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Abstract. A nonlinear version of Ovcyannikov's theorem is proved. If F{u, t) is an

analytic function of / real or complex and of u varying in a scale of Banach spaces,

valued in a scale of Banach spaces, the Cauchy problem ut = F(u, t), u(0) = u0, has a

unique analytic solution. This is an abstract version of the Cauchy-Kovalevska

theorem which can be applied to equations other than partial-differential, e.g. to

certain differential-convolution or, more generally, differential-pseudodifferential

equations.

Introduction. This is a continuation of recent work revolving around the,

so-called, Ovcyannikov's theorem (see [Tl], [T2], [S-Tl]; see also [Ol]). This

time we study a nonlinear extension of that result. The extension concerns Cauchy

problems of the kind

(*) dx/dt = F(x, t),       x(0) = x0,

where the solution x = x(t) is sought in the class of analytic functions of the

(complex) variable t valued in a scale of Banach spaces {Xs} and where F(x, t) is

analytic with respect to both x and t. The type of analyticity of F with respect to

x in which we are here interested is related to the basic condition in Ovcyannikov's

theorem, namely that for suitable constants r>0, C>0 and for all p = 0, 1,...,

the pth Fréchet derivative of F with respect to x, at the point x0 of Xx (the smallest

of the spaces Xs), is a /^-linear mapping of Xf into AV whenever 0 á s' < s S 1, with

norm

C

s — s

(and depends holomorphically on / in a disk centered at t = 0). Under these sole

conditions the desired existence-and-uniqueness theorem is proved. We have

thought worthwhile publishing this theorem because of its neatness, and also

because its proof is not a mere extension of the proof of the linear Ovcyannikov

theorem. (The induction estimate in the iteration procedure must be slightly

modified: see (2.2)„.)
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As for the applications of the theorem, we describe rapidly some examples in

§§5 and 6 (after having introduced a few "concrete" scales of Banach algebras,

obviously relevant in the present context, in §4). No doubt that many of the

results obtained by applying the abstract theorem are known. But this does not

seem to be the case for some of them, and it is hard so see how to reach them by a

different procedure than the one presented here. An example of these concerns

the Cauchy problems of the kind:

8mu/dtm =f(A°u, A^Ou/dt,..., Am-1dm-1u/Btm-1, x, t),

8iu/dt>\t = 0 = u\x),       Oéj<m,

where the A' are certain kinds of (linear) convolution operators (or even of

"pseudodifferential" operators) of a suitable degree (see §6). Here the basic

Banach space scales consist of Gevrey functions in open subsets of RN (where the

variable is denoted by x). We may take/to be an analytic function of all its argu-

ments with the exception of .v, in which it is allowed to be Gevrey (of an appro-

priate order and type; this applies also to the Cauchy data).

The program of study begun in [Tl], developed in [T2], [S-Tl] and in the present

article, ought to be pushed further. Problems of the type (*) where the analyticity

of Tis relinquished, and replaced by other types of regularity (such, for instance, as

Gevrey), must be studied. We hope to return to these questions in future publications.

We use the standard multi-index notation: if p = (pu .. .,pN) is an TV-tuple of

nonnegative integers p„ we write \p\ =p-¡.+ ■ ■ ■ +Pn, pl^Pil- ■ -PnU

(J) = />!/[(>-?)!*!], etc.

1. Statement of the theorem about single first order equations. We deal with a

scale of Banach spaces Xs (O^s^l), which means that if s'^s, Xs is a linear

subspace of Xs- and the injection Xs -*■ X,- is continuous and has norm á 1. The

norm in Xs will be denoted by |  ||s.

We shall need a special notion of analyticity applicable to mappings defined on

subsets of every space Xs. For each p= 1, 2,..., let be given a p-linear map

p times
tp : as x • • • x as   > Xs;

where s and s' is any pair of numbers such that Ogs'-cjg 1. Let us define also Fp

for p = 0 as a fixed element of the intersection of the Xs, s<\. We suppose that

there is a function M(s, s')>0, defined for s' <s, and a number r>0 such that:

(1.1) \F0\rZM(l,/) (s'<\);

(1.2) when p = 1, 2,..., for allp-tuples xu ..., xp in Xs,

\\PP(xi, • • ->xJlt Ú M(s, s')r-p\\x1\\s- ■ ■ \\xp\\s.

Let us then set, for any x in Xs,
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(1.3) Fp(x) = Fp(x,...,x).

Let now x0 be an arbitrary point of Xu the "smallest" of the Banach spaces Xs.

