K2*) s Ff,       where s*(a, z) = 1+a/z,

and where the value regions Vf, V$ are given by V* = 1 + Vn, n = 1, 2. Now it is

easily verified that s*(a,z)=f~1°s(a,f(z)), where /(z) = z—1. It follows that

s*(a, Fi*)ç V$ if and only if s(a, Vx)z V2, so that Ef = Ex. Similarly we obtain

E$ = E2.

Another important special case of Theorem 5.4 is obtained by setting Tx =

-(l + r2) = r, Px = p and pa = |l + T| in (5.13) and (5.15). We state this as
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Corollary 5.7. A continued fraction K(aJ\) converges if its elements satisfy

(5.1), where

(5.23) Ex = {H':p|ui-|u-(i + r)-(i + r)(p2-|i + r|2)| è |i + r|[p2-|i + r|2]},

(5.24) £2 = {vv: 11 + F| \w\ + |WT-r(|l +V\2- | T|2)| <; P[|l +T|2- | T|2]},

(5.25) |r| < |i + r| < p.

Remarks. When T = 0, Corollary 5.7 reduces to the following result of Thron

[17]:

Corollary 5.8. A continued fraction K(aJ\) converges if for all n=\,2,3,...

the elements an satisfy an^0 and

(5.26) |û2n-i| ä 2[p-cos(arga2n_1)],

(5.27) \a2n\ S P,

where P > 1.

6. Elimination of twin-convergence regions which are not best. Let C be a given

family of twin-convergence regions for continued fractions of the form K(an/\).

A subfamily C* of C will be said to have property P relative to the family C if for

each pair (Ex, E2) g C, there exists a pair (Ef, E$) e C* such that

(6.1) Et £ Ef,       i = 1,2.

Property P does not insure that C* will contain best twin-convergence regions;

it does imply that a pair of twin-convergence regions (Ex, E2) cannot be best if

(Ex, E2) belong to C but not C*. In this section we investigate the problem:

Given a family C of twin-convergence regions, can we determine a proper sub-

family C* with property P? This is a difficult problem for which we have so far

been able to obtain only some initial results. Our approach has been to select a

subfamily C* by means of an intelligent guess and then determine whether C* has

property P relative to C.

In the remainder of this paper we shall refer to C as the family of all twin-

convergence regions (Ex, E2) of the form (5.12), (5.13), where the parameters F,, Pi

satisfy

(6.2) |i\| <Pl< li+rj,     |i + ra| < P2 < \r2\,

and

(6.3) lA+i+iy+piá/*.

Twin-value regions Vlt V2 corresponding to such (Ex, E2) are given by the open

regions

(6.4) Vx={z: \z-Tx\ < Pl),        V2 = {z : |z-T2| > p2}.
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To see this, note that by Lemma 5.5 Vx, V2 are pre-twin-value regions correspond-

ing to (Eu E2). But s(Ex, Ft)£ F2 and s(E2, F2)ç Vx imply s(Ex, Int VJç V2 and

s(E2, Int K¡)^Int IV Thus IV V2 are twin-value regions, since Oe^n K2.

We note further that since — 1 $ Vr u F2, it follows from Theorem 3.2 that Vlt

V2 cannot be best twin-value regions corresponding to (Ex, E2) unless Vx n

-(1 + V2)= 0 ; that is, unless (6.3) holds.

By C* we shall denote the subfamily of C consisting of all twin-convergence

regions (Ef,Ef) obtained from (5.12) and (5.13) by replacing /£,, T, and Pi by

Ef, Yf and pf, respectively, where

r = r1* = -(i + r2*),     P = P* = P*2,     ¡r| < P < |i+r|.

The subfamily C* consists of the twin-convergence regions obtained by Corollary

5.6. We have made the conjecture that C* has property P relative to C; however,

we are able to verify this conjecture only in two special situations given by Theorems

6.2 and 6.6. The question in general remains open.

We begin by describing the regions (Elt E2) defined by (5.12) and (5.13), in

terms of polar coordinates. Let w — reie, r^O. Then w e Ex if and only if

(6.5) r2-2[PlP2-|r2(l + ri)| cos(ö-<p1)]r + (|l+ri|2-p?)(|r2|2-pl) ^ o

and if w e E2 then

(6.6) r2-2[plP2-|r1(i + r2)|cos(ô-9,2)>+(p2-|r1|2)(p|-|i + r2|2) ä o,

where

(6.7) <Pi = arg[-r2(l + ri)],       <p2 = arg [-T^l + r,)].

