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A FORMULA FOR SEMIGROUPS, WITH AN

APPLICATION TO BRANCHING DIFFUSION PROCESSES

BY

STANLEY A. SAWYERO)

Abstract. A Markov process P = {xt} proceeds until a random time t, where the

distribution of r given P is exp ( — </>t) for finite additive functional {<j>t}, at which time

it jumps to a new position given by a substochastic kernel K(x„ A). A new time t' is

defined, the process again jumps at a time t+t' and so forth, producing a new Markov

process P'. A formula for the infinitesimal generator of the new process (in terms of

the i.g. of the old) is then derived. Using branching processes and local times {<j>t},

classical solutions of some linear partial differential equations with nonlinear bound-

ary conditions are constructed. Also, conditions are given guaranteeing that a given

Markov process is of type P' for some triple (P, {<f>t}, K).

1. Introduction. Let P be a Markov process on a metric state space X. We

construct a new process P' as follows. We proceed according to the process P until

a random time given by a random "clock" (see §2 for precise definitions), at which

time we stop the process and restart it at a new position given by a substochastic

kernel K(x, A) (where x refers to the position of P at the random time). We reset

the "clock" and proceed from the new position until a new random time, "jump"

a second time, reset the clock, and so forth. The purpose of this paper is to derive

an expression for the infinitesimal generator of (the semigroup of) the process P'

in terms of the infinitesimal generator of P, the kernel K(x, A) and the additive

functional running the clock. (See equations (2.7), (2.8) below.) As an example,

using branching processes and local times, we construct classical solutions of some

linear partial differential equations with nonlinear boundary conditions.

The process P' described above was first considered in a general setting by Moyal

[13]. He worked with the transition function of P, and obtained an equation for the

transition function of P'. This equation, essentially the equation (2.5) below, was

shown always to have at least one solution, and the meaning of nonuniqueness was

discussed. These questions were given considerable impetus in 1964 by Skorohod

[19] (and Itô-McKean [7]) who showed that a process of type P' could be used to

give solutions of certain semilinear partial differential equations of parabolic type.

A probabilistic construction of the process P' was carried out in [6] (see also [5],
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[18], [16]). There a model of the process P' was built by a brute force procedure of

"cutting and pasting" countably many copies of the process P, which showed

among other things that the strong Markov property would not be destroyed. The

set-up in that construction was essentially that of the first paragraph, except that

the kernel K(x, A) could depend on the "tail-field" of P before the random time

and not just its position. In the special case when the additive functional running

the clock is of "Kac type" (see (2.16) below), a formula for the infinitesimal

generator of P' was then (in essence) derived. In a branching diffusion context this

gave a complete probabilistic treatment of exactly the class of equations considered

by [19] and [7].

The purpose here is to generalize the class of additive functionals beyond those

of Kac type to include "local times." The use of a local time in a partial differential

equation setting would lead to the introduction of a nonlinear boundary condition

rather than the introduction of a nonlinear potential term in the equation. In

particular, it would involve a change in the domain of the infinitesimal generator

rather than in its actual values ; in contrast we remark that all previous investiga-

tions of the infinitesimal generator of P' have contained assumptions requiring the

domains of the infinitesimal generators to be the same.

2. Statement of results. Let P = {xt,Bt} be a strong Markov process with

respect to the a-algebras Bt = (~)ii:>01 B[{xs : s^t + e}], which we assume has right-

continuous paths in a metric state space X and transition function P(t, x, A) (see

e.g. [2, Chapter 3]). Let K(x, A) be a substochastic kernel on X, i.e. (i) for fixed

x £ X, K(x, A) is a nonnegative Borel measure on X with K(x, X) :£ 1, and (ii) for

a fixed Borel set A^X, K{x, A) is a Borel function on X. This last condition

insures that the operator Kf(x) = jf(y)K(x, dy) preserves the class of bounded

Borel functions on X which, with a convenient abuse of notation, we denote by

&""(X). As is standard, we assume the existence of an "escape point" A £ X in

order to have a probabilistic interpretation of P(t, x, X)< 1 or K(x, X)< 1; i.e.

at some "termination time" £(co) the process P escapes to and is trapped at A.

P(t, x, X) is then the probability that the process is still in X. The actual state space

is then always understood to be X u {A} ; unless otherwise indicated, al\f(x) e &"°(X)

will be assumed to be defined on X u {A} and satisfy/(A) = 0.

Let {(f>t(cj)} be a (finite) additive functional of the process P, i.e. a collection of

random variables measurable on the process such that

(i)   <pt(w) is immeasurable for all /,

(ii)   U«) ■ 0, 0 ^ U<») < oo,

(iii)     <f>t+s(«>) = 4>tW) + 8t<f>s(<»),

(iv)    {<pt(<")} is right continuous in t for all oj,

where " 6" is the time-shift operator of Dynkin. In particular, </>t(a>) f for all w.

We also assume <£t(a>) = <£C((1))_(tu) for îïï£(cu); this is equivalent to assuming
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EA(^>t) = 0 and Px(<f>s — <f>s- >0, j = Q = 0. In addition, we will from time to time use

(2.2) {4't(u>)} is continuous in t for all w.

Examples would be "local times," additive functionals of "Kac type" (see (2.16)

below), or additive functionals of saltus type which change only by jumps at the

jumps of {xt}. The random time of §1, when the process is required to jump accord-

ing to K(x, A), is defined as follows (using an idea of Hunt) : Let m be a random

variable independent of the process {xt} with Px(m>t) = e't; m can be constructed,

if need be, by extending the probability space. The random time is then

(2.3) t(o.) = sup {t : ¿¿«o) úm} = <¡>ñ\u>),

i.e. the right-continuous inverse of ¿(cu) at m. If Bx=\Jt Bt, then

(2.4) Px(r > t¡Bm) = Px(<f>t ̂ m(B„) = e-«>   a.s.

Let P' = {x't, B't} be the process described in §1 (which we define to be at A after a

finite time accumulation point of jumps). Set Ttf(x) = Ex(f(xt)) = § f(y)P(t, x, dy),

7?f(x) = Ex(f(xt)X(x>tj = Ex(f(xt)e-*>) and T[(f(x)) = E'x(f(x't)). Then {7?} and {T't}

are semigroups, and Tt = T[ is a solution of the equation

(2.5) Ttf(x) = T?f(x) + Ex(x«it) £ Tt^f(y)K(xz, dy)}

for all/(x) e £""(X) (see [2, Chapter 9], [6], [13]). Note that formally, (2.5) is just

the strong Markov property applied at t(w). (Letf(x) = xA(x) be the characteristic

function of A ; then TJ(x)=P(t, x, A), Ttf(x)=Px(xt eA,r>t), etc.)

Finally a word about the domain of the semigroups involved. By standard (weak)

semigroup theory (e.g. [2, Chapter 1]), {Tt} is naturally defined on

(2.6) B0 = Sf(x) : f(x) e ä""(X), lim TJ(x) = f(x) for all x\.

Condition 2.1(iv) guarantees that B0 is the same if {Tt} is replaced by {77} or any

Markov semigroup {Tt} on X satisfying (2.5). In general, we let B be any linear

subspace of B0 which is preserved by the six families of operators Tt, Tf, Tt,

RK, Rl, R¿, where the 7?A's are the resolvent (Laplace transform) operators of the

corresponding semigroups (A>0). The space B0 always satisfies this condition; of

greater interest in application is the fact that if {Tt} is strongly Feller and Px(r^t)

= o-(l) uniformly in x, then {T?} and {Tt} are strongly Feller (see Theorem 5.3 in §5)

and B=BC(X) (the space of bounded continuous functions on X) will be preserved

by these six operators. With some B fixed, we define A, A°, A as the (weak)

infinitesimal generators of the three semigroups on B, with domains (for example

for ,4)
®(A) = {f(x) : f(x) e B, \(l/t)(Ttf(x)-f(x))\SM,

(l/t)(Ttf(x)-f(x)) -> some g(x) e B, all x}

(which is also the range of RK on B) with Af(x) =g(x). Set AK = A - XI, A°K = A° - XI

etc. for A>0; thus AK maps 3>(A) onto B and AKRK= —I.
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It will be noted that we are considering the "weak" infinitesimal generator and

not the "strong" generator of the Hille-Yosida theorems. This is partly a matter

of taste; the weak generator seems more natural probabilistically. However if

Ttf(x), Ttf(x), TJ(x) -^f(x) uniformly for all f(x) e B, the weak and strong

infinitesimal generators would coincide on B, and what follows would hold

a posteriori for the strong generator as well.

We are now ready to state our main results, which depend, if {<f>t(o>)} is con-

tinuous in t, on the operators

SJ(x) = Ex[j™ e-**f\x¿«>)] dU">)\

for nonnegative f(x) e ä"a(X). If (2.2) does not hold, the results to follow are valid

provided SA is replaced by

(2.7) SJ(x) = -EM    e-A!/L*sH] exp fo,_(w)] ¿(exp [-««,)]))•

Theorem 2.1. Let {<^«£(cu)} satisfy (2.1), and assume {Tt} is some Markovian semi-

group on X which satisfies (2.5). Assume further that SK\(x)«x> for all x and some

A>0. Then

(2.8) ZAÇ= A ¿I- SK(K-I))

where the right-hand side o/(2.8) is interpreted as a linear operator whose domain is

the set ofallf(x) e B withf-SK(K~I)fe 2(A).

A version of Theorem 2.1 where A = 0 is stated in Theorem 2.4. The question of

equality in (2.8) (i.e. when fe3>(I) iff/- SÁ(K~I)fsS>(A)) is important as it

gives a sufficient condition for/(x) e 3i(A). This, in turn, is closely connected with

the question of uniqueness of solutions of (2.5). (See §4 for proofs of Theorems 2.2,

2.4.)

Theorem 2.2. IfB = B0, the inclusion (2.8) is attained for any solution {Tt} of (2.5)

iff there exists a unique Markovian semigroup solution of (2.5), which occurs iff there

exists no non trivial bounded measurable solutions of the equation

(2.9) f(x) = Ex(e~* jf(y)K(xz, dyj)■

For a general B, the inclusion (2.8) is attained (in B) iff (2.9) has no nontrivial solu-

tions f(x) e B, either of which implies that (2.5) has a unique solution {Tt} subject to

{Tt} and {R^} preserving B. A sufficient (but not necessary) condition for equality in

(2.8) etc. (for any B) is either of

(i)   Px(t S t0) ¿ a < 1,   some t0 > 0, all x,
(2.10)

(ii)   Ex(<pto) ̂  C < co,       some t0 > 0, all x.

