FINITE DIMENSIONAL INSEPARABLE ALGEBRAS

BY
SHUEN YUAN

Abstract

We determine the structure of finite dimensional algebras which are differentiably simple with respect to a set of higher derivations.

Let C be a commutative ring of prime characteristic p, and let A be a subring of C both with the same identity. By a p-basis \mathfrak{b} of C over A we mean a finite subset of C such that for each $t \in \mathfrak{b}, t^{p^{e(t)}} \in A$ for some positive integer $e(t)$ and the set of all monomials $\prod_{t \in \mathfrak{b}} t^{i(t)}, 0 \leqq i(t)<p^{e(t)}$, form an A-module basis for C. In this note we show that if A is the kernel of a set g of higher derivations of C such that C is finitely generated as A-module and no ideal in C, except 0 and 1 , is stable under \mathfrak{g}, then C admits a p-basis over A which must be a field with $\operatorname{Hom}_{A}(C, C)$ $=C[\mathrm{~g}]$. Conversely if C admits a p-basis over a field A, we show that there is a higher derivation D on C with $\operatorname{Hom}_{A}(C, C)=C[D]$. So no nontrivial ideal can be stable under D. When \mathfrak{g} is a set of ordinary derivations, the first statement is given in [4] and is essentially due to Harper [0]. When C is a field, these reduce to results of Sweedler [2] and Weisfeld [3]. We begin this paper with a construction of p-basis for local algebras of finite type.

All rings in the following are assumed to be commutative with 1 and of prime characteristic p. All modules and ring-homomorphisms are unitary. If C is an A-algebra, the structural map $A \rightarrow C$ is assumed to be one-to-one.

1. p-generators. For simplicity of notations, given a subset X of a ring Y we denote by $\mathscr{F}^{i}(X)$ the subset $\left\{x^{p^{t}} \mid x \in X\right\}$ of Y.

Now let C be a local ring with Q as its maximal ideal. Let E be a C-algebra such that for some finitely generated nilpotent ideal J in $E, E=C+J$ as a C module direct sum. Let $e=e(J)$ be the least integer such that $\mathfrak{F}^{e+1}(J)=0$. Let \mathfrak{b}_{e} be a subset of $\mathfrak{F}^{e}(J)$ such that $\left\{t+\mathfrak{F}^{e}((J+Q) J) \mid t \in \mathfrak{b}_{e}\right\}$ form a basis for $\mathfrak{F}^{e}(J) / \mathfrak{F}^{e}((J+Q) J)$ over the field $\mathfrak{F}^{e}(C) / \mathfrak{F}^{e}(Q) \cong \mathfrak{F}^{e}(C / Q)$. For each i, we are going to construct a subset \mathfrak{b}_{i} of $\mathscr{F}^{i}(J)$ with the property that
(i) $\left\{t+\mathfrak{F}^{i}((J+Q) J) \mid t \in \mathfrak{b}_{i}\right\}$ form a basis for $\mathfrak{F}^{i}(J) / \mathfrak{F}^{i}((J+Q) J)$ over $\mathfrak{F}^{i}(C) / \mathfrak{F}^{i}(Q)$;
(ii) $\mathfrak{b}_{i+1}=\left\{t^{p} \mid t \in \mathfrak{b}_{i}\right.$ and $\left.t^{p} \neq 0\right\}, 0 \leqq i<e$.

Assume we have already constructed \mathfrak{b}_{i+1}. Let $\mathfrak{b}_{i}^{\prime}$ be a subset of $\mathfrak{F}^{i}(J)$ such that for all $t \in \mathfrak{b}_{i+1}, \mathfrak{b}_{i}^{\prime}$ and $\left\{x \in \mathfrak{F}^{\mathfrak{i}}(J) \mid x^{p}=t\right\}$ has exactly one element in common.

Let $\mathfrak{b}_{i}^{\prime \prime}$ be a subset of $\left\{x \in \mathfrak{F}^{i}(J) \mid x^{p}=0\right\}$ such that the residue classes $t+\mathfrak{F}^{i}((J+Q) J)$, $t \in \mathfrak{b}_{i}^{\prime \prime}$, form a basis for $\left\{x+\mathfrak{F}^{i}((J+Q) J) \mid x \in \mathfrak{F}^{i}(J)\right.$ and $\left.x^{p}=0\right\}$ over $\mathfrak{F}^{i}(C) / \mathfrak{F}^{i}(Q)$. Since the monomials in \mathfrak{b}_{i+1} form a set of generators for the $\mathfrak{F}^{i+1}(C)$-module $\mathfrak{F}^{i+1}(J)$, given $u \in \mathfrak{F}^{i}(J)$ there is a polynomial $\varphi=\varphi\left(\mathfrak{b}_{i}^{\prime}, C_{i}\right)$ in $\mathfrak{b}_{i}^{\prime}$. with coefficients in C_{i}, φ having no constant term, such that $(u-\varphi)^{p}=0$. It follows from $u=(u-\varphi)$ $+\varphi$ that the set $\mathfrak{b}_{i}=\mathfrak{b}_{i}^{\prime} \cup \mathfrak{b}_{i}^{\prime \prime}$ meets all our requirements.

Hereafter $\mathfrak{b}=\mathfrak{b}_{0}$ will be called a set of p-generators for the decomposition $E=C+J$.

We recall that given an algebra X over a ring Y, for any x in X, the exponent of x is the least nonnegative integer $e(x)$ such that $x^{p e(x)}$ is in Y. The exponent of X over Y is the maximum of $\{e(x) \mid x \in X\}$.

