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FINITE DIMENSIONAL INSEPARABLE ALGEBRAS

BY
SHUEN YUAN

Abstract. We determine the structure of finite dimensional algebras which are
differentiably simple with respect to a set of higher derivations.

Let C be a commutative ring of prime characteristic p, and let 4 be a subring
of C both with the same identity. By a p-basis b of C over 4 we mean a finite
subset of C such that for each z € b, 1”*” € A for some positive integer e(z) and the
set of all monomials [, t'?, 0=i(t) <p®®, form an A4-module basis for C. In
this note we show that if 4 is the kernel of a set g of higher derivations of C such
that C is finitely generated as 4-module and no ideal in C, except 0 and 1, is stable
under g, then C admits a p-basis over 4 which must be a field with Hom, (C, C)
=C[g]. Conversely if C admits a p-basis over a field 4, we show that there is a
higher derivation D on C with Hom, (C, C)=C[D]. So no nontrivial ideal can be
stable under D. When g is a set of ordinary derivations, the first statement is
given in [4] and is essentially due to Harper [0]. When C is a field, these reduce
to results of Sweedler [2] and Weisfeld [3]. We begin this paper with a construction
of p-basis for local algebras of finite type.

All rings in the following are assumed to be commutative with 1 and of prime
characteristic p. All modules and ring-homomorphisms are unitary. If C is an
A-algebra, the structural map 4 — C is assumed to be one-to-one.

1. p-generators. For simplicity of notations, given a subset X of a ring Y we
denote by F'(X) the subset {x*' | x € X} of Y.

Now let C be a local ring with Q as its maximal ideal. Let F be a C-algebra
such that for some finitely generated nilpotent ideal J in E, E=C+J as a C-
module direct sum. Let e=e(J) be the least integer such that §e¢*1(J)=0. Let
b, be a subset of F°(J) such that {r+F((J+ Q)J)|teb,} form a basis for
F(JN)/F((J+ Q)J) over the field F(C)/F(Q)=F(C/Q). For each i, we are
" going to construct a subset b; of F(J) with the property that

@ {t+3*((J+Q)J) | teb;} form a basis for F(J)/F((J+ Q)J) over F(C)/F(Q);

(ii) b;,,={t? | teb; and 1?#0}, 0Zi<e.

Assume we have already constructed b, ;. Let b] be a subset of &!(J) such that
for all teb;,,, b; and {x € F'(J) | x*=t} has exactly one element in common.
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Let b{ be a subset of {x € F(J) | x=0} such that the residue classes ¢+ F'((J + Q)J),
t e b], form a basis for {x+F({(J+ Q)J) | x € FY(J) and x*=0} over F(C)/F(Q).
Since the monomials in b;,, form a set of generators for the &'*(C)-module
FrL(J), given u € F'(J) there is a polynomial p=g(b;, C;) in b; with coefficients
in C;, ¢ having no constant term, such that (u—¢)?=0. It follows from u=(u—¢)
+ ¢ that the set b,=D0; U b] meets all our requirements.

Hereafter b=0, will be called a set of p-generators for the decomposition
E=C+J.

We recall that given an algebra X over a ring Y, for any x in X, the exponent of
x is the least nonnegative integer e(x) such that x*** is in Y. The exponent of X
over Y is the maximum of {e(x) | x € X}.

ExAMPLE. Let C be a local A4-algebra of finite exponent e such that the A-
modyle C is finitely generated and flat. Put E=C ®, C. Then E=C Q 1+J
where J=(C ® 1)-{l ® x—x ® 1 | xe C}. We may assume that the elements of
b are of the form 1 ® t—¢ ® 1. From E=(C ® 1)[b] it follows that the inclusion
map C @, At |1 ® t—t ® 1 eb}] — E is onto. And so the inclusion map
A[{t|1 ® t—t ® 1 e b}] — C is onto because C over A is actually faithfully flat.
In other words, the monomials [1#, 1 @ t—t ® 1 €b, 05i<p°®, form a set of
generators for the A-module C.

2. Higher derivations. By a higher derivation D of rank p, 0<p<oo, on a
ring C we mean a sequence of maps

D®: C—C, 1sisp,
making the map
¢p: C— C[t]/(z°*Y),
x—>x+(DVx)t+ - - - +(DPx)t°
a ring-homomorphism. The kernel of D is the set
{xeC|gp(x) = x} = N {kernel D® |1 < i < p}.