By virtue of (1.1) and (1.2), the series

(L4) 2 Fp(x-x0)
p = 0

converges in Xs. uniformly with respect to x in every open ball

{xe Xs; \\x-x0\\s < rl,       r' < r-

The sum of the series (1.4) defines therefore an analytic mapping of the open ball

with radius r, centered at x0, into AV- Obviously, not every such analytic mapping

can be represented by a series of the kind of (1.4) (under the assumptions (1.1),

(1.2)). It is the ones that can be so represented that will be of interest to us. We shall

refer to them as analytic functions on the Banach space scale Xs in a neighborhood

of x0 e AV

Note that, for each fixed pair s, s' (s' < s), the numbers M(s, s') which can be

used in (1.1), (1.2) have a minimum: this minimum defines a function of s, s'

which we shall refer to as the module of the function (1.4).

We introduce now a complex variable t, varying in the disk |í| <r¡ 0?>0). We

shall then be interested in functions F(x, t), analytic with respect to t and also with

respect to x—but on the Banach space scale {Xs} and in a neighborhood of x0.

There are various equivalent ways of introducing such functions. The most con-

venient to us is probably to use a representation

+ 00       + 00

(1.5) F(x, 0=22 FvAx-Xo)t\
jj = 0  il = 0

where

(1.6) F0¡q = F0¡QeXs. for all s' < 1,

(1.7) K,||,^(l,j')ir«(? = 0, i,...),
and where, for /? = 1, 2,..., and for any x in X„

(1.8) Fp,„(x) = Fp,Q(x,...,x),

where FP¡Q is a /^-linear mapping Xs -> Xs- (0^ s' < s¿¡ 1) satisfying (for a suitable

constant r>0 and all /^-tuples xly..., xp in Xs)

(1.9) \\FP,g(xu ..., xp)\\s. ̂  M(s, *>—Vl*i||s- • • felr

The function M(s, s') > 0 is the module of the mapping F(x, t).

We may now concern ourselves with the Cauchy problem :

(1.10) dx/dt = F(x, t),       x(0) = x0.

We would like to state and prove an existence-and-uniqueness theorem for analytic

solutions of (1.10). This is feasible provided that the singularity of the module
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function M (s, s') at the diagonal s = s' is at worst a pole of degree one, more

precisely, provided that

(1.11) there is a constant C > 0 such that, for all s, s', 0 ^ s' < s á 1,

M(s,s') á C/(s-s').

Theorem 1.1. Suppose that the mapping F(x, t) is given by (1.5) and that the

assumptions (1.6), (1.7), (1.8), (1.9) are satisfied. Suppose furthermore that (1.11)

holds.

Then there is a unique analytic solution x(t) o/(1.10) valued in the scale of Banach

spaces {Xs}—in the following sense:

(Existence) There is a number 8, 0<8<r¡, such that, given any s, 0^s< 1, x(t)

is an analytic function of t, \t | < S(l — s), with values in Xs.

(Uniqueness) If for some s, 0¿í¿ 1, there is an analytic function of t in an open

disk centered at t = 0, valued in Xs and satisfying (1.10), it must be equal to x(t).

The proof of Theorem 1.1 will provide an estimate for the number 8 and for the

norm ||x(r)||s (see Remark 2.1).

2. Proof of the Theorem 1.1. To begin with, we reason formally. Let us set

x — x0 = 2n=°°i xjn. If we make use of (1.5), (1.6) and (1.8) we may write

+ OO       + 00

F(x,t)=  2   2 Fv.ÁXn!,...,xnp)f + ̂ +-+np
p = 0  u = 0

+ oo

=    Z-, 2-, *P,Q\xni, ■ ■ -, XUp),
k = 0        Q + n%+ • ■ • +np = k

where, in the last summation, p is allowed to be any integer 2:0 (but in fact is

compelled to be úk—q since the w('s are all >0). Since, on the other hand,

x'(r) = 2n "i nxntn~x, we see that equations (1.10) are equivalent with the sequence

of equations, for k = 0, 1,...,

(2-1) xk + i = ,     . 2_ Fp-q(xnv..., xnp).

This determines xk + 1 as a function of the xn for n^k and therefore proves the

uniqueness of the solution. In order to prove its existence, we shall establish an

estimate for the norm ||x„|5. This estimate will be stated as an induction hypothesis,

on n = \, 2,... :

(2.2)„ \\xn\\si(rßSn2)(A/(l-s))\

where S is the sum of the series 2p=™ '/p2 ar>d where A is a large number, indepen-

dent of j and «,to be chosen later.

