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APPLICATIONS OF THE TUMURA-CLUNIE THEOREM

BY

CHUNG-CHUN YANGC)

Abstract.   Some applications of the Tumura-Clunie theorem are given. Most of

these concerned fixed points of compositions of entire functions.

1. Introduction. The purpose of this note is to develop some applications of

the Tumura-Clunie theory (Hayman [2, p. 69]). It is assumed that the reader is

familiar with the basic quantities of Nevanlinna Theory: T(r,f), m(r,f), N(r,f),...

and their elementary properties.

II. Notation, terminology. 1. /will always denote a nonconstant meromorphic

function.

2. We shall denote by S(r,f) any quantity satisfying S(r,f) = o{T{r,f)}, as

r -¥■ + oo, possibly outside a set of r of finite measure.

3. We shall denote by a(z)(ax(z),...) meromorphic functions satisfying

T(r,a(z)) = S(r,f).

4. By a differential polynomial P(f) we understand a polynomial in/(z) and its

derivatives whose coefficients are of the form a(z).

III. Statement and applications of the Tumura-Clunie theorem.

Theorem 1 (Tumura-Clunie [2]). Suppose g(z)=fn(z)+Pn_x(f), and that

(1) N(r,f) + N(r, l/g) = S(r,f).

Then g(z) = hn(z), h(z)=f(z) + a(z)/n and hn~\z)a{z) is obtained by substituting

h(z) for f(z), h'(z) for f'(z), etc. in the terms of degree n—\ in Pn-x(J~).

Remark. The conclusion still holds good if the condition (1) is replaced by:

N(r,f)+N(r, l/g) = S0(r,f),

where S0(r,f) denotes any quantity which satisfies S0(r,f) = o(T(r,f)) as r -► +00

through a set of r of infinite measure.

We have
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Corollary  (1-1). Let A(z), B{z)  be entire functions, f(z) = em\   T(r,f) =

0(T(r, e«*')). Then the identity

(1-1) ai(z)eA^ + a2{z)eB™ = a3(z)

cannot hold for an a3 which is not identically equal to 0.

Proof. The result follows immediately if ax{z) = 0 or a2(z) = 0. Therefore we may

assume that both ax(z) and a2(z) are not identically equal to zero.

Multiplying both sides of (1-1) by a^z), we have

(1-2) a^e^-a^asiz) = - ai(z)a2(z)eB™.

Setting ax(z) exp [A(z)/2] = H(z), -a1(z)a2(z)eBiz)=g(z), we have

(1-3) //2(z)-fll(z)a3(z) = g(z).

We note that

N(r, H) + N(r, l/g) = N(r, fll(z)) + N(r, 1 /ai(z)a2(z))
(1-4)

= S(r, e™) = S(r, H).

Therefore, the Tumura-Clunie theorem is applicable to the identity (1-3), and leads

to

(1-5) H\z) - g(z).

This forces a!(z)a3(z)=0, therefore a3(z) = 0. In order to state Theorem 2, we

need

Definition 1. To each function X(r), positive, continuous and nondecreasing

on 0<r< +00, we associate the class FA of meromorphic functions/ satisfying

T(r,f) = 0(X(r)), as r-> oo for all r except a set of r of finite measure. It is easily

verified that FA is a field.

Theorem 2. Let f be a meromorphic function with

(2-1) N(r,f) = S(r,f)

satisfying

(2-2) /n(z)+/>n_1(/) = b(z),

where P^ _ x(/) is a differential polynomial in f of degree at most n — \, and all the

coefficients in Pn-x(f) belong to FA andb(z) e FÄ, b(z)^0. Thenfe FA.

Proof. Assume the statement is false, i.s.,f$FA. This implies that T(r, b(z))

= S0(r,f).

Combining this with the hypothesis on N{r,f), we have

(2-3) N(r,f) + N(r, \¡b(z)) = S0(r,f).

Therefore, Theorem 1 is applicable by the remark made after Theorem 1. Thus we
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obtain (f(z) + a(z))n = b(z). Combined with T(r,a(z)) = S(r,f), T{r,b(z)) = S0{r,f)

this leads to the contradiction T(r,f) = S0(r,f). Thus the theorem is proved.

A consequence of Theorem 2 is

Corollary (2-1) (Hellerstein and Rubel [4]). Fh is algebraically closed in the

field of all meromorphic functions.

The following theorem generalizes a result of Rosenbloom [3].

Theorem 3. Let f be a transcendental meromorphic function with N(r,f) = S{r,f).

Then R(f) has infinitely many fixed points, where R(z) =P(z)/Q(z), a rational function,

and P(z), Q(z) are two relative prime polynomials with degree ofP(z) ä 2.

Proof. Assume R(z) — z has finitely many fixed points. That is

nn P(f)-zQ{f)
1   } Qif)
has finitely many zeros.

Since P(z), Q(z) are relatively prime, the zeros of R(z) — z are just the zeros of

P(f)-zQ(f). Thus

(3-2) P(f)-zQ(f) = A(z)e™,

where A{z) is a polynomial and B(z) is an entire function. Consequently,

(3-3)   (*0z + ßo)fn(z) + («iz+ßx)fn-1(z)+ ■ ■ ■ +{anz+ßn)f{z) + az+ß = A(z)e™,

where n is an integer £2, a,(i'=0, 1,2,.. .,n),ßj(j=0, 1,2,...), a, ß are constants

and it is assumed that at least one of a0, ß0^0.

According to the Tumura-Clunie theorem, we obtain that

K    } [A) + ncc0z + ß0\        a0z+ß0

Combining (3-3) and (3-4) we obtain

(3-5) Rx(z)p - \z) + R2(z)p - 2(2) + • • • + Rn(z)f(z) ¡s R0(z),

where Rt(z), i= 1, 2,...,«, are rational functions and

PM_   az+ß     l«iz + ßx\«

We conclude as before that

(3-6) (/(z) + /?(z))«-i = T(z),

where R(z), T(z) are rational functions. This is impossible because / is transcen-

dental and our proof is completed.

Along the same lines we have
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Theorem 4. Let f(z), g(z) be two transcendental entire functions and let f(z) have

finitely many fixed points. Let A(z) be entire, and suppose that A(z)^g(z) — z, and

that A(z) satisfies the condition

(4-1) T(r, A(zj) - S(r,f).

(In the case A(z) = 0 we also formally recognize that the condition (4-1) is fulfilled.)

Then f(g)(z) — A(z) has infinit ley many fixed points.

Proof. Assume f(g)(z) — A(z) has finitely many fixed points, that is

(4-2) f(g)(z)-A{z)-z = P,(z) exp [Q¿z)],

where P2(z) is a polynomial and ß2(z) is an entire function.

On the other hand, according to the hypothesis, we have

(4-3) /(z)-z = P2(z)exp[ß2(z)],

where P2(z) is a polynomial and ß2(z) is an entire function. Consequently,

(4-4) f(g)(z) -g(z) = P2(g) exp [Q2(g)}.

Combining (4-2) and (4-4) we obtain

(4-5) g(z)-z-A(z) = Px(z) exp [Q^-P^g) exp [ß2(g(z))].

Since for any two entire transcendental functions / and g

T(r,f(g))/{T(r,f) + T(r, g)} -* co

(Hayman [2, pp. 50, 54]), we can apply Corollary (1-1) and conclude

(4-6) g(z)-z-A(z) = 0.

This contradicts the hypothesis, so our proof is completed.

Remark. (/(z)=e2+z shows that the assumption A(z)^g(z)—z is crucial.)

In the special case A(z) s 0, we obtain another result of Rosenbloom [3].
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