Example. Let C be a local A-algebra of finite exponent e such that the A module C is finitely generated and flat. Put $E=C \otimes_{A} C$. Then $E=C \otimes 1+J$ where $J=(C \otimes 1) \cdot\{1 \otimes x-x \otimes 1 \mid x \in C\}$. We may assume that the elements of \mathfrak{b} are of the form $1 \otimes t-t \otimes 1$. From $E=(C \otimes 1)[\mathfrak{b}]$ it follows that the inclusion $\operatorname{map} C \otimes_{A} A[\{t \mid 1 \otimes t-t \otimes 1 \in \mathfrak{b}\}] \rightarrow E$ is onto. And so the inclusion map $A[\{t \mid 1 \otimes t-t \otimes 1 \in \mathfrak{b}\}] \rightarrow C$ is onto because C over A is actually faithfully flat. In other words, the monomials $\Pi t^{i}, 1 \otimes t-t \otimes 1 \in \mathfrak{b}, 0 \leqq i<p^{e(t)}$, form a set of generators for the A-module C.
2. Higher derivations. By a higher derivation D of rank $\rho, 0<\rho<\infty$, on a ring C we mean a sequence of maps

$$
D^{(i)}: C \rightarrow C, \quad 1 \leqq i \leqq \rho,
$$

making the map

$$
\begin{gathered}
\varphi_{D}: C \rightarrow C[t] /\left(t^{\rho+1}\right), \\
x \rightarrow x+\left(D^{(1)} x\right) t+\cdots+\left(D^{(\rho)} x\right) t^{\rho}
\end{gathered}
$$

a ring-homomorphism. The kernel of D is the set

$$
\left\{x \in C \mid \varphi_{D}(x)=x\right\}=\bigcap\left\{\text { kernel } D^{(i)} \mid 1 \leqq i \leqq \rho\right\} .
$$

Given a set \mathfrak{g} of higher derivations on C, we shall denote by $\mathfrak{m}(\mathfrak{g})$ the set of all monomials μ of the form $D_{1}^{\left(\Lambda_{1}\right)} \ldots D_{s}^{\left(l_{s}\right)}, D_{i} \in \mathfrak{g}, 0 \leqq l_{i} \leqq \operatorname{rank} D_{i}$, where $D_{i}^{(0)}$ as usual is understood to be the identity map on C. The degree of μ is the sum $l_{1}+\cdots$ $+l_{s}$. The kernel of \mathfrak{g} is the set $\bigcap\{$ kernel $D \mid D \in \mathfrak{g}\}$. An ideal \mathfrak{a} in C is said to be stable under \mathfrak{g} if $\mu(\mathfrak{a}) \subset \mathfrak{a}$ for all μ in $\mathfrak{m}(\mathfrak{g})$.

Lemma 2.1. Let g be a set of higher derivations on a ring C. Write $A=$ kernel g .
(a) A is a subring of C and any idempotent element in C belongs to A.
(b) If C has no ideal, except 0 and 1 , stable under g , then A is a field.
(c) If A is a field and if the vector space dimension of C over A is finite, so is the exponent of C over A.
(d) If there is a positive integer α such that $p^{\alpha}>\max \{\operatorname{rank} D \mid D \in \mathrm{~g}\}$, then the exponent of C over A is not greater than α.
(e) If A is a field and the exponent of C over A is $\alpha<\infty$, then $x^{p^{\alpha}}=0$ for all nonunit x in C.

Proof. (a) Given a pair of ring-homomorphisms

$$
R \xrightarrow[v]{\xrightarrow{u}} S
$$

it is clear that $\{x \in R \mid u(x)=v(x)\}$ form a subring of R. In particular for any higher derivation D on C, kernel $D=\left\{x \in C \mid \varphi_{D} x=x\right\}$ form a subring of C. So A is a subring of C.

Let $D=\left(D^{(1)}, D^{(2)}, \ldots, D^{(l)}, \ldots\right)$ be a higher derivation on C. From

$$
\sum_{l}\left(D^{(l)} x^{p}\right) t^{l}=\varphi_{D}\left(x^{p}\right)=\varphi_{D}(x)^{p}=\sum_{i}\left(D^{(i)} x\right)^{p} t^{p i}
$$

we get

$$
\begin{aligned}
D^{(l)}\left(x^{p}\right) & =0, \quad \text { if } l \neq 0(p), \\
D^{(i p)}\left(x^{p}\right) & =D^{(i)}(x)^{p} .
\end{aligned}
$$

Now given a positive integer l, we may write $l=q p^{r}$ with q relatively prime to p. If ε is any idempotent in C, then

$$
D^{(l)}(\varepsilon)=D^{\left(q p^{r}\right)}\left(\varepsilon^{p r+1}\right)=\left(D^{(q)}\left(\varepsilon^{p}\right)\right)^{p r}=0
$$

So ε belongs to A.
(b) For any $x \neq 0$ in A and any y in C we have $\varphi_{D}(x y)=x \varphi_{D}(y), D \in \mathrm{~g}$. So the ideal $x C$ is stable under g because $D^{(l)}(x y)=x\left(D^{(l)} y\right)$. So $x C=C$ and x is a unit in C. From $\varphi_{D}\left(x^{-1}\right)=\varphi_{D}(x)^{-1}=x^{-1}$ it follows that x^{-1} is also in A. Hence A must be a field.
(c) Let C_{i} denote the A-subalgebra of C generated by $x^{p t}, x \in C$. We have $C_{i+1} \subset C_{i} \subset$ kernel $D^{(l)}$ for all $l \neq 0\left(p^{i}\right)$. In particular the intersection of all C_{i}, $i=0,1,2, \ldots$, is contained in A. Since C is finite dimensional over A, there exists a positive integer α such that $C_{\alpha}=C_{\alpha+1}=C_{\alpha+2}=\cdots$. The exponent of C over A is therefore at most α because C_{α} is contained in A.
(d) For any x in $C, D^{(l)}\left(x^{p^{\alpha}}\right)$ is zero for all D in g. So the exponent is at most α.
(e) For any nonunit x in $C, x^{p^{\alpha}}$ as a nonunit in the field A must be zero.