We note that arg M' = cp¡ is an axis of symmetry of E¡, i = 1, 2, and that 0 g Int Ex

n Int E2. Ex is unbounded and E2 is bounded; both are connected sets. In deriving

(6.6) from (5.13) we introduced an extraneous unbounded region which will

subsequently be removed from the description of E2. If T^l +r2)/-7^0, then (6.5)

and (6.6) may be written in the form

(6.8) cos (0 —«p¡) i hi(r) = atfr+bt+c^,       i = 1,2,

where

'      -(li + r^-ppqr,!2-,,2) -Oi-ir^Xpi-li + r,!2)
2|r2(i + r1)| °2 2|ri(i+-r,)|

(6-9)  bx = PlP2/\r2([ + rx)\, ¿2 = p1p2/|r1(i + r2)|,

ex = -i/2| r2(i + rr)l, c2 = -1/21^(1+^.

Since the a¡ and c¡ are negative, y = h¡(r) defines a hyperbola which tends to -co

as r -> 0 + and as r -»■ + co ; the asymptotes are r = 0 and y = b{ + ctr. Letting

(6.10) ^¡(max) = max «,(/),       / = 1,2,
r>0
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we obtain

-i <,l(max) = ^-[(ii+^-pg(ir.r-4)r K It
(6.11) Ila(l + li)l

v (max) - ^-[(pMri|2)(Pl-|i + r2|2)r > j
>>2(max)- |ri(i + r2)| - L

Thus y = hi(r) crosses the line v= — 1 at two distinct points which we denote by

rf and r¡+ with 0 < r," < r¡+ and

(6.12) ri =(Pi±|i + ri|)(P2±|r2|),     /•!= = (p1±|r1|)(p2±|i + r2|).

Now let Hx and H2 be the regions defined by

Hx = {(r, y) : \ y\ ¿ 1 and either r = 0 or r > 0 and y ^ «i(r)},
(6.13)

#2 = {('S j) : |j| ^ 1 and either r = 0or0<r^ r2(max) and y 3: «2(r)},

where r2(max) is defined by rt2(r2(max))=.y2(max) and where (r, y) are rectangular

coordinates. Then

w = reieeEt,       i = 1,2,

if and only if (r, cos (0 — <p{)) e Ht, i=\, 2. Except for the points on the axis of

symmetry of Eh there exists a two-to-one correspondence between the points of Et

and the points of Ht. The extraneous unbounded region introduced in (6.6)

corresponds to the unbounded region determined by |>|¿1, r>r2(max), y^h2(r).

In the following we shall use the symbols <p*, a*, bf, cf, «,*(/■), ̂f(max), rf(max),

r* * and H* to denote the quantities obtained from the corresponding expressions

without the asterisk (*) by replacing the parameters r¡, p{ by Tf, pf. We have thus

obtained the following

Theorem 6.1. Let (Ex, E2) e C and (Et, E$) e C*. Then

(6.14) Ë, S E?,       i = 1,2,

provided

(6.15) y, = cpf   and   H, S H,*,       i = 1,2.

Remarks. There are two cases in which the condition <Pi=cj>t, i=l, 2, is easily

obtained. One is when T¡= T*, /= 1, 2 (the concentric case) and the other is when

Ti, -(1 + ra) and T*= -(1 + r$) are all positive so that <Pi = <pi* = 0, /= 1, 2. Thus

in these two special situations, for which we have obtained some positive results,

it will suffice for our purpose to verify the second condition in (6.15). Our first

result is

Theorem 6.2. Let (Ex, E2) e C where the parameters Tt, p¡ satisfy the additional

conditions

(6.16) 0 < Ti < Px < 1 + Tj,       0 < -(i+r2) < P2 < -r

(6.17) (Pi-rxy2/rx ^ o^+i+r^-a+r,).

2,
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Let (E?, E}) e C*, where the parameters Tf, p* are given by

r = r* = -fi+r?) = a/(b- i),     P = Pf = Pt = by,

a = [(/», - rx)(P2+1 + r2)p'2, b = «pi/r, - P2¡(\ + r2)].
(6.18)

T«e«

(6.19) o < r < p < i + r

a«û?

(6.20) Et^Ef,       i=\,2.

