FINITE DIMENSIONAL INSEPARABLE ALGEBRAS

by SHUEN YUAN

Abstract. We determine the structure of finite dimensional algebras which are differentiably simple with respect to a set of higher derivations.

Let C be a commutative ring of prime characteristic p, and let A be a subring of C both with the same identity. By a p-basis b of C over A we mean a finite subset of C such that for each $t \in b$, $t^{p^{e(t)}} \in A$ for some positive integer e(t) and the set of all monomials $\prod_{t\in b} t^{i(t)}$, $0 \leq i(t) < p^{e(t)}$, form an A-module basis for C. In this note we show that if A is the kernel of a set g of higher derivations of C such that C is finitely generated as A-module and no ideal in C, except 0 and 1, is stable under g, then C admits a p-basis over A which must be a field with $\text{Hom}_A(C, C) = C[g]$. Conversely if C admits a p-basis over a field A, we show that there is a higher derivation D on C with $\text{Hom}_A(C, C) = C[D]$. So no nontrivial ideal can be stable under D. When g is a set of ordinary derivations, the first statement is given in [4] and is essentially due to Harper [0]. When C is a field, these reduce to results of Sweedler [2] and Weisfeld [3]. We begin this paper with a construction of p-basis for local algebras of finite type.

All rings in the following are assumed to be commutative with 1 and of prime characteristic p. All modules and ring-homomorphisms are unitary. If C is an A-algebra, the structural map $A \rightarrow C$ is assumed to be one-to-one.

1. *p*-generators. For simplicity of notations, given a subset X of a ring Y we denote by $\mathfrak{F}^{i}(X)$ the subset $\{x^{p^{i}} \mid x \in X\}$ of Y.

Now let C be a local ring with Q as its maximal ideal. Let E be a C-algebra such that for some finitely generated nilpotent ideal J in E, E=C+J as a Cmodule direct sum. Let e=e(J) be the least integer such that $\mathfrak{F}^{e+1}(J)=0$. Let \mathfrak{b}_e be a subset of $\mathfrak{F}^e(J)$ such that $\{t+\mathfrak{F}^e((J+Q)J) \mid t \in \mathfrak{b}_e\}$ form a basis for $\mathfrak{F}^e(J)/\mathfrak{F}^e((J+Q)J)$ over the field $\mathfrak{F}^e(C)/\mathfrak{F}^e(Q) \cong \mathfrak{F}^e(C/Q)$. For each *i*, we are going to construct a subset \mathfrak{b}_i of $\mathfrak{F}^i(J)$ with the property that

(i) $\{t + \mathfrak{F}^{i}((J+Q)J) \mid t \in \mathfrak{b}_{i}\}$ form a basis for $\mathfrak{F}^{i}(J)/\mathfrak{F}^{i}((J+Q)J)$ over $\mathfrak{F}^{i}(C)/\mathfrak{F}^{i}(Q)$; (ii) $\mathfrak{b}_{i+1} = \{t^{p} \mid t \in \mathfrak{b}_{i} \text{ and } t^{p} \neq 0\}, 0 \leq i < e$.

Assume we have already constructed b_{i+1} . Let b'_i be a subset of $\mathfrak{F}^i(J)$ such that for all $t \in \mathfrak{b}_{i+1}$, \mathfrak{b}'_i and $\{x \in \mathfrak{F}^i(J) \mid x^p = t\}$ has exactly one element in common.

Received by the editors September 16, 1968.

AMS Subject Classifications. Primary 1350, 1360.

Key Words and Phrases. Inseparable algebra, higher derivation, p-generators, p-basis.

Copyright © 1970, American Mathematical Society

SHUEN YUAN

Let \mathfrak{b}'_i be a subset of $\{x \in \mathfrak{F}^i(J) \mid x^p = 0\}$ such that the residue classes $t + \mathfrak{F}^i((J+Q)J)$, $t \in \mathfrak{b}_i^{"}$, form a basis for $\{x + \mathfrak{F}^i((J+Q)J) \mid x \in \mathfrak{F}^i(J) \text{ and } x^p = 0\}$ over $\mathfrak{F}^i(C)/\mathfrak{F}^i(Q)$. Since the monomials in \mathfrak{b}_{i+1} form a set of generators for the $\mathfrak{F}^{i+1}(C)$ -module $\mathfrak{F}^{i+1}(J)$, given $u \in \mathfrak{F}^i(J)$ there is a polynomial $\varphi = \varphi(\mathfrak{b}'_i, C_i)$ in \mathfrak{b}'_i with coefficients in C_i , φ having no constant term, such that $(u-\varphi)^p=0$. It follows from $u=(u-\varphi)$ $+\varphi$ that the set $\mathfrak{b}_i = \mathfrak{b}'_i \cup \mathfrak{b}''_i$ meets all our requirements.

Hereafter $b = b_0$ will be called a set of *p*-generators for the decomposition E = C + J.

