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HARMONIC ANALYSIS ON NILMANIFOLDS

BY

JONATHAN BREZIN

Abstract. We compute, using a device of A. Weil, an explicit decomposition of

L2 of a nilmanifold into irreducible translation-invariant subspaces. The results refine

previous work of C. C. Moore and L. Green.

1. Introduction. Let TV be a connected and simply connected nilpotent Lie

group that contains a discrete, cocompact subgroup T. On the compact manifold

N/T there is a measure p which is invariant under translation by elements of TV.

Thus translation by an element n of TV defines a unitary operator U£ on L2iN/T, p)

= Has

iUUWm) = fiiTmn)

for all m and « in TV. The map »+■*• U£ defined a unitary representation Ur of TV

on H. It is known that 77 decomposes into discrete direct sum of irreducible in-

variant subspaces for Ur. Indeed, under a mild condition on T, Calvin C. Moore

has computed explicitly which irreducible unitary representations of TV occur in

Ur. Moore's result is quoted in the next section. The object of this paper is to

use Moore's result to obtain an explicit direct-sum decomposition of H into

irreducible invariant subspaces.

The argument we shall use was motivated by a construction used by A. Weil

in [6]. Our variant of Weil's construction applies directly only when TV is two-step

nilpotent—that is, when [TV, TV] is central in TV. We have therefore isolated this

case in §§3 and 4. The result we have for general TV is an algorithm that enables

one to reduce the general case to the two-step case.

It is not surprising that we should end up with an algorithm (i.e. and not an

intrinsic description of the subspaces). The fact is that although it is known what

irreducible unitary representations of TV occur in Ur, only the crudest of estimates

can be made by present techniques of the multiplicities, at least for general TV.

(See Moore's discussion of this problem in [4].) The problem is that both Moore's

approach and our approach involve induction on the dimension of TV, and in the

course of this induction, the multiplicities are presented only as the solutions to

Diophantine equations of great complexity.
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2. Moore's result. We begin by recalling Kirillov's correspondence. Let 9Î

denote the Lie algebra of N, and let ç> denote a linear functional on 9F A sub-

algebra £ of 9c is said to be subordinate to <p if <p([£>, §]) = 0, or in other words, if

the restriction of 93 to § defines a Lie algebra homomorphism from § into the real

numbers R.

Let us assume that we are given a subalgebra ÍQ of 9? subordinate to <p, and let H

denote the connected subgroup of A' corresponding to ¡q. Because the restriction

of <p to £> is a Lie algebra homomorphism, there exists a Lie group homomorphism

O : H -> R whose derivative at the identity of H is the restriction of <p to § : cFD = <p\ §>.

The map « t-> exp (27r/<P(«)) defines a character y of //. We shall use IN(<p, &) to

denote the unitary representation of N induced (in Mackey's sense) by the character

v.

Theorem (Kirillov [3]). (1) // § is chosen of maximal dimension among

those subalgebras of 3Î subordinate to 95, then IN(cp, £>) is irreducible.

(2) If £> and Si are any two subalgebras of 9Î of maximal dimension among those

subordinate to 99, then IN(<p, Sr>) = IN(<p, St).

Let 9Î* denote the space of all linear functionals on 9Î. We shall use IN to denote

the map which assigns to an element 9 e 9c* the unitary equivalence class IN(q>, §)

described in (2).

(3) IN maps 9Î* onto the space Ñ of all unitary equivalence classes of irreducible

unitary representations of N. Furthermore, if cp, i/i.e9c*, then IN(tp) = IN(i/j) if, and

only if there is some ne N such that <p(x) = <p(Ad (n)x) for all x e 9Î.

IN is called Kirillov's correspondence.

Crucial to Moore's application of Kirillov's theorem is the following notion:

Definition. Recall that, N being nilpotent, the exponential map exp: 9c—s-#

is a homeomorphism. Let log denote the inverse of exp. We shall call the discrete,

cocompact subgroup T of N a lattice subgroup if, and only if, log T is a subgroup

of the underlying additive group of the Lie algebra 9c of N.

Remarks. The notion of lattice subgroups is useful in many situations other

than that we are about to consider. See [1], for example. Moore's paper contains

a thorough discussion of the existence of lattice subgroups.

Theorem (C. C. Moore [4]). Let T be a lattice subgroup of N and let cp be a

linear functional on the Lie algebra 9Î of N. Then In(<p) occurs in Ur if, and only if,

there is some ne N such that q> ° Ad (n) maps log (r) into the integers Z.

For previous work in this direction, see L. Green's work in [2],

3. A reduction lemma. In addition to the assumptions already made on N and

T (in the introduction), we now impose the assumptions that

(1) N is two-step nilpotent.