Let us first note that (2.2)x is true, provided that A is sufficiently large. Indeed,

according to (2.1), x1 = F0-0 = F0y0, hence, by (1.7) and (1.11), ||xi||sáC/(l-s),

and it suffices to require A ä 8r_1SC.
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We suppose heretofore that (2.2)„ holds for all nf¿k. We derive from (1.7) and

(1.9), by way of (2.1),

C      -sr> -<r^     r~"
||-Xf£ + l||s  =   .   ,   i    ¿   V 2*      T~ \\Xni\\s + s,' ■ ' |*njs + e,>

"t'  9 = 0 \n\ = k-q   E9

where |«| =n1+ ■ ■ ■ +np and e„ = (l —s)/(k—q+l). By the induction hypothesis,

r"    I     A     \k~q
ll^mlls + e," " ■ ||-*njs + e,  =  (g£\p I j _s_£   )        (Wl ' ' ' WJ>)

= (£y(l+kkï \-ésï '<*•••*>-.
whence

(2.3) |x*+1f, <¡ -^ ^ 2 (fc-qr+l),-«^*" V„

where *«2w-i (85)"^ • ■ -kp)-2 (7i0= 1).

We require A ä 2/??, whence, by (2.3),

1 CpAk     A

(2.4) |xÄ+1«, ^ ^ (1_j)fc + 1 2 (*-«+ 1)2-/ifc-9.

In view of (2.4), (2.2)fc + 1 will follow from the two lemmas which we state now and

prove later.

Lemma 2.1. Let p be any integer >0. Then, for all integers i¡¿p,

i2  2 (ni-■-np)-2 ú (4S)*-1.
|n| = ¡

Lemma 2.2.  We have, for all m= 1, 2,..., m2~m 2"=i 2n/«á4.

Let us show how these lemmas imply (2.2)fc + 1 and, by way of consequence,

Theorem 1.1.

First we apply Lemma 2.1. Thus we see that (for i= 1, 2,...)

85/2 p4, 4Si2 - S(i+1)2

using the fact that (t+1)2 ^ 4/2 if / ä 1. By (2.4) this leads to

Lastly, we apply Lemma 2.2, observing that

k fc + 1

2 (k-q+l)-^-" = 2k + 1 2 2r/r ̂  4/(Jfc+l),
4=0 r=l

whence (2.2)fc + i if we require that A^32r~1SC.



82 FRANCOIS TREVES [July

Proof of Lemma 2.1. Induction on p. The statement is trivial if p= 1. We may

write, for arbitrary p>\,

y   i2   = y l-Y   y   M-Ï8-
itfïi («i- • -np)2     Klffm{ XnJJ n2+. .^-+np = y \«2- • •«„/

The right-hand side is, by the induction hypothesis on p,

á (4S)p-2    2    (—)''
nif/=, \"i//

and everything reduces to proving the result when p = 2. Now, i/n(i—n)=\/n

+1/(/' — «), hence

2 j^-42 ^ 2 2 (i+rA) = 4 2 A ̂  «•„4*1 l"0-n)J a1! \"     0-«)7 „tl «2

Proof of Lemma 2.2. Let us set Sm = m2~m 2ü"=i 2n/«. We have Sm=l +

i(«j/(w-l))5'm_i. If m>2, we have m/(m-l)¿3/2, therefore Sm^l+(3/4)Sm.1.

This shows that if Sm _ i ^ 4, then also 5m ̂  4. But Si = 1 and 52 = 2.

Remark 2.1. The proof of Theorem 1.1, precisely the inequalities (2.2)n, provide

an estimate for the number S and for the norm ||x(r)||s (0^j< 1). We have

<o-^oi|s¿^2-2(—J'

and therefore, the series Jc(f) = 2n=°o xntn converges uniformly in Xs when t remains

in the closed disk |r|S(l —s)/A; thus we may take 8= \/A. For such r's,

\x(t)-xa\s^(rß)\t\/(\-s).

3. Systems of differential equations.    In this section we look at first order

systems of the kind

(3.1) dxt/dt=Fi(x\ ...,xm, t), i= 1,..., m,

with prescribed initial conditions

(3.2) x'(0) = xo, i=\,...,m.

Each variable xl will vary in a Banach space scale X¡ (O^já 1) and the initial data

x'q will belong to X{ (i= 1,..., m). For each /', we shall have a series representation

F\x\...,xm,t)=   2   •••   2   2 FUx1-x1Q,...,xm-x^)t",
Pl=0 Pm = 0g = 0

where we have used the multi-indices notationp = (pi, ■ ■ .,pm)- We have

pi   („1 vm\ _ pi   (xl vl.    . „m      xm\
± P.Qv** ' ■ • • » -* /.    P.Gv**' •••■>•* >•••>•* »••"»'* /»

where FVt„ is a continuous />rlinear mapping in the ^-variable, from any X¡ into

any AV-if0^s'<i^l.
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As before, we shall impose a certain upper bound on the norm of the multi-

linear mapping FPi„: X¡ x ■ ■ ■ x Asm -> X¡-, depending on p, q, s and s'—but also

on i. The norm of FptQ is given by

\\FPJS,S. = sup \F¡Ja, ...,<;... ;jcT, .... ^JIU

where the supremum is taken when every x) (1 ^j^p¡) ranges over the unit sphere

ofX's(i=l,...,m).

