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THE GENUS OF REPEATED CARTESIAN PRODUCTS
OF BIPARTITE GRAPHSC)
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ARTHUR T. WHITE

Abstract. With the aid of techniques developed by Edmonds, Ringel, and Youngs,

it is shown that the genus of the cartesian product of the complete bipartite graph

K2m,2m with itself is l + 8m2(m — 1). Furthermore, let ßi" be the graph K„,s and

recursively define the cartesian product ßi," = ß?L x x Klfl for nä2. The genus of

ß(„" is shown to be 1 + 2" " 3s"(sn—4), for all n, and í even ; or for n > 1, and s = 1 or 3.

The graph ßi,1' is the 1-skeleton of the «-cube, and the formula for this case gives a

result familiar in the literature. Analogous results are developed for repeated cartesian

products of paths and of even cycles.

Introduction. In this paper a graph G is a finite 1-complex. The genus y(G) of

G is the minimum genus among the genera of all compact orientable 2-manifolds in

which G can be imbedded. All 2-manifolds in this paper are assumed to be compact

and orientable. There are very few families of graphs for which the genus has been

determined; these include the complete graphs (Ringel and Youngs [7]), the com-

plete bipartite graphs, (Ringel [5]), and some subfamilies of the family of complete

tripartite graphs (see [6] and [8]).

One of the first genus formulae was developed by Ringel [4] in 1955 (and in-

dependently by Beineke and Harary [1] in 1965) when he found that the genus

of the M-cube Qn is given by:

y(Qn) = l+2"-3(n-4),   for n ^ 2.

The «-cube can be defined as a repeated cartesian product: let Qx = K2, the complete

graph on two vertices, and recursively define Qn = Qn _ x x K2 for n ^ 2. In general,

given two graphs Gx and G2, with vertex sets V(GX), V(G2) and edge sets E(GX),

E(G2) respectively, the cartesian product Gx x G2 is formed by taking V(GX x G2)

={(ux, u2) : ux e V(GX), u2 e V(G2)}  and   E(GX x G2)={[(ux, u2), (vx, v2)]:   ux = vx
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and [u2, v2] e E(G2) or u2 = v2 and [ux, vx] e E(GX)}. In this paper we develop

genus formulae for three families of graphs, all of which are defined in terms of

repeated cartesian products of bipartite graphs. Two of these families include all

of the «-cubes, while the third family includes the 2«-cubes.

Some elementary results on the genus of cartesian products of bipartite graphs.

The following two propositions are employed in computing each of the genus

results developed in this article; the proofs are straightforward and will be omitted.

Proposition 1. The cartesian product of two bipartite graphs is bipartite.

It follows by a routine application of mathematical induction that if the graphs

G i are bipartite, /= 1, 2,..., so are the graphs //„, where HX = GX and Hn = Hn_x

x Gn, for n ̂  2. A quadrilateral imbedding of a graph G is an imbedding for which

every face has four sides.

Proposition 2. If the bipartite graph G with V vertices and E edges has a quadri-

lateral imbedding, then that imbedding is minimal, andy(G)= 1 +F/4— V\2.

It will therefore suffice to produce a quadrilateral imbedding for each of the

graphs under consideration, as the genus may then be computed directly using

Proposition 2.

The constructions employed in this article to produce quadrilateral imbeddings

of Gx x G2 will begin with V2 copies of Gx (where G2 has V2 vertices) minimally

imbedded in V2 2-manifolds, and the necessary additional edges will be added over

tubes added between the 2-manifolds.

The addition of a tube to a generalized 2-manifold. By a generalized 2-manifold,

M, is meant a finite collection of compact orientable 2-manifolds in Euclidean

3-space, each of which is exterior to all the others. Let Cx and C2 be two disjoint

simple closed curves on M such that Cx is homotopic zero on M—C2, and C2

is homotopic to zero on M— C^ Remove two open disks from M having Cx and

C2 as their respective boundaries. Then the process of adding a tube to M is to

adjoin a topological cylinder K with bases Ci and C2 such that K n M— Ci u C2.