(2) r is a lattice subgroup of N.
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We remark that conditions for the existence of such pairs (TV, F) are considered in

detail by J. Scheuneman in [5].

Let <p be a linear functional on 9?. that maps log (r) into Z. By Moore's theorem

7w((p) is a subrepresentation of Ur. The Hubert space H of Ur can be decomposed

into a direct sum L(<p) ® L(<p) in such a way that K(<p) and L(<p) are both invariant

under Ur, the restriction of Ur to L(r/>) is equivalent to a finite multiple of IN(cp),

and 7N(9?) is not a subrepresentation of the restriction of Ur to L(<p). Our immediate

objective is to compute K(cp).

Let ft be the kernel of 9, and let "St be the set of all x in St satisfying <p([x, 9Î]) = 0.

Since [9?, 9Î] is central in 9Î, we have [9Î, 9Ï] £ Üt, and hence 9t is an ideal in 9?.

Because [§R, 9i]ç9t n ft, 3Í n ft is also an ideal in 9Î.

There are two possibilities to consider:

The first possibility is that [91, 91]ÇA. When that happens, 7^(9?) is a character

of TV, and K(cp) is the space of all/in H satisfying

fiTmn) = [iHvWmVm)

for all w and n in TV.

The remaining possibility is that [9Í, 9î]^ft. Here matters are more complicated.

We begin with a lemma:

Let A = exp (8Î n 51). ̂ 4 is then a closed, normal subgroup of TV.

Lemma. /IT is a closed subgroup of N.

Proof. We shall prove that ^T = exp (log (T) + («R n ft)) and that log(F)

+ (3t n ft) is a closed subgroup of 9Z. This will prove the lemma.

The lemma is proved by means of the Campbell-Hausdorff formula, which, in

the case at hand, takes the form

exp ix+y) exp &{•*> y]) = exp (x) exp (j>),

because [x, y] is central in 9Î.

If x and y are in log(r), then x+ye log (F), and hence by the Campbell-

Hausdorff formula, \[x, y] e log (r). We have thus shown that [log (r), log (r)]

çlog (T). Thus

[log (r) + (SR n it), log (r)+(9t n ft)] s 2(log (r)+(« n ft)).

Hence the Campbell-Hausdorff formula implies that exp (log (r) + (9t n ft)) is a

subgroup of TV and that this subgroup is generated by F and A. In other words,

exp (log (r) + (9l n ft)) = ̂ r.

It remains now to show that log(r) + (9f{ n ft) is a closed subgroup of 9Î. In

order to prove this, we need only prove that 9t n ft has a basis consisting of

rational linear combinations of elements from a basis for the free abelian group

log (r). In other words, we must prove that the rank of log (r) n ÍR n ft as a

free abelian group equals the dimension of "St n ft, and this is completely obvious.

Q.E.D.
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We now know that TA/A is a lattice subgroup of N/A. Moreover, A lies in the

kernel of the representation In(<p), as one can easily see by retracing the construction

of IN(<p) from cp. It follows that the subspace K(tp) is contained in {fe H : f(Tna)

=f(Yn) for all « e A7 and a e A}. Hence, by denoting by 9 the linear functional on

N/R n K defined by <p, we see that there is a natural map from K(cp) onto the

corresponding subspace for Ima^) in L2(N¡AT, v), where v is an invariant measure

on N/AT normalized so that the map K(<p) -s- L2(N/AT, v) is an isometry.

Thus, in order to describe K(cp), it is enough to describe the corresponding sub-

space of L2(NI AT, v). But N/A is a very special sort of group:

Lemma. The commutator subgroup of N/A and the center of N/A are equal and

both are one dimensional.

Proof. If x is central in 9c/9t n % then cp([x, 9c]) = 0 and hence x e m/m n St.

Since cp does not vanish on [9c, 9c], it follows that [N/A, N/A] = R/A.

One can easily see that N/A is isomorphic to one of the groups H(r), where

//(/•), for a positive integer r, is the group of all real matrices of the form

M    xx   x2    ■■■    xr   z \

0     10     ...    0    yx

0 '•. i    y2

;    : 1   0   ;

\ 0   0    • • •    0   1 /

H(r) is sometimes called the rth Heisenberg group.

4. Solution of the main problem for the Heisenberg groups. We now assume that

N=H(r) for some r. We shall first compute the possibilities for T. Let £ denote

log (r), and let g = £ r> [9?, 9c]. £/3 is torsion-free, since it is a subgroup of

9c/[9c, 9Î]. Hence £/3 is free and the extension

0-^3^2^2/3^0

splits. Hence £ = 93 ©3 for some 93. As we saw above, [£, £]^3—in fact,

[£, £]c23. Thus [■, •] is an alternating, nondegenerate bilinear form on V.