We recall that given an algebra X over a ring Y, for any x in X, the exponent of x is the least nonnegative integer e(x) such that $x^{p^{e(x)}}$ is in Y. The exponent of X over Y is the maximum of $\{e(x) \mid x \in X\}$.

EXAMPLE. Let C be a local A-algebra of finite exponent e such that the Amodule C is finitely generated and flat. Put $E = C \otimes_A C$. Then $E = C \otimes 1 + J$ where $J = (C \otimes 1) \cdot \{1 \otimes x - x \otimes 1 \mid x \in C\}$. We may assume that the elements of b are of the form $1 \otimes t - t \otimes 1$. From $E = (C \otimes 1)[b]$ it follows that the inclusion map $C \otimes_A A[\{t \mid 1 \otimes t - t \otimes 1 \in b\}] \rightarrow E$ is onto. And so the inclusion map $A[\{t \mid 1 \otimes t - t \otimes 1 \in \mathfrak{b}\}] \rightarrow C$ is onto because C over A is actually faithfully flat. In other words, the monomials $\prod t^i$, $1 \otimes t - t \otimes 1 \in \mathfrak{b}$, $0 \leq i < p^{e(t)}$, form a set of generators for the A-module C.

2. Higher derivations. By a higher derivation D of rank ρ , $0 < \rho < \infty$, on a ring C we mean a sequence of maps

$$D^{(i)}: C \to C, \qquad 1 \leq i \leq \rho,$$

making the map

$$\varphi_D \colon C \to C[t]/(t^{\rho+1}),$$

$$x \to x + (D^{(1)}x)t + \dots + (D^{(\rho)}x)t^{\rho}$$

a ring-homomorphism.

$$\{x \in C \mid \varphi_D(x) = x\} = \bigcap \{\text{kernel } D^{(i)} \mid 1 \leq i \leq \rho\}.$$

Given a set g of higher derivations on C, we shall denote by m(g) the set of all monomials μ of the form $D_1^{(l_1)} \cdots D_s^{(l_s)}$, $D_i \in \mathfrak{g}$, $0 \leq l_i \leq \operatorname{rank} D_i$, where $D_i^{(0)}$ as usual is understood to be the identity map on C. The degree of μ is the sum $l_1 + \cdots$ $+l_s$. The kernel of g is the set \bigcap {kernel $D \mid D \in g$ }. An ideal a in C is said to be stable under g if $\mu(a) \subseteq a$ for all μ in $\mathfrak{m}(\mathfrak{g})$.

LEMMA 2.1. Let g be a set of higher derivations on a ring C. Write A = kernel g.

(a) A is a subring of C and any idempotent element in C belongs to A.

(b) If C has no ideal, except 0 and 1, stable under g, then A is a field.

(c) If A is a field and if the vector space dimension of C over A is finite, so is the exponent of C over A.

(d) If there is a positive integer α such that $p^{\alpha} > max \{ rank D \mid D \in g \}$, then the exponent of C over A is not greater than α .

[August

578

The kernel of
$$D$$
 is the set

(e) If A is a field and the exponent of C over A is $\alpha < \infty$, then $x^{p^{\alpha}} = 0$ for all nonunit x in C.

Proof. (a) Given a pair of ring-homomorphisms

$$R \xrightarrow{u} S,$$

it is clear that $\{x \in R \mid u(x) = v(x)\}$ form a subring of R. In particular for any higher derivation D on C, kernel $D = \{x \in C \mid \varphi_D x = x\}$ form a subring of C. So A is a subring of C.

Let $D = (D^{(1)}, D^{(2)}, \dots, D^{(l)}, \dots)$ be a higher derivation on C. From

$$\sum_{l} (D^{(l)}x^{p})t^{l} = \varphi_{D}(x^{p}) = \varphi_{D}(x)^{p} = \sum_{i} (D^{(i)}x)^{p}t^{p_{i}}$$

we get

$$D^{(l)}(x^p) = 0$$
, if $l \neq 0 (p)$,
 $D^{(ip)}(x^p) = D^{(i)}(x)^p$.

Now given a positive integer l, we may write $l=qp^r$ with q relatively prime to p. If ε is any idempotent in C, then

$$D^{(l)}(\varepsilon) = D^{(qp^r)}(\varepsilon^{p^{r+1}}) = (D^{(q)}(\varepsilon^p))^{p^r} = 0.$$

So ε belongs to A.

(b) For any $x \neq 0$ in A and any y in C we have $\varphi_D(xy) = x\varphi_D(y)$, $D \in \mathfrak{g}$. So the ideal xC is stable under \mathfrak{g} because $D^{(1)}(xy) = x(D^{(1)}y)$. So xC = C and x is a unit in C. From $\varphi_D(x^{-1}) = \varphi_D(x)^{-1} = x^{-1}$ it follows that x^{-1} is also in A. Hence A must be a field.