Lemma 2.2. Let g be a set of higher derivations on a local ring C. Then the following two statements are equivalent.
(i) No ideal in C, except 0 and 1 , is stable under g.
(ii) Given any nonunit $x \neq 0$ in C there is some $\mu \in \mathfrak{m}(g)$ such that $\mu(x)$ is a unit in C.

Proof. (i) \rightarrow (ii). Let \mathfrak{a} be the nonzero ideal in C generated by $\{\mu(x) \mid \mu \in \mathfrak{m}(\mathrm{g})\}$ which is clearly stable under \mathfrak{g}. So $\mathfrak{a}=C$ and one of the $\mu(x)$'s must be a unit because C is a local ring. (ii) \rightarrow (i) is trivial.

If \mathfrak{g} is a set of higher derivations on a ring C with $A=$ kernel \mathfrak{g}, then for any $D=\left\{D^{(1)}, \ldots, D^{(\rho)}\right\}$ in g, both $1 \otimes D=\left\{1 \otimes D^{(1)}, \ldots, 1 \otimes D^{(\rho)}\right\}$ and $D \otimes 1$ $=\left\{D^{(1)} \otimes 1, \ldots, D^{(\rho)} \otimes 1\right\}$ are higher derivations on $C \otimes_{A} C$. Let $\mathfrak{g} \otimes \mathfrak{g}$ denote the set of all $1 \otimes D, D \otimes 1$ with $D \in \mathfrak{g}$. We have the following.

Lemma 2.3. Let \mathfrak{g} be a set of higher derivations on a ring C with kernel $\mathfrak{g}=A$. Assume no ideal in C, except 0 and 1 , is stable under g . Then no ideal in $E=C \otimes_{A} C$, except 0 and 1 , is stable under $\mathfrak{g} \otimes \mathrm{g}$. The kernel of $\mathrm{g} \otimes \mathrm{g}$ is equal to A.

Proof. We have an exact sequence

$$
0 \longrightarrow A \longrightarrow C \xrightarrow[\left(D^{(1)}\right)]{ } \amalg C .
$$

Tensoring over A with C we get the exactness of

$$
0 \longrightarrow A \otimes_{A} C \longrightarrow E \stackrel{\left(D^{(n)} \otimes 1\right)}{ } \amalg E .
$$

This shows kernel $\mathrm{g} \otimes \mathrm{g}=\left(A \otimes_{A} C\right) \cap\left(C \otimes_{A} A\right)=A$.
Now assume \mathfrak{a} is a nonzero ideal in E which is stable under $\mathfrak{g} \otimes \mathfrak{g}$ and $\mathfrak{a} \varsubsetneqq E$. Let $\sigma=x_{1} \otimes y_{1}+\cdots+x_{r} \otimes y_{r} \neq 0$ be an element of \mathfrak{a} with r minimal. Clearly $r>1$. Let $\mu \in \mathfrak{m}(\mathfrak{g})$ such that $\mu\left(x_{1}\right)$ is a unit in C. The element

$$
(\mu \otimes 1) \sigma=\mu\left(x_{1}\right) \otimes y_{1}+\cdots+\mu\left(x_{r}\right) \otimes y_{r}
$$

cannot be zero because y_{1}, \ldots, y_{r} are linearly independent over the field A. Put $\sigma^{\prime}=1 \otimes y_{1}+x_{2}^{\prime} \otimes y_{2}+\cdots+x_{r}^{\prime} \otimes y_{r}$ where $x_{i}^{\prime}=\mu\left(x_{1}\right)^{-1} \mu\left(x_{i}\right)$. Since $\sigma^{\prime} \in \mathfrak{a}$, it cannot belong to $A \otimes_{A} C$ otherwise r would be equal to 1 and we would get a contradiction. So $\left(D^{(l)} \otimes 1\right) \sigma^{\prime}=\left(D^{(l)} x_{2}^{\prime}\right) \otimes y_{2}+\cdots+\left(D^{(l)} x_{r}^{\prime}\right) \otimes y_{r}$ is nonzero for some $D^{(l)}, D \in \mathrm{~g}$. We therefore get a contradiction to the minimality of r because $0 \neq$ $\left(D^{(l)} \otimes 1\right) \sigma^{\prime} \in \mathfrak{a}$. So no nontrivial ideal in E is stable under \mathfrak{g}. This completes the proof of the lemma.

Theorem 2.4. Let g be a set of higher derivations on a ring C with $A=$ kernel g . Assume C is finitely generated as an A-module and no ideal in C, except 0 and 1 , is stable under g . Then C admits a p-basis over A.