Choose an element z in 3 that generates 3- Because [•, •] is alternating and

nondegenerate on S3, we can choose a basis xx,..., xr, yx,..., yr for S3 with the

following properties :

(a) [xi,xj] = [yi,yj] = 0, and

(b) [xi,yj] = ai8iiz

for 1 <¡í, jíkr. Set ut=ßf1yi. Then {jc1; x2,..., xr, ux,..., ur, z} is a basis for 9Î

with the familiar multiplication table [xu u¡] = 8{jz.

Let 9Î* be the space of all linear functionals on 9Î, and let {xf,..., x*, u*,...,

uf, z*} be the basis for 9c* dual to the given basis of 9c. Then cp = mxxx+m2x*
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+ • • • +mrxf + nxU*+ ■ ■ ■ +nru*+pz*, where mxe Z, a^eZ, and peZ, and

p # 0. Furthermore, one can easily see from Kirillov's theorem that INicp) is uniquely

determined by /> = <p(z), and also does not depend on mt or «¡.

If we take for the maximal subordinate subalgebra the subalgebra generated

by «j,..., t7r and z, then INi<p) can be realized on

L2(Rxx x Rx2 x • • • x Rxr, dxx dx2 ■ ■ • dxr)

in the following manner:

Let y = 2f = i XiXt, v = 2'i = x r¡iXt, and leR. Denote by <x, r¡, £> the group element

exp (x + V + (£~ix-v)z), where x-V = H=i Xcm- Then define

(Utx^yfKX) = [exp2miptt + \-v) + n-v)]fi\ + x)

for all A = 2i = i \Xt and all/6L2(Är), where n-r¡ is defined to be 2i=i "tVi- Using

the group law in TV in the form

<V, V, 0(p, °, r> = <Y + />, o + Tj, C + T + Y-cr>,

one can easily verify that U" is a homomorphism. U" is a unitary representation of

TV whose unitary equivalence class is 7^,(95).

We shall now exhibit an operator V that carries L2(Rr) into L2(TV/r, p.) in such

a way that (1) V is an isometry if p. is appropriately normalized and (2) VU^CV)'1

is the restriction of Ur to V(L2(R)). We remark that the operator V we are about

to define is a mild variant of an operator introduced in a similar context by A. Weil

in [6]; see p. 164 et seq in [6].

Let/be a Cœ-function on Rr with compact support. Define

iV"f)«.x, 1, 0) = exp 2*HpZ + n-r¡) 2 Ax + m) exp 2nip(m-r,).
meZ'

As we have defined it, Vf is a C^-function on TV. We shall now show that Vf

is constant on right T cosets. Let </», q, r> e Y. Recall that pe Zr, reZ and

í = 2¡ = i <7iMi where a^. Now

(K?X<>,fcr><**0)
= exp 2«(/>(£ + r+p-rj) + n-ir) + q))-  ^ fi(x+P + m) exp 2mip(i»• (v + a))

= exp 2irf [/?(£ +/> • v)+n ■ 7?] 2 /(x+«) exp 2mp((m -p) ■ v)
in

= exp 2tt/ [pi + n ■ 7]] 2 fix + m) exp 2mp(m ■ -n),
m

as desired. Thus we shall view Vf as a function on TV/r. As Weil points out in

different terms, the fact that Vf is well-defined modulo V corresponds in the

special case r=l for the special function fix) = exp i~x2) to the familiar trans-

formation rules for 0-functions.

For a proof that V is a constant multiple of an isometry¡, see Weil's paper,

p. 165.
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Let /be as above, and let <y, r¡, £> and </>, a, t> e JV. Then

(v°u?0,a,z>f)«x,v,o)

= exp 2ir/(p£ + m?) 2 (i/o>,<r,t>/)(v + /n) exp 2-nip(m-n)
m

= exp 2iri{pl + m?) 2 exP 2w¿ [/?(t + (# + ni) • a) + äct]/(x + p + iff) exp 2nip(m • rj)
m

= exp 277/[/?(£ +r + x-oO-f/iOy + cr)] T/(x4-p-fiw) exp 2rripm-{G-\-7¡)
m

= (v«f)«x,v,l><p,°,T»

= (u^>v°fi)(x,v,Q.

We have thus proved that VU^^VY1 is U<w> restricted to V(L2(Rr)).

Theorem. K(<p) = Ze® Ve(L2(Rr)), where 9 traces {¡/-e£* : 0(z)=/> W 0^

a^Ui) <p for all i, 1 ̂  / ̂  r}.