We shall assume that there are m integers dx ä 0 (/= 1,..., m) such that, for each /',

(3.3) ¡F¿,|,,, á M(s,sy<r-^v-«.

We seek an existence-and-uniqueness theorem for analytic solutions to (3.1)—(3.2).

To obtain it, it is not enough to assume that (1.11) holds, as shown in the case

where m=\, d± = 2. We shall have to make further assumptions on the system

(3.1). That the right assumptions can be found, under which the desired existence-

and-uniqueness of solutions can be proved, is evident on examples such as the

following one:

dx1/dt = F\x2),       dx2/dt = 0,

in which d1 can be any integer > 0. As a matter of fact, it is not difficult to state

what these "right" assumptions are.

For each pair i,j, 1^/, j^m, we introduce a number 6) equal to zero if

F'(xx,..., xm, t) is independent of x1, to one otherwise. Consider then the poly-

nomial in two indeterminates A, p.,

(3.4) det(A/-iy.05c})),

where c\ are m2 complex numbers (and / stands for the m x m identity matrix).

Our assumption will be:

(3.5) Whatever the complex numbers c), the degree of (3A) with respect to A, p.

is ^m.

The motivation for this condition can be seen as follows. Let z be a complex

variable and consider the system of linear partial differential equations

8u'      V m i(dY' i i
ä7= z/^y «A   i-i,....«.

If condition (3.4) is satisfied, the Cauchy-Kovalevska theorem applies to it (with

Cauchy data prescribed at r = 0).

We may then state

Theorem 3.1. Suppose that the preceding hypotheses, in particular (3.3) and (3.5)

are satisfied. Suppose moreover that (1.11) holds.

Then we have the same conclusion as in Theorem 1.1, this time valid for the Cauchy

problem (3.1)-(3.2) instead o/(1.10).
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The proof of Theorem 3.1 is essentially similar to the one of Theorem 1.1,

although somewhat more cumbersome (cf. also the standard proof of the Cauchy-

Kovalevska theorem using majorant series).

In the application, most higher order equations or, for that matter, most systems

of such equations, can be transformed into equations of the type (3.1); the related

initial conditions can be transformed into (3.2). On this subject, see §6.

4. Scales of Banach algebras. There is one kind of scales of Banach spaces

Aj in which there are plenty of analytic mappings, and these are the scales of

Banach algebras (each A"s is a Banach algebra and if s'S s, Xs is a subalgebra of

AV). In this section, we introduce a number of scales of Banach algebras in relation

to which Cauchy problems of the kind of (1.10) or of (3.1)—(3.2) might be of some

interest.

Example 4.1. For each s, 0á s S 1, let K(s) be a compact subset of CN, equal

to the closure of its interior, assumed to be connected. If s' < s, K(s') is contained

in the interior of K(s) and, for some constant c>0,

(4.1) the distance from K(s') to the boundary of K(s) is ^c(s — s').

Let then A"s be the Banach space of continuous functions in K(s) which are

holomorphic in the interior of K(s), equipped with the maximum norm. The

restriction of functions from K(s) to K(s') (s' ^ s) defines a linear injection of A,,

into AV with norm á 1 ; thus the Xs form a scale of Banach spaces. Moreover,

each one of them is a Banach algebra. Note also the following

Proposition 4.1. The partial differentiations 8/Bz,- (j= 1,..., N) define bounded

linear operators of X, into Xs< (0^í'<j¿ 1) with norm ^c_1(ä—j')-1.

This is a straightfoward consequence of Cauchy's inequalities and of (4.1).

Example 4.2. Let be given a sequence of numbers {cp} depending on the TV-

tuples p = (/>!,..., pN) of N integers ^ 0, and satisfying for all p's,

(4-2) 2   •••   2   (Pa)cP-qcaècp.
91 = 0 9N = 0    W/

Let Q be an open subset of RN. We denote by #°°(Q.; {cp}; M) (M: some number

>0) the space of complex-valued '&"' functions <p in £2 such that

(4.3) sup\^—\<p<"\x)\\

is finite. We may take (4.3) as the norm of <p in (€m(£l; {cp}; M) which then be-

comes a Banach space and, in fact, a Banach algebra—by virtue of (4.2).