Remarks. The condition 0<^<1 follows from the hypothesis 0<p1-T1<l,

0<p2+l+r2<l. To see that B>\ note that

R  ,    r1(p2+i + r2)-(i + r2)(Pl-r1)^

5~1=--2rl(i+r2)->0-

Thus we obtain 0<T<p from (6.18) and p=5r<l+r from T = A/(B-\)

< 1/(5— 1). Our proof of Theorem 6.2 will be based on the following lemmas.

Lemma 6.3. The following statements follow from the hypothesis of Theorem 6.2:

(a) r2 = r* " and the curves y = h2(r) and y = h*(r) are tangent to each other at this

point.

(b) rVúrí.

(c) «*(r) fkh2(r) for r*~ ^r^r*+ and hence E2^E*.

(d) rx á/f- ^/f + ̂ rí.

Proof. It is easily verified that r2 =rt~ if and only if

(6.21) p-r = [(p1-r1)(p2+i + r2)]1'2 = a.

Then by an elementary calculation we may show that h'2(r2) = «f '(rj ") if and only if

(6.22) p/r = ¿[pi/ri - p2/(i + r2)] = b.

Combining (6.21) and (6.22) gives (6.18) and hence proves (a). Part (b) follows

from the fact that 1 =yt(max)^y2(max)^ 1 and that the two hyperbolas y = h2(r),

y = h*(r) intersect in at most two points, both of which in this case occur at r = r2

= r$~. Part (c) follows from (a), (b) and Theorem 6.1, since <p2 = <p* = 0 and H2ç Ht-

To prove (d) first note that

(6.23) rx  = [pi - (1 + Ti)](p2 + T2) f£ (p - (1 + T)]2 = r*x ~

if and only if

(6.24)  [[pi - ( i+Ti)](p2+T2)f2 s i+r _ p . i - [(Px - rx)(P2+1+r2)Y'2.

Here the last equality follows from (6.21). It is easily shown that (6.24) is equiva-

lent to [(pi -1\)1/2 - (p2 + 1 + r2)1/2]2 ä 0, so that (6.23) is true. Now since rt+ Ú r2+

implies that p + FS[(px+rx)[p2-(l + r2)]]112, we obtain

(6.25) rf+ = (p+l + r)2 á [i + l(px + Tx)[p2-(l+r2W2]2.
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Thus it suffices to show that

(6.26)     [i + Kpi + ro^-o + r,)]]1*2]2 ¿ (Pl + i + Tx)(P2-r2) = r},

but this inequality is equivalent to the identity [(p2 - (1 + T2))1/2 - (Pl + Tj)1'2]2 ^ 0.

This completes the proof.

Lemma 6.4. Let

(6-27) Ax(r) = hx(r)-hî(r) = s1/r+q1+p1r,

where

Pi = cx-c*x = i/2r2(i + r1)+1/2(1+ r)2,

(6.28) qi = bx - bf = PlP2/ - T2(l + Fx) - P2/(l + T)2,

,    n   ,*    [d + Ti)a - P2](ri - pi)  [(i+r)2 - p2]2
Sx   —   al~ "1    —   -Tin   /,     .    n   \-r"2r2(i + r1)       '    2(i+r)2

If the parameters Fh Pi, T, P satisfy (6.16) a«rf(6.18) then px^O and hence

(6.29) A2(r) ^ 0   /or if" á r á r?+

provided qx =£ 0.

Proof. If /?! ̂ 0 and ^ ^0 then (6.29) is easily verified. For if Sx ̂0 then Aj(r)^0

for 0<r<co. If sy<0 then A^r) increases from -co to +oo as r passes from 0 to

co and Ax(r) = 0 has a simple root in 0<r<oo. But from Lemma 6.3(d) it follows

that there are either two roots or no roots of Aji/^0 in the interval rf ~ ̂ rfír* + ;

hence there are no roots. It remains to prove that/?! ^ 0. A simple calculation shows

that px ̂  0 if and only if Dx S: 0, where

Dx = -r2(i + rx)[(Px-rx)(i + r2)-rx(P2+i + r2)]2

(6.30) - [(Pl - r\xi + r2) - r1(p2+1 + r2)

+2i\(i + r2)[(px - Tx)(P2+1 + r,)]1'2]2.