Proof. That the sum is direct is clear from the fact that the defining sums for

Ve involve different exp (2tt/c • -n) terms for different values of 6. That the sum is

exhaustive is equally clear. (Cf. Moore's computation of the multiplicities in the

case r= 1—[4, p. 157].)    Q.E.D.

5. The general case. We now consider the case where T is a lattice subgroup

of a simply connected and connected, but otherwise arbitrary nilpotent Lie group

N. Let cp be a linear functional on the Lie algebra 9Î of N. We assume that <p takes

integer values on the lattice log (r), so that IN(cp) occurs in Ur. We shall use

K(cp) @ L(cp) to denote the direct sum decomposition of H=L2(N/T, p) described

at the beginning of §3, above. Our object is to give an inductive method for comput-

ing a direct-sum decomposition of K(<p) into irreducible subspaces.

We begin with a reduction analogous to that of §3. Let 8t={x e 9Î: c>(;c) = 0 and

[x, 9c] = 0}. Clearly 31 is of codimension one in the center of 9Î. One can easily

show that the center of 9Î has a basis consisting of elements of log (r). It then

follows from the integrality of <p on log (F) that such a basis can also be found for

9t. Hence rexp (91) = exp (log(r) + 9t) is a closed subgroup of N. Arguing as in

§3, we see that it is sufficient to work with the pair (9Î/3Î, T exp (3î)/exp (31)) and

the linear functional on 9c/9t defined by cp. In other words: it is no loss of generality

to assume 9i=0.

We thus assume that we are dealing with the case 9t = 0. In particular, we now

know that 9Î has a one-dimensional center 3 on which <p does not vanish. Let

3i={x e 9Ï : [x, 9c]ç 3}- Then log (F) n 3i we contain a basis for 3i (as is clear

from the corresponding fact for the center). Let yx be an element of such a basis,

and assume that yx $ 3, also.

Let 9ci = {x e 9Î : [x, yx] = 0}. 3lx is readily seen to be an ideal in 9c of codimension

one. Let Tx = Nx n T, where Nx = exp (%lx). Clearly Tx is a lattice subgroup of

Nx, and the restriction 6 of cp to log (Tx) is integral. Hence we may assume, by
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induction, that we have already computed a direct-sum decomposition K(9)

= 2©f=i Ji of the subspace K(6) in L2(TV1/ri) into irreducible, invariant sub-

spaces (for i/ri). Let Ul be the restriction of C/ri to /,.

We now make use of the crucial point in Kirillov's proof of the theorem of his

that we have cited : IN(cp) is the unitary representation of TV induced (in the sense

of Mackey) by UK Hence we can realize IN(<p) as the representation T' of TV on

L2(R, J¡) given by

(*) iTLJ)(t) = uUf(xo+0)

which is to be interpreted as follows:

Because N/Nx = R, the extension

1 -> Nx -> TV -> N/Nx -* 1

is split. Also, log(r)/log(r1) = Z. Hence log (r) = log (rj © Zxt for some

Xx e log (r), and clearly then, TV is the semidirect product Nx • X, where X=

exp iRxx). In the equation (*) above, m is any element of TV1; y is the element

exp (xo^i) of X and / e R. Finally, by / [m], we mean the element

exp itXx)m exp ( — txx)

ofNx.

Define V: L\R, Jt) -> L2(TV/r) by

(F/)(r«jx) =  2 (fiXo + nWxn[m\),
neZ

where me Nx and Y = exp (y0*i)- To see that F/is well defined is easy:

Let y e Fa ; -n e exp (Zxx). Then

iV'Myrimx) = (F/)(y(%[7«])^)

= 2 (/(xo + % + nWMvo + »)[«])

= 2wx°+«)xr>[7«])
n

= (V'f)imx).

Finally, we must compute F'L^ :

iv'T^mrpri)- 2 [(lïu/Kiïo+^KriintpD)
n

= 2 ^o + -)[m]([/(Xo + « + '?o)](ri(«[/j])))

= 2 [f(xo + n + Vo)Wxin[pm])iVo[m]))
n

- (VWrPvmx)

= iU^VfXTpr,).

Hence V'T^U^VK



618 JONATHAN BREZIN

The proof is now complete, except to show that when /#/ V{(L2(R, Jt))

_L V'(L2(R, J})). The latter is evident from the fact that wt->«[w] is a Haar-

measure preserving automorphism of Nx.

We now have a map V: K(6) -> K(cp). This map is into and not onto, in general.

In order to get the remainder of K(cp), we use the process described above, but

with 95 o Ad (x)in place of 93, wherex = exp ( ± xx), exp ( ± 2xx),..., exp ( + nxx),....
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