That this may indeed be done can be established by standard topological arguments ;

the proof is omitted. In the context of this paper, Ci and C2 will always be in the

respective interiors of corresponding faces of mirror image imbeddings of the

same graph in two 2-manifolds of identical genus. The tube will then be used to

carry one edge for each pair of corresponding vertices in the two faces. That this

may be accomplished without the edges intersecting one another follows from the

fact that the faces are mirror images of each other.

Repeated cartesian products of complete bipartite graphs. In this section we

compute the genus of the graph KSfSxKss for the cases s=l, s=3, and for all

even s. We then generalize this result by taking the cartesian product of arbitrarily

many copies of Kss and computing the genus of the resulting graph.
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For s=2m, Ringel [5] has shown that y(A^2m>2m)=(m-l)2, with P=P4=2m2;

that is, every face is a quadrilateral. The imbedding given by Ringel for this graph

may be presented in the following manner. Designate the vertex set of A^2m,2m by

V(K2m¡2m)={l,..., 4m}, with adjacencies at vertex i given by

V(i) = {j : 2m+l újú 4m},       1 á i ¿ 2m,

= {j:lújú 2m}, 2m +1 g / ú 4m.

Define cyclic permutations Pf: V(i) -> V(i), for / = 1,..., 4m by:

Pi, Pa, ■ ■ .,>•.-!: (2m+ 1, 2m + 2,..., 4m),

P», Pi, ■ ■ .,Pa»: (4m, 4m-1,.... 2#n + l),

°2m+l> p2m+3> ■ ■ •> P,m-1- 0> 2, . . ., 2m),

P2m + 2) p2m+4> ■ - ■> °4m° (2m, ZWÎ — 1, . . ., 1).

It is a theorem of Edmonds ([2], see also Youngs [9]) that the collection (Px,...,

Pim) uniquely determines a 2-cell imbedding of K2mAm in a 2-manifold M, once an

orientation is selected. Furthermore, let [a, b] represent the directed edge from

vertex a to vertex b corresponding to edge (a, b) in ^2m,2m and form the set

W={[a, b] : (a, b) e E(K2m¡2m)}. Now define the permutation P:W^W by

P([a, b]) = [b,PAa)]. Then the orbits under P correspond to (2-cell) faces of the

imbedding. Had the opposite orientation been selected, with the collection

(Pi,..., P4m) unchanged, the resulting imbedding would have been a mirror

image of the first imbedding. The following lemma is used to compute the genus

°1 K2m2mx K2m2m:

Lemma 1. For the imbedding of K2m¡2m given above, the set of 2m2 quadrilateral

faces may be partitioned into 2m subsets of m faces each so that each subset of m

faces contains all 4m vertices of the graph.

Proof. We write out the orbits (each corresponding to a quadrilateral face)

determined by the permutation P as defined by the permutations P¡, l¿i^4m,

given above:

(2g-l)-(2h-l)-2g-(2h-2), 1 S g á m; m+l < h ^ 2m,

(2g-l)-(2h-l)-2g-4m, 1 ^ g Í m; h = m+l,

2j-(2k-l)-(2j+l)-2k, m+l <, k <= 2m, l Ú j < m,

2j-(2k-l)-l-2k, m+l S k ^ 2m, j = m.

We now assign these 2m2 faces to parts of the partition. For fixed i, the m faces

of part (2/— 1) are determined by selecting h=m+g+i, with 1 ̂ g^m, where we

reduce (g+i) modulo m and write m instead of 0. The m faces of part 21 are

determined by taking k = m+j+i, with 1 Sjúm, where we reduce (j+i) modulo m

and again write m instead of 0. Letting i run between 1 and m, we obtain 2m sets

of m faces each, the sets being mutually disjoint by the manner in which they were
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selected. Furthermore, each set of m faces contains all 4m vertices of the graph

F2m,2m.