Condition (2.9) (and its proof) are actually generalizations of Feller's work on

continuous-time Markov chains [3]. (See e.g. Theorem 7.7.5, p. 368, in [24].) As
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in Moyal [13] uniqueness fails in Theorem 2.2 iff the successive "random jumping

times" of §1 have a finite upper bound with positive probability. Nonuniqueness

results from the fact that (2.5) only prescribes the behavior of the process P' up

to such an "explosion" time; at such a time the process could jump anywhere it

likes without affecting (2.5). The question of when finite explosion times can occur

with positive probability (at least when K(x, A) = 8X(A)) is considered in greater

detail in §3.1.

For branching Markov processes these results take the following form (see §6 for

details). The term "branching Markov process" here will refer to the same set-up

as in §1, except that at the random time the process P may branch into multiple

copies of itself at various locations, which then proceed independently of one

another and of their parents. Each has its own t independently of other particles,

and eventually branches into daughters of its own (leaving sisters and aunts undis-

turbed), etc. If P={xt, Bt} is a process as before on a metric state space D, the new

process will live in the space X= (J™ Dn = {8} u D U D x D u • • •, where Dn refers

to possible distributions of n existing particles and d refers to the extinction of all

particles (i.e. all die childless).

The process P on X is constructed (see §6) from the process P (on D), the branch-

ing time distribution {4>t} (via (2.3)) and branching location distributions {tt0(o),

TTn(a, E)} (a e D, EC Dn) for a single particle. We define a nonlinear operator ¿£ for

f(a)eJ?<°(D),\f(a)\ú I, by

(2.11)

^f(a) = t f  f(y>rn(a,dy)
o   Jd"

= "o(«)+ f f(b>M, db)+[   f /(6i)/(¿2K(a, dblXdb2) +
JD JD jd

where/(j) is defined by (6.8). By construction SCl(a)= 1 ; if for example Trn(a, E)

=/>n(a)8(a,a,• .,a.)(E), then ¿ff(a) = 2pn(a)f(a)n. Let Ä be the weak infinitesimal

generator of P on X (with B = B0 for simplicity) and A the generator off on D

(again with maximal domain). Then

Theorem 2.3 (see §7 for proof). Assume {<f>t} satisfies (2.1), and that Ea(<f>t)^Ct

for all as D, where Ct j 0. Then

(2.12) ZA <= AÄ(I-S,(SC-I))   inD,

in the sense that iff(x) e 3>(A), then f(a)- S^ß-T)f(a) e 2(A) on D and Ixf(a)

can be calculated by (2.12). Moreover, the inclusion (2.12) is attainedfor \f(a)\ ác< 1.

That is, if\f(a)\-¿c<\, thenf(a)-S1,(áC-I)f(a) e 3>(A) on D ifff(x) s 3¡(J) on X.

Corollary. Assume f (a) e £"°(D) satisfies \f(a)\ ^ c < 1 andf(a) - Sx(£e - I)f(a)

e 3>(A), and define

(2.13) u(a, t) = Ea(Ylf(xn)
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where the product is over the (random) number of particles alive at time t which are

descendents of a single particle initially at a. Then, u(a, t) is the unique regular

solution (i.e. u(a, t)-SA(^-I)u(a, t)s3)(A)for all />0 with \u(a, i)|^c'<l) of

the formally nonlinear equation

(2.14) (d + ¡dt-Á)u(a, t) = A¿I-S¿¿e-I))u(a, t)

with u(a, 0)=f(a), where "3+/Si" is a one-sided derivative.

Proof. Evidently u(a,t) = Ttf(a), where f(x) e 3>(A). For uniqueness, use the

product rule to extend (2.14) to X and apply Theorem 2.3 and standard semigroup

arguments in X.

That we can get equality in (2.12) in any sense might be unexpected, since even

with Ea(<pt)^ Ct I 0 in D it is possible to have "finite explosion times" and definitely

possible to have multiple semigroup solutions of the equation in X corresponding

to (2.5) or nontrivial solutions of the analogue of (2.9). However, if we assume for

example
00

2 nnn(a, Dn) í Q < oo,       a e D,
0

in combination with Ea(<j>t) ^ Ct \ 0, then by standard arguments we can exclude

"finite explosion times" (or nonuniqueness in X) and conclude equality in (2.12)

for |/(fl)|^l-

We have the following version of Theorem 2.1 for A = 0; similar arguments could

also be made for branching processes. See §4 for proof.

Theorem 2.4. Assume {</>t} satisfies (2.1), and also that Ex(l) ^ C< oo. Let {Tt} be

a Markovian semigroup solution of (2.5), and let Sf(x) = S0f(x) = \imK^0 S/J~(x) in

(2.7). Then ifS\f\(x) < oo and SK\f\(x) «xfor all x andfe 3(A),

(2.15) ÂÇ A(I-S(K-I)).

IfEx(Ç) ^ Cfor some solution of (2.5), then the three "iff" statements carry over from

Theorem 2.2 with A replaced by zero. A sufficient condition for EX(C)¿¡C, as well as

equality in (2.15) etc., is (2.2) combined with one of the conditions (2.10).

Examples. (1) Assume {<f>t} is of "Kac type," i.e.

(2.16) U<») =  f V[xs(w)]ds,       0 ^ V(x) í C,
Jo

where f(x) e B implies V(x)f(x) and Kf(x)eB. For example, if B=BC(X), if

V(x) e BC(X) and K is Feller, then SJ(x) = R„(Vß(x) by (2.7), (2.16), and (2.10)

is satisfied since Ex(<f>t)^Ct. Hence by Theorems 2.1, 2.2

Ä = AK(I- SX(K-I)) = AÁ- A,RA V(K-1),
(2.17)V       ' A = A+V(K-I),        2(A) = 31(A),
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which has been (essentially) obtained by [6], [18], J. Haezendonck (personal com-

munication) and perhaps others (it is even implicitly in Moyal [13, Theorem 4.2]).

On the other hand, if B = BC(X), K is Feller, {Tt} is strong Feller (then all semi-

groups involved are strongly Feller; see §5), but V(x) is not continuous, then (2.17)

could not hold (in B) and (2.8) could not be simplified.

(2) Set K=0. Then, Tt = T? and P' is the subprocess of {xt} associated with

{exp(—<£,)}. The uniqueness criterion (2.9) is straightforward and

(2.18) Al = AX(I+S,).

(Theorem 2.1 requires S¿l(x)<co, all x, but one could argue directly from (4.2)

and Theorem 3.1 with no extra hypotheses beyond (2.1).) If EX(Ç)^C, then a

posteriori £°(£) Ú C and A° = A(I+ S).

These formulas, in the form of operator inclusions, were obtained for the strong

generator in [2, Chapter 9] and [21] under assumptions similar to (2.10). Operator

equality in (2.18) was obtained for large A by [2], who also remarked that the

inclusion (2.18) also held for the weak generator.

A converse of Theorem 2.1, giving conditions implying that a process P = {xt, Bt}

is a process P' for some other process P, is given in §9. In §5.2 (with some extra

conditions on {(£,}) we derive a formula which is the analogue of the Feller forwards

equation for continuous time Markov chains ([1], [3]). We note that if P(t, x, A)

= 8X(A), then (2.5) reduces to the Feller backwards equation for P(t, x, A) and

(5.11) reduces to the forwards equation (see §5.2).

2.1. We conclude §2 with some applications of Theorems 2.1-2.4 to partial

differential equations. Let

(2.19) ^* = 2 2 a«W S2/8Xi8Xj + 2 blx) d/dxt + c(x)
ii i

be a differential operator in Rn, where {aiS(x)} is uniformly elliptic, the coefficients

are uniformly Holder continuous and bounded, and c(x)^0. Let 0 be a bounded

open set in Rn with C3-boundary 80. We consider first the natural diffusion process

P in 0 corresponding to the generator (2.19) which terminates in 80, and show the

effect of jumping induced by a local time on a submanifold of codimension one in

the interior of 0. Secondly we prove a theorem which is perhaps more usual from a

partial differential equations point of view, which results when a diffusion process P

with reflecting boundary condition on 80 is forced to branch into copies of itself

on 80. Alternate versions of the two theorems are possible; e.g., with a nonlinear

boundary condition on the submanifold in place of (2.21), or a boundary condition

of lateral type on 80 instead of (2.24).

Theorem 2.5 (see §8). Let F be a closed submanifold of 0 of class C1 + a and

codimension one, and choose ß(x) e C(F) with ß(x) ä 0, ß(x) = 0 on 8Y. Let K(x, A)

be a Feller substochastic kernel on 0, and let P be the process resulting from Theorem
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2.1 for {(¡>t} being local time on T with weight ß(x) (see §8) as above. Then, iff(x) e C(0),

u(x, t) = Ex(f(xt)) = Ttf(x) is the unique solution of

(2 20) M(*'t) = 0on 8&   (í > 0)'       m(x' 0) = /W'

d/dt u(x, t) = Axu(x, t) in 0-Y,        t>0,

(2.21) i(/)v+ +D;)u(x, t) = "£(*)(£ u(y, t)K(x, dy)-u(x, i))

for all x 6 T, where Df are the twin outwards-pointing conormal derivatives at x e Y.

Finally,f(x) e 3(1) ifff(x)=g(x) + k(x), whereg(x) e 3(A), k(x) e C0(0) n C2(0 - Y),

Axk(x) = 0 in 0-Y, andf(x) satisfies (2.21). (C0(0) = {feC(0~):f=0 on 80}.)

Remarks. (1) Note Dfg(x)= -D^g(x) if geC\0); thus (2.21) represents a

jump condition in the conormal derivative as one crosses Y. Also, 3(A) can be

characterized in terms of Sobolev spaces [20]; in particular 3(A) is the same as

when AX = W2, and 3(A)^C1(<9).

(2) If AX = %V2, P is Brownian motion terminating on 80. Hence fe3(A) iff/

=g + k, where g e 3(A) and k(x) is harmonic in & — T with k(x) = 0 on 80 and

such that (2.21) holds for/(x).

Theorem 2.6 (see §8). Assume atj(x) e C2 + a(Rn), bt(x)e C1 + a(Rn), and choose

functions {ß(a),pn(a)} on 80 such that ß(a)^0, ß(a) e C(80) and

(i)   pn(a) ^ 0,   2pn(a) = 1,

(2.22) œ °

(ii)   J \Pn(a)-pÁb)\ Í C\a-b\«.
0

Let P be the branching process on X= (J 0~n corresponding to P with reflecting

boundary condition on 80 and generator (2.19), where {<j>t} is local time on 80 with

weight ß(a), and such that ifP branches at x — ae 80, n descendents are then released

at a with probability pn(a). Then iff (a) e C(ß), \f(a)\ ^ C< 1, and u(a, t) is given by

(2.13), we conclude u(a, t) e C2(0) n C1^) for fixed t>0 and u(a, t) is the unique

solution of (t > 0)

(2.23) (8/8t-Aa)u(a, t) = 0   in 0,       u(a, 0) = f(a),

(2.24) Dvu(a, t) = -ß(a){yPn(a)u(a, tf-u(a, t)\,

for all a e 80, where Dv is the inwards-pointing conormal derivative on 80. Moreover,

if \f(a)\úC<\, f(x)e3(I)ifff(a)=g(a) + k(a), where g(a) e 3(A) in 0, k(a)e

C2(0) n C\0), (Aa-X)k(a) = 0 for some A>0, and f(a) satisfies the boundary

condition (2.24).