Let then M0, M1 be two numbers such that 0<M0<M1 and define M(s) by

M(s)~1 = (l-s)M0~1+sM{'1; we may then take as space X, the Banach algebra

«"■(ß; {cp}; M(s)).
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An important particular case of Example 4.2 is obtained when we choose

ck = e(k[- ■ ■k'N)~2(k\y, where d is S: 1, e>0 is to be chosen below (so as to have

(4.2)) and where we have written k'j = sup (1, kJ),j= 1,..., N. We have:

2 ■■• 2 ñw^^2--2ÍTán'^-^gf?o ,£o W X £w/        j=\tf(P>-<li)
(P-l 2 \W

where the prime in the product of the middle member indicates that any factor

where the denominator vanishes must be taken to be one. We apply Lemma 2.1

and see that (4.2) is satisfied provided that we take £^(2 + 4S')_w. Observe that a

change of the number e changes the norm in the space ^"(Q; {cp}; M(s)) but

not the space itself, let us for instance take e = (2 + 4S)"n and then denote by

Gd(Q.; M(s)) the Banach algebra <g"°(Q; {c„}; M(s)).

Proposition 4.2. The partial differentiations d/8xj (j= I,..., N) define bounded

linear operators Gd(Q.; M(s)) ->■ Gd(Q; M(s')) (0 ^s' < sá 1) with norm Ú C(s-s')-d

where C depends on d, M1 — MQ, Mo'1-

Proof. It suffices to look at the case 7V= 1. We have:

1   ~,,n {(p+i\2\M(s')y+HM(sy+i y(p+1)(*)Ln  UA

.     4     .  „ d\M(s')Y
= MW)hlt>pophm\

<-*—(d/ey- -il-il
= M(s') v' '  [log M(j)-log M(s')f llYlls-

It is easy to check that log M(s) — log M(s')^ C0(s — s'), where C0 depends only on

(Mi — M0)/M0 ; since M(s') ä M0, the result follows at once.

Example 4.3. Let A be a real-valued continuous subadditive function in RN.

We take as space Xs (O^s^ 1) the space of measurable functions/in RN such that

esh(()f(0 e L1. In this case, Xs is a Banach algebra for the convolution product,

since

*CÎ) \ñt—n)Ekl)aii   ^ e**«-««-«-««! (e^-rtlftf-rile^lgWldi)

and since h(£)^h($-r¡) + h(-n).

Suppose now A 2:0 and let g be a measurable complex function in RN such that,

for some numbers C, a>0,

(4.4) for every f in RN, \g(£)\ Í Ch(Ç)a-
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Proposition 4.3. Let Xs be defined as in Example 4.3 and suppose that (4.4)

holds. Then, if 0 ^ s' < s S 1, multiplication by g defines a bounded linear operator

Xs -> AV with norm ^ C(a/e)a(s-s')-a.

Proof. It suffices to compute the maximum of Chae~{s~s')h for h>0.

Example 4.4. This is the "Fourier transform" of Example 4.3. Let ¿f n Exp

denote the space of entire functions of exponential type on C whose restrictions

to RN decrease faster at infinity than any power of i/\x\. The Fourier transforms

of such functions are exactly the të"" functions in RN having compact support.

We complete Sf n Exp for the norm

(4.5) je*">\H(0\ ft;

here, û denotes the Fourier transform of u:

Û(Ç) = f<?-'<*'*>«(*) dx.

Also, we should say that h is a subadditive function in RN; h^O. The completion

of y n Exp for the norm (4.5) will be denoted by K{h (cf. [TI]). Since each space

Xs, in Example 4.3, is a convolution Banach algebra, each K{h is a multiplication

Banach algebra.

Let the measurable function g satisfy (4.4) and set

g(D)u(x) = &r)-fé<**g(&((&d€.

We derive from Proposition 4.2

Proposition 4.3'. g(D) is a bounded linear operator K~lh -> K''h with norm

úC(a/e)a(s-s')-a (Oús'<sú 1).

An important particular case of Example 4.4 is obtained with

(4.6) h(£)=\£\lld,

where d is any number ^ 1. Then the elements of K[h can be identified with ^°°

functions in RN(2) which satisfy a Gevrey condition of order d (on this subject,

cf. [TI, §14]). When d= 1, these functions are analytic in RN.

Example 4.5. We consider a one-parameter family of compact sets K(s) as

in Example 4.1 except that this time, they are subsets of the Riemann sphere

and not of C". We assume furthermore that the point at infinity co belongs to

the interior of every one of the sets K(s). We denote by Ys the space of continuous

functions in K(s), holomorphic in the interior, vanishing at co. We equip Ys with

(2) This will be true whenever (log |f|)/A(f) -* 0 as |f| -*• +co—as can be checked at

once.
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the maximum norm, which turns it into a Banach space, in fact a Banach algebra

for the ordinary multiplication of functions. The "natural" injection of Ys into

Ys- when s' ^ s is defined by the restriction of functions from K(s) to K(s').

