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/c-GROUPS AND DUALITY

BY

N. NOBLER)

Recall that a function is Ac-continuous if its restriction to each compact subset

of its domain is continuous. We call a topological group G a Ac-group if each

¿-continuous homomorphism on G is continuous. As we will see in §1, where

elementary properties of Ac-groups are studied, Ac-groups are the appropriate

topological group analogue to Ac-spaces. As one would expect, they provide a

useful tool for the study of dual groups topologized with the compact-open topol-

ogy. In §2 we show that the duality map on an abelian Ac-group is always continu-

ous, and in §3 we give some extensions of the Pontrjagin-Van Kampen duality

theorem. As a corollary we show that each closed subgroup of a countable product

of locally compact abelian groups satisfies duality, extending the principal result

of [8]—that the inverse limit of a sequence of locally compact abelian groups

satisfies duality.

1. Elementary properties. Recall that where (A", t) is a topological space and

k(t) = {U^ X : For each compact Fs X, U n K is relatively open in K}, (X, k(t))

is a topological space and k(t) is called the Ac-extension of t. (Also, when (A", t)

is denoted as X, (X, k(t)) is denoted as AcA" and is called the Ac-extension of A".)

The topology k(t) is the largest topology on X coinciding on compact sets with t

and X is called a Ac-space if A"= AcA". Obviously A" is a ¿-space if and only if each

Ac-continuous function on X is continuous. Where (G, t) is a topoligical group,

let kg(t) denote the supremum of all group topologies t' satisfying t' -¿k(t); and

where (G, t) is denoted as G, denote (G, kg(t)) as kgG.

1.1. Proposition. If (G, t) is any topological group, then kg(t) is the largest

group topology for G coinciding on compact sets with t. Thus (G, t) is a k-group if

and only ifkg(t) = t.

Proof. Since the supremum of any collection of group topologies is a group

topology, kg(t) is a group topology ; since t S kg(t) ^ k(t), kg(t) coincides on compact

sets with / and by definition kg(t) is the largest group topology with this property.

If (G, t) is a Ac-group, then the identity map from (C7, t) to (G, kg(t)), which is a

Ac-continuous homomorphism, is continuous, so t=kg(t). Conversely, suppose

t=kg(t) and let/be a ¿-continuous homomorphism on G. Let t' be the smallest
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topology on G which is greater than or equal to t and which makes/continuous.

Since/is a homomorphism t' is a group topology, and since/is ¿-continuous t

and /' coincide on compact sets. Hence í'á¿9(r) = r, so/is continuous. Therefore

(G, t) is a ¿-group.

1.2. Proposition. Each quotient group of a k-group is a k-group.

Proof. If g: G -*■ H is a quotient map and /z is a ¿-continuous homomorphism

on H, then h ° g is a /c-continuous homomorphism. If G is a ¿-group, then A o g

is continuous and therefore h is continuous.

Let {Ga : a e A} be a set of groups and let H be a subgroup of YlaeA Ga. Where

for B^A, itb denotes the projection: \~[aeA Ga -> YJ^b Ga x \~[aeA\B {ea}, H is

called invariant under projections if for each B^A, -nBH<^H. In particular,

YiaeA Ga and '£aeA Ga (the direct sum) are invariant under projections. The follow-

ing result is established in [13, Theorem 5.7].

1.3. Theorem. If H is a subgroup of a product of k-groups, and H is invariant

under projections, then H is a k-group.

We will use 1.3 to construct a pair of examples. Recall that a topological space

X is called a ¿B-space if each /c-continuous function from X to P (or equivalently

any completely regular space Z) is continuous. It is easily shown that a P0 topo-

logical group is a /c-group if and only if each ¿-continuous homomorphism with P0

range is continuous. Since P0 groups are in fact completely regular Hausdorff,

it follows that a P0 group which is a ¿B-space is a ¿-group.

1.4. Example. There exists a P0 ¿-group which is not a ¿B-space (and hence

not a ¿-space).

Proof. In [17] Warner gives a topological group G which is a ¿-space, is not

locally compact and for which C(G) with the compact-open topology is metrizable,

hence a ¿-space. Under pointwise addition, C(G) is a topological group. By 1.3,

G x C(G) is a ¿-group. Where e is the evaluation map, e(g,f)=f(g), e is ¿-continu-

ous but not continuous. (It is shown in [1] that for e to be continuous, G must be

locally compact.) Thus G x C(G) is not a ¿B-space.