In Theorem 2.6, the process P branches on 80 into copies of itself at the same
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location in 80. More complicated branching rules could, of course, be used and

would lead to more complicated versions of (2.24).

Remarks. (3) The condition that pn(a) ä 0 in (2.22) is not essential as long as the

series 2/>n(fl) converges absolutely and uniformly; one can construct "anti-

worlds" for the branching particles to visit and return and a comparable expecta-

tion to solve (2.23), (2.24) with {pn(a)} of varying sign ([14], [26]). Similarly, the

term "-u(a, t)" can be removed under certain circumstances ([14], [15], [26]).

(4) Parabolic linear partial differential equations with nonlinear boundary condi-

tions have been considered by various authors (e.g. [4, §7.5]) but always under the

assumption that the boundary condition corresponding to (2.24) is monotone in u.

These results, especially in view of the third remark, do not seem comparable. Also,

we remark that (2.23), (2.24) was regarded as holding "in a weak sense" by Ikeda,

Nagasawa, and Watanabe ([6, II]) on the basis of results in [17], but no further

discussion or proof of e.g. differentiability was given.

Theorems (2.1)—(2.4) were presented in a colloquium at the Courant Institute in

April, 1968.

3. Lemmas on multiplicative functionals. Here we consider the additive func-

tional {<f>t} in multiplicative form. We call a collection of random variables {afa)}

a (contractive) multiplicative functional of the process P if at(w) = e\p( — <f>t(oj)),

where {<f>t} satisfies (2.1) with (2.1 (iii)) replaced by (iii)' <£0 = 0, 0^<f>t^co. Thus

a((u>) j in r, and at + s = at6tas. In the first part of §3 we also assume that the analogue

of (2.1 (iii)) holds, i.e.

(3.1) «¡C^) > 0   for all t and a>.

For t(cu) as in (2.3), we define operators

(i)   SZf(x) = Ex(e-"f(xj) = -Ex( f e-^f(xs) da),

(3.2) m U° '
(ii)    SJ(x) = -EX(J" e-As/(*s(a>)) «/«,/«._)

for nonnegative Borel functions/!*). If at(cu) = exp ( —$((a>)), then (3.2 (ii)) reduces

to (2.7). The purpose of this section is to prove (see also Theorem 3.2)

Theorem 3.1. For Borel functions f(x), 0¿¡f(x)^¡C, A>0,

(0      2(S5)"/(*) = Sa/(*),
(3.3)

(ii)    lim (Slff(x) = 0   for all x.
n-*oo

We begin by extending the probability space on which P = {xt, B¡} is defined to

construct a sequence of nonnegative random variables {tJ such that t0 = 0 and

(3.4) Px(rn + 1 > t/Bx, tj, t2, ..., rn) = X[T„>t)+X[i„sfA„o:t-xñ("')

where the superscript ° here means that the preceding 6-operator is to be ignored
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by the variable superscripted. The variables {rn} are the successive "random times"

of §1 in the special case where K(x, A) puts mass one at x. By defining

(3.5) «(t"> = Px(rn > t/B„),

we obtain a sequence of (not in general multiplicative) functionals of the process P

satisfying the recurrence relation

(3.6) «<"> = off" - » - £ 0uat. u dé¡ - »        n ^ 2.

Equivalently we could have simply defined e4Ws:*«i and {a(fn)} by (3.6). In particular,

c4n) is immeasurable for all /, is right continuous in / (here any integral J"* <f>(u) df(u)

means the integral over the cell (a, b]), and 0 :£ aj1' á a[2) ̂  ... ^ 1. The importance

of the {ain)} for Theorem 3.1 is

Lemma 3.1. For allf(x) e Sex(X), n^\,

(S°K)nf(x) = Ex(cxp(-Xrn)f(xJ) = -Ex(j" e-*fXxJ<K*)-

Proof. By induction on n

(SlTf(x) = (Stf-iSt/Cx) = ^(expi-Ar^O^/^.,))

We would now like to use one of the several equivalent forms of the strong Markov

property for rn_1. However, we are only given here that P={xt, Bt} is strongly

Markov, which guarantees the strong Markov property for stopping times ß(w)

with {ß>t} e Bt for all t. It does turn out, though, that condition (3.5) with af

being immeasurable for all / is sufficient for the strong Markov property for rn.

We deter a proof to §5.2. In any event, by the strong Markov property at t,_1s

(Stfftx) = -£*(exp C-At,.^., J" e-^f(xs) du^

Ü'OO       /»CO \
e-Mt + sf(xs + t)etdasda?-»\

o   Jo I

= -Ex(£e-^f(xu)du^

as a direct result of (3.6) and

Lemma 3.2. Assume f(s), gt(s) are right-continuous, real-valued functions on

[0, oo) which are decreasing in s and satisfy f(0)=gt(0) =1,0 Sf(s) S= 1, 0 ^gt(s) ^ 1.

Set

h(t)=f(t)-Cgu(t-u)df(u).
Jo
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Then for any nonnegative Borel function </>(u),

r n <Ks+t)gl(ds)f(dt)=- r <ku) dh(u).
JO     JO JO

Proof. Straightforward if <¡>(u) = X[o.a\(u)\ the general result follows by monotone

class arguments. The key result for the proof of Theorem 3.1 is

Lemma 3.3. For jointly measurable functions g(s, ">)^0, />0,

(3.7) t   f &, «) ¿a.™ =   f g(s, «) dajas_.
n = l JO JO

Proof. Since at(œ)>0, (3.6) implies

a(n) = a(n-l)_a¡   pi/^^Çn-l)

Jo

= «<« - « - «,(«<» - "/a, - 1 ) + «i £ S?-"U ¿OK) ;

(3.8) a<»>/at = 1 - f <-' "K- ¿«*K

by integration by parts. Secondly, the identity a¡n) — atatn)/at and (3.8) yields

dot? = at ¿(ytn)M) + «i*/«t- dot = («£? -«(tn_- ") <fo(/at_,       n £ 2,

where the "d" notation means that the corresponding integrals add in that fashion.

Thus, since o4n_1)^o4n) and da\1) = at_ dat/at_,

CO

2 daf> = h(t, w) i/a(/«(_
i

where h(t, cu) = limn_a, a\nJ(œ)^ 1. Hence, to complete the proof of Lemma 3.3, it

only remains to show

(3.9) lim a(rn)(w) =1,       0 £ T < co.
n-»oo

Let t be a point of continuity of h(s, cu); then by Fatou's lemma in (3.8)

h(t, w) ^ at + at\   h(u + ,a>)d(l/ccu)

= at + at(h(t)¡at-l)-at  \   dh(Ü)/au_,

h(t,co) ^ h(t,w)-at       dh(u)/au^.

However h(t, a>) I in t; thus dh(u) = 0 and h(t, œ)= 1.

Proof of Theorem 3.1. Equation (3.3 (i)) follows by taking g(s, w) = e~Ásf(xs((n))

in (3.7); for (3.3 (ii)), note that for any T>0

(SZTf(x) = ~E*([ e-As/(*s)<*4n)) ̂  Ce-^ + C^(l-4n>)

and (3.9) implies the rest of Theorem 3.1.
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Corollary 3.1. Assuming at(oj)>0 for all t, a>, xn(a>) —>■ oo a.s. Px, all x.

Proof. rn f by (3.4), but Px(rn <,T) = EX(\-<#') -» 0.

3.1. Let {a-t(oj)} be a contractive multiplicative functional as before. In this

section we consider the limiting behavior of the "successive random times" {t„}

with, instead of (3.1), the weaker assumption

(3 10)   (Í)   If ^(a,) = sup{i : a'(w) > 0}' then P>& < °o, «,_ = 0) = Px(ß < oo).

(ii)   For any t, 6sat(a>) is (s, cu)-measurable.

That is, if a((ai) = exp ( — <j>t(io)), the additive functional {<f>t} may become infinite as

long as it does not suddenly jump to infinity. The analogue of Theorem 3.1 is

Theorem 3.2. For {t„} defined by (3.4), f(x) e a"°(X),f(x)^0,

(3.11) rn(oJ)^ß(a>)a.S.Px,    allx,

(3.12) t,<S¡md ~ SJQc).
i

Moreover, if {xt(oj)} is quasi-left continuous with left limits {x,_(cu)} andf(x) e BC(X)

(3.13) lim (Slff(x) = Ex(e"™f(xß)).
n-» oo

We recall that a Markov process {xt, Bt} is quasi-left continuous if

Px(xßn -+ xß a.s., ß < co) = PJß < oo)

for any sequence of stopping times {ßn, ß} with ßnf ß. Equation (3.11) is curious

since none of the {rn} are, in general, i^-measurable, while ß(o>), defined by (3.10),

of course is. The proof of Theorem 3.2 depends on

Lemma 3.4. For {af\ ß} as before

aPfe)-»l, 0^T<ß(oj),

afXœ) = afl(w) = 0, ß(w) ¿, T < oo.

Proof. If 0 â T< ß(w), then at(œ) > 0 for 0 è t Ú T, and 4n) -> 1 follows as before.

Now assume T0<T<ß(o>) and by induction apris1)(a>)=0. Then by (3.8)

c4n) á «r + «r ^(1/aJ + aj.a^-1)  f   d(l/au),
Jo Jo

„(n)   <   „   /„       i  „in - 1)

and afl =0. By monotonicity a^ = 0 for r^jS.    Q.E.D.

Proof of Theorem 3.2. First rn f by (3.4), and

px(ß-E <rnuß) = EMi;-*tn-+i.

Hence rn^-ß a.s. (3.12) follows as before; (3.13) follows from Lemma 3.1 and
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(3.11) if we can prove that xß = xß_ a.s. where j8<co. However, if

ßn = sup{t : «( ^ \¡n,t á n},

then ßn<ß, ßn\ß, and hence xí = x/í_ a.s. if ß<oo.   Q.E.D.

3.2.   If the analogue of (2.2) holds, i.e., if at(ai) is continuous in t, then (3.6) can

be integrated in closed form. I.e., by (3.8)

ofY«, = l+f ^»-"Ki/logiK

and by induction (see also [7])

a^ = at2l/Kl(\0g\latf
o

from which Theorem 3.1 is immediate. If

N(t, œ) = n, Tn(w) ^ t < rn + i(œ),

= CO, ß(w) ¿  t  < CO,

then, given Bœ, N(t, w) even becomes a Poisson process with rate log \/at.