Let Ci(s) be the complement of K(s). We shall assume that Cl(s) is a bounded

nonempty open subset of the complex plane (identified, as always, to the comple-

ment in the Riemann sphere of the point at infinity). Note that since K(s) is

connected, Ci(s) is simply connected. Let y be any simple rectifiable curve, contained

in the interior of K(s) and going around (counterclockwise) cl (Í2(s)) ; suppose

furthermore that co does not lie on y. Given any <p in Ys,

(4.7) h i-> f h(z)<p(z) dz

defines a continuous linear functional on the space of entire functions in C1 (the

latter is equipped with the topology of uniform convergence on the compact

subsets of C1). In other words, (4.7) defines an analytic functional, M„, in the

complex plane. Since the cycle y can be taken arbitrarily near the boundary of

K(s), this boundary, or if one prefers, the closure cl (£2(s)), carries the analytic

functional M9. In particular we observe that (4.7) is defined not only for entire

functions h but for any holomorphic function in a neighborhood of cl (£2(i)).

By using this remark and taking the point t, in the interior of K(s), we may re-

construct <p(Ç) out of M9 by the formula

(4.8) *0 = ¿ <M9, ¿>.

where < , > is the bracket of the duality between holomorphic functions and

analytic functionals (in the variable z). If <p and M9 are related by (4.8), <p is called

the Cauchy representation of M9. We write then <p = <5>M9. On these and related

subsets, see e.g. [Tl, §§17, 18, 19]. Let us only mention that we have

(4.9) <&{(d/dz)M} - (d/dO®M,

(the derivative of an analytic functional is defined by the standard "integration by

parts" formula <M', h)= -<M, A'».

When <p ranges over Ys the analytic functionals M9 form a linear space X,.

Since <p m* M9 is a linear bijection (whose inverse is i>), we may transfer the whole

structure of Ys onto Xs. This turns Xs into a Banach algebra. Observe that if

s' ^ s, the analytic functionals belonging to Xs are carried by a smaller compact

set, namely cl (¿i(s)), than the one, cl (0(j')). carrying arbitrary elements of Xs..

The "natural" injection Xs^- AV is an "extension" mapping.

Analogous definitions can be introduced in the case of TV variables, by taking,

as starting point, compact subsets of the product of N Riemann spheres of the

kind Ki(s) x ■ ■ ■ x KN(s), where the Kf(s) are similar to the sets K(s) considered

above. The analogue in CN of the open sets il(s) will be products £2i(s) x • • •
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x üN(s), where íi/s) is the complement of Kj(s) in the Riemann sphere. The Cauchy

representation is then defined by

aw© = (2<v)-" (m, f] (S-*)-1
\      1=1

5. Examples of applications (I). By E we denote a complex Banach space.

Let us then consider a first order PDE of the kind :

(5.1) 8u/8t = f(u, 8u/8zx, ..., 8u/8zN, zu . .., zN, t),

where z = (z1,...,zN) varies in some open subset Ü of CN. The function / is

assumed to be analytic with respect to all its arguments, in an open subset of

EN + lxCN + l of the form

UQ x Ux x ■ ■ ■ x UN x D x Dn

where the Uf are open balls in E and D„ is the open disk |f | <t) in C1. We look

for a solution u of (5.1) satisfying the initial condition:

(5.2) u\t=0 = u0(z),

where u0 is a holomorphic mapping of O into UQ such that (8/8z¡)ua maps Í2 into

Uj for every j= 1,..., N.

For each/ we set vj = (8/8zj)u whence (8/8t)vj = (8/8zj)(d/dt)u, or

(5.3) (8/dt)Vj = (8/dz,)f(u, vu..., vN, zu .. .,zN, t),       j = 1,..., TV,

which we adjoin to (5.1) rewritten in the form

(5.1)' (d/8t)u = f(u, Pi.vN, zu ..., zN, t).

The initial conditions are now, in addition to (5.2),

(5.4) Vj\t = 0 = (8/8zj)u0(z),       j=l,...,N.

Let now K(s) be a one-parameter family of compact subsets of Í2, exactly like

the one considered in Example 4.1. In particular, we suppose that (4.1) holds. Let

then Xs be the Banach space consisting of the (N+ l)-tuples (u, vu ..., vN) which

are continuous in K(s) and holomorphic in the interior of K(s), equipped with,

say, the sum of the maximum norms on each component u, vu ..., vN. In virtue

of the properties of the K(s) listed in Example 4.1 the Xs form a Banach space

scale; Proposition 4.1 is valid. The image of K(\), the largest of the compact sets

K(s), under u0 (resp. 8u0/8zj,j=l,..., N) is a compact subset of U0 (resp. of U¡).