For use in our next example and in §3, we recall the following result established

by Weil in [18, §5].

1.5. Theorem. Let G be a T0, abelian topological group which is complete in the

group uniformity, and suppose that G has a base {Ha} at the identity consisting of

open subgroups. Then G is topologically isomorphic to the inverse limit of the quotient

groups {G/Ha}.

1.6. Example. A closed subgroup of a ¿-group need not be a ¿-group.

Proof. Let Q be the first uncountable ordinal and for each a in Q let Ga be the

discrete group {0, 1}. Let G be the direct sum of {Ga : a e Q.} and for each a in Q

let Ha be the subgroup of G consisting of those elements whose /Sth coordinate is
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0 for each ß less than a. Topologize G by requiring that each translate of each Ha

be open; with this topology G is a nondiscrete topological group and the open

subgroups {Ha : a e Í2} form a base at the identity. Since any countable inter-

section of these subgroups is open, the identity is a F-point and hence, by homo-

geneity, G is a F-space.

Now let {gA} be a Cauchy net in G and for each a, let ha be the limit in Ga of the

Cauchy net {g£}. If infinitely many of the ha are not 0, then there exists a ß in Í2

such that ha is not 0 for infinitely many a less than ß. But since {gA} is Cauchy,

there exists a A0 such that Aä A0 implies gA is in He+g\ so g„ can differ from 0

for at most finitely many a less than ß. This contradicts our choice of ß, so all but

finitely many of the ha must be 0. Clearly {gK} converges to (ha) which is in G;

therefore, since {gÁ} was any Cauchy net in G, G is complete.

Since G is complete, abelian, and has a base of open subgroups, G is, by the

theorem above, isomorphic to the inverse limit of {G/Ha}, and hence G is iso-

morphic to a closed subgroup of K=YlaeCi(G/Ha). But each G/Ha is countable

and discrete, hence a ¿-group, so by 1.3 F is a ¿-group. Finally, the closed sub-

group of K isomorphic to G is not a ¿-group—since G is a F-space, each compact

subset of G is finite and hence kg(G) is discrete, and therefore kg(G) ̂  G.

In view of the two examples above, it is interesting to note that the ¿-extension

of a group topology preserves many of its properties.

1.7. Theorem. Let (G, t) be a k-group and let k denote the k-extension of t.

Then k is homogeneous and makes inversion a homeomorphism. Furthermore, for

each subgroup HofG,H is t-open if and only if H is k-open.

Proof. Since translates and inverses of compact sets are compact, the maps

y —► xy and x —>■ x~x are ¿-continuous, so k is homogeneous and makes inversion

continuous.

For the second part of the theorem we need only show that each ¿-open sub-

group is r-open. To this end, let H be any ¿-open subgroup of G and let t' be the

smallest topology greater than or equal to t which contains all two-sided translates

of H. A straightforward application of 4.5 of [5] shows that t' is a group topology

and since each translate of H is ¿-open (because k is homogeneous), t^t'¿k.

But since t=kg(t) we have t=t', so His r-open.

1.8. Corollary. Let H be an open subgroup of a group G. Then H is a k-group

if and only if G is a k-group.

Proof. If H is a ¿-group, then each ¿-continuous homomorphism on G is

continuous on H and hence H is open in G. Conversely, suppose (G, t) is a ¿-

group and let t' be the ¿9-extension of the relative topology on H. Let t" be the

group topology on G which makes H an open subgroup and which agrees with

t' on H. Now t" is clearly greater than or equal to t. Also, since H, like any open

subgroup, is closed, k(t') is just the relative topology on H of k(t). Hence, since
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each translate of H is ¿(r)-open, we have f¿t"úk(t). Thus, since (G, t) is a ¿-

group and t" is a group topology, t = t". Therefore /' is just the restriction of t to

H, so H is a ¿-group.