4. Proofs of Theorems 2.1, 2.2, 2.4.

Proof of Theorem 2.1. Let {Tt} be a semigroup satisfying (2.5), i.e.,

TJ(x) = nf(x) + Ex{xilia £ Tt_J(y)K(xz, dy)}

for all f(x) e B. Taking Laplace transforms

RJ(x) = R°Af(*) + [ e-»Ex(xllát} jx Tt.J(y)K(xt, dy)} dt

= R°J(x) + Ex(j™ £ e-"Tt_J(y)K(Xl, dy) dt}

= Rlf(x) + Ex(e-* £ RJ(y)K(xx, dy)}

= R°hf(x) + SlKRJ(x)

for S'a defined by (3.2). Hence Rlf(x) = (I-SlK)RJ(x). Now, by the strong

Markov property at t (see Theorem 5.4) Ttf(x) = T?f(x) + Ex(xilSt>Tt_zf(xz)) and

by the same argument R^f(x) = (I—Sl)R>if(x). Hence for all N

(2(s£t)*a,f(x) = (I-(Slf^)Rj(x) = RJ(x)-(S°,r^RJ(x).

Taking N->co and applying Theorem 3.1 (since any f(x) e B is the difference of

two nonnegative bounded Borel functions) gives

RJ(x) = (I+SA)R°J(x),

RJ(x) = (l + SÁ)(I-SlK)RJ(x).
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Thus (I+SA)(I-SZK) maps 3(A) onto 3(A) and

(4.2) A,(I+S,)(I-S°,K)RA = -I,       AK S Ax(I+Sx)(I-SlK).

Next, if 0^f(x)^C, again by Theorem 3.1,

S,S°,f(x) = SJ(x)-Slf(x)

and as soon as Sx\f\(x)<<x> for all x (note SÄ|/|(x)^ ||/||Sä1(jc))

(4.3) (/+ SA)(I- S°,K)f = f+ SJ- SlKf- SKS°hKf = (I- S,(K- /))/

and hence by (4.2)

(4-4) IK^ AX(I-SÁ(K-I)).

Corollary 4.1. If we remove the condition that SÁ1 (x) < oo for all x, Theorem 2.1

remains valid with (4.4) or (2.8) replaced by (4.2).

Proof of Theorem 2.2. For A > 0, Ah is one-one and onto B, and the expression

on the right-hand side of (4.4) preserves B by definition. Hence it is strict extension

of AA iff there exists some nonzero f(x) e B such that

(4.5) A,(I-S,(K-I))f(x) m 0.

Since AK is one-one on 3(A), (I-SK(K-I))f=0. Hence f(x) = Sh(K-I)f(x) and

by (3.3)

SZ/{x) = SISK(K-I)f(x) =f(x)-Sl(K-I)f(x) =f(x)-SlKf(x) + S°J(x)

and/= SlKf, which is exactly (2.9). Similarly (2.9) implies (4.5) by (4.3), and hence

(note that any bounded measurable solution of (2.9) is automatically in B0) the

inclusion (2.8) or (4.4) is proper (in B) iff there exist solutions of (2.9) (in B).

Next, we remark that if (2.8) is attained in B, then (2.5) can have only one semi-

group solution {Tt} with Tt, Rh preserving B, since condition (2.9) is independent of

{Tt} (it only depends on B) and (2.8) prescribes Ah exactly. It only remains to show

that nontrivial solutions of (2.9) imply multiple semigroup solutions of (2.5) in B0.

We now define a sequence of functions {fn(x)} byf0(x)= 1 and

(4-6) fn + 1(x) = Ex(e~^ jxfn(y)K(xt, dy)j-

Since f1(x)^f0(x)=l, fn(x) j , and by induction 0^fn(x)^l. Hence fn(x) \f(x).

If (2.9) has a solution g(x) with \g(x)\ ^ 1, then \g(x)\^S°KK\g\(x)úMx) and by

induction \g(x)\ ikfn(x). Hence \g(x)\ úf(x); also note that by (4.6), f(x) is a solution

of (2.9). Thus (2.9) has nonzero bounded solutions iff/(x)^0. Next, if P'= {x't, B't}

is the process constructed in [5], [6] in the context of §1, let {rn} be the successive

random times at which "jumping" occurs and let 3>(oj) be a random variable

measurable with respect to {x't} and {t„}. Then, if E¡X\^>\)=PÁ(Ti <co)=0,

(4.7) E'x(exp (-Xrjd^) = Ex(exp (-AtJ j E^)K(xz, dy)j-
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(See [6, II, §2]; here 6%iTn = Tn + i — Ti-) Hence by induction

(4.8) fn(x) = Ex(exp(-Xrn))

and/(;c) = £X(exp (—At»)) where T00=lim rn. Thus (2.9) has nontrivial solutions

in B0 iff P-Xt» <oo)^0. The last part of the argument can also be done without

reference to the process {x't, B't}, since, in the notation of Moyal,

/■OO

e-Mam(dt, x)

([13, p. 245]). Moyal shows that (2.5) has multiple solutions iff <;„(/, x)^0; indeed,

an easy calculation shows that any solution of

TJ(x) = Tlf(x) + ExL^átl f Tt^fiy)l(dy))
\ Jx I

is also a solution of (2.5) for any probability measure 1(A) on X.

Finally, according to Theorem 5.1, either of conditions (2.10) imply \\S^f\\

= /3a||/1I> ß\< 1» f°r all A>0, where ||/|| =supx \f(x)\. Hence iff(x) is any solution

of (2.9) in B0, ¡/I = \\SlKf\\ ußAf\\ < |/|| unless/(;t) = 0, and the proof of Theorem

2.2 is complete.

For Theorem 2.4 we need

Lemma 4.1. Let {7^}, B, £¿>(A) be as in the discussion after (2.5), and EX(Q^C.

Then, A is one-one from Sl(A) onto B, and R0A^AR0= —I, where

Rof(x) =  f TJ(x) ds = Ex( Çf(xs) dsï
Jo \Jo I

Proof. Clearly \R0f(x)\ Ú \\f\\Ex(Q^C\\f\\, and R0 is a bounded linear operator

on X. The proof of the lemma is standard; see e.g. Theorem 1.7' in [2].

Proof of Theorem 2.4. First, if g(x) e @>(A), then g(x) = RKf(x) for some/(x) e B,

andf(x) = Xg(x)-Ig(x). Hence by (4.1), (4.3),

XR,g(x)-R,Ag(x) = g(x)-S,(K-I)g(x).

If S0Ä'|g|(x)<oo and S0\g\(x)<co, then Sh(K-I)g(x) ^ S(K-I)g(x) as A->0,

and in the limit

-R0Ag(x) = g(x)-S(K-I)g(x).

Hence A ^ A(I—S(K—I)). Second, if Ex(t,)^C, then A is also one-one and onto

by Lemma 4.1, and (2.15) is a proper inclusion iff there exist g(x) e B,

S(\Kg-g\)(x) < co,

such that g(x) = S(K—I)g(x). As before we conclude g = S°Kg, where S°g(x)

= Ex(g(xJ). Similarly, if P'x(t'<œ)=l,g = S°Kg has nontrivial bounded solutions

iffP;(To0<oo)^0, etc.

Finally, (2.10) plus EX(Q^C implies ||S°/|| ^¿S||/||, ß<l, by Theorem 5.2 and

a posteriori \\Sf\\ á Q \\f\\, Q=ß/(\ —ß). Uniqueness follows as before.
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5. Random lemmas. Let {<f>t}, r, S^ be as in §2 and set S%f(x) = Ex(e~Mf(x%)).

Then

Theorem 5.1. 777e two conditions

(i)   Px(t á t0) á « < 1,   some t0 > 0,

(ii)   S°J(x) á fi* < 1,        a//A > 0,

are equivalent and are implied by

(5.2) sup Ex(<ptQ) ̂ C < co,   some t0 > 0.

If {<f>t} is continuous in t (for all w), then (5.1) and (5.2) are equivalent, and are

equivalent to SA\(x)^CK<co, all A>0.

Proof. If (5.1 (i)) holds, S°Ál(x) = Ex(e-^)^a + exp (- Ar0)(l -a)=ß„< 1 (note

Px(^T<oo) = 0 by (2.3)). Given (5.1 (ii)), then conversely, Px(r^t)^eMEx(e-M)

^extßÄ< 1 for sufficiently small t. Given (5.2),

S°Al(x) = -Ex(£ e-'° d(txp (-&))) = A j" e-^Ex(\ -exp (-</>,)) ds.

■
By concavity of the function </>(x)= 1 — e~x,

Sl\(x) ^ A J" e-^(l-cxp(-Ex(<l>s)))ds

^ A í° e-Ks(l-e-c)ds + exp(-Át0) = ßh < 1.

Finally, (5.1 (ii)) implies SAl(x)^CA=/SA/(l-j3A)<co by Theorem 3.1, while if {<f>t}

is continuous SAl(x) = Ex(fâ e~u d^^e'^E^).    Q.E.D.

Theorem 5.2. Assume {<f>t} is continuous (i.e. satisfies (2.1), (2.2)), satisfies either

(5.1) or (5.2), and EJ£)-¿C. Then Ex(fa) = Ex(<f>ai)-¿C' and S°\(x)uß<\, S\(x)

^C'<oo.

Proof. By (5.2) and basic results on continuous additive functionals (see e.g. [2,

Chapter 6])
Ex(<f>t) Ú C0(l +t) = 0(t)     (as t -> oo),

Ex(<f>f) Ú 2 sup ¿„(A)2 = 0(t2)   (as / -► oo).
V

Now, if Px(í>t)-¿Ct for all x and t, then i\(£> 2?)=•?*(£>', 9¿l>t))úCf and

iy^O^C'e-2"' for some a>0. Hence

oo

Ex(4>d = z^Ex(<pn + 1xinSi:Sn + 1))
i

^2(Ex(4>2+1)y<2(pxa^n)y12
i

QO

^ C^we""" < oo.
i
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Similarly, Ex(exp ( — <£f))S:exp ( — Ex(4>J)^ß>0 by convexity and

S°l(x) = Px(t <Q = £,(l-exp(-&)) ^ 1-yS < 1.

Finally, Sl(x) = £,x(^00)^C'<oo by Theorem 3.1.    Q.E.D.

5.1. We next prove a result which would imply, in particular, that if {7^} were

strongly Feller and (5.4) held, then {Tt°} and {Tt} would also be strongly Feller. We

recall that if °°(X) denotes the set of all bounded Borel functions.

Theorem 5.3. Let Q be a closed linear subspace of ¿£'a(X), and suppose that

Tt: i?"(X) -> Qfor all t>0. Assume also

(5.4) Px(t í£ t) = ct(1)   as t —>Q   uniformly in x.

Then Tt°: £ex(X) -> Q and Tt: £"°(X) -* Qfor all t>0, where {Tt} is the unique

solution of (2.5).

