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Abstract.    We determine the structure of finite dimensional algebras which are

differentiably simple with respect to a set of higher derivations.

Let C be a commutative ring of prime characteristic p, and let A be a subring

of C both with the same identity. By a />-basis b of C over A we mean a finite

subset of C such that for each t e b, rp'c" e A for some positive integer e(t) and the

set of all monomials Yiteb tm, 0^i(t)<pe(t), form an ,4-module basis for C. In

this note we show that if A is the kernel of a set g of higher derivations of C such

that C is finitely generated as ^-module and no ideal in C, except 0 and 1, is stable

under g, then C admits a />-basis over A which must be a field with HomA (C, C)

= C[g]. Conversely if C admits a p-basis over a field A, we show that there is a

higher derivation D on C with Hom^ (C, C) = C[D]. So no nontrivial ideal can be

stable under D. When g is a set of ordinary derivations, the first statement is

given in [4] and is essentially due to Harper [0]. When C is a field, these reduce

to results of Sweedler [2] and Weisfeld [3]. We begin this paper with a construction

of^-basis for local algebras of finite type.

All rings in the following are assumed to be commutative with 1 and of prime

characteristic p. All modules and ring-homomorphisms are unitary. If C is an

^-algebra, the structural map A -> C is assumed to be one-to-one.

1. ^-generators. For simplicity of notations, given a subset A" of a ring Y we

denote by %l(X) the subset {xp< | x e X} of Y.

Now let C be a local ring with Q as its maximal ideal. Let F be a C-algebra

such that for some finitely generated nilpotent ideal J in E, E=C+J as a C-

module direct sum. Let e = e(J) be the least integer such that 1}e + 1(J) = 0. Let

be be a subset of ^e(J) such that {t + Qe((J+Q)J) \tebe} form a basis for

%e(J)l%e((J+ Q)J) over the field W{C)l%e(Q)^%e(C/Q). For each i, we are

going to construct a subset b¡ of ^\J) with the property that

(i) {t + %l((J+Q)J) | tebt} form a basis for %VW((J+Q)J) over ̂ (OMß);

(Ü) bi+1={f | reb¡and íV0},0S¿<e.

Assume we have already constructed bi+1. Let b[ be a subset of ^(J) such that

for all rebi+1, bj and {xeg'(/) | xv = t} has exactly one element in common.
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Let f>¡' be a subset of {x e \}'(J) \ x" = 0} such that the residue classes /+\}¡((J+ Q)J),

t e b¡, form a basis for {x + &((J+ Q)J) | x e &(J) and x" = 0} over \}'(CW(Q).

Since the monomials in 6i+1 form a set of generators for the {}i + 1(C)-module

i$i + 1(J), given u e îsXJ) there is a polynomial <p = <p(b¡, C¡) in b'¡ with coefficients

in Cj, 93 having no constant term, such that (u — <p)p = 0. It follows from u = (u — cp)

+ cp that the set f>¡ = b¡ u 6" meets all our requirements.

Hereafter f>=i>0 will be called a set of ^-generators for the decomposition

E=C+J.

We recall that given an algebra X over a ring Y, for any x in A', the exponent of

x is the least nonnegative integer e(x) such that xpe<x) is in Y. The exponent of A"

over Y is the maximum of {e(x) | x e X}.

Example. Let C be a local ^-algebra of finite exponent e such that the A-

module C is finitely generated and flat. Put E=C ®A C. Then L= C <g> 1 + J

where /=(C <8) 1)-{1 <g> x — x <g> 1 | x e C}. We may assume that the elements of

b are of the form 1 (g> / — / <g) 1. From L=(C <g> l)[b] it follows that the inclusion

map C®AA[{t\ 1 ® t — t <g) 1 e b}] ->- L is onto. And so the inclusion map

A[{t\ 1 (g) / — / ® 1 e b}] -s- C is onto because C over ^ is actually faithfully flat.

In other words, the monomials Y\t\ 1 <S> t — t <g> 1 e b, 0Sf</>e(t>, form a set of

generators for the ^4-module C.