2. Bounds on the second dual. Recall that a homomorphism from a group G to

the circle group Pis called a character of G, and the set of all continuous characters

of G endowed with the compact-open topology and with multiplication defined

pointwise is a topological group called the character group, or the dual group,

of G. The character group of a group (G, t) is denoted by (G, tp or, when confusion

is unlikely, by C\

A group G is said to satisfy duality if the evaluation map t defined by the rela-

tion t(x)(x) = x(x) is a topological isomorphism between G and its second dual,

(G^p. It is clear that r always maps G into its second dual. A group G' is said to

have sufficiently many characters if, for each pair of distinct points x, y in G there

exists a character y in G~ such that x(x) ¥= x(y) ', ¡t is easily seen that r is one-to-

one if and only if G has sufficiently many characters, so groups which satisfy

duality must have this property. Also, since the dual of any group is abelian,

groups which satisfy duality must be abelian and it is easily shown that the map t

on an abelian group is a homomorphism. Since we are interested in finding con-

ditions under which a group will satisfy duality, we now restrict our attention to

groups which are abelian and have sufficiently many characters. (Note that since

any subgroup of an abelian group which has sufficiently many characters must also

have these two properties, the following convention does not restrict our freedom

to hypothesize subgroups. Furthermore, since a group with sufficiently many

characters is clearly Hausdorff, all hypothesized groups will be completely regular

Hausdorff.)

Convention. Henceforth, all hypothesized topological groups are assumed to be

abelian and to have sufficiently many characters.

The classical result concerning group duality is the Pontrjagin-Van Kampen

duality theorem which asserts that locally compact abelian groups satisfy duality.

This theorem has been generalized in a number of ways. One of the nicest of these

results is Theorem 4 of [7], which states that a product of groups which satisfy

duality must also satisfy duality. Thus many groups which are not locally compact

are known to satisfy duality. For further information on this subject the reader is

referred to [5], [7], [8], [10], [11], [15] and [16]; for proofs of the statements made

above, other than Kaplan's theorem of [7], the reader is referred to [5].

By virtue of our convention, to show that a group G satisfies duality one has

only to show that the map t is open, continuous, and onto. The ¿-group concept

is useful in this context because of the fact, which we now set out to prove, that

when G is a ¿-group, t is continuous.

Let G be a group and let <<? be a collection of compact subsets of G. If each com-

pact subset of G is contained in some member of #, then # is said to be a cobase
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for G. For convenience, we will say that a collection of subsets of G is a base for G

if it is a base for the neighborhood system at the identity of G. Finally, a symmetric,

connected neighborhood of the identity, 1, of the circle group T is said to be

limited if it is contained in {z : \z—l\ <\/3}-

Limited neighborhoods have the following useful property: If F is a limited

neighborhood of 1 and if V is any symmetric connected neighborhood of 1, then

there exists an integer N such that whenever z is not in V, one of the points

z, z2,..., zN is not in U. Furthermore, if F is a limited neighborhood of 1 and if "tf

is a cobase for G, then {P(K, U) : Ke^} is a base for G~. (Here and henceforth,

P(S, F) denotes the set of continuous characters which map S into F.) These two

facts are proved in [7, 2.6 and 2.9]. Recall that a set F of functions from A" to T is

said to be evenly continuous if for each point x in A", each point y in Y, and each

neighborhood U of y, there exist neighborhoods V of y and W of x such that

f(W)^U whenever/is in Fand/(x) is in V.

2.1. Lemma. Let G be a topological group, let d be the discrete topology on G,

and let E be a subset of (G, d)~. The following conditions on E are equivalent :

(i) F is evenly continuous;

(ii) Hx&e X~\U) ö a neighborhood of the identity in G for each neighborhood U

of I.
(iii) OxeE X~ 1(U) Is a neighborhood of the identity in G for some limited neighbor-

hood U of 1.

Proof. Suppose F is evenly continuous and let U be any neighborhood of 1.

By even continuity, there exist neighborhoods V of the identity, e, in G and W

of 1 such that \fa)—U whenever x(e) e W and x is in E. But x(e)' =1 e Vfor every

character y, so Fis contained in C\xeE x~x(U). Therefore (~)xeE x~1(l7) is a neighbor-

hood of e.

The implication (ii) => (iii) is trivial. Suppose finally that F is a fixed limited

neighborhood of 1 for which C]xeE x~x(U) is a neighborhood of e. Given x in G,

z in T, and a neighborhood V of z, let Wbea symmetric connected neighborhood

of 1 such that W2 is contained inz~xV, and let Abe an integer such that whenever

v is not in W one of the points y,y2,..., yN is not contained in U. Finally, let U'

be a neighborhood of e such that (U')N is contained in (~]xeE x~x(U). It suffices to

show that x(xU') is contained in V whenever x is in F and xfa) is in zW, which we

do by contradiction. Suppose there is a x in F and a point y in U such that x(x)

is in z W but x(xy) ¡s not in V. Since xfa) is in zW and since zW2^zV, x(y) is not in

W so there exists a positive integer n^N for which (x(y))n = x(yn) is not in U.