Proof. Uniqueness of {Tt} follows from Theorem 2.2. Next, if f(x) e ^a'(X)

and 0 < s < t,

\\TsTt°_sf-Tt°f\\ = \{T,-Tt)T?.J\ Ú U/H sup £W(1 -exp (-^.))
X

Ú \\f\\supPx(ris)
x

where |/||=supÄ \f(x)\. Since Q is norm closed and TsT?„$fe Q for all s, we

conclude T? e Q for all t >0. With reference to (2.5), we remark

E^rinjjt-rñy^X^dy^-E^e^snJjt-rAy^X^dy)^ í  \\f\\Px(r Í e)

and

Ex\xieititA   Tt-J(y)K(x%,dy)}

= -Ex(J KTt.J(xs) ¿(exp (-&)))

= -Ex(txp (-!.)«.(£"' KTt_e_J(xs) ¿(exp (-&))))

= T°e(Tt-E-Tt°_e)f(x)eQ
#

since T¡: ¿¿"*(X)-+ Q. Thus both terms on the right-hand side of the basic

renewal equation (2.5) belong to Q, and Ttf(x) e Q as well.

Remark. If X is compact and Q=C(X), then (5.4) is actually necessary and

sufficient. Indeed, if 1 -Tt°l(x)=Px(T¿t) s C(X) for all r>0, then (5.4) follows by

Dini's Theorem.

5.2. An extended strong Markov property This section is devoted to the

necessary question of whether the strong Markov property is valid for the random

time t of (2.3) (and the times rn of §3). We are given that {xt, Bt} is a strong Markov



18 S. A. SAWYER [November

process, which implies the strong Markov property only for random variables ß(w)

satisfying {ß>t}eBt for all t. If {xt} were a Feller process with right-continuous

paths, or indeed if {xt} merely has right-continuous paths, since {xt} is always Feller

in its own fine topology, there is no trouble; the usual Dynkin-Yushkevich proof

would go through on the basis of (2.4) or (3.5). In any event, fine topological argu-

ments can be avoided, and we would like to give here a short proof of the strong

Markov property for t which does not even require that {xt} has right-continuous

paths, provided it is progressively measurable and has a metric state space.

Theorem 5.4. Let {xt,âSt}, where á?( = fW oi ̂ [{*s : s^t + e}], 3Sx = \JSSt, be a

strong Markov process defined on the probability space (il,^,Px). Let t(w) be

a nonnegative random variable on Q. such that

(5.5) Px(t > t\3Sx) = yt(oj)   is (ess.) äSt-meas.

for all t, and define

J^ = {E e & : PX(E, t ^ t\3S^) is (ess.) 3St-meas., all t, x).

Then, given any t >0 and Borel set A^X

(5.6) Px(xt + leAI^)=P(t,xz,A)   a.s.

where we define xt=A if t = oo. Other forms of the strong Markov property follow

by standard arguments.

Proof. First we remark that xt is ^-measurable, since

Px(xt eA,rú t\âSn) = - f Xa(xu) dyu

is ^¡-measurable by (5.5). Next, we show that for a general J^-measurable random

variable O(oj), with 0^ $(tü)<; 1,

Ex(®XA(xt + .)) = Ex(^P(t, Xl, A)).

Let <7i(o>) be a right-continuous increasing ^¡-measurable version of

(5-7) ?«(««,) - ExWw}Xa£tv'aa,Xœ)

and let m be a uniformly distributed random variable in [0, 1] which is independent

of {xt}. Define

ß(w) = sup {t : qt(o>) ¿ m},       ßs(w) = sup {t : qt(œ) S s},       0 S s á 1.

Then, ßs(co) are a?œ-measurable stopping times for which the strong Markov

property is valid, and

Px(ß Í t/aa) = Px(qt > m/JU = ql*>)    a.s.
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Hence by repeated use of monotone class arguments (note jcœ =A) and (5.7)

Ex(Q>xA(xt ♦,)) = Ex H    xaÍXi + u) dqu J

= Ex(XA(xt + e)) = Ex(Ex(XA(xt+e)/m))

Ex(xA(xt + Bs))ds =      Ex(P(t,xßl,A))ds
JO JO

= Ex(P(t, xe, A)) = Ex(®P(t, 3C„ A))

by (5.7) and the strong Markov property for ßs.    Q.E.D.

Remark. The above proof shows, in particular, that the strong Markov property

for the process {xt, £%t} is a consequence of the apparently weaker condition

Ex(xA(xt + J) = Ex(P(t,xt,A))

for all Markov times t.

5.3.    In this section we assume

(i) y>t} satisfies (2.1), (2.2), and S^xAn(x)<<x) for all x and n, where {An} are

Borel sets with An\ X.

(ii) P(t, x, A) has a density p(t, x,y) with respect to a measure "dy" on X.

(iii) There exists a nonnegative Borel measure /lonl such that

Ex(<t>t) = P(s, x, y)p(dy) ds,

(5.8)

Ex\j-ftx** d^s) = J0 }xp(s' *' y)f(yMdy) ds

for all f(x) E £Pm(X) with/(x)^0, whenever either side of an equation is finite.

(In particular, if f(x) i= xAn(x) f°r some «.) For Brownian motion, any additive

functional satisfying (2.1), (2.2) must be of the above form, and the jit's which occur

can be explicitly characterized (see [2, Chapter 8], [9]). For example, {</>t} of Kac

type corresponds to /¿ of the form fi(dy)= V(y) dy, and "local times" to ¡x con-

centrated on manifolds of codimension one.

Since P°(t, x, A) SP(t, x, A), P°(t, x, A) also has a density p°(t, x, y). Indeed

Lemma 5.1. For all Borel functions f(s, x)

(5.9)      £,(£/(*, xs(a>)) exp (-&) d</>) = £ £ p°(s, x, y)f(s, yUdy) ds.

Proof. By Laplace transform arguments, it is sufficient to prove

Sa°/(*) = Ex(j" r"/Ww)) exp (-&) a*) = J" £ e-"Y(s, x, y)f(yMdy) ds

for f(x) à 0, Shf(x) < oo (all x). Denote the double integral above by /. Then,

writing

TJ(x) = TMx) + Ex(x«st>Tt_J(xz))
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in terms of densities and using (5.8), (2.7), we obtain

/»OO /»OO /   /»OO \

e-up(t, x, y) dt =       e'up°(t, x, y) dt + eJ\    e~ktp(t- t, xz, y)dt\,

SJ(x) = J+ Ex(e - *SJKxty),       Sj(x) = J+ SlSJ(x).

By Theorem 3.1, S°,SJ(x) = SJ(x)-S°Af(x). Hence SJ(x)=J+SJ(x)-S°J(x)

and S£f(x)=J.   Q.E.D.

Equation (2.5) always has a minimal transition function solution, which is

obtained by iteration in (2.5). In particular (by iteration) it has a transition density

with respect to dy. In general, if {Tt} is any solution of (2.5) with a transition

density p(t, x,y), then by Lemma 5.1 and (2.5)

(5.10)     p(t,x,y) =p°(t,x,y)+ f   f p°(s,x,z) [ p(t-s,a,y)K(z,da)p.(dz)ds.
Jo Jx Jx

IfP(t, x, {x})= 1 and <f>t(w)=q(xo(^))t, this is exactly the Feller backwards equation.

For the minimal solution we also have the analogue of the forwards equation.

Theorem 5.5. Let {Tt} be the minimal semigroup solution of (2.5) and let p(t, x, y)

be its transition density (where {(¡>t} satisfies (5.8)). Then, given any f(x)e ^""(X)

and x,y&X,

(5.11)

TJ(x) = 77/(*)+ f f p(s,x,y)KTt°_J(yMdy)ds,
Jo Jx

p(t, x, y) = p°(t, x, y) + p(s, x, z)      p°(t - s, a, y)K(z, da)p.(dz) ds.
Jo Jx Jx

Proof. Clearly the two equations are the same. Integration and Lemma 5.1

applied to (5.10) yields SAf(x) = S%f(x) + S°AKSJ(x) where

SJ(x)=  f" f e-^p(s,x,y)f(yMdy)ds.
Jo   Jx

Similarly, the Laplace transform version of (2.5) (see §4) is

RJ(x) = Rlf(x) + S°,KRÁf(x).

Now the minimal solution is the result of iteration in (2.5), and hence p(t, x, y)

is the result of iteration in (5.10). Thus the two equations above are also solved by

iteration, and if/(x)äO

S,Kf(x) = 2 (SlKTf(x),
i

RJ(x) = R°Af(x) + 2(SlKyR°J(x) = RaJ(x) + S,KR°J(x)
i

which is exactly (5.11) in Laplace transformation form.

6. Branching Markov processes. Let P = {xt,Bt} be a strong Markov process

with right-continuous paths in the metric state space D, and let P(t, a, E) be its

transition function. Set X=\Jl° Dn = {8}v Dv Dx D\J ■ ■ -, where Dn is the
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usual n-fold Cartesian product and 8 is an extra point. The purpose here is to

extend the process P (on D) to a "branching Markov process" (see [5], [6], [19]) P

on X of the sort discussed in §2. Our procedure will be similar to that in [5], [6]

except for a simpler but less canonical construction; it is given mainly for complete-

ness and later reference. We first extend the process P to a process (which we will

also call P) on X which corresponds to n copies of P (0á«<co) developing inde-

pendently. If the process P on D is defined on the probability space (Q, &, Pa), the

probability space of P on X will be taken to be

oo

Qx = \J Q" = {we} u Q u Q, x Q u • • •
0

where if w = (o»1( w2,..., wn) e Q" and 0 ts t < oo,

zt(w) = (x¡(aji), xt(w2),..., xt(wn)) e Dn,       zt(wd) = 8.

The new process P = {zt, Bf} on X will be subject to the transition function

P(t, x, E1 x ■ ■ ■ x En)=P(t, au Ex)P(t, a2, E2)■ ■ P(t, an, En) andP(t, x, X- Dn)=0

(if x e Dn) and P(t, 8, {8})= 1, which, as is easily checked, is a transition function

on X. Let {<f>t(oj)} be a functional of P on D satisfying (2.1), and define an additive

functional {¡/>(} of P on X by

(6.1) i[it(w) = <f>t(u>1) + <f>t(w2) + ■ ■ ■ +<j>t((i>n),       Jjt(wd) = 0,

where w = (o1, co2,..., œn). Let m%, m2,..., mn be n random variables independent

of P and of one another with P(mK>t) = e~t, and set

rK(w) = sup {t : <j>t(ojK) è mK},       ß(w) =   min   tk(w)
lSíTSn

for w e Q\ Then, if x e Dn,

Px(ß > t/Bl) = PJ.UWÙ úmu.. .,Uwn) ^ mn/Bi)

= exp (-¿M)) exp (-<f>t(co2))- • -exp (-<f>t(wn)) = exp (->f>t(w)).

Since this is exactly (2.4) with {</rJ in place of {<¡>t}, ß(w) is the corresponding jumping

time. The branching distribution in X will describe the result of one particle being

transformed into many particles at multiple locations, the other particles remaining

■fixed, and is constructed as follows. Assume

(i) n0(d)e^(D), 0^o(a)Sl.