Proof. Since A is a field and C is finite dimensional over A, by Lemma 2.1, C is a local ring with nilpotent maximal ideal Q. Put

$$
E=C \otimes_{A} C, \quad J=\{1 \otimes x-x \otimes 1 \mid x \in C\} E .
$$

Let $\left\{1 \otimes x_{1}-x_{1} \otimes 1, \ldots, 1 \otimes x_{n}-x_{n} \otimes 1\right\}$ be a set of p-generators for $E=$ $C \otimes 1+J$. We claim that x_{1}, \ldots, x_{n} form a p-basis for C over A. Let F be a subfield of C such that $C=F+Q$. Let $\left\{y_{1}, \ldots, y_{m}\right\}$ be a set of p-generators for $C=F+Q$. It is clear that $\left\{y_{1} \otimes 1, \ldots, y_{m} \otimes 1,1 \otimes x_{1}-x_{1} \otimes 1, \ldots, 1 \otimes x_{n}-x_{n} \otimes 1\right\}$ form a set of p-generators for $E=F \otimes 1+(Q \otimes 1+J)$. Moreover, by a lemma to be established later,

$$
\prod_{i=1}^{m}\left(y_{i}^{p_{i}-1} \otimes 1\right) \cdot \prod_{i=1}^{n}\left(1 \otimes x_{i}-x_{i} \otimes 1\right)^{p_{i}-1} \neq 0
$$

where e_{i} (respectively f_{i}) is the exponent of $1 \otimes x_{i}-x_{i} \otimes 1$ (respectively y_{i}). It follows that for any $y \in C$,

$$
(y \otimes 1) \prod_{i=1}^{n}\left(1 \otimes x_{i}-x_{i} \otimes 1\right)^{p_{i}-1}=0
$$

implies $y=0$. So $\left\{1 \otimes x_{1}-x_{1} \otimes 1, \ldots, 1 \otimes x_{n}-x_{n} \otimes 1\right\}$ form a p-basis for E over $C \otimes 1$. Now from the binomial expansion of

$$
\left(\left(1 \otimes x_{i}-x_{i} \otimes 1\right)+x_{i} \otimes 1\right)^{d_{i}}=1 \otimes x_{i}^{d_{i}}
$$

it follows that $1 \otimes \prod_{i=1}^{n} x_{i}^{d_{i}}$ can be expressed as a polynomial in

$$
\left\{1 \otimes x_{i}-x_{i} \otimes 1 \mid 1 \leqq i \leqq n\right\}
$$

with coefficients in $C \otimes 1$ and with $\prod_{i=1}^{n}\left(1 \otimes x_{i}-x_{i} \otimes 1\right)^{d_{i}}$ as its highest degree term. This implies that $\left\{\prod_{i=1}^{n} x_{i}^{d_{i}} \mid 0 \leqq d_{i}<p^{e}\right\}$ is linearly independent over A. Since the dimension of C over A is equal to the dimension of E over $C \otimes 1$, $\left\{x_{1}, \ldots, x_{n}\right\}$ must be a p-basis for C over A.

Corollary 2.5. Let C be a finite dimensional purely inseparable field extension over A. If A is the kernel of a set of higher derivations of C, then C admits a p-basis over A.

Now let x_{1}, \ldots, x_{m} be elements of C. It follows from

$$
\varphi_{D}\left(\prod_{i=1}^{m} x_{i}\right)=\prod_{i=1}^{m} \varphi_{D}\left(x_{i}\right)
$$

that

$$
D^{(l)}\left(x_{1} \cdots x_{m}\right)=\sum \prod_{i=1}^{m} D^{\left(\alpha_{i}\right)} x_{i}
$$

where the summation runs through all $\left(\alpha_{1}, \ldots, \alpha_{m}\right), \alpha_{i}$ nonnegative integers with $\sum_{i=1}^{m} \alpha_{i}=l$. Let ($l: m$) denote the set of all these m-tuples and assume we are given $D_{1}^{\left(l_{1}\right)}, \ldots, D_{s}^{\left(l_{s}\right)}$ where D_{i} are higher derivations on C. For any $\left(a_{1}, \ldots, a_{s}\right)$, $a_{i}=(\alpha(i, 1), \ldots, \alpha(i, m)) \in\left(l_{i}: m\right)$, set

$$
\left(a_{1}, \ldots, a_{s}\right)^{*}\left(x_{1}, \ldots, x_{m}\right)=\prod_{j=1}^{m}\left(\prod_{i=1}^{s} D_{i}^{\alpha(i, j)}\right) x_{j} .
$$

An induction on s gives the following formula.

$$
D_{1}^{\left(l_{1}\right)} \cdots D_{s}^{\left(l_{s}\right)}\left(x_{1} \cdots x_{m}\right)=\sum\left(a_{1}, \cdots, a_{s}\right)^{*}\left(x_{1}, \ldots, x_{m}\right), \quad a_{i} \in\left(l_{i}: m\right)
$$

Lemma 2.6. Let C be a local ring with Q as its maximal ideal. Let E be a C-algebra such that $E=C+J$ as a C-module direct sum for some finitely generated nilpotent ideal J in E. Let $\pi: E=C+J \rightarrow J$ denote the second coordifate projection. Let \mathfrak{g} be a set of higher derivations on E. Put $I=\{x \in J \mid \mu(x) \in Q+J$ for all $\mu \in \mathfrak{m}(\mathrm{g})\}$.

Assume $\pi \mu(I) \subset I$ for all $\mu \in \mathfrak{m}(\mathrm{g})$. If $I \cap \mathfrak{F}^{1}(J) \subset \mathfrak{F}^{\mathfrak{1}}(Q J)$ for all i, then the product

$$
t_{1}^{q_{1}} \cdots t_{n}^{q_{n}} \neq 0(I)
$$

where $\left\{t_{1}, \ldots, t_{n}\right\}=\mathfrak{b}$ is a set of p-generators for $E=C+J, q_{i}=p^{e_{i}}-1, e_{i}=e\left(t_{i}\right)$ is the exponent of t_{i} with respect to C.