(c) Let C_i denote the A-subalgebra of C generated by x^{p^i} , $x \in C$. We have $C_{i+1} \subset C_i \subset \text{kernel } D^{(l)}$ for all $l \neq 0$ (p^i) . In particular the intersection of all C_i , $i=0, 1, 2, \ldots$, is contained in A. Since C is finite dimensional over A, there exists a positive integer α such that $C_{\alpha} = C_{\alpha+1} = C_{\alpha+2} = \cdots$. The exponent of C over A is therefore at most α because C_{α} is contained in A.

(d) For any x in C, D^(l)(x^{p^α}) is zero for all D in g. So the exponent is at most α.
(e) For any nonunit x in C, x^{p^α} as a nonunit in the field A must be zero.

LEMMA 2.2. Let g be a set of higher derivations on a local ring C. Then the following two statements are equivalent.

- (i) No ideal in C, except 0 and 1, is stable under g.
- (ii) Given any nonunit $x \neq 0$ in C there is some $\mu \in \mathfrak{m}(\mathfrak{g})$ such that $\mu(x)$ is a unit in C.

Proof. (i) \rightarrow (ii). Let a be the nonzero ideal in C generated by $\{\mu(x) \mid \mu \in \mathfrak{m}(\mathfrak{g})\}$ which is clearly stable under g. So $\mathfrak{a} = C$ and one of the $\mu(x)$'s must be a unit because C is a local ring. (ii) \rightarrow (i) is trivial.

SHUEN YUAN

If g is a set of higher derivations on a ring C with A = kernel g, then for any $D = \{D^{(1)}, \ldots, D^{(\rho)}\}$ in g, both $1 \otimes D = \{1 \otimes D^{(1)}, \ldots, 1 \otimes D^{(\rho)}\}$ and $D \otimes 1 = \{D^{(1)} \otimes 1, \ldots, D^{(\rho)} \otimes 1\}$ are higher derivations on $C \otimes_A C$. Let $g \otimes g$ denote the set of all $1 \otimes D$, $D \otimes 1$ with $D \in g$. We have the following.

LEMMA 2.3. Let g be a set of higher derivations on a ring C with kernel g = A. Assume no ideal in C, except 0 and 1, is stable under g. Then no ideal in $E = C \otimes_A C$, except 0 and 1, is stable under $g \otimes g$. The kernel of $g \otimes g$ is equal to A.

Proof. We have an exact sequence

$$0 \longrightarrow A \longrightarrow C \xrightarrow[(D^{(1))}]{} \bigsqcup C.$$

Tensoring over A with C we get the exactness of

$$0 \longrightarrow A \otimes_A C \longrightarrow E \xrightarrow[(D^{(1)\otimes 1)}]{} \coprod E.$$

This shows kernel $\mathfrak{g} \otimes \mathfrak{g} = (A \otimes_A C) \cap (C \otimes_A A) = A$.

Now assume a is a nonzero ideal in E which is stable under $\mathfrak{g} \otimes \mathfrak{g}$ and $\mathfrak{a} \subseteq E$. Let $\sigma = x_1 \otimes y_1 + \cdots + x_r \otimes y_r \neq 0$ be an element of a with r minimal. Clearly r > 1. Let $\mu \in \mathfrak{m}(\mathfrak{g})$ such that $\mu(x_1)$ is a unit in C. The element

$$(\mu \otimes 1)\sigma = \mu(x_1) \otimes y_1 + \cdots + \mu(x_r) \otimes y_r$$

cannot be zero because y_1, \ldots, y_r are linearly independent over the field A. Put $\sigma' = 1 \otimes y_1 + x'_2 \otimes y_2 + \cdots + x'_r \otimes y_r$ where $x'_i = \mu(x_1)^{-1}\mu(x_i)$. Since $\sigma' \in \mathfrak{a}$, it cannot belong to $A \otimes_A C$ otherwise r would be equal to 1 and we would get a contradiction. So $(D^{(1)} \otimes 1)\sigma' = (D^{(1)}x'_2) \otimes y_2 + \cdots + (D^{(1)}x'_r) \otimes y_r$ is nonzero for some $D^{(1)}$, $D \in \mathfrak{g}$. We therefore get a contradiction to the minimality of r because $0 \neq (D^{(1)} \otimes 1)\sigma' \in \mathfrak{a}$. So no nontrivial ideal in E is stable under \mathfrak{g} . This completes the proof of the lemma.

THEOREM 2.4. Let g be a set of higher derivations on a ring C with A = kernel g. Assume C is finitely generated as an A-module and no ideal in C, except 0 and 1, is stable under g. Then C admits a p-basis over A.