We are now in a position to prove the following theorem:

Theorem 1. The genus of Kssx Kss is given by y(KssxKStS)=l+s2(s — 2), if s

is even or if s =1 or 3.

Proof. We consider three cases :

Case (i). For s = 2m, imbed 4m copies of F2m2m in 4«j 2-manifolds of genus

(m — l)2, using the imbedding described above. We choose one of the two possible

orientations for 2m of these 2-manifolds, and the reverse orientation for the remain-

ing 2m 2-manifolds. This partition corresponds to the vertex set partition for

F2m>2m. Between each pair of oppositely oriented 2-manifolds, we must add 4m

edges in order to imbed K2m¡2m x K2m¡2m. We add these 4m edges over a join com-

posed of m tubes, each tube carrying four edges. Each tube is attached between

corresponding faces in imbeddings of opposite orientation, so that the faces are

mirror images of each other. There are 2m such joins that must be made from each

2-manifold. Lemma 1 establishes that Ringel's imbedding for the copy of K2m_2m

at each 2-manifold is ideally suited for this purpose. We need only check that we

can match corresponding parts of the face partitions appropriately. At copy j,

1 ̂ j^2m, of K2m_2m minimally imbedded with common orientation, match part /

of the face partition with part i in copy j+i, l^j+ifi2m (mod 2m) of K2m¡2m

minimally imbedded with the opposite orientation. If j + i=j' + i' with /=/', then

j=j', so that each part of each partition has exactly one tube attached at each

face in that part. As each tube carries the maximum of four edges, each new face

formed (intersecting some tube) is a quadrilateral. We have thus constructed a

quadrilateral imbedding of F2m2mxF2m2m, and the genus may be computed

using Proposition 2. As V=l6m2 and E=32m3, we see that y(F2m,2mxF2m,2m)

= 1 +%m2(m-1) = 1 +s\s-2), for s = 2m.

Case (ii). For 5=3, we use an imbedding of K3¡3 for which F=F6 = 3:

V(i) = {4, 5, 6},       /= 1,2,3,

= {1,2,3},       / = 4,5,6,

Px, P2, P3 : (4, 6, 5),       Pi, F5, F6 : (1, 3, 2).

For this imbedding, each face contains each vertex of the graph exactly once.

We imbed six copies of K33 in six 2-manifolds of genus one (three of each orienta-

tion) and add nine tubes (each carrying six edges) in the fashion described above.

A quadrilateral imbedding results, and we compute that y(F33 x F3>3) = 10.

Case (iii). For s=l, Kxx xFlil = F2xF2 = C4, and y(C4) = 0. This completes

the proof of the theorem.

For the construction of Case (i) above (as well as for Case (ii)), we can compute

the genus of the resulting 2-manifold directly, without recourse to the Euler-type
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formula of Proposition 2. The contributions to the genus are of three types:

(i) 4my(K2m2m) = 4m(m — l)2, representing the collective genera of the 2-manifolds

with which we began our construction; (ii) 4m2(m — I), representing an increase

of (m-l) in the genus for each of the 4m2 joins, due to the addition of m tubes;

and (iii) /3(A'2mi2m) = (2»î —l)2 (where ß(G) = E— V+l is the cyclomatic number of

G), representing the contributions of the joins taken collectively. Adding, we see

that

y(X2m,2m x K2mt2m) = 1 + 8m2(m -1).

We can use Theorem 1 to prove the following corollary, which is actually a

generalization of the theorem :

Corollary la. The genus of K2m¡2m x Krs is given by

y(K2m.2m x KrJ = 1 + m((m - 2)(r + s) + rs),

ifr^2m and s ̂  2m.

Proof. Imbed K2m¡2m x K2m2m as in the proof of Theorem 1, with F=Fi. Remove

(4m — (r+s)) 2-manifolds containing copies of K2m¡2m, together with all tubes and

edges issuing from these 2-manifolds, so as to leave an imbedding of K2m¡2m x Krs.