Proof by contradiction. Let m be the minimal integer such that for some integers $m_{i}, 0 \leqq m_{i} \leqq p^{e_{i}}-1$ and $\sum m_{i}=m$, we have

$$
z=t_{1}^{m_{1}} \cdots t_{n}^{m_{n}}=0(I)
$$

We have $m>1$ because $I \subset Q J$. We claim that $m_{i}=0(p)$ for all $i=1, \ldots, n$. Assume this is not the case. Let m_{1}, \ldots, m_{r} be nonzero modulo p while $m_{i}=0$ (p) for all $i>r$. Write

$$
z_{i}=t_{i}^{m_{i}-1} \prod_{k \neq i} t_{k}^{m_{k}}, \quad i=1, \ldots, r
$$

The minimality of m asserts that z_{i} is nonzero modulo I. Let l be the least integer such that for some $i, 1 \leqq i \leqq r, \mu\left(z_{i}\right)$ is a unit in E for some $\mu \in \mathfrak{m}(\mathfrak{g})$ with degree μ
 $\tau=\prod_{k>r} t_{k}^{m_{k}}$, can be expressed as a polynomial in \mathfrak{b} with coefficients in C. We are going to show that the coefficient of t_{1} in $\mu(z)$, which modulo Q is unique, is a unit in C. This is not possible because $\pi \mu(z) \in I \subset Q J$. So m_{i} must be zero modulo p for all $i=1, \ldots, n$.

Put $\sigma=m_{1}+\cdots+m_{r}, \mu=D_{1}^{\left(1_{1}\right)} \cdots D_{s}^{\left(l_{s}\right)}$ and let

$$
a_{i}=\left(\alpha(i, 1,1), \ldots, \alpha\left(i, 1, m_{1}\right), \ldots, \alpha(i, r, 1), \ldots, \alpha\left(i, r, m_{r}\right), \alpha_{i}\right)
$$

be a general element of $\left(l_{i}: \sigma+1\right)$. Write

$$
\begin{aligned}
a & =\left(a_{1}, \ldots, a_{s}\right), \\
L(a, u, v) & =\text { the coefficient of } t_{1} \text { in } E_{u, v}=\left(\prod_{i=1}^{s} D_{i}^{(\alpha(i, u, v))}\right) t_{u}, \\
C(a, u, v) & =\text { the constant term of }\left(\prod_{(i, j) \neq(u, v)} E_{i, j}\right)\left(\prod_{i=1}^{s} D_{i}^{\left(\alpha_{i}\right)}\right) \tau .
\end{aligned}
$$

Given an s-tuple $b=\left(\beta_{1}, \ldots, \beta_{s}\right), 0 \leqq \beta_{i} \leqq l_{i}$, of integers, we denote by

$$
A(b, u, v) \text { the set }\left\{a \mid a_{i} \in\left(l_{i}: \sigma+1\right) \text { with } \alpha(i, u, v)=\beta_{i}\right\} .
$$

Since the coefficient of t_{1} in $\left(\prod_{i=1}^{s} D_{i}^{\left(\alpha_{i}\right)}\right) \tau$ is zero modulo Q, the modulo Q coefficient of t_{1} in $\mu(z)=\left(D_{1}^{\left(l_{1}\right)} \cdots D_{s}^{\left(t_{s}\right)}\right)\left(t_{1}^{m_{1}} \cdots t_{r}^{m_{r}} \tau\right)$ is

$$
\sum_{u=1}^{r} \sum_{v=1}^{m_{u}} \sum_{a} C(a, u, v) L(a, u, v)=\sum_{u=1}^{r} \sum_{v=1}^{m_{u}} \sum_{b} \sum_{a \in A(b, u, v)} C(a, u, v) L(a, u, v)
$$

We have the following cases
(i) Not all of β_{i} are zero. By the minimality of $l, \sum_{a \in A(b, u, v)} C(a, u, v)$ as the constant term of $\left(D_{1}^{\left(l_{1}-\beta_{1}\right)} \cdots D_{s}^{\left(t_{s}-\beta_{s}\right)}\right) z_{u}$ is zero modulo Q. Hence

$$
\sum_{a \in A(b, u, v)} C(a, u, v) L(a, u, v)
$$

is zero modulo Q.
(ii) $\beta_{i}=0$ for all $i=1, \ldots, s$ but $u \neq 1 . \sum_{a \in A(b, u, v)} C(a, u, v) L(a, u, v)$ is zero modulo Q because $L(a, u, v)$ is.
(iii) $\beta_{i}=0$ for all $i=1, \ldots, s$ and $u=1$. Let $\mu\left(z_{1}\right)=\gamma+\nu$ with $\gamma \in C$ and $\nu \in J$. So

$$
\sum_{a \in A(b, 1, v)} C(a, 1, v) L(a, 1, v)=\gamma
$$

This shows $\pi \mu(z)=0$ modulo I has a modulo Q nonzero linear term $m_{1} \gamma t_{1}$ which is the desired contradiction.