Given a set g of higher derivations on C, we shall denote by m(g) the set of all
monomials p of the form D¢v...D% D,eg, 0=l <rank D, where D{® as
usual is understood to be the identity map on C. The degree of w is the sum /, + - - -
+/,. The kernel of g is the set (") {kernel D | D € g}. An ideal a in C is said to be
stable under g if u(a)<a for all p in m(g).

LeMMA 2.1. Let g be a set of higher derivations on a ring C. Write A=kernel g.

(@) A is a subring of C and any idempotent element in C belongs to A.

(b) If C has no ideal, except 0 and 1, stable under g, then A is a field.

(c) If A is a field and if the vector space dimension of C over A is finite, so is the
exponent of C over A.

(d) If there is a positive integer « such that p*>max {rank D | D € g}, then the
exponent of C over A is not greater than c.




1970] FINITE DIMENSIONAL INSEPARABLE ALGEBRAS 579

(e) If A is a field and the exponent of C over A is a<o0, then x **=0 for all
nonunit x in C.

Proof. (a) Given a pair of ring-homomorphisms

—>
R___S,
v
it is clear that {x € R | u(x)=v(x)} form a subring of R. In particular for any higher
derivation D on C, kernel D={x e C | ppx=x} form a subring of C. So 4 is a
subring of C.

Let D=(D®, D®, ..., D®, . ..) be a higher derivation on C. From

IZ (DOxP)1t = pp(xP) = pp(x)? = Z (D®x)Pe?

we get
DY(x?) =0, if I # 0(p),
D(ip)(xp) _ D(i)(x)r.

Now given a positive integer /, we may write /=gp" with g relatively prime to p.
If ¢ is any idempotent in C, then

D(l)(e) = D(ap')(ap” 1) = ( D(q)(ep))p' = 0.

So ¢ belongs to A.

(b) For any x#0 in 4 and any y in C we have ¢n(xy)=x¢p(»), D € g. So the
ideal xC is stable under g because D¥(xy)=x(D®y). So xC=C and x is a unit
in C. From gp(x~Y)=¢p(x)~*=x"1 it follows that x~* is also in 4. Hence 4 must
be a field.

(c) Let C, denote the A-subalgebra of C generated by x*, x e C. We have
Ci,1<C,<kernel D® for all /#0 (p*). In particular the intersection of all C,,
i=0,1,2,...,is contained in 4. Since C is finite dimensional over A4, there exists
a positive integer « such that C,=C,,;=C,,2="---. The exponent of C over 4
is therefore at most o because C, is contained in 4.

(d) For any x in C, D®(x*) is zero for all D in g. So the exponent is at most «.

(e) For any nonunit x in C, x** as a nonunit in the field 4 must be zero.

LEMMA 2.2. Let g be a set of higher derivations on a local ring C. Then the following
two statements are equivalent.

(i) No ideal in C, except 0 and 1, is stable under g.

(ii) Given any nonunit x#0 in C there is some u € m(g) such that u(x) is a unit in C.

Proof. (i) — (ii). Let a be the nonzero ideal in C generated by {u(x) | p € m(g)}
which is clearly stable under g. So a=C and one of the u(x)’s must be a unit
because C is a local ring. (ii) — (i) is trivial.
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If g is a set of higher derivations on a ring C with 4=Kkernel g, then for any
D={DV, .., D¥} in g, both 1  D={1 QD™,...,1 ® D} and D Q1
={DY ®1,..., D ® 1} are higher derivations on C ®, C. Let ¢ ® g denote
theset of all 1 @ D, D ® 1 with D € g. We have the following.

LeMMA 2.3. Let g be a set of higher derivations on a ring C with kernel g=A.
Assume no ideal in C, except 0 and 1, is stable under g. Then no ideal in E=C ®, C,
except 0 and 1, is stable under g Q g. The kernel of ¢ ® g is equal to A.

Proof. We have an exact sequence

0 A Cwm]C
Tensoring over A with C we get the exactness of

This shows kernel § ® g=(4 ®,C) N (C Q4 A)=A.