This imbedding is also quadrilateral, since each copy of K2m¡2m was initially im-

bedded quadrilaterally, and the removal of any tube reintroduces only quadri-

lateral faces. Noting that, for K2m¡2m x Krs, V=4m(r + s) and E=4m2(r + s) + 4mrs,

the result now follows directly from Proposition 2.

We apply Corollary la in turn to give the following unrestricted 2-parameter

formula:

Corollary lb. The genus of K2m¡2m x K2rit2n is given by

y(K2m.2m x K2n¡2n) = 1 + 4mn(m + n-2),

for all natural numbers m and n.

We now define a class of graphs which generalize the «-cube as follows: let

gis) = Kss, and recursively define gj,s) = g!?L x x KSyS, for n ¡t 2. The constructions of

Theorem 1 can now be extended, as developed below :

Theorem 2. The genus of g(n2m) is given by y(ßi,2m)) = 1 +22n-2m\mn-2).

Proof. By the observation following Proposition 1, Q(2m) is a bipartite graph.

We construct a quadrilateral imbedding for ßS,2m>, and compute y(Q{2m)) using

Proposition 2. It is clear that V=4nmn for ßi,2m). We establish the values of E and

P, showing that F=Fi, by mathematical induction. Let the statement S(n) be as

follows: There is an imbedding of ß<,2m) with E{n)=n22nmn + i and F(n) = Fin)

= n22n~1mn+1, including 2m mutually disjoint sets of 22n_2mn mutually vertex-

disjoint quadrilateral faces each, each set containing all 4nmn vertices of ßS,2m>.
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We claim that S(n) is true for all natural numbers «. We establish this claim by

induction. That S(l) is true follows immediately from Ringel's imbedding of

K2m¡2m and Lemma 1.

Now, assuming S(n) to be true, we establish S(n + l), for «^ 1. So, consider a

large copy of F2m2m, each vertex of which is replaced with a small copy of Qi2m)

imbedded as described by S(n) and with respective orientations determined by the

vertex set partition for F2m>2m. Label the 2m copies of one orientation byj, 1 ij£2rtt,

and the 2«j copies of opposite orientation byj, I5jjá2»i. Now, by the induction

hypothesis, each copy of Qi2m) has 2«t sets of faces available, one set for each of

the 2m joins that must be made from that copy. Furthermore, each set contains

each vertex of the graph Q}2m) exactly once. As in the proof of Theorem 1, at copy/

l^j^2m, match set / with set i in copy j+i, l^j+i^2m (mod 2m). For each

matching a tube carrying four edges is attached between each pair of corresponding

quadrilateral faces. In this manner the required 4«t2 joins are completed, so that

we have a quadrilateral imbedding of ôn2+i-

Now, for fixed / pair off copy / of Ql2m} with copy i+j, where l¿i+j^2m

(mod 2«j). For each such pairing, with copy /joined to copy i+j by 22n_2«in

tubes, we have (for fixed j and /= 1,..., 2«j) a total of 4(22n-2)ffj',(2/n) = 22n+1mn+1

quadrilateral faces on 22n~xmn + x tubes. For each tube, select one pair of opposite

faces. The 22n«jn+1 faces thus selected are mutually vertex-disjoint and contain all

4n + 1mn + 1 vertices of Q{2+\. Now letting y vary between 1 and 2w, we obtain 2m

mutually disjoint such sets of quadrilateral faces, as claimed by S(n+1).

The imbedding of ßffi we have obtained has Fn+1) = Fln + 1), since FM=F1^

and the attaching of each new tube with the four edges it carries eliminates two

quadrilaterals and introduces four new quadrilaterals. Now, F(n + 1) = 4mF<n)-l-AF,

where AF is twice the number of tubes added at this stage. But the number of

tubes added is (4m2)(4n«tn)/4 = 4n«in+a, where 4w2 is the number of edges in

F2m,2m (corresponding to the number of joins we made), 4n«in is the number of

edges per join, and there are four edges per tube. Hence

¡rXn+iy = 4m(n22n-lmn + x) + 2(4nmn + 2)

= («+l)22n + 1mn + 2.