2. Higher derivations. By a higher derivation D of rank p, 0<p<co, on a

ring C we mean a sequence of maps

Dm: C^C,       I SfrISp,

making the map

<PD: C^C[/]/(/p+1),

X r* x + (7J>(1)x)/+ ■ • • +iDip)x)tp

a ring-homomorphism. The kernel of D is the set

{x e C I <pDix) = x} = H {kernel L«" | 1 S ¿ S /}.

Given a set g of higher derivations on C, we shall denote by m(g) the set of all

monomials p of the form D{li) ■ ■ ■ D['3\ 7)¡ é g, 0 ̂  /¡ ̂  rank 7J>¡, where 7)j<0> as

usual is understood to be the identity map on C. The degree of p. is the sum lx+ ■ ■ ■

+ ls. The kernel of g is the set C] {kernel D \ Leg}. An ideal a in C is said to be

stable under g if (i(n)ca for all p. in m(g).

Lemma 2.1. Let g be a set of higher derivations on a ring C. Write A = kernel g.

(a) A is a subring of C and any idempotent element in C belongs to A.

(b) If Chas no ideal, except 0 and 1, stable under g, then A is afield.

(c) If A is afield and if the vector space dimension of C over A is finite, so is the

exponent of C over A.

(d) If there is a positive integer a such that pa > max {rank D \ D e g}, then the

exponent ofC over A is not greater than a.
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(e) If A is afield and the exponent of C over A is a<oo, then xp" = 0for all

nonunit x in C.

Proof, (a) Given a pair of ring-homomorphisms

u
R     *S,

v

it is clear that {xe R\ u(x) = v(x)} form a subring of R. In particular for any higher

derivation D on C, kernel D = {xeC\ <pDx = x} form a subring of C. So A is a

subring of C.

Let D = (Dm, D{2\ ..., D('\ ...) be a higher derivation on C. From

2 (Dwx»)tl = <pD(x") = <pD(x)» = 2 (Dmx)ptpi

we get

&\x*) -. 0,   if/*0(/0,

/)<ip>(xp) = Dm(x)p.

Now given a positive integer /, we may write l=qpr with q relatively prime to p.

If e is any idempotent in C, then

Dm(e) = D^p,\epr+1) = (D™(ep))p' = 0.

So e belongs to A.

(b) For any x#0 in A and any y in C we have <pD(xy) = x<pD(y), Ueg. So the

ideal xC is stable under 9 because Dm(xy) = x(D(l)y). So xC=C and x is a unit

in C. From <pD(x_1) = <p£,(x)"1 = x":L it follows that x'1 is also in ^4. Hence ^4 must

be a field.

(c) Let Ci denote the ,4-subalgebra of C generated by xpi, xe C. We have

Q+icC¡<= kernel Dm for all /V0 (p'). In particular the intersection of all Cf)

z'=0, 1, 2,..., is contained in A. Since C is finite dimensional over A, there exists

a positive integer a such that Ca = Ca+1 = C„+2= • • •• The exponent of C over ^4

is therefore at most a because Ca is contained in A.

(d) For any x in C, Dll)(xpix) is zero for all D in g. So the exponent is at most o.

(e) For any nonunit x in C, xp" as a nonunit in the field A must be zero.

Lemma 2.2. Let qbea set of higher derivations on a local ring C. Then the following

two statements are equivalent.

(i) No ideal in C, except 0 and 1, is stable under g.

(ii) Given any nonunit x^OinC there is some p. e m(g) such that p(x) is a unit in C.

Proof, (i) -*■ (ii). Let a be the nonzero ideal in C generated by {p(x) \ p. e m(g)}

which is clearly stable under g. So a=C and one of the p,(x)'s must be a unit

because C is a local ring, (ii) -+ (i) is trivial.



580 SHUEN YUAN [August

If g is a set of higher derivations on a ring C with A — kernel g, then for any

D={Dm,..., L«»} in g, both 1 ® 7) = {1 ® Da),..., 1 <g) />">} and L <g> 1

= {La) (g> 1,..., L(i) ® 1} are higher derivations on C ®¿ C. Let g ® g denote

the set of all 1 <g> L, D ® 1 with Leg. We have the following.

Lemma 2.3. Let g be a set of higher derivations on a ring C with kernel Q = A.

Assume no ideal in C, except 0 and 1, is stable under g. Then no ideal in E= C <g)A C,

except 0 and I, is stable under g <g> g. The kernel o/g ® g is equal to A.