But since yn e (U')n^(U')N^(~)xeE X~X(U), this is impossible. Therefore E is

evenly continuous and the lemma is proved.

It should be emphasized that in the lemma just proved we did not assume con-

tinuity for the members of F. Indeed, for the special case in which F has only one

member the lemma tells us that a character is continuous if and only if it maps
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some neighborhood of e into a fixed limited neighborhood of 1. (This fact is Lemma

2.1 in [8].) Using the lemma above and the fact, mentioned earlier, that a single

limited neighborhood of 1 can be used to obtain a local base for the compact-open

topology on a dual group, we will be able to carry out most of our computations

using a fixed limited neighborhood of 1. For this reason we adopt the following

notation.

Notation. Let U0 be a fixed closed limited neighborhood of 1 in P. If S? is a

collection of subsets of a group G let -9"~" denote the collection {P(S, U0) : S e if}

of subsets of C\

2.2. Lemma. Let G be a topological group and let 33 be a base for G. Then each

member of @T~ is compact. Furthermore, 3S~ is a cobase for G~ if and only if the map

t from G to (G^P is continuous.

Proof. Let t be the topology on G and let k=k(t). Since G and (G, ¿) have the

same compact sets, the topology on G^ is just its relative topology as a subset of

C((G, k), T). Thus, by an Ascoli Theorem of sufficient generality (see for instance

[3], [14] or [12]), and the fact that every subset of C((G, k), T) is bounded, a subset

of G^ is compact if and only if it is closed in C((G, k), T) and evenly continuous

on (G, ¿). By the lemma just proved, each set in 3$~ is evenly continuous on G

and hence on (G, ¿). Also, iff is the limit of a net of continuous homomorphisms

each of which maps a fixed neighborhood U of the identity into the closed set U0,

then/is itself a homomorphism which maps [/into U0, so by the lemma above/is

continuous. Thus each set in 33~ is closed in C((G, k), T), and therefore each set in

3S~ is compact.

If 38~ is a cobase for G" then (STp is a base for (G~p. But then, since r(U)

^P(P(U, U0), U0), t is continuous at the identity and is therefore continuous.

Conversely, suppose t is continuous and let K be any compact set in G"\ Let

U=P\xek x~AUo) and note that, since t(U)=P(K, U0) n t(G), the set U is a

neighborhood of the identity. Since 39 is a base, there exists a set Fin 38 such that

V^U. But then K^P(U, U0)^P(V, U0)e33~. Therefore the collection J"" is a

cobase for G~.

2.3. Theorem. If G is a k-group, then the map r from G to (G^P is continuous.

Proof. Let 33 be the collection of neighborhoods of the identity in G ; by the

lemma above it suffices to show that 33" is a cobase for C\ and to show this it

suffices to show that C\xsk x~\Uo) is in ® f°r each compact subset K of C\ Let t

be the topology on G and let t ' be the smallest topology greater than or equal to t

which makes translations continuous and which makes each set of the form

OxeK x_1(^o)) for A"a compact subset of C\ a neighborhood of the identity. Since,

again by an appropriate Ascoli Theorem, each compact subset of G" is evenly

continuous on (G, ¿(f)), and since, by 1.7, ¿(f) is homogeneous, the topology f'

is less than or equal to ¿(f), so t and f' have the same compact sets. But since f' is
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the relative topology on G when G is considered as a subgroup of its second dual,

t' is a group topology. Therefore, since (G, i) is a ¿-group, t=t' and the proof is

complete.

Let (G, t) be a topological group, let G~ be the set of continuous characters on

(G, /) and let b(G) = (G~, d)^ where d is the discrete topology. The compact group

b(G) is called the Bohr compactification of G (despite the fact that it is not in general

a compactification of G). Also, let b(t) denote the smallest topology on G which

makes each character in G^ continuous.