Also,

£<"+» = 4fflF(n)-l-4m2^/(n,

= 4m(«22nmn+1)+4m2(4n/nn)

= (« + l)22n+2/Mn+2.

We have established that 5(n+l) follows from S(n), for all »àl. Thus Sfa)

holds, for all natural numbers n. Now by Proposition 2,

y(ôn2m)) = l+«22n«in + 1/4-4n«in/2

= l+22n-2mn(mn-2).
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In Theorem 2, it was convenient to consider A"ss for s even, since K2m¡2m has

F=Ft in its minimal imbedding. The arguments of Theorem 2, with minor modi-

fications, apply also to the cases s= 1 and s = 3. We can therefore state:

Theorem 3. The genus of ßj,s) is given by y(ßils)) = 1 + 2n " 3sn(ns - 4), for s even

and any positive integer n, or for s=l or 3 and n ̂  2.

The genus formula given in Theorem 3 includes as two of its special cases

y(K2m,2m) = (m-l)2 (for «=1, s = 2m) and y(Qn) l+2">-4) (for 5=1, since

KXiX = K2), two of the familiar results in the literature.

It was crucial to the construction of imbeddings for Gx x G2 employed in this

section that both Gx and G2 be bipartite, for then Proposition 2 may be employed,

due to Proposition 1. Moreover, in commencing our construction with V2 2-

manifolds partitioned by orientation in accordance with the vertex-set partition

of G2, we are assured that every tube to be added in the construction will be

attached at two faces of opposite orientation, so that the required edges can be

added without intersection. In the next two sections, we take advantage of this

situation for two different families of bipartite graphs.

Repeated cartesian products of paths. We define a second class of graphs

generalizing the «-cube by: Hx=Pm¡, a path on mx vertices, and Hn = Hn_x xPmn, for

n^2. All paths are bipartite graphs, but we nevertheless restrict mx, m2, and m3

to be even in the theorem to follow. Let

n n       ,

M(n) = []ra¡   and   m{n) =2 —
i=l i=l   mt

Theorem 4. The genus of Hn is given by y(Hn) = l +(M(7l)/4)(«-2-m(n)), for

« ^ 3 and mx, m2, and m3 all even.

Proof. By the observation following Proposition 1, Hn is bipartite. We construct

a quadrilateral imbedding for Hn, and compute y(Hn) using Proposition 2. For

Hn, Vin) = M(n\ Let the statement Sln) be: There is an imbedding of Hn for which

F{n) = Fln) = (MMl2)(n-min)), including two disjoint sets of \Min) mutually vertex-

disjoint quadrilateral faces each, both sets containing all M(n) vertices of Hn;

furthermore, for Hn, E{n) = M™(n-mM). We claim that S(«) is true for all «^3.

We verify this by induction.

To see that 5(3) is true, refer to Figure 1, which shows that y(P6xP8) = 0.

Every face but the exterior is a quadrilateral for this imbedding. We see that two

joins may be made at each copy of Pmi x Pm2 in general, provided mx and m2 are

both even. One join employs the faces designated by (1), and the other join uses

the faces designated by (2), as in Figure 1. Provided m3 is even also, we can arrange

the two end copies of PmixPm2 so that the faces (2), including the exterior face,

are employed in the single join that must be made from each end copy. Partition

the m3 copies of Pm¡ x Pm2 into m3\2 copies of one orientation and m3/2 copies of
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(2)

Figure 1. An imbedding of PexPe in the plane

the other orientation, with the two end copies in different parts of this partition

(corresponding to the vertex set partition of Fma). The graph H3=PmixPm2xPm3

thus has a quadrilateral imbedding, since a tube attached between two oppositely

oriented copies of the exterior face (2) replaces those two faces of 2(mx + m2 — 2)

sides each with 2(m1 + w2—2) quadrilaterals, once the required edges are added

over the tube. Now,

F<2) = (mi-l)m2 + (m2-l)mi

— 2mxm2—mx—m2,

so that

F<3> = m3E™ + (m3-l)V™

= 3mxm2m3 — mxm3 — m2m3 — mxm2.