Now assume a is a nonzero ideal in E which is stable under ¢ ® g and a & E.
Let o=x; @ y1+---+x, ® y,#0 be an element of a with r minimal. Clearly
r>1. Let u € m(g) such that u(x;) is a unit in C. The element

(b ® Do = p(x1) @ y1+ -+ +plx) @ yr

cannot be zero because yy,..., y, are linearly independent over the field 4. Put
d'=1Qy+x5 Q yat+ -+ +x5 ® y, where x;=pu(x,) *u(x;). Since o’ € a, it can-
not belong to 4 ®, C otherwise r would be equal to 1 and we would get a contra-
diction. So (D® ® 1)o’=(D%x3) ® ys+ -+ +(DPx;) ® y, is nonzero for some
D®, D eg. We therefore get a contradiction to the minimality of r because 0#
(D® ® 1)o’ € a. So no nontrivial ideal in E is stable under g. This completes the
proof of the lemma. '

THEOREM 2.4. Let g be a set of higher derivations on a ring C with A=kernel g.
Assume C is finitely generated as an A-module and no ideal in C, except 0 and 1,
is stable under §. Then C admits a p-basis over A.

Proof. Since A is a field and C is finite dimensional over 4, by Lemma 2.1,
C is a local ring with nilpotent maximal ideal Q. Put

E=C®,C, J={1®@x—xQ1|xeC}E.

Let {1 ®x;—x®1,...,1 ®x,—x, @1} be a set of p-generators for E=
C®1+J. We claim that x,, ..., x, form a p-basis for C over 4. Let F be a subfield
of C such that C=F+ Q. Let {y,, ..., yn} be a set of p-generators for C=F+ Q.
Itisclear that {y; @ 1,...,y)n QL1 Qx;—x;, ®1,...,1 ® x,—x, @ 1} form
a set of p-generators for E=F ® 1+(Q ® 1+J). Moreover, by a lemma to be
established later,

[T J]0®x—x @110
i=1 i=1
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where e; (respectively f;) is the exponent of 1 ® x;—x; ® 1 (respectively y;). It
follows that for any y € C,

D [J0®x—x@1) =0
i=1

implies y=0.S0{l @ x;—x; ® 1,..., 1 ® x,—x, ® 1} form a p-basis for E over
C ® 1. Now from the binomial expansion of

(A®x—x@D+x QD% =1Q x4,
it follows that 1 ® [If-, x{ can be expressed as a polynomial in
{l®x¢—x¢®1|1§i§n}

with coefficients in C ® 1 and with [T, (1 ® x;,—x; ® 1)% as its highest degree
term. This implies that {[f., x{ | 0=d;<p®} is linearly independent over A.
Since the dimension of C over 4 is equal to the dimension of E over C ® 1,
{x1, ..., X,} must be a p-basis for C over 4.

COROLLARY 2.5. Let C be a finite dimensional purely inseparable field extension
over A. If A is the kernel of a set of higher derivations of C, then C admits a p-basis
over A.

Now let x4, ..., x, be elements of C. It follows from

wo([ ] %) = T Toot)

i=1 i=1

that
m
DO(x,- - Xp) =z I‘I D@y,
i=1

where the summation runs through all (e, ..., ¢,), ; nonnegative integers with
>, ey=1 Let (I:m) denote the set of all these m-tuples and assume we are given
D{v, ..., D¢ where D, are higher derivations on C. For any (a...,a),
a=(c(i, 1), ..., i, m)) € (l:m), set

m s
@5 @)* oy xm) = [ ] (H D:'“'”)x;-
i=1

i=1

An induction on s gives the following formula.

DY - DIOxy- - Xp) = D (@1 @K1y oo, Xm)s @ € (him).

LeEMMA 2.6. Let C be a local ring with Q as its maximal ideal. Let E be a C-algebra
such that E=C+J as a C-module direct sum for some finitely generated nilpotent
ideal J in E. Let w: E=C+J — J denote the second coordihate projection. Let g
be a set of higher derivations on E. Put I={xeJ | u(x) € Q+J for all n e m(g)}.
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Assume mp(I)<I for all p € m(g). If I N F(J)=F(QJ) for all i, then the product
et # 0 (1)

where {ty, . .., t,}=Db is a set of p-generators for E=C+J, q;=p° —1, e;=e(t,) is the
exponent of t; with respect to C.