It follows from this that there is a number r>0 such that if w = (w0, w\,..., wN)

in Xs satisfies

||w0(z)-«o(z)IU ̂  r>        K(z)-(a«0/az,)(z)|U úr

for all z in K(s), then necessarily w/z) e U¡ for all z in K(s) and for every 7 = 0, 1,

...,N.

>
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We may take the Taylor expansion of/(w, z, t) about

w = (u0(z), (duo/dz^z),..., (dujdz^z))    and    t = 0,

which we write in the form

f(w,z, 0=2 fp,i\wo~u0(z), w1--^(z),..., wN--^(z); zjt-",

wherep = (p0,Pi, ■ ■ -,Pn) and^=0, 1,.... We have

/p,,(wo, vvl5..., wN; z) = fp,q(wi,..., wl°;... ; wj,, ..., w#*; z),

where the right-hand side is a multilinear function of the w\ (7 = 0, l,...,N,

1 ̂ iúPi) valued in E and depending continuously on z e K(l), holomorphic with

respect to z in the interior of K(l) (as a matter of fact, in view of our hypotheses

on u0, this multilinear mapping depends holomorphically on z in a neighborhood

of 7^(1)). From this it follows at once that, given any s, O^s^ 1,

(wè,..., wvo°,.. .,wj,,..., w7) h>/PiQ(w¿, ..., wg°;... ; wj,,..., wpN";...)

is a multilinear mapping (which we shall denote by FPf„)

A?» x ■ ■ • x Xf» -> AV

It is not difficult to check that for some constant C0 > 0,

(5.5) \ÏÏA*s ^ Cor-'",-«.

Now, given any element w in X, we may set

F°(w, i)=2 *S.«(wo-«o, Wt-%*. • • -, w»-w)'9'

and viewing each d/dz¡ as a bounded linear operator A^ —> Xs. (s' < s), we may set

Fi(w,t) = (8/dzi)F°(w,t) and F(w, t) = (F°(w, t),..., FN(w, t)). It is practically

evident, in view of Proposition 4.1, that F satisfies the hypotheses of Theorem 1.1.

The conclusions therefore are valid and provide a version of the (nonlinear)

Cauchy-Kovalevska theorem.

The Cauchy problem (5.1)—(5.2) can be given a meaning within the framework of

Example 4.5. Let us assume 7V= 1, for the sake of simplicity. In this case the sets

K(s) are not any more contained in £2, but the closures of their complements

£2(0 are. Here again Theorem 1.1 yields an existence-and-uniqueness result. But

we must impose some restrictions upon the right-hand side in (5.1). Indeed,

f(u, du/dz, z, t) must make sense when u is an analytic functional belonging to a

space As introduced in Example 4.5. This can be achieved either by setting (as a

definition) f(u, du/dz, z, t) =/(<5m, (d/dz)(<bu), z, t) (3), or else by using the Banach

algebra structure of Xs (and also its structure of module over the space of holo-

morphic functions in £2).

(3) $ denotes the Cauchy representation (see (4.8)).
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6. Examples of applications (II).    We begin by describing, in rather vague

terms, a quite general situation. We consider an equation of the type

(6.1) dmu/8tm = F(A°u, A^8u/8t,..., Am-1dm-1u/8tm-1, t).

Each Af is a linear operator acting in a certain way (to be made precise later) on

the functions u under consideration. It may depend on r; it may be of the form

A'u = (A{u,..., A'-p). To (6.1) we adjoin the standard Cauchy conditions,

(6.2) ay&Vo = «4.      7 = 0, l,...,«j-l.

Under suitable assumptions about F and the A1 this Cauchy problem can be

reduced to the problems considered in §3. First of all, we set

vi = d'u/dt1,       0 S j < m,

which, in conjunction with (6.1), yields the new system:

(6.3) du'/dt = ui + 1,       j = 0,.. .,m-2,

(6.4) dtñ-ifdt = F(A°u°, Arux,..., .T"" V"1, t).

We must perform one more reduction, on (6.4). Let us set vi = Aiu', 0^j<m.