Recall that the integer $e=e(J)$ is the least integer such that $\mathfrak{F}^{e+1}(J)=0$. From what we have shown we see that the lemma is true for $e=0$. Moreover, if the lemma is incorrect for some $e>0$, then it is also incorrect for $\mathfrak{F}(E)=\mathfrak{F}(C)+\mathfrak{F}(J)$ with $e(\mathfrak{F}(J))=e(J)-1$. An induction on e completes the proof of the lemma.
3. The endomorphism ring. We begin with a slight rewording of the JacobsonBourbaki theorem. The proofs are adapted from Hochschild [1, Lemma 2.1 and Theorem 2.1].

Lemma 3.1. Let C be a local ring with nilpotent maximal ideal Q. Let Ω be an $n<\infty$ dimensional free C-submodule of $\operatorname{Hom}_{Z}(C, C)$ where Z is the ring of all integers. Then there exist c_{1}, \ldots, c_{n} in C and $a C$-module basis $\omega_{1}, \ldots, \omega_{n}$ for Ω such that $\omega_{i}\left(c_{j}\right)=\delta_{i j}$.

Proof. Let $T_{0,1}, \ldots, T_{0, n}$ be any C-module basis for Ω. We first observe that $T_{0, i}(C) \notin Q$ for all $i=1, \ldots, n$. For if e is the least integer such that $Q^{e}=0$, then from $T_{0, i}(C) \subset Q$ we get $u T_{0, i}=0$ and hence $u=0$ for any u in Q^{e-1} which is absurd.

Now suppose we have already found c_{1}, \ldots, c_{l} in C and a C-module basis $T_{l, 1}, \ldots, T_{l, n}$ of Ω such that $T_{l, i}\left(c_{j}\right)=\delta_{i j}$, for $1 \leqq i \leqq n$ and $1 \leqq j \leqq l$. If $l<n$, there is an element $c_{l+1} \in C$ such that $T_{l, l+1}\left(c_{l+1}\right)$ is a unit in C. We set $T_{l+1, l+1}=$ $T_{l, l+1}\left(c_{l+1}\right)^{-1} T_{l, l+1}$, so that $T_{l+1, l+1}\left(c_{l+1}\right)=1$. For every $i \neq l+1$, we set $T_{l+1, i}=$ $T_{l, i}-T_{l, i}\left(c_{l+1}\right) T_{l+1, l+1}$. Then we have $T_{l+1, i}\left(c_{j}\right)=\delta_{i j}$, for $1 \leqq i \leqq n$ and $1 \leqq j \leqq l+1$, and that $T_{l+1, i}$ are still a C-module basis for Ω. Proceeding in this fashion, starting from the case $l=0$, we finally obtain c_{1}, \ldots, c_{n} in C and $\omega_{i}=T_{n, i}$ which satisfy the requirements of the lemma.

Lemma 3.2. Let C be a ring and Ω a (not necessarily commutative) subring of $\operatorname{Hom}_{z}(C, C)$. Assume that Ω is a free C-module based on $\omega_{1}, \ldots, \omega_{n}(n<\infty)$ such that for some c_{1}, \ldots, c_{n} in $C, \omega_{i}\left(c_{j}\right)=\delta_{i j}$. Let A denote the subring $\{c \in C \mid \omega(c x)$ $=c \omega(x)$ for all $x \in C$ and all ω in $\Omega\}$ of C. Then C is a free A-module based on c_{1}, \ldots, c_{n} and $\Omega=\operatorname{Hom}_{A}(C, C)$.

Proof. Given ω in Ω, if we write $\omega=\sum_{i=1}^{n} x_{i} \omega_{i}, x_{i} \in C$, then $x_{i}=\left(\sum_{j=1}^{n} x_{j} \omega_{j}\right)\left(c_{i}\right)$ $=\omega\left(c_{i}\right)$. In particular,

$$
\omega_{l}\left(x \omega_{j}\right)=\sum_{i=1}^{n}\left(\omega_{l}\left(x \omega_{j}\right)\right)\left(c_{i}\right) \omega_{i}=\omega_{l}(x) \omega_{j} \quad(x \in C)
$$

So for any c in $C, \omega_{l}(x) \omega_{j}(c)=\omega_{l}\left(x \omega_{j}(c)\right)$. It follows that $\omega_{j}(c) \in A$ for all $c \in C$ and $j=1, \ldots, n$. Now let $c \in C$ and write $c^{\prime}=c-\sum_{i=1}^{n} \omega_{i}(c) c_{i}$. We have $\omega_{j}\left(c^{\prime}\right)=0$ for all $j=1, \ldots, n$. So $c^{\prime}=0$ because ω_{j} form a basis for Ω which as a subring of $\operatorname{Hom}_{z}(C, C)$ contains the identity map on C. This shows $c=\sum_{i=1}^{n} \omega_{i}(c) c_{i}$ for all c in C. If $\sum_{i=1}^{n} \alpha_{i} c_{i}=0, \alpha_{i} \in A$, then $\alpha_{i}=\omega_{i}\left(\sum_{j=1}^{n} \alpha_{j} c_{j}\right)=0$. Hence c_{1}, \ldots, c_{n} form a basis for C over A. Given any f in $\operatorname{Hom}_{A}(C, C)$, we have $f=\sum_{i=1}^{n} f\left(c_{i}\right) \omega_{i}$. So $\Omega=\operatorname{Hom}_{A}(C, C)$. This completes the proof of the lemma.

Theorem 3.3. Let C be a local ring with nilpotent maximal ideal Q. Let g be a set of higher derivations on C such that no ideal in C, except 0 and 1 , is stable under \mathfrak{g}. Let A denote the kernel of g and write $\Omega=C[\mathrm{~g}]$. If Ω is finitely generated as a C-module, then $\Omega=\operatorname{Hom}_{A}(C, C)$.