Proof. Since A is a field and C is finite dimensional over A, by Lemma 2.1, C is a local ring with nilpotent maximal ideal Q. Put

$$E = C \otimes_A C, \quad J = \{1 \otimes x - x \otimes 1 \mid x \in C\}E.$$

Let $\{1 \otimes x_1 - x_1 \otimes 1, ..., 1 \otimes x_n - x_n \otimes 1\}$ be a set of *p*-generators for $E = C \otimes 1 + J$. We claim that $x_1, ..., x_n$ form a *p*-basis for *C* over *A*. Let *F* be a subfield of *C* such that C = F + Q. Let $\{y_1, ..., y_m\}$ be a set of *p*-generators for C = F + Q. It is clear that $\{y_1 \otimes 1, ..., y_m \otimes 1, 1 \otimes x_1 - x_1 \otimes 1, ..., 1 \otimes x_n - x_n \otimes 1\}$ form a set of *p*-generators for $E = F \otimes 1 + (Q \otimes 1 + J)$. Moreover, by a lemma to be established later,

$$\prod_{i=1}^{m} (y_i^{p'_i-1} \otimes 1) \cdot \prod_{i=1}^{n} (1 \otimes x_i - x_i \otimes 1)^{p^{e_i-1}} \neq 0$$

[August

where e_i (respectively f_i) is the exponent of $1 \otimes x_i - x_i \otimes 1$ (respectively y_i). It follows that for any $y \in C$,

$$(y \otimes 1) \prod_{i=1}^{n} (1 \otimes x_i - x_i \otimes 1)^{p^{e_i} - 1} = 0$$

implies y=0. So $\{1 \otimes x_1-x_1 \otimes 1, ..., 1 \otimes x_n-x_n \otimes 1\}$ form a *p*-basis for *E* over $C \otimes 1$. Now from the binomial expansion of

$$((1 \otimes x_i - x_i \otimes 1) + x_i \otimes 1)^{d_i} = 1 \otimes x_i^{d_i},$$

it follows that $1 \otimes \prod_{i=1}^{n} x_{i}^{d_{i}}$ can be expressed as a polynomial in

$$\{1 \otimes x_i - x_i \otimes 1 \mid 1 \leq i \leq n\}$$

with coefficients in $C \otimes 1$ and with $\prod_{i=1}^{n} (1 \otimes x_i - x_i \otimes 1)^{d_i}$ as its highest degree term. This implies that $\{\prod_{i=1}^{n} x_i^{d_i} \mid 0 \leq d_i < p^{e_i}\}$ is linearly independent over A. Since the dimension of C over A is equal to the dimension of E over $C \otimes 1$, $\{x_1, \ldots, x_n\}$ must be a *p*-basis for C over A.

COROLLARY 2.5. Let C be a finite dimensional purely inseparable field extension over A. If A is the kernel of a set of higher derivations of C, then C admits a p-basis over A.

Now let x_1, \ldots, x_m be elements of C. It follows from

$$\varphi_D\left(\prod_{i=1}^m x_i\right) = \prod_{i=1}^m \varphi_D(x_i)$$

that

$$D^{(l)}(x_1\cdots x_m)=\sum \prod_{i=1}^m D^{(\alpha_i)}x_i$$

where the summation runs through all $(\alpha_1, \ldots, \alpha_m)$, α_i nonnegative integers with $\sum_{i=1}^{m} \alpha_i = l$. Let (l:m) denote the set of all these *m*-tuples and assume we are given $D_1^{(1)}, \ldots, D_s^{(l_s)}$ where D_i are higher derivations on *C*. For any (a_1, \ldots, a_s) , $a_i = (\alpha(i, 1), \ldots, \alpha(i, m)) \in (l_i:m)$, set

$$(a_1,\ldots,a_s)^*(x_1,\ldots,x_m)=\prod_{j=1}^m\left(\prod_{i=1}^s D_i^{\alpha(i,j)}\right)x_j.$$

An induction on s gives the following formula.

$$D_1^{(l_1)}\cdots D_s^{(l_s)}(x_1\cdots x_m) = \sum (a_1,\cdots,a_s)^*(x_1,\ldots,x_m), \qquad a_i \in (l_i:m).$$

LEMMA 2.6. Let C be a local ring with Q as its maximal ideal. Let E be a C-algebra such that E=C+J as a C-module direct sum for some finitely generated nilpotent ideal J in E. Let π : $E=C+J \rightarrow J$ denote the second coordinate projection. Let g be a set of higher derivations on E. Put $I=\{x \in J \mid \mu(x) \in Q+J \text{ for all } \mu \in m(g)\}$.

1970]

Assume $\pi\mu(I) \subset I$ for all $\mu \in \mathfrak{m}(\mathfrak{g})$. If $I \cap \mathfrak{F}^{\mathfrak{l}}(J) \subset \mathfrak{F}^{\mathfrak{l}}(QJ)$ for all \mathfrak{i} , then the product

$$t_1^{q_1}\cdots t_n^{q_n}\neq 0 \ (I)$$

where $\{t_1, \ldots, t_n\} = b$ is a set of p-generators for E = C + J, $q_i = p^{e_i} - 1$, $e_i = e(t_i)$ is the exponent of t_i with respect to C.