Proof by contradiction. Let m be the minimal integer such that for some
integers m;, 0=m; <p%—1 and > m;=m, we have

z = ti"l...t”‘”n =0 (I),

We have m> 1 because I< QJ. We claim that m;=0 (p) for all i=1, ..., n. Assume
this is not the case. Let my;, . .., m, be nonzero modulo p while m;=0 (p) for all
i>r. Write
=t o, i=1,...,r
k#i
The minimality of m asserts that z; is nonzero modulo 1. Let / be the least integer
such that for some i, 1 Si<r, u(z) is a unit in E for some p € m(g) with degree n
=]. By a change of indices we may assume i=1. Now u(z)=p(tP:---t/7),
7=[Ix>, ti, can be expressed as a polynomial in b with coefficients in C. We are
going to show that the coefficient of ¢, in u(z), which modulo Q is unique, is a unit
in C. This is not possible because mu(z) € I< QJ. So m; must be zero modulo p
foralli=1,...,n.
Put o=m;+- .- +m,, u=D{v... DI and let

a = (a(ia 1’ 1)’ ey a(i3 la ml)’ R a(i’ r’ 1)3 LR “(i’ r, mr)’ al)
be a general element of (/; : o+1). Write
a=(a,...,a,),
8
L(a, u, v) = the coefficient of ¢, in E, , = (H DS"“‘“’"”)t,,,
i=1

8
C(a, u, v) = the constant term of ( I EM) (H Dﬁ"())-r.

«,9) # (u,v) i=1
Given an s-tuple b=(B,...,Bs), 0=B,=1, of integers, we denote by
A(b, u,v) theset{a|a el : o+1) with o(i, u, v) = B}.

Since the coefficient of #; in (I [}-, D{*)r is zero modulo Q, the modulo Q
coefficient of #; in u(z)=(D{?- - - DI)(tP1- - - tMr) is

3

u=1lv

3

) U

"'Z > > Ca,uv)L(a,uv).

v=1 b aecAb,u,v)

Z C(a, u,v)L(a, u,v) = i

1

We have the following cases
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(i) Not all of g; are zero. By the minimality of /, Jscaw,u,» C(a, 4, v) as the
constant term of (D{17%2. .. D& ~589)z, is zero modulo Q. Hence

Z C(a, u, v)L(a, u, v)

acA(b,u,v)
is zero modulo Q.
(i) B;=0 for all i=1,..., s but u#l. Dscsp.un C(a, u, v)L(a, u, v) is zero
modulo Q because L(a, u, v) is.
(iii) ;=0 for all i=1,...,s and u=1. Let u(z,)=y+v with ye C and v e J. So

C(a, 1,v)L(a, 1, v) = y.
aeA(b,1,v)
This shows mu(z) =0 modulo I has a modulo Q nonzero linear term m,yt, which is
the desired contradiction.

Recall that the integer e=e(J) is the least integer such that §°+1(J)=0. From
what we have shown we see that the lemma is true for e=0. Moreover, if the lemma
is incorrect for some e>0, then it is also incorrect for F(E)=F(C)+F(J) with
e(F(J))=e(J)—1. An induction on e completes the proof of the lemma.

3. The endomorphism ring. We begin with a slight rewording of the Jacobson-
Bourbaki theorem. The proofs are adapted from Hochschild [1, Lemma 2.1 and
Theorem 2.1].

LeMMA 3.1. Let C be a local ring with nilpotent maximal ideal Q. Let Q be an
n<oo dimensional free C-submodule of Homg (C, C) where Z is the ring of all
integers. Then there exist cy, ..., ¢, in C and a C-module basis wy, ..., w, for Q
such that w(c;)=95y;.

Proof. Let Ty 3, ..., Ty, be any C-module basis for Q. We first observe that
To,(C)¢ Q for all i=1,..., n. For if e is the least integer such that 0°=0, then
from T, (C)< Q we get uT, ;=0 and hence u=0 for any # in Q¢~* which is absurd.