Proof. In view of Lemmas 3.1 and 3.2 above, it suffices to show that Ω is a finite dimensional free C-module. Let $\omega_{1}, \ldots, \omega_{n}$ be elements in $\mathfrak{m}(g) \subset \Omega$ such that the $\omega_{i}+Q \Omega$ form a basis for $\Omega / Q \Omega$ over C / Q. It follows from [5, p. 105, Corollaire 2] that $\omega_{1}, \ldots, \omega_{n}$ generate Ω as a C-module. If $\sum_{i=1}^{n} x_{i} \omega_{i}=0\left(x_{i} \in C\right)$, then $x_{i} \in Q$. Assume that not all the x_{i} are zero. Let μ be an element in $\mathfrak{m}(\mathfrak{g})$ with minimal degree such that $\mu\left(x_{i}\right)$ is a unit in C for some i (Lemma 2.2). We have

$$
0=\mu\left(\sum_{j=1}^{n} x_{j} \omega_{j}\right) \equiv \sum_{j=1}^{n} \mu\left(x_{j}\right) \omega_{j} \text { modulo } Q \Omega
$$

which is a contradiction to the choice of ω_{j}. This shows that Ω is a free C module based on $\omega_{1}, \ldots, \omega_{n}$ as desired.
4. One derivation. Let C be an algebra over a field A. Assume C over A admits a p-basis $\left\{t_{1}, \ldots, t_{r}\right\}$. We may assume the t_{i} 's are units. For if t_{i} is not a unit, it must be a nilpotent so can be replaced by $1+t_{i}$. Let e_{i} be the exponent of t_{i}. By a change of indices we may assume $e_{1} \geqq \cdots \geqq e_{r}$. Let $D=\left\{D^{(1)}, \ldots, D^{(\rho-1)}\right\}$, $\rho=p^{e_{1}}$, be the higher derivation on C corresponding to the A-algebra homomorphism

$$
\begin{aligned}
\varphi_{D}: C & \rightarrow C[z] /\left(z^{\rho}\right), \\
t_{1} & \rightarrow t_{1}+z \\
t_{i+1} & \rightarrow t_{i+1}+\gamma_{i+1} z^{q_{i+1}}
\end{aligned}
$$

where $\gamma_{i+1}=\prod_{l \leq i} t_{l}^{-1}, q_{i+1}=p^{e_{1}-e_{i+1}}$. We have the following
Theorem 4.1. With notations as above,

$$
\begin{equation*}
C[D]=\operatorname{Hom}_{A}(C, C) \tag{E}
\end{equation*}
$$

Proof. The assertion is obviously true for $r=1$. When $r=1$ the following statement (H) is also true.
(H) Given a_{λ} in $A, 0<\lambda<p^{e_{r}}$, if there exists $x \in C$ such that

$$
\begin{aligned}
D^{\left(\lambda q_{r}\right)} x & =a_{\lambda} \gamma_{r+1}^{\lambda}, & & 0<\lambda<p^{e_{r},} \\
D^{(l)} x & =0, & & l \neq 0\left(q_{r}\right),
\end{aligned}
$$

then $x \in A\left[t_{r}\right]$ and $a_{\lambda}=0$ for all λ.
We are going to establish the following chain of implications:

$$
\text { (E) and (H) for all } r<s \Rightarrow \text { (H) for } r=s \Rightarrow \text { (E) for } r=s \text {. }
$$

Write

$$
x=\sum_{i=0}^{n-1} x_{i} t_{s}^{i}, \quad\left(n=p^{e_{s}}, x_{i} \in A\left[t_{1}, \ldots, t_{s-1}\right]\right)
$$

We have, for all $l>0$,
(1)

$$
\begin{aligned}
D^{(l)} x & =\sum_{i=0}^{n-1} D^{(l)}\left(x_{i} t_{s}^{t}\right) \\
& =\sum_{i=0}^{n-1} \sum_{\lambda}\left(D^{\left(l-\lambda a_{s}\right)} x_{i}\right) D^{\left(\lambda a_{s}\right.} t_{s}^{i} \\
& =\sum_{i=0}^{n-1} \sum_{\lambda}\binom{i}{\lambda} \gamma_{s}^{\lambda} t_{s}^{i-\lambda}\left(D^{\left(l-\lambda a_{s}\right)} x_{i}\right) \\
& =\sum_{j=0}^{n-1} t_{s}^{j} \sum_{i \geq j}\binom{i}{i-j} \gamma_{s}^{i-j}\left(D^{\left(l-[i-j) a_{s}\right)} x_{i}\right) .
\end{aligned}
$$

Taking into account the assumption placed on x in the statement (H), we get for $l \neq 0\left(q_{s}\right)$,

$$
\begin{equation*}
\sum_{i \geq j}\binom{i}{i-j} \gamma_{s}^{i-j} D^{\left(l-[i-j] a_{s}\right)} x_{i}=0, \quad 0 \leqq j \leqq n-1 \tag{2}
\end{equation*}
$$