2.4. Theorem. Let (G, t) be a topological group, let (G~)~ be the second dual

of (G, t) considered as a set, and let t" be the relative topology on G where G is

considered as a subgroup of the second dual of (G, t). Then the following relations

hold:

(i) G^(G~rmG)\
oí) m*f*kj[f).
Proof. Since r is one-to-one and onto and since b(G) is the set of all characters

on (G, t)~, the relation (i) is clear. That b(t) ú t follows from the fact, proved in

[4], that b(t) is just the relative topology on G when G is considered as a subgroup

of b(G). (For if t ' is the topology on the dual of (G, t), then since /' is less than or

equal to d, the topology on b(G), when restricted to (G^)^, is smaller than the

topology which (G^)~ receives as the second dual of (G, t). Restricting both of

these topologies to the subgroup G, we have that b(t) is less than or equal to t".)

It remains to show that t" is less than or equal to kg(t). Let ¿" denote the relative

topology on G when G is considered as a subgroup of the second dual of (G, kg(t))

and let # be the collection of compact subsets of the dual of (G, kg(t)). Then

{U nG : i/e^} is a base for the ¿"-neighborhood system at the identity. Simi-

larly, if fé" is the collection of compact subsets of the dual of (G, t), then

{U n G : UeÇtS'y*} is a base for the t"-neighborhood system at the identity.

But since t and kg(t) have the same compact sets, (G, t) is, under the natural

identification, a topological subgroup of (G, kg(t)), so c€' is contained in c€. It

follows that t" is less than or equal to ¿". But by the theorem above, ¿" is less than

or equal to kg(t); therefore t" is less than or equal to kg(t).

Note that the bounds in 2.4 are "best" in the sense that they can all be achieved

—for example, with (G, t) the circle group, G = b(G) and b(t) = kg(t). We close this

section, on an irrelevant note, with an application of 2.2. A topological space is

said to be hemicompact (or denumerable at infinity) if it has a countable cobase,

and a locally compact space is hemicompact if and only if it is <r-compact. Taking

this fact into account, a well-known theorem (see for instance 24.48 of [5]) states

that, for G locally compact, G is first countable if and only if G~ is hemicompact;

and dually, G is hemicompact if and only if G~ is first countable. Lemma 2.2

yields the following generalization of this result.

2.5. Theorem. If G is a group which satisfies duality, then G is first countable if
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and only if G" is hemicompact ; and dually, G is hemicompact if and only if G~ is

first countable. In general, if G is first countable then G~ is hemicompact; and if G

is hemicompact then G" is first countable.

This theorem can, of course, be extended in the obvious way so as to deal with

bases'and cobases of any fixed cardinality. Examples are known which show that

G need not be first countable when G" is hemicompact. We know of no examples

which show that G need not be hemicompact when G~ is first countable.

3. Duality. Let H be a subgroup of a group G. If for each point x in G\H

there exists a character x in G" such that x(//)—0} and x(x)^ L then H is said to

be dual-closed. If each continuous character on H admits a continuous extension

to a character on G, then H is said to be dual-embedded.

It is clear that a dual-closed subgroup must be closed, and it is well known that

every closed subgroup of a locally compact group is both dual-closed and dual-

embedded. Kaplan shows in Theorems 1 and 2 of [8] that every closed subgroup

of a product of locally compact groups also has these two properties. (Indeed,

his proofs show that the properties "every closed subgroup is dual-closed" and

"every closed subgroup is dual-embedded" are each preserved under arbitrary

products.)

3.1. Theorem. Let H be a dual-closed dual-embedded subgroup of a group for

which t is open and onto. If H is a k-group, then H satisfies duality.

Proof. Let p: G~ -> H~ be the map p(x) = x\h', since H is dual-embedded, p is

onto and since />_1(P(P, U0))=P(K, U0) for compact K^H, p is continuous. Now

define i: (H~P -* (G~P by the rule /(</>) = </< °p. Also let r and th denote the iden-

tity maps: G -> G"" and : H -> H"" respectively, and note that t=í o Th. Now

TH={i/je(G"P: If x e G~ and x(//)=l, then </<(x)=l}, since H is dual-closed.

(If x is in G\H there exists a character x in G such that x(H) = 1 but x(x) ¥= I so

t(x)(x)#L) Thus í((H"P)^tH and therefore, since H has sufficiently many

characters, i((H~P) = rH. Thus th is onto. To see that th is open it suffices to

note that i is continuous: For K^G compact, /_1(P(PJ, U0))=P(pK, U0) which is

open since pK is compact. Finally, th is continuous by Theorem 2.3.