Also, FC3)=w3F(2)+AF, where AF is the increase in faces accounted for by the

tubes we have added. This increase is of two types, corresponding to tubes attached

within faces designated by (1) and to tubes attached within faces designated by (2).

We have :

F<» = m,[(mi-l)(m2-l) + l] + 2(Ç-l)(ÇÇ)

•?WMCM+*»+--»]+- mx+m2-

mxm2   mxm3   m2m3
= -2mxm2m3-   2 2 2

Furthermore, consider the set of faces obtained by taking, from each tube joining

faces designated by (2), every second face. These faces are mutually vertex-disjoint,

and contain all mxm2m3 vertices of H3. Now, form a second set of faces consisting

of the remaining faces on the tubes joining faces designated by (2). These faces are

also mutually vertex-disjoint, and contain all mim2m3 vertices of H3. Moreover, the

two sets of faces we have selected are clearly disjoint. Therefore, 5(3) is true.

Now we assume S(n) to be true, and establish S(n +1), for « ̂  3. Given the graph

#n+i> we give the mn+1 copies of Hn minimal imbeddings as described by S(n),
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with orientation as determined by the vertex set partition of Pmn+1. It is clear

that we can make the required (mn+x — 1) joins so as to obtain a quadrilateral

imbedding for Hn+X. We have

£(n+i) = mn+xEw+(mn+x-l)V^

= mn+ x(nMM - MwmM) + (mn+x- l)MM

= M(n + 1)(n+l-w(n + 1)).

Also, P(n+1)=mn+1P(n)4-AP, where AP=(mn+1-l)(£M(n>)(2), where mn+x-l is

the number of joins, \M{n) is the number of tubes per join, and there is a net

increase in P of two for each tube. We have

P(n+1) = mn+x(Mwl2)(n-mM)+$Mln+1)-W™

= (M(n+1)/2)(n+l-OT(n+1)).

To complete the verification of S(n +1), we must find two disjoint sets of M(n+1)/4

mutually vertex-disjoint quadrilateral faces each, both sets containing all M(n+1)

vertices of Hn+X. We have two cases to consider:

Case (i). If mn+x is even we choose opposite faces on each tube of alternate

joins to form one set, and the remaining faces on the same tubes to form the second

set, as indicated in Figure 2.

Figure 2. Selecting faces for mn+1 even

Case (ii). If mn+x is odd, we make our selection as indicated in Figure 3, using

at each end copy of Hn the remaining set of \M<n) mutually vertex-disjoint quadri-

laterals. As in Figure 2, an arrow at a join indicates that opposite faces on each

tube of the join have been selected.

Figure 3. Selecting faces for mn+x odd

We have shown that S(n +1) follows from S(n), and hence that S(n) holds for

all n ̂  3. It only remains to compute the genus of H„. But by Proposition 2,

y(Hn) = l+(MM/4)(n-m™)-MM/2

= l + (M(n>/4)(7i-2-m(n)).
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Since the operation of taking the cartesian product is commutative, Theorem 4

can be applied if any three or more of the m¡ are even. Elementary probability

considerations show that this fails to happen in only («2 + «+2)/2n+1 of the possible

cases, for fixed «. For « > 5, this probability will be less than one half.

For the special case where mx = m, i= I,..., n, for m even, we have:

Corollary 4a. The genus of the graph //<m) is given by y(Hfl) = l+(mn-í¡4)

■ (mn — 2m — «), for m any even positive integer.

Furthermore, if m = 2 in the above formula, //£2) is the «-cube, since P2 = K2,

and we have the familiar result :

Corollary 4b. y(Qn) = 1 + 2n - 3(« -4).