In particular for $j=n-1$, we get

$$
\begin{equation*}
D^{(l)} x_{n-1}=0 \tag{3}
\end{equation*}
$$

for all $l \neq 0\left(q_{s}\right)$. Putting $j=n-2$ in (2) and taking into account (3) we get $D^{(l)} x_{n-2}$ $=0$ for all $l \neq 0\left(q_{s}\right)$. Hence

$$
\begin{equation*}
D^{(l)} x_{i}=0 \tag{4}
\end{equation*}
$$

for all i and all $l \neq 0\left(q_{s}\right)$. Now put $l=\lambda q_{s}(\lambda \neq 0)$ in (1). From (H) we get

$$
a_{\lambda} \gamma_{s+1}^{\lambda}=\sum_{j=0}^{n-1} t_{s}^{j} \sum_{i \geq j}\binom{i}{i-j} \gamma_{s}^{i-j} D^{\left.(1 \lambda-i+j] a_{s}\right)} x_{i} .
$$

So

$$
\begin{aligned}
\sum_{i \geq j}\binom{i}{i-j} \gamma_{s}^{i-j} D^{\left.(\lambda \lambda-i+j] a_{s}\right)} x_{i} & =a_{\lambda} \theta_{s} \gamma_{s}^{\lambda}, & & j=n-\lambda, \\
& =0, & & j \neq n-\lambda,
\end{aligned}
$$

where $\theta_{s}=\left(t_{s}^{p e s}\right)^{-1}$. In particular

$$
D^{\left(q_{s}\right)} x_{n-1}=a_{1} \theta_{s} \gamma_{s} ; \quad D^{\left(\lambda q_{s}\right)} x_{n-1}=0 \quad(\lambda \neq 1)
$$

By induction hypothesis we get $a_{1}=0$. So $D^{(l)} x_{n-1}=0$ for all $l \neq 0$. Applying the induction hypothesis again, we get $x_{n-1} \in A$.

Now assume $a_{i}=0, x_{n-i} \in A$ for all $1 \leqq i<k$. So

$$
\begin{array}{ll}
D^{\left(\lambda q_{s}\right)} x_{n-k}=0 & \text { for } \lambda>k \\
D^{\left(k q_{s}\right)} x_{n-k}=a_{k} \theta_{s} \gamma_{s}^{k} & \\
D^{\left(\lambda q_{s}\right)} x_{n-k}=-\binom{n-k+\lambda}{\lambda} \gamma_{s}^{\lambda} x_{n-k+\lambda} & \text { for } 1 \leqq \lambda<k .
\end{array}
$$

The induction hypothesis asserts that $a_{k}=0, D^{(l)} x_{n-k}=0$ for all $l>0$. So x_{n-k} is also in A. This shows (H) is correct for $r=s$. In particular the kernel of D is contained in $A\left[t_{s}\right]$. We claim that kernel D is exactly A.

Let $x=\sum_{i=0}^{l} x_{i} t_{s}^{i}, x_{i} \in A, x_{l} \neq 0$, be an element of kernel D with l minimal. If l is greater than zero, then

$$
D^{\left(l q_{s}\right)} x=\sum_{i=0}^{l} x_{i} D^{\left(l q_{s}\right)} t_{s}^{i}=x_{l} D^{\left(l q_{s}\right)_{s}^{l}}=x_{l} \gamma_{s}^{l}
$$

is not zero because γ_{s}^{l} is a unit; hence a contradiction.
We now contend that kernel $D=A$ implies $\operatorname{Hom}_{A}(C, C)=C[D]$. Let M be the set of all monomials $t_{1}^{u_{1}} \cdots t_{s}^{u_{s}}, 0 \leqq u_{i}<p^{e_{i}}$. A lexicographic order may be imposed
 all $l>k$. Given $f=\sum f_{u_{1}, \ldots, u_{s}} t_{1}^{u_{1}} \cdots t_{s}^{u_{s}}, f_{u_{1}, \ldots, u_{s}} \in A$, we denote by $0(f)$ the smallest element of M such that $t_{1}^{u_{1}} \cdots t_{s}^{u_{s}} \leqq 0(f)$ whenever $f_{u_{1}, \ldots, u_{s}}$ is not zero. We would like to show that given $x \neq 0$ in C there is some $\mu \in \mathfrak{m}(D)$ such that $\mu(x)$ is a unit in C. Assume this is not the case. Let $f=\sum f_{u_{1}, \ldots, u_{s}} t_{1}^{u_{1}} \ldots t_{s}^{u_{s}}, f_{u_{1}, \ldots, u_{s}} \in A$, be a nonzero element in C with the least $0(f)$ such that $\mu(f)$ is not a unit for any $\mu \in \mathfrak{m}(D)$. Since $0\left(D^{(l)} \zeta\right)<\zeta$ for all $l>0$ and $\zeta \neq 1$ in M, f must belong to kernel D which is the field A. But f is not a unit so must be zero, hence a contradiction. This shows that no ideal in C, except 0 and 1 , is stable under D (Lemma 2.2). It follows from Theorem 3.3 that $C[D]=\operatorname{Hom}_{A}(C, C)$.

References

[^0]2. M. Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401-410. MR 36 \#6391.
3. M. Weisfeld, Purely inseparable extensions and higher derivations, Trans. Amer. Math. Soc. 116 (1965), 435-449. MR 33 \#122.
4. Shuen Yuan, Differentiably simple rings of prime characteristic, Duke Math. J. 31 (1964), 623-630. MR 29 \#4772.
5. N. Bourbaki, Algèbre commutative. Chapitres I, II, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 \#146.

State University of New York at Buffalo,

Amherst, New York 14226

[^0]: 0. L. R. Harper, On differentiably simple algebras, Trans. Amer. Math. Soc. 100 (1961), 63-72. MR 24 \#A116.
 1. G. Hochschild, Double vector spaces over division rings, Amer. J. Math. 71 (1949), 443-460. MR 10, 676.