This replaces (6.4) by

(6.5) 8um~^/8t = F(v°, v1,..., ir*-1, í).

and we must adjoin to (6.3) and (6.5) the equations

(6.6) dv'/dt = Â'u* + Aju>*\       j = 0,..., m - 2,

(6.7) dvm - l/dt = Am - V -J + Am - xF(v0, v1,...,vm~1, t),

where Âi = (djdt)Ai. Equations (6.3), (6.5), (6.6), (6.7) form a system of 2m equa-

tions in 2m unknowns. The initial conditions are :

(6.8) «>!, = „ = u{,       t>'|( = 0 = AKOM,   j = 0,..., m-1,

where A1(0) = Ai at r = 0. We shall assume that each A1 acts from a Banach space

scale X¡ into another such scale, T/. More precisely, if 0 ̂  s' < s Ú 1, A1 induces a

bounded linear operator, depending holomorphically on t in £>„, from X¡ into T/.

We will have the following bound on the norm of this operator :

(6.9) My|U.s- Ú C(s-s'y~m       (7 = 0,..., m-1).

Here C is a constant, independent of all the data. As for the function F, it will

have to be valued in X° and to be defined and analytic in an appropriate open

subset of Y° x Y} x ■ ■ ■ x Tsm_1, whatever s,0£s£l. With respect to t, it will be

analytic in D„.

Let us define 2m integers d* (i= 1,..., 2m) as follows :

dl = 0   if i S m,       d1 = 2m+\-i   tf m < i à 2m.
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In virtue of (6.9) this fits with the definition of the dl,s in §3, specifically in (3.3),

when we apply it to the system (6.3), (6.5), (6.6), (6.7). Next we introduce the

number 6) as in (3.4). Observe that

if i < m,       Q\ = 1 if j = i+l,   zero otherwise;

6f = 1 when/' = m+1,..., 2m,   zero otherwise;

if m < i < 2m,       6] = 1 if j = i—m or j = i — m—l,   zero otherwise;

62m = 1 when y = m, m+1,.. .,2m,   and zero otherwise.

Under these circumstances it is not difficult to check that (3.5) holds (where 2m

must now be substituted for m). It suffices to show that the degree of (3.4) with

respect to A, when we put /x = cA with c fixed but arbitrary, is f^2m. Since the c\

are arbitrary, it suffices to take p. = A. We leave the details to the student.

We are thus in the situation where to apply Theorem 3.1. We discuss now

rapidly two particular cases.

Example 6.1. The basic scale of Banach spaces will be here the spaces

Gd(Q; M(s)) considered in Proposition 4.2. We take the A1 to be linear partial

differential operators in the x-variables with smooth coefficients depending on x

and t. The degree of smoothness of these coefficients with respect to x must be

such that A1 operates on all the Gd(Q.; M(s)) for O^s^ 1; A' must furthermore

be a holomorphic function of t in D„. We may therefore take the entries of the

coefficients (in general, these are matrices) to be holomorphic functions of t in

Z>„ valued in the Banach algebra Gá(£2; M(\)). Let œj be the order of the differential

operator A1. If we combine Proposition 4.2 with the requirement (6.9) we find the

"standard" condition:

(6.10) j+co'd^m,      j = 0,...,m-l.

Example 6.2. The basic scale of Banach spaces will now be the spaces K{h

introduced in Example 4.4. We may take the A1 to be convolution operators of

the type g(D) considered in Proposition 4.3'. Let us say that the order of the

operator g(D) is ^a if (4.4) holds. Then (6.9) requires that the order of A' be

úm-j.

For instance, if h(Q = \Ç\lld (d^l), this means that the "symbol" a'(0 of A'

must satisfy ||aí(£)||<í5íC|!|m"í. The analogy with Example 6.1 is self-evident.

In the context of the spaces K{h we may take the A1 to be of a far more complex

type than the convolution operators just considered. We may take them to be

similar to "pseudodifferential" operators, given by

A'u(x) = (277)-" fë^a'tx, $)û(Ç)dt

Of course, the class of symbols a%x, Ç) for which this would work (that is, such

that A' would operate appropriately on the Klh) must be circumscribed. Observe

that we can obtain a large quantity of multipliers on the K[h by taking the elements
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themselves of this Banach algebra. This in turn yields a large class of admissible

symbols, the finite sums of products of a convolver and a multiplier. From there

on we may proceed by completion (we may also proceed directly by imposing

bounds on the Fourier transform of the symbol a'(x, f) with respect to x).

The function F(v°, v1,..., vm~1, t) entering in (6.1) might be defined, in the

applications, by functions f(v°, v1,.. .,vm~1, xu ..., xN, t), analytic with respect

to t and with respect to the v1' (assumed now to vary in certain open subsets of

spaces Cri or even of Banach spaces E like in §5) and having a certain type of

smoothness with respect to x, adapted to the scales of Banach spaces (or Banach

algebras) Xs one is dealing with. A large degree of freedom is available here in

choosing the kind of functions / to which one would apply the general results.
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