3.2. Corollary. If G is a complete k-group which admits a base consisting of

open subgroups, then G satisfies duality.

Proof. By Theorem 1.5, the group G is isomorphic to the inverse limit of its

discrete factor groups, and hence is isomorphic to a closed subgroup of a product

of locally compact groups. Since, by Theorems 1 and 2 of [8] every such subgroup

is dual-closed and dual-embedded, and since by Theorem 4 of [7] each product

of locally compact groups satisfies duality, the hypotheses of the theorem apply

to G. Therefore G satisfies duality.

The lemma which follows is well known in the case where G is locally compact.
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We include the details of its proof to assure the reader that it remains valid without

restriction on G.

3.3. Lemma. If H is an open subgroup of a group G, then H is dual-closed and

dual-embedded in G.

Proof. Since G/H is discrete it has sufficiently many characters. Thus, for any

point x in G\H there exists a character x in (G/H)~ such that x(xH) ^ 1. Define

i/J: G^- F by the relation >P(y) = x(yH). Then >p is clearly a homomorphism, and

since it is continuous on the open subgroup H it is continuous. Therefore H is

dual-closed.

Now let x be a continuous character on H. Since T is divisible, x can be extended

to a homomorphism x fr°m G into F (see, for instance, Theorem A.7 of [5]).

Since x is continuous on H, it is continuous. Therefore H is dual-embedded.

3.4. Corollary. If H is an open subgroup of a k-group which satisfies duality,

then H satisfies duality.

Proof. By 1.8 and 3.3, //satisfies the hypothesis of Theorem 3.1.

3.5. Corollary. Every closed subgroup of a countable product of locally compact

groups satisfies duality.

Proof. A countable product of locally compact groups is a ¿-space (see [2] or

[13]). Thus every closed subgroup of such a product is a ¿-space and therefore a

¿-group. Therefore, as in the proof of 3.2 the hypotheses of Theorem 3.1 are

satisfied.

Corollary 3.5 generalizes the principal result of [8] which states that a certain

closed subgroup of a countable product of locally compact groups (an inverse limit

of a sequence of locally compact groups) satisfies duality. That a closed subgroup

of an arbitrary product of locally compact groups need not satisfy duality is shown

in [11] by Leptin by an example which is, in effect, the group G in Example 1.6.

Every countably compact locally compact (indeed, every countably compact

complete) group is compact, and a product space is a ¿-space only if all but count-

ably many of its factors are countably compact (see [13]). Thus except for the trivial

case in which all but countably many of the factors are compact, the proof of

Corollary 3.5 does not generalize to any uncountable products of locally compact

groups.

We will now give several examples to demonstrate some of the relationships

between ¿-groups and groups which satisfy duality. There are, however, several

questions which we have not been able to answer, the most interesting of which

appears to be : Does every complete ¿-group (which is abelian and has sufficiently

many characters) satisfy duality ?

Examples, (i) A complete abelian ¿-group need not have sufficiently many

characters.
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(ii) A closed subgroup of a complete ¿-group which satisfies duality need not be

dual-closed.

(iii) A group which satisfies duality need not be a ¿-group. (Indeed, such a

group need not be complete.)

(iv) There exists a ¿-group (which is not complete) which does not satisfy

duality.

Proof, (i) Hewitt and Ross in [5, p. 371] give an example of a complete abelian

metrizable group which is infinite but which has only one continuous character.

Since metrizable groups are ¿-groups, this shows that a complete abelian metrizable

¿-group need not have sufficiently many characters.

(ii) R. Hooper gives an example in [6] of a subgroup of a real Banach space which

is not dual-closed. M. Smith shows in [15] that each real Banach space, when con-

sidered as an additive group, satisfies duality. Since Banach spaces are complete

and metrizable, Hooper's example shows that a closed subgroup of a complete

¿-group which satisfies duality need not be dual-closed. (In speaking of complete-

ness for linear spaces and for topological groups we are, formally, speaking of

two different concepts : A linear space is complete if it is complete with respect to

the usual linear space uniform structure and an abelian group is complete if it is

complete with respect to the usual group uniform structure. However, when G is a

linear space considered as an additive group these two uniformities, and hence

these two forms of completeness, are the same.)