Proof by contradiction. Let *m* be the minimal integer such that for some integers m_i , $0 \le m_i \le p^{e_i} - 1$ and $\sum m_i = m$, we have

$$z = t_1^{m_1} \cdots t_n^{m_n} = 0 \quad (I).$$

We have m > 1 because $I \subset QJ$. We claim that $m_i = 0$ (p) for all i = 1, ..., n. Assume this is not the case. Let $m_1, ..., m_r$ be nonzero modulo p while $m_i = 0$ (p) for all i > r. Write

$$z_i = t_i^{m_i-1} \prod_{k \neq i} t_k^{m_k}, \qquad i = 1, \ldots, r.$$

The minimality of *m* asserts that z_i is nonzero modulo *I*. Let *l* be the least integer such that for some i, $1 \le i \le r$, $\mu(z_i)$ is a unit in *E* for some $\mu \in \mathfrak{m}(\mathfrak{g})$ with degree $\mu = l$. By a change of indices we may assume i=1. Now $\mu(z) = \mu(t_1^{m_1} \cdots t_r^{m_r}\tau)$, $\tau = \prod_{k>r} t_k^{m_k}$, can be expressed as a polynomial in b with coefficients in *C*. We are going to show that the coefficient of t_1 in $\mu(z)$, which modulo *Q* is unique, is a unit in *C*. This is not possible because $\pi\mu(z) \in I \subset QJ$. So m_i must be zero modulo *p* for all $i=1, \ldots, n$.

Put $\sigma = m_1 + \cdots + m_r$, $\mu = D_1^{(l_1)} \cdots D_s^{(l_s)}$ and let

$$a_i = (\alpha(i, 1, 1), \ldots, \alpha(i, 1, m_1), \ldots, \alpha(i, r, 1), \ldots, \alpha(i, r, m_r), \alpha_i)$$

be a general element of $(l_i : \sigma + 1)$. Write

$$a = (a_1, \dots, a_s),$$

$$L(a, u, v) = \text{the coefficient of } t_1 \text{ in } E_{u,v} = \left(\prod_{i=1}^s D_i^{(\alpha(i,u,v))}\right) t_u,$$

$$C(a, u, v) = \text{the constant term of } \left(\prod_{(i,j) \neq (u,v)} E_{i,j}\right) \left(\prod_{i=1}^s D_i^{(\alpha_i)}\right) \tau.$$

Given an s-tuple $b = (\beta_1, \ldots, \beta_s), 0 \le \beta_i \le l_i$, of integers, we denote by

A(b, u, v) the set $\{a \mid a_i \in (l_i : \sigma+1) \text{ with } \alpha(i, u, v) = \beta_i\}$.

Since the coefficient of t_1 in $(\prod_{i=1}^s D_i^{(\alpha_i)})\tau$ is zero modulo Q, the modulo Q coefficient of t_1 in $\mu(z) = (D_1^{(l_1)} \cdots D_r^{(l_s)})(t_1^{m_1} \cdots t_r^{m_r}\tau)$ is

$$\sum_{u=1}^{r}\sum_{v=1}^{m_{u}}\sum_{a} C(a, u, v)L(a, u, v) = \sum_{u=1}^{r}\sum_{v=1}^{m_{u}}\sum_{b}\sum_{a\in A(b, u, v)} C(a, u, v)L(a, u, v).$$

We have the following cases

[August

(i) Not all of β_i are zero. By the minimality of l, $\sum_{a \in A(b, u, v)} C(a, u, v)$ as the constant term of $(D_1^{(l_1 - \beta_1)} \cdots D_s^{(l_s - \beta_s)}) z_u$ is zero modulo Q. Hence

$$\sum_{a\in A(b,u,v)} C(a, u, v) L(a, u, v)$$

is zero modulo Q.

(ii) $\beta_i = 0$ for all i = 1, ..., s but $u \neq 1$. $\sum_{a \in A(b, u, v)} C(a, u, v) L(a, u, v)$ is zero modulo Q because L(a, u, v) is.

(iii) $\beta_i = 0$ for all i = 1, ..., s and u = 1. Let $\mu(z_1) = \gamma + \nu$ with $\gamma \in C$ and $\nu \in J$. So

$$\sum_{v\in A(b,1,v)} C(a,1,v)L(a,1,v) = \gamma.$$

a

This shows $\pi\mu(z)=0$ modulo *I* has a modulo *Q* nonzero linear term $m_1\gamma t_1$ which is the desired contradiction.