Proof. We have an exact sequence

0->A->Cim>lJC.

Tensoring over A with C we get the exactness of

0->A®AC->Eïm^UE.

This shows kernel g <g) Q = (A ®AC) n(C ®AA) = A.

Now assume a is a nonzero ideal in L which is stable under g ® g and ct^L.

Let a = Xi ®.ji-l—•+xr ®>v#0 be an element of a with r minimal. Clearly

r > 1. Let /x e m(g) such that p(x±) is a unit in C. The element

(¡j. <g) 1)ct = /¿(xi) ®yx-\-l-Mxr) ® JV

cannot be zero because yu ...,yt are linearly independent over the field A. Put

a = 1 ® ji + xá ® j2+ • • ■ +*i <8> Jr where xi = |u(Xi)~ V(*i)- Since o' e a, it can-

not belong to A ®A C otherwise r would be equal to 1 and we would get a contra-

diction. So (7)(i) <gi l)o' = (Dmx2) <g>y2+ ■ ■ ■ +(Dwx'r) <g>yr is nonzero for some

L>(i), Leg. We therefore get a contradiction to the minimality of r because 0^

(Dm <g> l)o' e a. So no nontrivial ideal in L is stable under g. This completes the

proof of the lemma.

Theorem 2.4. Let g be a set of higher derivations on a ring C with A = kernel g.

Assume C is finitely generated as an A-module and no ideal in C, except 0 and 1,

is stable under g. Then C admits a p-basis over A.

Proof. Since A is a field and C is finite dimensional over A, by Lemma 2.1,

C is a local ring with nilpotent maximal ideal Q. Put

L = C ®AC,       J= {1 ® x-x <g> 1 I x e C}E.

Let {1 ® Xx — Xx <8> 1,..., 1 <8> x„ — xn 0 1} be a set of p-generators for E=

C <g> 1+J. We claim that x1,'...,xn form a /7-basis for C over ^4. Let L be a subfield

of C such that C=F+ Q. Let {^1;..., ym} be a set of/7-generators for C=F+ Q.

It is clear that {yx <g> 1,..., j>m <g) 1, 1 ® #1—ac4 ® 1,..., 1 ® x„ — xn <g) 1} form

a set of/^-generators for E=F ® l+(ß ® 1+L). Moreover, by a lemma to be

established later,

m n

1 (>f «-1 ® ó- n 0 ® xi-xi ® i)pe'-1 * °
i=i ¡=1
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where et (respectively/) is the exponent of 1 ®x¡—*¡ ® 1 (respectively yt). It

follows that for any y eC,

n

(j® O H(l ®x(-xi® l)"6'-1 = 0

impliesy=0. So{l ® xx-xx ® 1,..., 1 ® *„-*„ ® 1} form a/>-basis for F over

C ® 1. Now from the binomial expansion of

((1 ® *,-*, ® l) + x¡ ® l)d< = 1 ® xf<,

it follows that 1 ® n*= i ^f' can De expressed as a polynomial in

{1 ® Xi-Xi ® 1 | 1 á í á »}

with coefficients in C ® 1 and with n?=i (1 ® xi — x¡ ® l)á< as its highest degree

term. This implies that {n?=i xf* | 0^dt<pet} is linearly independent over A.

Since the dimension of C over ,4 is equal to the dimension of E over C ® 1,

{*!,..., *„} must be a /?-basis for C over A.

Corollary 2.5. Let C be a finite dimensional purely inseparable field extension

over A. If A is the kernel of a set of higher derivations of C, then C admits a p-basis

over A.

Now let xx,..., xm be elements of C. It follows from

(m        \ m

i=i /   (=i

that

D«xxx-.-xm)=2nDiai)xi
i = l

where the summation runs through all (als..., am), at nonnegative integers with

2í"=i «i = l. Let (l:m) denote the set of all these «z-tuples and assume we are given

D{h\ ..., D(s's) where Dt are higher derivations on C. For any (ax,...,as),

at = (a(i, 1),..., a(i, m)) e (l^m), set

(ax,..., as)*(xx,..., xm) = H   f] DfAx,.

An induction on s gives the following formula.

D['0... D^\xx ■• -xj - 2, («i. ' • •. as)*(xx,..., xm),       at e (/, : m).