(ii) For each £ç X, -nn(a, E) e ¿("»(D) and 0S*-B(a, È)gï.

(iii) For each ae D, -nn(a, E) is a Borel measure on Dn.

(iv) iro(fl) + 2r"B(fl, Z>»)»1.

For g(x) e JS?m(X) and x = (ai, a2,..., an), define stochastic kernels {A"¡(x, E)} by

^w = £g(jKi(x,^)

« ^ = g(au a2, ■ ■ ■, «i -1. Of +1, • • •> an)^o(at)
(6.2)

oo      ,

+ 2     m ̂ fll' • • •' ^-i' él' *2' • • -'è"" a¡ + 1 ' • ■ •' aiùnm(ai,db1x- ■ -dbm).
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If n—l, the coefficient of -n-0(a) is taken to be g(8), and K¡g(8)=g(8). Finally, the

branching distribution in X at the branching time ß(w) is given by

(6.3) ftW, E) f 2 Xu-.,]^fl(w), £)»       Kw«, {8}) = 1.
i = l

The key complication here is that the branching distribution is not a function of

the position zB(w) of the particles; probabilistically this represents the fact that the

particle which caused the branching (ß = rK) splits into n new particles (0^n<oo),

the other particles being undisturbed. We are implicitly assuming here that

Px(Ti = T¡) = 0 if i//> which is guaranteed by £a(exp ( — <f>t)) being continuous in / for

all a (e.g. if£a(¿¡)áC¡ j 0).

Let P°(t, x, A) = Ex(xA(zt) exp( — >/)t)), where P = {zt} on X. Then, according to

Moyal [13], there exists a transition function P(t, x, A) on X which is the minimal

solution of the equation

(6 4) P(t, x, A) = P°(t, x, A) + Ex[Xlssn j P(t~ß, y, A)i4w, dy)]

on X. Now fi(w, A), as defined in (6.3), is an "instantaneous distribution" in the

sense of [6]. Hence the path-stitching technique of [6] is also applicable and

guarantees a process P={zt, Nt} which is a right-continuous strong Markov process

in X. A partial expression of the fact that individual particles develop independently

under P is

Lemma 6.1. Let ßn be the nth branching time (as in §1) ofP and let Ait A2,..., A¡

be Borel sets in D. Then, if x = (a±, a2,..., an)

Px(zt e At x A2 x ■ • • x A„ ßm <¡ t < ßm+1)

(6.5) 2 Il^e^&.áKM
¡l + ¡2+-+ l„ = l

where Ai = Ap¡ + 1 xAp¡ + 2x ■ ■ ■ xAp¡+1, pi = h + l2-\-+í-i. and Ai = {8} if /( = 0.

Proof. For l^i^n, let z\n(w) be the /¡-tuple of exactly those particles at time t

which are descendents of the /th particle (this will be a consecutive batch of com-

ponents in zt(w)), and let ß{i\w) be the /th branching time only among these particles

and their predecessors. These quantities are definable in our model, and indeed

forj'#/. I claim

(6.6)   Px(z? e A\ ßft í t < «g+1, all i) = fl P^t6 A\ ßKtut< ßKi + i).
í = i

Given (6.6), the lemma follows by summation. (At the cost of extra computation,

one could also argue directly from (6.5).)
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First, by the independence of components of the process P in X, (6.6) is trivial

if w = 2ï^i = 0 (f°r any ri). Hence we assume (6.6) by induction for all n and

2" K[ =m'<m. Also, by the strong Markov property (i.e. (4.7)) or similar identities

in [13]

?«(#t) £ Py(E)K(xz, dy) = Ea(<f>(ß)dßE),
(6.7)

Ea(Xlz>u]PXu(zt-ueA,ßl S t-u < ßl + 1)) = P«(t > u,zteA,ß, Ú t < ßl + 1),

where K(a, E) is the kernel defined by (6.2) for «= 1.

Let Qj(t) = {zte A', ßKj^t<ßKj + 1}, lújún. Then, with the convention that a

variable superscripted ° is held constant in an inner integration, we obtain from the

left-hand side of (6.6)

2  Px(ß = r, á t, zf e A', ß% fí t < ß% + 1, ally)

= 2 Ex(ß = t, S t,PZe(zUlß,eA>,ß% $.t-ß°< ^» + 1(7#0;

=  2 Ex(ß - t, $ ^YlP^^t-r"))
(=1        \ i*i

f^P&l_tejl*,ßKt-i è t-rt < ßK)K((zZt\, dy)}

= 2 eJt í t,f\Ea¡(r > r\P^(Ü^t-r°)))
i=i       V ]*i

I Pjk-feA.ß^-t Út-T° < ßK)K(xz, dy)}

/ \
= 2E4ß = *> np4ß > ß°> n^t\i=i \    i+i /

by induction and (6.6) twice, (6.3) and (6.7), where Q; = 03(?).

Now, if K, = 0 and ß°^t, Paß>ß°, Cïj)=Pa)(Q.j). Since this factors out of the

last expression, we can assume Kj>0, 1 íkjíkn, in verifying (6.6). But then Pa¡(0.¡)

=Paßlj,ß^t) and, if Pa(E\ß = s) is the Radon-Nikodym derivative of Pa(E, ß^s)

with respect to Pa(ß^s), we obtain from the left-hand side of (6.6)

î f f- ■ • f n p4QAß = >,) n p*ße dsi)
i — 1 J    J */ j _ i i — I

05slÉsJ(aUí#i)<í

=  f T' • • r IÎ P^\ß = S/) ft Paß e &,)
JO JO JO j=l j=l

y=i j=i

_

since Pa(ß = s) = 0, and (6.6) follows for m.   Q.E.D.
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For a more detailed analysis of the "descendence-structure" of {z¡} with /1=0,

see [25].

For an arbitrary/(a) e ^"(D), \f(a)\ g 1, define a function/(x) on X by

(6.8) /(x) = f(ax)f(a2) ■ ■ f(an),   x = (au a2,..., an),   f(8) = 1.

Then, an important application of Lemma 6.1 is the branching property ([5], [6])

(6.9) TJ(x) = TJ(ai)Tj(a2)- ■  Ttf(an),        Ttf(8) = 1,

which follows from (6.5) by summation and integration. Another application of

Lemma 6.1 is a probabilistic interpretation of iteration in the so-called "S-equation "

for branching processes; see [16].

7. Branching Markov processes, continued. We are particularly interested in

those/(a) e ^"(D) for which/(x) e 3(A) on X, since these will allow us to handle

certain kinds of nonlinearity on D. Let A and A be the weak infinitesimal generators

(with maximal domain; i.e., B = B0 in (2.6)) of P(t, a, E) on D and P(t, x, E) on X

respectively, and let Sx and 5A be as before (on D or on X). Then, if JSP is the non-

linear operator defined in (2.11),

Theorem 7.1. Assume {<j>t(^)} satisfies (2.1), £a(exp ( — <f>t)) is continuous in t for

all a, and that Shl(a)<aofor all a. Then, f(x) s 3(1) implies f(a)-S„(J?-I)f(a)

e 3(A) and

(7.1) IJ(a) = AÁ(I-SA(J?-I))f(a)   in D.

Proof. If/(x) e 3(A), then f(x) = RÄg(x) for some g e £"°(X). Integrating (6.4)

with this g(x) and ae D yields

(7.2) Ttg(a) = 77g(a) + £a[v[lSi] £ Tt.zg(y)K(xz, <fy)]

where K(a, E) is the kernel defined by (6.2) if n= 1. Arguing as in §4, with KRAg(a)

considered as a function on D, we obtain

RAg(a) = (I+S,)(I-S°,K)R,g(a),       IJ(a) = -g(a) = AA(I+S,)(I-S°,K)f(a).

Finally, Kf(a) = J¡Cf(a), and S,AJ?'|/|(a)<oo by assumption. Equation (7.1) now

follows as in (4.3).

Corollary ([6]). Iff(x) e 3(A) andx = (au a2,..., an),

Af(x) = 2 Äf(at) YJf(a,),       1/(8) = 0.
i=l j*i

Proof. By (6.9) and the product rule for differentiation.

This proves the first part of Theorem 2.3. For the second part, assume f(a)

- SÁ(¿e - I)f(a) e 3(A) for some/(a) 6 if "(D); we would like to show/(x) e 3(1)

on X. Our plan is first to show that a similar expression is in 3(A) on X, and then
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apply arguments similar to those of Theorem 2.2 in X. First, however, we need

objects analogous to SKKg(x) and S°KKg(x), which cannot be the composition of

two linear operators here. For simplicity, we assume that {<f>i(i»)} is continuous in /

for to; this is not an essential restriction (see the remark after Lemma 7.1).

Lemma 7.1. Assume ¡jl, Kt are as in (6.2), (6.3), {<¿¡} as above, and g e JîCœ(X),

g(x)^0. Define

S^gix) = £^£° e-^Y Kig(z>) d-jf) #.)•

(7J) S°^g(x) = Ex(e~" £ g(yHw, dy)j,

S°^g(8) = S^g(d) = 0,

where <f>{p(w) = (l>s(oji) (see (6.1)) and d^/di^s is the Radon-Nikodym derivative in s.

Then, ifg(x) is as above andf(a) e ¿£X(D), 0g/(ö)g 1, x = (au a2,..., an),

n l /»oo n \

(7.4) SU-Df(x) = 2 Eai       e-^(^f(xs)-f(xs)) l~[ TJ(aj) d<j>X
i = l VO j*i /

00

(7.5) Sxt,g(x) = 2 (SÎTng(x).
71 = 1

Proof. First, by (6.2), (7.3), and the definition of <£,

n i /»oo \

SA(W)/(x) = 2 ^(J0  e-Ks(Kj(zs)-f(zs))d4,^

- 2 EÁ f *-kv?ftx?y-fixn YiAxf) &Á
n / í«oo \

i=l \J0 j*i I

since the components {xf) of zs are independent. Second,

s>g(x) = 2 ^Ki-^iirix^./i^)

= 2 E*([ e-^Kig(zs)(Yl exp (-#»)) exp (-$») d#»)

= Ex(j° e-^2 Kig(zs) ̂ ) exp (-« #,).

By induction and §3.2 we deduce the same formula for (SA)n + V#(x) except for a

factor of ifis/nl in the integrand. Summation yields (7.5).

Remark. Continuity of {<f>t} is not essential in Lemma 7.1; indeed if a(tl) =

exp(—<j>ti)) and y, = exp ( - ifit) then Lemma 7.1 remains valid (by Lemma 3.3)
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provided SÁi¿g(x) is replaced by

and similarly d<f>s is replaced by dajas_ in (7.4).

Theorem 7.2. Assume {<£t} satisfies (2.1) and

(7.7) £0(¿) á Ct   for all a,    Q | 0.