Recall that the integer e=e(J) is the least integer such that $\mathfrak{F}^{e+1}(J)=0$. From what we have shown we see that the lemma is true for e=0. Moreover, if the lemma is incorrect for some e>0, then it is also incorrect for $\mathfrak{F}(E)=\mathfrak{F}(C)+\mathfrak{F}(J)$ with $e(\mathfrak{F}(J))=e(J)-1$. An induction on e completes the proof of the lemma.

3. The endomorphism ring. We begin with a slight rewording of the Jacobson-Bourbaki theorem. The proofs are adapted from Hochschild [1, Lemma 2.1 and Theorem 2.1].

LEMMA 3.1. Let C be a local ring with nilpotent maximal ideal Q. Let Ω be an $n < \infty$ dimensional free C-submodule of $\operatorname{Hom}_{Z}(C, C)$ where Z is the ring of all integers. Then there exist c_1, \ldots, c_n in C and a C-module basis $\omega_1, \ldots, \omega_n$ for Ω such that $\omega_i(c_j) = \delta_{ij}$.

Proof. Let $T_{0,1}, \ldots, T_{0,n}$ be any *C*-module basis for Ω . We first observe that $T_{0,i}(C) \notin Q$ for all $i=1, \ldots, n$. For if *e* is the least integer such that $Q^e=0$, then from $T_{0,i}(C) \subseteq Q$ we get $uT_{0,i}=0$ and hence u=0 for any *u* in Q^{e-1} which is absurd.

Now suppose we have already found c_1, \ldots, c_l in C and a C-module basis $T_{l,1}, \ldots, T_{l,n}$ of Ω such that $T_{l,i}(c_j) = \delta_{ij}$, for $1 \le i \le n$ and $1 \le j \le l$. If l < n, there is an element $c_{l+1} \in C$ such that $T_{l,l+1}(c_{l+1})$ is a unit in C. We set $T_{l+1,l+1} = T_{l,l+1}(c_{l+1})^{-1}T_{l,l+1}$, so that $T_{l+1,l+1}(c_{l+1}) = 1$. For every $i \ne l+1$, we set $T_{l+1,i} = T_{l,i} - T_{l,i}(c_{l+1})T_{l+1,l+1}$. Then we have $T_{l+1,i}(c_j) = \delta_{ij}$, for $1 \le i \le n$ and $1 \le j \le l+1$, and that $T_{l+1,i}$ are still a C-module basis for Ω . Proceeding in this fashion, starting from the case l=0, we finally obtain c_1, \ldots, c_n in C and $\omega_i = T_{n,i}$ which satisfy the requirements of the lemma.

LEMMA 3.2. Let C be a ring and Ω a (not necessarily commutative) subring of Hom_Z (C, C). Assume that Ω is a free C-module based on $\omega_1, \ldots, \omega_n$ ($n < \infty$) such that for some c_1, \ldots, c_n in C, $\omega_i(c_j) = \delta_{ij}$. Let A denote the subring $\{c \in C \mid \omega(cx) = c\omega(x) \text{ for all } x \in C \text{ and all } \omega \text{ in } \Omega\}$ of C. Then C is a free A-module based on c_1, \ldots, c_n and $\Omega = \text{Hom}_A(C, C)$.

1970]

SHUEN YUAN

Proof. Given ω in Ω , if we write $\omega = \sum_{i=1}^{n} x_i \omega_i$, $x_i \in C$, then $x_i = (\sum_{j=1}^{n} x_j \omega_j)(c_i) = \omega(c_i)$. In particular,

$$\omega_l(x\omega_j) = \sum_{i=1}^n (\omega_l(x\omega_j))(c_i)\omega_i = \omega_l(x)\omega_j \qquad (x \in C).$$

So for any c in C, $\omega_i(x)\omega_j(c) = \omega_i(x\omega_j(c))$. It follows that $\omega_j(c) \in A$ for all $c \in C$ and $j=1,\ldots,n$. Now let $c \in C$ and write $c'=c-\sum_{i=1}^n \omega_i(c)c_i$. We have $\omega_j(c')=0$ for all $j=1,\ldots,n$. So c'=0 because ω_j form a basis for Ω which as a subring of Hom_z (C, C) contains the identity map on C. This shows $c=\sum_{i=1}^n \omega_i(c)c_i$ for all c in C. If $\sum_{i=1}^n \alpha_i c_i = 0$, $\alpha_i \in A$, then $\alpha_i = \omega_i(\sum_{j=1}^n \alpha_j c_j) = 0$. Hence c_1,\ldots,c_n form a basis for C over A. Given any f in Hom_A (C, C), we have $f=\sum_{i=1}^n f(c_i)\omega_i$. So $\Omega = \text{Hom}_A$ (C, C). This completes the proof of the lemma.

THEOREM 3.3. Let C be a local ring with nilpotent maximal ideal Q. Let g be a set of higher derivations on C such that no ideal in C, except 0 and 1, is stable under g. Let A denote the kernel of g and write $\Omega = C[g]$. If Ω is finitely generated as a C-module, then $\Omega = \text{Hom}_A(C, C)$.