Letting

(6 31) o<a = p1-r1<i,     o < ß = p2+i + r2 < i,

a=VTV o = (-(l + r2))1'2,

we obtain by successive rearrangement

Dx = (l+ a2)(\ + b2)(ßa2 + ab2)2 - (ßa2 + ab2 + 2a2b2(<xß)112)2

= (a2 + b2 + a2b2)(ßa2 - ab2)2 + 4a2b2(aß)ll2[(aßyi2(a2 + b2) - (ßa2 + ab2)]

= (a2 + b2 + a2b2)(ßll2a - all2b)2(ßll2a + alt2b)2

- 4a2o2(«|8)1'2(j81'2a - all2b)2 + 4aßa2b2(a - b)2

= OS1'2« - «1/2o)2[(a2+b2 + a2b2)(ßll2a - all2b)2

+ Aab(aßyi2(a2 + o2 + a2b2 - ab)] + 4<xßa2b2(a -b)2.
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It follows that £»!^0, since a2 + b2 + a2b2-ab = (a-b)2 + ab+a2b2^0. This com-

pletes the proof of the lemma.

Lemma 6.5. Ifqx is defined as in Lemma 6.4 and if in addition the parameters Fs,

pt satisfy (6.17), then qx^0.

Proof. An elementary calculation shows that qx ̂  0 if and only if D2 ̂  0, where

d2 = PiP2[2ri(i + r2)[(pi-ri)(p2+i + r2)]1'2-2r1(i+r2)

(6.32) +P1(l + r2)-p2Ti]2

+r2(i + rota - Ti)(p2+1 + r2)[pi(i + r2) - P2rx]2.

Using the notation (6.31) we obtain by operations similar to those used in the

preceding lemma

D2 = [(a+a2)(ß+b2)-aß(l+a2)(l+b2)][(a + a2)b2 + (ß+b2)a2]2

+ 4a2b2(a + a2)(ß + b2)( 1 - (aßyi2)[a2b2( 1 - (a/S)1'2) - (a + a2)b2 -(ß + b2)a2]

= [a2b2(\ -aß) + a2ß(\-a)+b2a(\ -ß)][(a+a2)b2-(ß+b2)a2]2

+ 4a2b2(a+a2)(ß+b2)(aß)ll2(Vß - V«)(Vßa2 - V«b2)-

It follows from (6.3) that (^ß-^a)^0 and from (6.17) that (y/ßa2-y/vb2)^0.

Thus D2 ̂  0 and this completes the proof of the lemma.

Remarks We conclude from Lemmas 6.4 and 6.5 that Hx ç Hf. Since cpx=<pf=0,

we obtain from Theorem 6.1 that Ex^Ef and hence complete the proof of Theorem

6.2.

It should be noted that the statement of Theorem 6.2 would not be true if

condition (6.17) were removed. This can be seen by an example. Let ri = 2,

-(l + r2)=4.6, pi=2.2 and p2 = 5. We then obtain

A = 0.28284, B = 1.09348,

T = 3.02576, p = 3.30869,

px = 0.0010894, qx = -0.020689,       sx = 0.066,

rx = 0.48, rt = 55.12.

Thus the hyperbolas y = hx(r), y = hf(r) intersect at r = 4.07, r= 15.64, so that Ex

is not contained in Et- However, it should be noted that this example does not

disprove our conjecture.

As a final result we consider the concentric case where the centers Ti and

— (1+ T2) of the circular boundaries of Vx and — (1 + V2) coincide.

Theorem 6.6. Let (Ex, E2) e C, where the parameters T,, p¡ satisfy

(6.33) Ti = — (1 + T2)       (Fx, T2 complex numbers),

(6.34) |Txl < pi < |i+ri|,     |i+r2| < p2 < |r2|.
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Let (Ef, Ef) g C* where the parameters Tf, P* satisfy

(6.35) r? = ru  r2* = r2,  Pf = P* = (PlP2y12.

ThenEi^Ef, i=\,2.

Proof. The case with T1=—(l + r2) = 0 is easily verified. Suppose that

|r1(l +r2)| >0 and note that <pt = <p*, /= 1, 2. Thus by Theorem 6.1 it suffices to

prove that

A,(r) = hi(r)-ht(r) = Si/r+qi+Pir ^ 0,    for r > 0, i = 1, 2,

where in the notation of (6.9) and Lemma 6.4

Si = Oi-af,   q¡ = bi-bf,   />, = c¡-c*,       i = 1, 2.

But a simple computation shows that

Si = (f>2-f>i)2ß =? 0,   pi = qt = 0,       i = 1, 2,

from which the proof follows immediately.
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