(iii) In [9] Kömura gives an example of a real linear space which is reflexive

but not complete, and in [15] Smith shows that each reflexive real linear space,

considered as an additive group, satisfies duality. Thus Kömura's example shows

that a group which satisfies duality need not be complete. Now it is clear that the

dual of a ¿-group is complete. Thus if G is a group which satisfies duality and if G

is not complete, then G"\ which also satisfies duality, is not a ¿-group. Therefore,

a group which satisfies duality need not be a ¿-group.

(iv) Let G be the additive group Q/Z with the quotient topology, where Q is the

group of rational numbers and Z the group of integers. Since G is metrizable it is

a ¿-group, so it suffices to show that G does not satisfy duality. Since the completion

of G is R/Z which is isomorphic to T, G" is equal, as a set, to T~, which is equated

with Z under the rule n -> Xn, where Xn(<7)=exp (inq). Let K={l/n : «=1,2,...}

and let U be an open neighborhood of the identity in T which does not contain

exp (£/). Since the subset K of G is a sequence which converges to the point 0, K

is compact and hence P(K, U) is open in C\ But for «^0 we have Xn(l/2w) =

exp (iO $ U, so P(K, £/) = {xo}- Thus G is discrete so (GT is just Z~ which is P.

Therefore G does not satisfy duality.

References

1. R. Arens, A topology for spaces of transformations, Ann. of Math. (2) 47 (1946), 480-495.

MR 8, 165.



1970] ¿-GROUPS AND DUALITY 561

2. A. Arhangel'skiï, On a class of spaces containing all metric and all locally bicompact spaces,

Dokl. Akad. Nauk SSSR 151 (1963), 751-754 = Soviet Math. Dokl. 4 (1963), 1051-1055.

MR 27 #2959.

3. R. W. Bagley and J. S. Yang, On k-spaces and function spaces, Proc. Amer. Math. Soc.

17 (1966), 703-705. MR 33 #693.

4. W. W. Comfort and K. A. Ross, Topologies induced by groups of characters, Fund. Math.

55(1964), 283-291. MR 30 #183.

5. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I : Structure of topological

groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften,

Band 115, Academic Press, New York and Springer-Verlag, Berlin and New York, 1963.

MR 28 #158.

6. R. Hooper, A study of topological Abelian groups based on normed space theory, Doctoral

Dissertation, Univ. of Maryland, College Park, 1967.

7. S. Kaplan, Extensions of the Pontrjagin duality. I: Infinite products, Duke Math. J. 15

(1948), 649-658. MR 10, 233.
8. -, Extensions of the Pontrjagin duality. II: Direct and inverse sequences, Duke Math.

J. 17 (1950), 419-435. MR 14, 245.

9. Y. Kömura, Some examples on linear topological spaces, Math. Ann. 153 (1964), 150-162.

MR 32 #2884.

10. H. Leplin, Bemerkung zu einem Satz von S. Kaplan, Arch. Math. 6 (1955), 139-144.

MR 16, 568.

11. -, Zur Dualitätstheorie projektiver Limites abelscher Gruppen, Abh. Math. Sem.

Univ. Hamburg 19 (1955), 264-268. MR 16, 899.

12. N. Noble, Ascoli theorems and the exponential map, Trans. Amer. Math. Soc. 143 (1969),

393-411.

13. -, The continuity of functions on cartesian products, Trans. Amer. Math. Soc. 149

(1970), 187-198.
14. H. Poppe, Stetige Konvergenz und der Satz von Ascoli und Arzelà, Math. Nachr. 30

(1965), 87-122. MR 32 #6400.
15. M. Smith, The Pontrjagin duality theorem in linear spaces, Ann. of Math. (2) 56 (1952),

248-253. MR 14, 183.

16. N. Vilenkin, Direct spectra of topological Abelian groups and their limit groups, Dokl.

Akad. Nauk SSSR 72 (1950), 617-620. (Russian) MR 12, 79.

17. S. Warner, The topology of compact convergence on continuous function spaces, Duke

Math. J. 25 (1958), 265-282. MR 21 #1521.

18. A. Weil, L'intégration dans les groupes topologiques et ses applications, Actualités Sei.

Indust., nos. 869, 1145, Hermann, Paris, 1940, 1951. MR 3, 198.

Clark University,

Worcester, Massachusetts 01610

University of Washington,

Seattle, Washington 98105