Now suppose we have already found ¢;,..., ¢ in C and a C-module basis
Ti15- -5 Tt of Q such that T ,(c;)=3,,, for 1Zi<n and 151 If I<n, there is
an element ¢;,; € C such that 7;,,:(c;4;) is a unit in C. We set Tj,.q,,1=
Ti141(C141) " Th141, 50 that Typq p40(cie1)=1. For every i#l+1, we set Tp,q,=
T,i=T,(c1+1)T141,141. Then we have T, (c;))=38;;, for 1sisn and 15js/+1,
and that T}, , ; are still a C-module basis for Q. Proceeding in this fashion, starting
from the case /=0, we finally obtain ¢;,..., ¢, in C and w;=T,; which satisfy
the requirements of the lemma.

LEMMA 3.2. Let C be a ring and Q a (not necessarily commutative) subring of
Hom; (C, C). Assume that Q is a free C-module based on w,, . .., w, (n<oo) such
that for some c,, ..., c, in C, wfc;)=3;. Let A denote the subring {c € C | w(cx)
=cw(x) for all xe C and all w in Q} of C. Then C is a freé A-module based on
C1y...5 Cpand Q=Hom, (C, C).
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Proof. Given w in Q, if we write w=27_; x;w;, x; € C, then x;=7-1 x;0,)(c;)
=w(c;). In particular,

wi(xw) = Z (o)) e)or = w(w;  (xeC).

So for any ¢ in C, w/(X)w(c)=w(xw,c)). It follows that w,c)e 4 for all ce C
and j=1,...,n. Now let c € C and write ¢'=c—27.; wi(c)c;, We have w;(c')=0
for all j=1,..., n. So ¢’=0 because w, form a basis for Q which as a subring of
Hom; (C, C) contains the identity map on C. This shows ¢=>7_; w,(c)c; for all ¢
in C. If 37, a¢,=0, oy € 4, then oy=w, (5., &,c,)=0. Hence cy,..., ¢, form a
basis for C over 4. Given any f in Hom, (C, C), we have f=3>7_, f(¢;))w;. So
Q=Hom, (C, C). This completes the proof of the lemma.

THEOREM 3.3. Let C be a local ring with nilpotent maximal ideal Q. Let g be a
set of higher derivations on C such that no ideal in C, except 0 and 1, is stable under g.
Let A denote the kernel of g and write Q=C|g]. If Q is finitely generated as a
C-module, then Q=Hom, (C, C).

Proof. In view of Lemmas 3.1 and 3.2 above, it suffices to show that Q is a
finite dimensional free C-module. Let w,, . . ., w, be elements in m(g)< Q such that
the w;+ QQ form a basis for Q/QQ over C/Q. It follows from [5, p. 105, Corollaire
2] that wy, . . ., w, generate Q as a C-module. If >7_; x;0,=0 (x; € C), then x; € Q.
Assume that not all the x; are zero. Let u be an element in m(g) with minimal
degree such that u(x;) is a unit in C for some i (Lemma 2.2). We have

n n
=1 i=1
which is a contradiction to the choice of w; This shows that Q is a free C-

module based on wy, ..., w, as desired.

4. One derivation. Let C be an algebra over a field 4. Assume C over 4
admits a p-basis {t,, . ..,t,}. We may assume the ¢;’s are units. For if ¢ is not a unit,
it must be a nilpotent so can be replaced by 1+1¢. Let e; be the exponent of ¢,
By a change of indices we may assume e, = --- Ze,. Let D={DW, ..., D¥®-D},
p=p°1, be the higher derivation on C corresponding to the 4-algebra homomorphism

ep: C— C[2]/(2°),
t, = t1+Z,

q,
b1 —> b1ty 2%,

where v, 1 =1Ti<i #; %, ¢+ 1=p°1~°+1. We have the following

THEOREM 4.1. With notations as above,

(E) C[D] = Hom, (C, C).
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Proof. The assertion is obviously true for r=1. When r=1 the following state-
ment (H) is also true.
(H) Given a, in A, 0< A<p®, if there exists x € C such that
Dy = aA‘Yf)‘\+13 0<ac< Pe',
D% = 0, I#0 (g0),

then x € A[t,] and a,=0 for all .
We are going to establish the following chain of implications:

(E) and (H) for allr < s = (H) forr = s = (E) forr = s.