Proof. In view of Lemmas 3.1 and 3.2 above, it suffices to show that Ω is a finite dimensional free C-module. Let $\omega_1, \ldots, \omega_n$ be elements in $\mathfrak{m}(\mathfrak{g}) \subset \Omega$ such that the $\omega_i + Q\Omega$ form a basis for $\Omega/Q\Omega$ over C/Q. It follows from [5, p. 105, Corollaire 2] that $\omega_1, \ldots, \omega_n$ generate Ω as a C-module. If $\sum_{i=1}^n x_i \omega_i = 0$ ($x_i \in C$), then $x_i \in Q$. Assume that not all the x_i are zero. Let μ be an element in $\mathfrak{m}(\mathfrak{g})$ with minimal degree such that $\mu(x_i)$ is a unit in C for some *i* (Lemma 2.2). We have

$$0 = \mu \left(\sum_{j=1}^{n} x_{j} \omega_{j} \right) \equiv \sum_{j=1}^{n} \mu(x_{j}) \omega_{j} \text{ modulo } Q\Omega$$

which is a contradiction to the choice of ω_j . This shows that Ω is a free C-module based on $\omega_1, \ldots, \omega_n$ as desired.

4. One derivation. Let C be an algebra over a field A. Assume C over A admits a p-basis $\{t_1, \ldots, t_r\}$. We may assume the t_i 's are units. For if t_i is not a unit, it must be a nilpotent so can be replaced by $1 + t_i$. Let e_i be the exponent of t_i . By a change of indices we may assume $e_1 \ge \cdots \ge e_r$. Let $D = \{D^{(1)}, \ldots, D^{(\rho-1)}\}$, $\rho = p^{e_1}$, be the higher derivation on C corresponding to the A-algebra homomorphism

$$\varphi_D \colon C \to C[z]/(z^{\rho}),$$

$$t_1 \to t_1 + z,$$

$$t_{i+1} \to t_{i+1} + \gamma_{i+1} z^{q_{i+1}},$$

where $\gamma_{i+1} = \prod_{l \leq i} t_l^{-1}$, $q_{i+1} = p^{e_1 - e_{i+1}}$. We have the following

THEOREM 4.1. With notations as above,

(E)
$$C[D] = \operatorname{Hom}_{A}(C, C).$$

584

[August

Proof. The assertion is obviously true for r=1. When r=1 the following statement (H) is also true.

(H) Given a_{λ} in A, $0 < \lambda < p^{e_r}$, if there exists $x \in C$ such that

$$D^{(\lambda q_r)} x = a_{\lambda} \gamma_{r+1}^{\lambda}, \qquad 0 < \lambda < p^{e_r},$$

$$D^{(l)} x = 0, \qquad l \neq 0 \ (q_r),$$

then $x \in A[t_r]$ and $a_{\lambda} = 0$ for all λ .

We are going to establish the following chain of implications:

(E) and (H) for all
$$r < s \Rightarrow$$
 (H) for $r = s \Rightarrow$ (E) for $r = s$.

Write

$$x = \sum_{i=0}^{n-1} x_i t_s^i, \qquad (n = p^{e_s}, x_i \in A[t_1, \ldots, t_{s-1}]).$$

We have, for all l > 0,

(1)

$$D^{(l)}x = \sum_{i=0}^{n-1} D^{(l)}(x_i t_s^i)$$

$$= \sum_{i=0}^{n-1} \sum_{\lambda} (D^{(l-\lambda q_s)} x_i) D^{(\lambda q_s)} t_s^i$$

$$= \sum_{i=0}^{n-1} \sum_{\lambda} {i \choose \lambda} \gamma_s^{\lambda} t_s^{i-\lambda} (D^{(l-\lambda q_s)} x_i)$$

$$= \sum_{j=0}^{n-1} t_s^j \sum_{i \ge j} {i \choose i-j} \gamma_s^{i-j} (D^{(l-[i-j]q_s)} x_i)$$

Taking into account the assumption placed on x in the statement (H), we get for $l \neq 0$ (q_s),

(2)
$$\sum_{i\geq j} {i \choose i-j} \gamma_s^{i-j} D^{(l-[i-j]q_s)} x_i = 0, \quad 0 \leq j \leq n-1.$$

In particular for j=n-1, we get

(3)
$$D^{(l)}x_{n-1} = 0$$

for all $l \neq 0$ (q_s). Putting j=n-2 in (2) and taking into account (3) we get $D^{(l)}x_{n-2} = 0$ for all $l \neq 0$ (q_s). Hence

$$D^{(i)}x_i=0$$

for all *i* and all $l \neq 0$ (q_s). Now put $l = \lambda q_s$ ($\lambda \neq 0$) in (1). From (H) we get

$$a_{\lambda}\gamma_{s+1}^{\lambda} = \sum_{j=0}^{n-1} t_s^j \sum_{i \geq j} {i \choose i-j} \gamma_s^{i-j} D^{((\lambda-i+j)q_s)} x_i.$$