Lemma 2.6. Let C be a local ring with Q as its maximal ideal. Let Ebe a C-algebra

such that E=C+J as a C-module direct sum for some finitely generated nilpotent

ideal J in E. Let tt: E=C+J^-J denote the second coordinate projection. Let g

be a set of higher derivations on E. Put I={xeJ\ p.(x) e Q+J for all p. e nt(g)}.
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Assume -np(I)^Ifor all p e m(g). If I n fj'(/)c t5'(ß/) for all i, then the product

*?•••«■ ^0 (7)

where {/l5..., /n} = b is a set of p-generatorsfor E=C+J, öf=,pe' — 1, e¡ = e(/¡) is the

exponent oj'tt with respect to C.

Proof by contradiction. Let m be the minimal integer such that for some

integers mt, 0 á «z¡ ̂ pe¡ — 1 and Jiml = m, we have

z = /J"1 • • • t> = 0 (7).

We have w> 1 because 7<= gL We claim that mt = 0 (/?) for all /= 1,..., «. Assume

this is not the case. Let mx, ■ ■ -, mr be nonzero modulo p while m( = 0 (/>) for all

i>r. Write

2i = /im'_in^        /=l,...,r.

The minimality of m asserts that zt is nonzero modulo 7. Let / be the least integer

such that for some /, 1 Si^r, piz¡) is a unit in E for some p. e m(g) with degree p.

= 1. By a change of indices we may assume i=l. Now p(z) = p(tx1-■-í^'t),

T=Ylk>r t™«, can be expressed as a polynomial in b with coefficients in C. We are

going to show that the coefficient of tx in p(z), which modulo Q is unique, is a unit

in C. This is not possible because ttp(z) e 7<= QJ. So «j¡ must be zero modulo p

for all /=1,..., «.

Put ct = OT!-I-Ym„ p,= D(¿i)- ••D2>> and let

a( = («(/, 1,1),..., «(/, 1, «jJ, ..., «(/, r, 1),..., «(/, r, wr), a¡)

be a general element of (/ : o+1). Write

a = (<*],, ...,as),

L(a, u, v) = the coefficient of tx in £»,, = if] Dp«.".»»V

C(a, h, r) = the constant term of ( ^f./jiri Dfi))T-

Given an s-tuple b = (ßx,..., &), Oíft^/,, of integers, we denote by

^4(¿>, u, v)   the set {a | a( e (/4 : a+1) with a(/, w, v) = ßt}.

Since the coefficient of /x in (n?=i L(a|))T is zero modulo Q, the modulo  Q

coefficient of /x in jli(z) = (7J>(1!i>- • DpKtfi- ■ -t^r) is

r     mu r     mu

2 2 2 c(a> "' v^a' "'r)= 2 2 2  2  c(a> m> v^a> u>v^
u = lt>=l   a « = lv=l    b   aeA(b,u,v)

We have the following cases
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(i) Not all of ßi are zero. By the minimality of /, 2ae.4<&,u,u) C(a, u, v) as the

constant term of (Dxli~ßJ- ■ ■ D(s''~ß,))zu is zero modulo Q. Hence

2     C(a, u, v)L(a, u, v)
aeAib.u.v)

is zero modulo Q.

(ii) ßt = 0 for all i=l,..., s but w#l. 2ae.«&,u,v) C(a, u, v)L(a, u, v) is zero

modulo Q because L(a, u, v) is.

(iii) /3¡ = 0 for all i=l,..., s and u=l. Let p(zx) = y + v with y e C and v eJ. So

2      C(a, I, v)L(a, 1, v) = y.

This shows Tip(z) = 0 modulo / has a modulo Q nonzero linear term mxytx which is

the desired contradiction.

Recall that the integer e = e(J) is the least integer such that ^e + 1(J) = 0. From

what we have shown we see that the lemma is true for e = 0. Moreover, if the lemma

is incorrect for some e>0, then it is also incorrect for i}(E) = fy(C) + %(J) with

e(i$(J)) = e(J) — 1. An induction on e completes the proof of the lemma.

3. The endomorphism ring. We begin with a slight rewording of the Jacobson-

Bourbaki theorem. The proofs are adapted from Hochschild [1, Lemma 2.1 and

Theorem 2.1].