Repeated cartesian products of even cycles. Every even cycle is a bipartite

graph, and the techniques of this paper apply also to the graph Gn: G1 = C2mi,

the cycle on 2mx vertices, and Cn=Gn-ixC2% for «^2. We require «í¡§2,

/= 1,..., «, for C2 = K2 is not considered to be a cycle. Again let Af(n) = n?=i m¡-

Theorem 5. The genus of Gn is given by y(Gn) = 1 + 2n " 2(n - 2)MM, for « ̂  2.

Proof. By Proposition 1, Gn is a bipartite graph. We produce a quadrilateral

imbedding for Gn, and compute y(Gn) using Proposition 2. For Gn, V=2nM(n);

and since Gn is regular of degree 2«, it is a simple matter to compute E=2nnM(n).

Now, let the statement 5(«) be: There is an imbedding of Gn for which F(n) = Fln)

=«2n_1A/(n), including two disjoint sets of 2"""2Af(n) mutually vertex-disjoint

quadrilateral faces each, both sets containing all 2nMw vertices of Gn. We claim

that Sfa) is true for all « ;> 2. We verify this by induction.

That 5(2) is true is apparent from Figure 4, with the faces designated by (1)

making up one set and those designated by (2) making up the other. Now we

assume 5(«) to be true and establish 5(« + l), for «^2. For the graph Gn+1, we

start with 2mn+1 copies of Gn, minimally imbedded as described by 5(n). We

partition the corresponding surfaces into mn+1 copies of one orientation and

(2) (1) (2) (1) (2) (1) (2)

(2) (1) (2) (1) (2) (1) (2)

Figure 4. An imbedding of C4 x C6 in the torus
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mn+x copies of the reverse orientation, corresponding to the vertex set partition

of C2mn+1. From each copy, two joins must be made, both to copies of opposite

orientation. From the statement S(n), it is clear that these two joins can be made,

each one over 2n~2M<n) tubes carrying four edges each. Each new face formed is a

quadrilateral. In this fashion the required 2mn+1 joins can be made to imbed

Gn+X, with F=Fi. Now form one set of faces by selecting opposite quadrilaterals

from each tube added in alternate joins in this construction. Form the second set

by selecting the remaining quadrilaterals on the same tubes. It is clear that the

two sets of faces thus selected are disjoint, and that each contains

(2)(mn+1)(2n-2M(n)) = 2"-1M('1+1)

mutually vertex-disjoint quadrilaterals; both sets contain all 2n + 1M(n+1) vertices

of Gn+1. Furthermore, P(n + 1) = 2mn+1P(n) +AP, where AP=(2mn+1)(2n-2M(n))(2),

where 2mn+x joins have been made, with 2n_2M(n) tubes per join, and a net in-

crease in P of 2 per tube. Hence,

P(n+1) = 2mn+1(n2n-1M(n))+2nM(n+1)

= (« + l)2nM(n+1),

and we have established that 5(« + l) follows from S(n). Therefore, S(n) holds,

for all n^2. We can now compute:

y(Gn) = l+2nnMM/4-2nMM/2

= l+2n'2(n-2)MM.

For the special case where mt=m, i= 1,..., n, we have MM=mn, and:

Corollary 5a. The genus of G<,m) is given by y(G<r°) = l+2n~2(n-2)m\

Furthermore, if m = 2 in the above formula, since Ci = K22 = K2x K2, Gi2) is the

2«-cube, and we obtain the familiar result:

Corollary 5b. y(ß2B) = l+22n-2(n-2).

Summary. The n-cube ß„ is defined as a repeated cartesian product of the

bipartite graph K2 with itself. We have found the genus for generalizations of the

n-cube in three different directions: in Theorem 3, regarding Kxx as K2; in Theorem

4, regarding P2 as K2 ; and in Theorem 5, regarding >C4 as K2 x K2 to generalize

the 2n-cube.
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