1970]

So

$$\sum_{i\geq j} {i \choose i-j} \gamma_s^{i-j} D^{([\lambda-i+j]q_s)} x_i = a_\lambda \theta_s \gamma_s^{\lambda}, \quad j=n-\lambda,$$

= 0, $j\neq n-\lambda,$

where $\theta_s = (t_s^{pe_s})^{-1}$. In particular

$$D^{(q_s)}x_{n-1} = a_1\theta_s\gamma_s; \quad D^{(\lambda q_s)}x_{n-1} = 0 \qquad (\lambda \neq 1).$$

By induction hypothesis we get $a_1=0$. So $D^{(l)}x_{n-1}=0$ for all $l\neq 0$. Applying the induction hypothesis again, we get $x_{n-1} \in A$.

Now assume $a_i = 0$, $x_{n-i} \in A$ for all $1 \leq i < k$. So

$$D^{(\lambda q_s)} x_{n-k} = 0 \qquad \text{for } \lambda > k$$

$$D^{(kq_s)} x_{n-k} = a_k \theta_s \gamma_s^k$$

$$D^{(\lambda q_s)} x_{n-k} = -\binom{n-k+\lambda}{\lambda} \gamma_s^\lambda x_{n-k+\lambda} \quad \text{for } 1 \le \lambda < k.$$

The induction hypothesis asserts that $a_k=0$, $D^{(l)}x_{n-k}=0$ for all l>0. So x_{n-k} is also in A. This shows (H) is correct for r=s. In particular the kernel of D is contained in $A[t_s]$. We claim that kernel D is exactly A.

Let $x = \sum_{i=0}^{l} x_i t_s^i$, $x_i \in A$, $x_l \neq 0$, be an element of kernel D with l minimal. If l is greater than zero, then

$$D^{(lq_{s})}x = \sum_{i=0}^{l} x_{i}D^{(lq_{s})}t_{s}^{i} = x_{l}D^{(lq_{s})}t_{s}^{l} = x_{l}\gamma_{s}^{l}$$

is not zero because γ_s^l is a unit; hence a contradiction.

We now contend that kernel D = A implies $\operatorname{Hom}_A(C, C) = C[D]$. Let M be the set of all monomials $t_1^{u_1} \cdots t_s^{u_s}$, $0 \leq u_i < p^{e_i}$. A lexicographic order may be imposed on M as follows: $t_1^{u_1} \cdots t_s^{u_s} < t_1^{v_1} \cdots t_s^{v_s}$ if there is a k such that $u_k < v_k$ and $u_l = v_l$ for all l > k. Given $f = \sum f_{u_1,\dots,u_s} t_1^{u_1} \cdots t_s^{u_s}$, $f_{u_1,\dots,u_s} \in A$, we denote by 0(f) the smallest element of M such that $t_1^{u_1} \cdots t_s^{u_s} \leq 0(f)$ whenever f_{u_1,\dots,u_s} is not zero. We would like to show that given $x \neq 0$ in C there is some $\mu \in \mathfrak{m}(D)$ such that $\mu(x)$ is a unit in C. Assume this is not the case. Let $f = \sum f_{u_1,\dots,u_s} t_1^{u_1} \cdots t_s^{u_s}$, $f_{u_1,\dots,u_s} \in A$, be a nonzero element in C with the least 0(f) such that $\mu(f)$ is not a unit for any $\mu \in \mathfrak{m}(D)$. Since $0(D^{(l)}\zeta) < \zeta$ for all l > 0 and $\zeta \neq 1$ in M, f must belong to kernel D which is the field A. But f is not a unit so must be zero, hence a contradiction. This shows that no ideal in C, except 0 and 1, is stable under D (Lemma 2.2). It follows from Theorem 3.3 that $C[D] = \operatorname{Hom}_A(C, C)$.

References

0. L. R. Harper, On differentiably simple algebras, Trans. Amer. Math. Soc. 100 (1961), 63-72. MR 24 #A116.

1. G. Hochschild, *Double vector spaces over division rings*, Amer. J. Math. 71 (1949), 443-460. MR 10, 676.

[August

586

2. M. Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401-410. MR 36 #6391.

3. M. Weisfeld, *Purely inseparable extensions and higher derivations*, Trans. Amer. Math. Soc. 116 (1965), 435-449. MR 33 #122.

4. Shuen Yuan, Differentiably simple rings of prime characteristic, Duke Math. J. 31 (1964), 623–630. MR 29 #4772.

5. N. Bourbaki, Algèbre commutative. Chapitres I, II, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.

STATE UNIVERSITY OF NEW YORK AT BUFFALO, Amherst, New York 14226