Write
n—1
X = Z xit;, (n = Pe‘, Xi € A[th LIRICE ) ts—l])'
i=0
We have, for all />0,
n-1
D®x = DY(x;t!
i=0
n—-1
= Z (D4 -29x,) DAy
i=0 A
1 a1 .
Y Api=Ag i—Agp
= A Ysts (D s xi)
i=0 A
n—1 i
= t (i— .).yg-f( D-ti-flayy,),
=0 iz J

Taking into account the assumption placed on x in the statement (H), we get for
I1#0 (4.),

@ (iij)y:_jD('—H_ﬂql)x‘ =0, 0<js<n-l.
1z7 '

In particular for j=n—1, we get
3 D%, ;=0

for all /#0 (g;). Putting j=n—2 in (2) and taking into account (3) we get D®x,,_,
=0 for all /+#0 (q,). Hence

@ D%, =0

for all i and all /#0 (g;). Now put /=2Ag, (A#0) in (1). From (H) we get

n—-1 .
l - -
= > > ( )y; DA -t+Aey

j=0 127

i—J
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So
2. ( : ')Vi"’D‘“"””‘“)M = abyl,  j=n-)
izy U —J ‘
= 0’ J # n_’\’
where 0,=(¢2*)~1. In particular
DYx, _, = a,0,; D*x,_, =0 A #1).

By induction hypothesis we get a;=0. So D®x,_,=0 for all /0. Applying the
induction hypothesis again, we get x,_; € 4.
Now assume a,=0, x,_;€ A4 for all 1<i<k. So

D?x, _,. =0 for A > k
D¥Wwx, _, = a0y%

DMy = (”‘ﬁ"’

A)yi‘x,._,,“ for 1 = A<k
The induction hypothesis asserts that @, =0, D?¥x,_,=0 for all />0. So x,_, is
also in A. This shows (H) is correct for r=s. In particular the kernel of D is con-
tained in A[¢,]. We claim that kernel D is exactly A4.

Let x=3!_, xit!, x, € A, x,#0, be an element of kernel D with / minimal. If /
is greater than zero, then

!
Dy = Z x; DW0t! = x, DUl = xp}
i=o

is not zero because y! is a unit; hence a contradiction.

We now contend that kernel D=A implies Hom, (C, C)=C[D]. Let M be the
set of all monomials #¥1- - -t¥, 0Su; <p%. A lexicographic order may be imposed
on M as follows: t§1-- -t <t}1- - -t% if there is a k such that u, <v, and u,=v, for
all I>k. Given f=3 f,,, ., th1- - t¥s, fu,...u, € A, We denote by 0(f) the smallest
element of M such that ¢}1.--t¥% <0(f) whenever f,, . ,, is not zero. We would
like to show that given x50 in C there is some u € m(D) such that u(x) is a unit
in C. Assume this is not the case. Let f=3 f,, . th:--td, f,, ., €4, bea
nonzero element in C with the least O(f) such that u(f) is not a unit for any
p € m(D). Since 0(D®) < for all />0 and {+1 in M, f must belong to kernel D
which is the field 4. But f'is not a unit so must be zero, hence a contradiction. This
shows that no ideal in C, except O and 1, is stable under D (Lemma 2.2). It follows
from Theorem 3.3 that C[D]=Hom, (C, C).

REFERENCES

0. L. R. Harper, On differentiably simple algebras, Trans. Amer. Math. Soc. 100 (1961),
63-72. MR 24 #A116.

1. G. Hochschild, Double vector spaces over division rings, Amer. J. Math. 71 (1949), 443—460.
MR 10, 676.




1970] FINITE DIMENSIONAL INSEPARABLE ALGEBRAS 587

2. M. Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401-410.
MR 36 #6391.

3. M. Weisfeld, Purely inseparable extensions and higher derivations, Trans. Amer. Math.
Soc. 116 (1965), 435-449. MR 33 #122.

4. Shuen Yuan, Differentiably simple rings of prime characteristic, Duke Math. J. 31 (1964),
623-630. MR 29 #4772.

5. N. Bourbaki, Algébre commutative. Chapitres I, II, Actualités Sci. Indust., no. 1290,
Hermann, Paris, 1961. MR 36 #146.

STATE UNIVERSITY OF NEW YORK AT BUFFALO,
AMHERST, NEW YORK 14226