^Äiwwe afao ///ai \f(a)\ ^C< 1, f(a)-SA(^C-I)f(a) e@(A) in D for some f(a)

e£"a(X). Then f(x)~S^-I)f(x)e 2s(A) in X.

Proof. Note that (7.7) implies that £a(exp ( — 4>t)) is continuous in t uniformly in

a. We assume for simplicity that {<j>t} is continuous, even though the proof goes

through equally well in the discontinuous case. First, if x = (au a2,..., an), t>0,

n i  /loo \

SaO*-I)f(x) = 2 eA\    e-^(£ef(xs)-f(xs)) n TJla,) d<f>s ,
i=l \J0 i#( /

TMn~nf(x) = 2 EaU ¡"e^(^f(xs)-f(xs))Y[Ts+tf(a})dt)
(=1 \       JO j*i /

= eM 2 EÁ i e-"s(^f(xs)-f(xs)) n Tsf(a,) d<j>).
i = i       \Jt j*t I

Hence

(Tt-I)S^-I)f(x) = (e"-l)SÁ(n-I)f(x)-e» | £.,(£• ■ •#.)»

(Tt-I)(I-S^-I))f(x) = -(e"-\)SK(n-I)f(x) + Ttf(x)-f(x)
(7-8)

+ eM 2 zJÇe-^mxà-flxiïYlTJiaùdt).
¡=i       \yo }*i 1

Fixing n=\ and using/(a) — SK(3? — T)f(à) e ^04), we conclude

J (TJ(a)-f(d) + Ea^to (¿ef(xs)-f(xs))d<f>)} -+ C(a)

where C(a) = A/(a) + y4A(/— S^J? — I))f(d), and that the convergence is uniformly

bounded for all a e D by some constant M. Now, if |/(a)| Ú C< 1, choose C2, r0

such that C+2Ea(<f>to) ^ C2 < 1. Then, if 0 á r ̂  <„,

(7.9) n^/(ûO-fl /W"*., (£(^/(*.)-/(*.)) #.)]! S MtnCr\

Since we are only trying to show f-SK(ji-1)fe 3>(A), it is permissible to neglect

terms on the right-hand side of (7.8) which (i) have a bound of the form Mt and

(ii) are asymptotic (for all x) to an expression C(x)t, where C(x) e B0. However
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the expression in (7.9) is asymptotic to

(¿CiaOnW)'
\i = l i#i /

by the product rule for differentiation. Hence the expression on the right-hand side

of (7.8) is equivalent in the sense outlined above to

n [/fo)-£".(£ (wo-/(*.» «?.)] -fi/i<¿

+,|X f£ (^/w -/(*.» n [m) - ̂ (£ (^/w -/&■» «?«) ] «%] •
The proof will be complete if we can show that this last expression is identically

zero. First, expand (7.10) as a multinomial in the variables {f(a,)}. If 5 is a subset

of the first n integers of cardinality n — I, then the coefficient of \~[sf(a¿) in (7.10)

will be (—1)' times

n £,,(£ g(Xs) dt.) - 2 ^,(£ sm n e»{[ ¡¿xa d<t>u) <*k.)

where {bu b2,..., ¿»¡} = {fly :J$ S) and g(a) = (Sf-I)f(a). We note that the inte-

grand in the rth term of the sum represents a random integral over the points

(sx, s2,..., s¡) e R' with 0áí;^j¡^í for Jfti. Hence the expression is zero and

(7.10) is identically zero.    Q.E.D.

The proof of Theorem 2.3 is concluded by

Theorem 7.3. Assume {</>t} satisfies (2.1) and (7.7), and that \f(a)\ ^ C< 1. Then,

f(a)-SK(£C-I)f(a) e 3(A) in D ifff(x) e 3(1) on X.

Proof. First, note

SA°l(x) = -eJT e-*»rfexp(-^) = A f" e~^Ex(\ -exp(—>,))<&
(7.11) ;Jo ;    Jo

¿ A £" e~*V -exp (-nCs)) ds = ¡8A,n < 1

by (6.1), (7.7) and concavity of (1 -e~x), and 5Al(x)á CA,n<oo for all x e Dn by

Theorem 3.1. Combining this and the identities (3.3), (7.5) we can now extend the

proofs of Theorems 2.1, 2.2 in §4 to fit our situation in X. In particular

(7.12) Ix £ Atf-Sfa-l})   inB

where B is any subspace of B0(X) which is preserved by the six operators Tt, T?, Tt,

Rx, Rl, ÄA. Moreover, we have equality in (7.12) iff there exist no nontrivial solu-

tions of

(7.13) g(x) = Ex[e-» £ g(yM">, *»)>       g(x) É B.
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Define

(7.14) B = fg(x) e B0 : lim sup \g(y)\ = 0\.
I n-><x>    D" J

Since supD" \Ttg(x)\ âsupD» \g(x)\ etc., Tt, RM T°, Rl preserve B. I now claim that

Ttg(x) e B for any g(x) e B and r>0. By definition, if g(x) e B, for any e>0 there

exists M, n such that

\g(x)\^M,       xen(j D',
0

oo

\g(x)\ úe, xe{JD1,
n

and hence

(7.15) |Ttg(x)\ á e + MPx(zt e "y D1} ■

If xe Dm, m>n>l, then by Lemma 6.1

m

Px(zteD') = 2        n^«^').
ii+—+T»-i   i=i

Now

/>,(zf = 0) á £a(/3 ¿0 = A,(r Si)- £0(1 -exp (-&))

and Pa(zt = d)^(l— exp (— Ct)) = dt< 1 by concavity and (7.7). Hence, if m»n>l,

tó - do * i/-f") *-* = 2 (w"y+1)/;(w"1)m *-y.
0 \J / o J-

Rx(zt e "u £>') ^ w^2 ¿r-71«71 s «

for sufficiently large m. Hence Tt preserves B by (7.15), and since R^ = ¡^ e~MTtfdt,

RA preserves B also. Hence (7.12), (7.13) are applicable with B given by (7.14).

However, if (7.13) holds for g(x) e B, and

\g(x)\ ï i\\g\\,       xe\JD>,
n

where ||g||=sup* \g(x)\, then by (7.11)

|g(*)l = \S°^g(x)\ í S°Äl(x)\\g\\,

\g(x)\ eßKn\\g\\,       xe(jD'.
0

Hence |g||<||g|| if g/0, and (7.13) has no nontrivial solutions in B. Finally

f(x) e B if \f(d)\ SC<1, and by equality in (7.12), f(x)-SÁ(^-I)f(x) e2(A) iff
f(x)e2(I). Combining with Theorem 7.2, f(x) e 2(1) iff f(a)-Sx(£C-I)f(a)

e 2(A).

8. Branching diffusion processes.    By basic results in PDE [4, p. 82], there exists

a unique "Green's function" p(t, x, y) e C((0, oo) x 0 x 0) satisfying the following
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two conditions. For fixed t>0, y e 0, p(t,x,y) has Holder-continuous second

partíais in x e Ö and

(8.1) d/dtp = Axp;       p(t, x0, y) = 0   for x0 e 80,

(8.2) p(t, x, y) ¿ (C/tnl2) exp [-(cc¡t)(x-y)2],       a > 0.

Second, for/(x) e C0(0) = {f(x) : f(x) e C(Ô),f(x)=0 on 80},

TJ(x) = jp(t,x,y)f(y)dy

converges uniformly to f(x) as t -* 0. By the interior Schauder estimates [4] we

conclude

\8/8xiP(t, x,y)\ â Ct(d),       \x-80\ ^ d > 0,

|a7ax¡ax;ip(í, x,y)\ ^ Ct(d),       \x-80\ ^ d > 0,
for all y e 0.

Hence the operators {Tt} map JS?00^) into C2(0) n Co(0), and w(x, t) = TJ(x)

is the unique solution of 8/8t u = Axu, u(x0, t) = 0 on SC for />0, and u(x, 0)=/(x)

for /(x) e C0(0). In particular, by uniqueness, {Tt} must be a semigroup, which

implies in terms of p(t, x, y) that

(8.4) p(t + s,x,y)=     p(s, x, z)p(t, z, y) dz.
Jo

By (8.1) and the Hopf maximum principle, jp(l, x, z) dz^ß< 1; hence by (8.4)

with s=\

(8.5) pit, x,y) ^ C'exp(-a'i),       11 I,   a  > 0.

As a strongly continuous Feller semigroup on C0(0), {Tt} is associated with a

unique right-continuous strong Markov process [2, Chapter 3] {x¡} on 0 such that

Ttf(x) = £*[/(*<)] ; i'xO'Ct s ¿fy) =/>(i, x, j) tij. It can be shown that {xt} has con-

tinuous paths up to its termination time £(a>), which here coincides with the first

exit time from 0. The process {x¡} does not remain in 0 indefinitely; indeed

Ex(0 = £*(£° l(xs) ds) = j" £/>(f, x, y) dy dt ú C"

by (8.5).

Define

f(t, x) = £ £ p(s, x, y)ß(y)Wy) ds,

where Y, ß(y) are as in Theorem 2.5 and Z(dy) is surface measure on Y. Breaking Y

up into coordinate patches and applying (8.2), (8.4), we obtain 0^f(t, x)^C"\/t,

f(t + s,x)=f(t,x) + Ttf(s, )(x). Hence there exists [2, Chapter 6] a unique con-

tinuous additive functional {<j>t} satisfying (2.1), (2.2), and

(8.6) Ex(<f>t) = £ £ p(s, x, y)ß(yMdy) ds ï Cy/t.
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This is "local time on T with weight ß(x)." In particular

Sf(x) = Ex(£f{x,)dt) = j" jrP(s,x,y)f(y)ß(y)X(dy)ds

converges uniformly for any f(x) e ä"°(T). If y e F, \x-80u T\^d>0, then by

the Schauder estimates again and (8.2), (8.5), we can take Ct(d) = C exp ( — at — y/t)

in (8.3). Hence by (8.1) and an integration by parts

(8.7) Sf(x)eC2(0-F),       AxSf(x) = 0   inO-F.

We now investigate the behavior of Sf(x) near T. Note

Sf(x) =  f f p(s,x,y)f(y)ß(y)Udy)ds+ f Sf(y)p(\,x,y)dy
JO   JV J<$

and let q(t, x, y) be the fundamental solution of 8/8tq = Axq in Rn [4, Chapter 1].

Thus 0^p(t, x,y)^q(t, x,y), and by the construction ofp(t, x,y)

\p(t,x,y)~q(t,x,y)\ ú Ce""",

(8.8) \8/8xiP(t,x,y)~8/8xiq(t,x,y)\ ^ Ce-*",

Wtocfix,p(t, x, y)-3»/dxtdx,q(t, x,y)\ fk Ce~"",

for \x-8O\^d>0, \y-80\^d>0, y = y(d)>0. Hence

SA*)-£ I flfe x, y)f(y)ß(y)Wy) ds e C\0).