Lemma 3.1. Let C be a local ring with nilpotent maximal ideal Q. Let O be an

« < oo dimensional free C-submodule of Homz (C, C) where Z is the ring of all

integers. Then there exist cx,. .., cn in C and a C-module basis mx,..., confor Q,

such that ojt(Cj) = 8U.

Proof. Let F0>1,..., F0i„ be any C-module basis for O. We first observe that

7o,¡(C)4; Q for all i= 1,..., «. For if e is the least integer such that Qe = 0, then

from To^C)^ Q we get wF0>i = 0 and hence w = 0 for any « in ß6"1 which is absurd.

Now suppose we have already found cx,..., c, in C and a C-module basis

îj,i,..., TLn of D such that Tlti(c¡) = 8tj, for l^i^n and 1 ̂ j^l. If /<«, there is

an element cl + xeC such that F¡>¡+1(c¡+1) is a unit in C. We set Tl+XJ + 1 =

7,¡.i+i(c¡+1)-:LF¡>¡+1, so that F¡+1,¡+1(c¡+1) = l. For every iV'+l, we set Tl+XA =

T,,i-TKi(cl + i)T,+Xj+1. Then we have Fi + lii(c>) = 8iJ, for lúi^n and !£/£/+1,

and that Tl + Xti are still a C-module basis for Q. Proceeding in this fashion, starting

from the case /=0, we finally obtain cx,..., cn in C and coi = Tn¡i which satisfy

the requirements of the lemma.

Lemma 3.2. Let C be a ring and Ü. a (not necessarily commutative) subring of

Homz (C, C). Assume that O is a free C-module based on tux,..., con («<oo) such

that for some cx,..., cn in C, co^c,) = 8fj. Let A denote the subring {ce C\ w(cx)

= cco(x) for all xe C and all to in Ü} of C. Then C is a free A-module based on

cx,..., cn and 0. = Hom¿ (C, C).
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Proof. Given w in £2, if we write co = 2*= i xtcüt, x¡ e C, then x¡ = (2"= i x^Xc,)

= tü(Cj). In particular,

n

w^XWj) =   2   (o>lix<»Í))iCi)<*>i = ">¡(x)üjy (* 6 C).
i = l

So for any c in C, cu,(x)a)/c) = ^(xa^c)). It follows that a>;(c) e .4 for all c e C

and/=1,..., n. Now let c e C and write c' = c — 2?=i ^¡(c)c¡- We have w/(c')=0

for all7=1,...,«. So c' = 0 because w; form a basis for £2 which as a subring of

Homz (C, C) contains the identity map on C. This shows c = 2"= i w¡(c)c¡ for all c

in C. If 2?«i a¡Ci = 0, a¡ e A, then «¡ = ^(2"=! «,0^ = 0. Hence cx.cs form a

basis for C over ,4. Given any / in HomA (C, C), we have /= 2?= i /(c¡)">¡. So

£2 = HomA (C, C). This completes the proof of the lemma.

Theorem 3.3. Let C be a local ring with nilpotent maximal ideal Q. Let g be a

set of higher derivations on C such that no ideal in C, except 0 and 1, is stable under g.

Let A denote the kernel of g and write Q = C[g]. If £2 is finitely generated as a

C-module, then £2 = HomA (C, C).

Proof. In view of Lemmas 3.1 and 3.2 above, it suffices to show that £2 is a

finite dimensional free C-module. Let cü1; ...,<«„ be elements in m(g)<= £2 such that

the Wi+QQ. form a basis for £2/g£2 over C/Q. It follows from [5, p. 105, Corollaire

2] that co1(..., o>„ generate £2 as a C-module. If 2?=i xicoi = 0 (x4 e C), then x¡ e Q.

Assume that not all the x¡ are zero. Let p. be an element in m(g) with minimal

degree such that /x(x¡) is a unit in C for some i (Lemma 2.2). We have

0 = p.[ 2 xiwi) — 2 I'fci)"'* modulo QQ.
\j=X J j=X

which is a contradiction to the choice of mt. This shows that £2 is a free C-

module based on c^,..., wn as desired.

4. One derivation. Let C be an algebra over a field A. Assume C over A

admits a /»-basis {tu ... ,/r}. We may assume the /¡'s are units. For if r¡ is not a unit,

it must be a nilpotent so can be replaced by 1 + /¡. Let e¡ be the exponent of /¡.

By a change of indices we may assume exî£ • • • è^. Let D = {Da\ ..., D{p~1)},

p=pei,be the higher derivation on C corresponding to the ^4-algebra homomorphism

<pD: C ^ C[z]/izp),

h-+tx+z,

/i+i^/i+1+yi + iZ9' + i,

where yi + i = n¡s¡ *f \ <3i+x=P6l~e' + 1- We have the following

Theorem 4.1. With notations as above,

(E) C [D] = Horn, iC,C).
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Proof. The assertion is obviously true for r=l. When r= 1 the following state-

ment (H) is also true.

(H) Given aK in A, 0 < A <p'r, if there exists xe C such that

DWX = atfh-t,       0 < A < p\

Dmx = 0, / ft 0 (qr),

then x e A[tr] and aÁ = Qfor all X.

We are going to establish the following chain of implications:

(E) and (H) for all r < s => (H) for r = s => (E) for r = s.

Write

n-l

x = 2 ****     (" = Pe"> x>e¿I**' ■■■' r«-iD-
i = 0

We have, for all/>0,

Dwx = *T &°(xtt¡)
i = 0

= "2 2(£,a"A,!s);ci)jD<A'ïs^i

Taking into account the assumption placed on x in the statement (H), we get for

(2) 2 (. ' .W'i^T.B-fVati = 0,      0 á jf á »-I.

In particular for_/"=«— 1, we get

(3) /><'>*,,-! = 0

for all /#0 (ft). Putting/=« —2 in (2) and taking into account (3) we get Dmxn.

= 0 for all /^0 (ft). Hence

(4) Dwxt = 0

for all i and all 7^0 (ft). Now put /=Aft (A/0) in (1). From (H) we get

a.yUi = "f H I (i_)Yl-iDiíÁ'i+nq')xi-
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So

2 U iV" 'D*-"»** = a Ay's,      J = n-X,
m *    7/

= 0, y#»-A,

where 0, = itf)~1. In particular

7)(«»>xn_1 = fll0,y.;    L^x,,^ = 0       (A * 1).

By induction hypothesis we get 0^=0. So L(i>xn_1 = 0 for all /#0. Applying the

induction hypothesis again, we get xn_! e A.

Now assume a¡ = 0, xn_¡ e A for all l^i<k. So

LWJXn-k = 0 for A > k

7JWxn_fc = afcÖsysfc

L»w«.^„_fc = -r~A+ W*n-*+*   for 1 ^ A < fc.

The induction hypothesis asserts that afc = 0, Dwxn-k = 0 for all />0. So xn_k is

also in A. This shows (H) is correct for r = s. In particular the kernel of D is con-

tained in A[ts]. We claim that kernel D is exactly A.

Let x = 2í = o x¡t¡, Xj e A, x¡#0, be an element of kernel D with / minimal. If /

is greater than zero, then

D"^x =   2 XfDWti = X,ÈP<W, = x¡yls
i = o

is not zero because y's is a unit ; hence a contradiction.

We now contend that kernel D = A implies HomA (C, C) = C[D]. Let M be the

set of all monomials r"i- • •/"», 0^ut<pet. A lexicographic order may be imposed

on M as follows : /"i ■■•*"•< ti1 ■ ■ ■ t** if there is a Ä: such that uk < vk and u¡ = v¡ for

all l>k. Given/=2/Ul.u, '**• ■ ■***» /Ul.u5 e -¿» we denote by 0(/) the smallest

element of M such that ffi- ■ -t^SOif) whenever/Ul.„s is not zero. We would

like to show that given x/0 in C there is some p. e rrt(L) such that /n(x) is a unit

in C. Assume this is not the case. Let/=2/Ul.u„ t"1 • • • /*•, /Ul.use¿, be a

nonzero element in C with the least 0(/) such that pdf) is not a unit for any

ft e m(7J>). Since 0(7>"£) < £ for all /> 0 and £^ 1 in M,/ must belong to kernel D

which is the field A. But/is not a unit so must be zero, hence a contradiction. This

shows that no ideal in C, except 0 and 1, is stable under D (Lemma 2.2). It follows

from Theorem 3.3 that C[D] = UomA (C, C).
.
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