Now the integral above is a single-layer potential of q(t, x, y) on F, and as such is

known to satisfy a certain jump condition across T. More precisely, let

n     n

(8.9) D? = 2 2 <*«(*)«*(*) s/^-
i   i

by the two outwards-pointing conormal derivatives for xeF, where {«^(x)} are

orthonormal vectors to F at x. Then [4, Chapter 5]

(8.10) i(Ov+ + Dv-)Sf(x) = -ß(x)f(x)

for all x e T and/(x) e C(r).

Finally, let /T(x, A) be a Feller substochastic kernel on 0. By Theorem 2.4 and

(8.6), there exists a unique semigroup {Tt} on C0(0) satisfying (2.5) and (see also

Theorem 5.3)

(8.11) J= A(I-S(K-I)).

Theorem 8.1. f(x) e 2(1) ifff(x)=g(x) + k(x), where g(x) e 2(A), k(x) e C0(0)

n C2(0-F), Axk(x) = 0 in 0-F, and f(x) = g(x) + k(x) satisfies for x e F

(8.12) i(D? + D;)f(x) = -ß(x)(jj(y)K(x, dy) -f(x)}■
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Proof. First, by (8.11), f(x) e 3(A) iff f(x)-S(K-I)f(x)e 3(A), or iff/(x)

=g(x) + S(K-I)f(x), g(x)e3(A). If f(x) e 3(1), then, by (8.7), (8.10), k(x)

= S(K—I)f(x) satisfies the conditions stated. Conversely, if f(x)=g(x) + k(x) as

above, let l(x) = k(x)-S(K-I)f(x). Then l(x) e C0(O) n C2(0-Y), Axl(x) = 0 in

0—Y, and \(Df +Dv")/(x) = 0 on Y. Hence if /(x0) = sup<7> l(y)>0, we must have

x0 e Y; butif/(>')</(xo)forallj6 0-randxo e T, then Z)v±/(x0)<0 [4, Theorems

2.1, 2.14]. Hence /(x) = 0, k(x) = S(K-I)f(x), and f(x) e 3(1) by (8.11).

A useful corollary of Theorem 8.1 is

Corollary 8.1. f(x) e 3(1) ifff(x)=g(x) + k(x), where g(x) e 3(A), k(x) e C0(O)

n C\0— Y), f(x) satisfies (8.12), and Axk(x), defined on O—Y, extends to some

function in C0(0).

Theorem 8.2. If f(x) e C(0), then u(x, t) = Ttf(x) is the unique solution of the

system (2.20), (2.21).

Proof. Uniqueness follows from maximum principle arguments as in the proof

of Theorem 8.1. For existence, note that by (4.1), (4.3),

RJ(x) = RJ(x) + SA(K-I)RJ(x).

Inverting Laplace transforms

(8.13)        f¡/(x) = TJ(x) + jto £ p(s, x, y)(K-I)Tt-J(y)ß(y)X(dy) ds.

In particular Ttf(x) e C0(O) n C2(0 — Y), and since {Tt} is strongly continuous,

i(£)v+ + i)-)ft/(x)=-i3(x)(i(:-i)f,/(x) by (8.8), (8.13). Also, assume \x-80\

^d>0, \x-Y\^d>0. Then by (8.2), (8.8), (8.13)

\h(x)-\q(s,x,y)h(y)dy Ú Cexp(-yls)

for any h(x) e J¿"°(Rn). However, if h(x) is twice continuously differentiable in a

neighborhood of a point x0 e Rn, then

- I q(s, xQ, y)(h(y)-h(x0)) dy -> Axh(x0)

by Taylor's formula (see [4, Chapter 1]). If h(x) = Ttf(x) for some t >0, we conclude

8/8t Ttf(x) = AxTtf(x) in 0-Y.    Q.E.D.
Remark. According to Corollary 8.1, the relations

Tt:3""(0)->3(A),       all / > 0,

(8.14) Tt : £"°(0) --> 3(A°),      all / > 0,

Tt:3"*>(0)^3(1),       all / > 0,

follow as soon as we can show that e.g., AxTtf(x) is well behaved near 80 and Y

for any/(x) e C0(0). This can be done by iteration in (8.13) and standard potential

arguments if e.g., (i) \8/8tp(t, x,y)\ ûC(t), x,yeO, and (ii) K(x, N) = 0 for all
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x e T and some neighborhood N of 80. Condition (i) seems reasonable, but we

have not been able to remove (ii).

8.1. We assume the hypotheses of Theorem 2.6. According to S. Itô [8], as

formulated by Sato and Ueno [17] in the time-homogeneous case, there exists a

unique function p(t, x, y) e C((0, oo) x Ô x Ö) satisfying the following two condi-

tions. First, p(t, x, y) is twice continuously differentiable for x, y e Ô and any

/>0, and

(8.15) 8¡8tp = Axp   inO,       DHx)p = 0   on 80

where Dv is the inwards-pointing conormal derivative at x e 80 defined by (8.9).

Second, iff(x) e C(0),

u(x, t) = TJ(x) =  f f(y)p(t, x, y) dy
Je>

converges uniformly to f(x) as t -> 0. Thus u(x, t) is the unique solution of

8/8tu = Axu in 0, Dvu(x, t) = 0 on 80(t>0) and u(x, 0)=/(x). By uniqueness, {Tt}

is a strongly continuous Feller semigroup on C(0), and, as before, there exists a

unique strong Markov process {xj on Ô such that Ttf(x) = Ex[f(xt)].

It follows from the construction of p(t, x, y) and standard arguments (see e.g.

[8, p. 308], [23], (8.2), (8.8)) that

(8.16) ¡   p(t,x,y)X(dy)úC/Vt,        f    \8/8xiP(t, x,y)\X(dy) í C/t
Jea Jsei

for all x e Ô and f¿\. Hence by the inequality min {b, ab} á baa, 0 < a < 1, and the

Mean Value Theorem

(8.17) f   \p(t,x1,y)-p(t,x2,y)\S(dy)
Je®

m l*i—x2\
V'1H

for all a, 0< a < 1. In particular, by (8.16) and [2, Chapter 6], there exists a unique

additive functional {<j>t} satisfying (2.1), (2.2), and

EMt) =  f Í   p(s,x,y)ß(y)Z(dy)ds í C^/t.
Jo JdtS

Moreover, given any g(s, x) e C([0, t] x Ö) n Ca([e, t] x Ö) for all e > 0, some a > 0,

then [17, Theorem 2.2]

v(x, t) = eJ\  g(t-s, xs(cu)) d<f>A = J   J   P(s, x, y)g(t-s, y)ß(y)Y.(dy) ds

is of class C2(0) n C\Ö) for fixed t>0 and satisfies

(8.18)      (Ax-8j8t)v = 0   in 0,       Dnx)v(x, t) = -ß(x)g(t, x)   on 80.

In particular, if/(x) e Ca8(0),

SJ(x) = Ex(£ r"M«)] #s)

=  i' f   e-^p(s,x,y)f(y)ß(yMdy)ds + e-"T1SJ(x)
Jo Jeo
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satisfies

(8 19) SJ(X) e C2(&) ° C 1(#)'       (Ax ~ Á)Sxf(x) = °'

Dvix)SJ(x) = -ß(x)f(x)   on 80.

Finally, we remark [17, Lemma 2.2, p. 600] that 2(A)^C1(0); indeed, if g(x)

6 2(A), then g(x) e C\Q~) and Dv(x)g = 0 on 80.

Now, if {pn(a)} satisfy (2.22), let 7rn(a, E)=pn(a)xE((a, a,..., a)) and construct

the branching process (see §6) corresponding to {xt} on Ô, {<j>t}, and {-n-n}. By con-

struction of {(f>t), all branching must take place on 80, and SCf(a) = 2ó° pJß)f(a)n.

Theorem 8.3. ///(a) e if œ(#) anrf \f(a)\ ¿c< 1, iAen /(x) e 2(1) ifff(a)=g(a)

+ k(a), where g(a) e 2(A), k(a) e C2(0) n C\0), (Aa-X)k(a) = 0 for some A>0,

and, for a e 80, f(a)=g(a) + k(a) satisfies

(8.20) DJ(a) = -)9(a)(|>B(«0/(a)B-/fo)V

Proof. By Theorem 2.3, f(x) e 2(A) iff f(a)-S^-I)f(a)e 2(A), or iff

f(a)=g(a) + SÁ(£'-I)f(a), g(a) e 2(A). I claim k(a) = S^-I)f(a) satisfies the

conditions above. First, since evidently (Se-I)f(à)e ï£m(80), k(a)eCa(Ô) by

(8.17). Since f(a)=g(a) + k(a), f (a) e Ca(0~). Thus (if-/)/(a) e Ca(80) by (2.22

(ii)), and by (8.19), SK(Se-I)f(a) e C2(0) n C\@), (Aa-X)SK(^-I)f(a) = 0, and

Dyk(a)=-ß(a)(ä'-I)f(a). Conversely, if f(a)=g(a) + k(a) as above, let 1(a)

= k(a)-Sh(£'-I)f(a). Then (^a-A)/(a) = 0 in 0, DJ(a) = 0 on 8(5, and /(a) = 0

as before. Hence g(a)=f(a)-Sh(£C-I)f(a)e 2(A) and f(x)e 2(A) by Theorem

2.3.

Theorem 8.4. Assume f (a) e C(6) and \f(a)\ gc< 1. 77ien, u(a, t) = Ea(f(xt)) is

the unique solution of (2.23), (2.24).

Proof. By arguing as in §4, RJ(a) = (I-S>{K-I))Rj(a) where #(a, A) is

defined in §6. Thus by the branching property (so that KTtf(a) = £'Ttf(a)) and

uniqueness of the Laplace transform

(8.21) TJ(a) = Ttf(a)+ f f   p(s, a, b)(<? - I)Tt ̂J(b)ß(b)X(db) ds.
Jo Jea

Thus Tj(a) e Ca((9) and f(/(a) e C2(0) n C1^) by (8.17), (8.18), and (8.20) (i.e.,

(2.24)) follows for Tj(a). The proof that (Aa-8l8t)Ttf(a) = 0 for r>0, aeO,

proceeds as in Theorem 8.2. To prove uniqueness, let u(a, t) be a solution of (2.23),

(2.24) for 0%tuT with u(a, t) e C2(0) n C\Ö), 0<t^T. First, I claim \u(a, t)\

gC'<l, aeÔ, OSt^T. If not, there exist a0 e 80, t0>0, such that |w(o, i)| < 1

for t<t0, aeÔ, and \u(a0, t0)\ = 1. If w(fl0, io)= + L then Dvu(a0, t0)<0 (see [4,

Theorem 2.14]) and (¿?-I)u(a0, t0) = 0, which contradicts (2.24). If u(a0, t0)=-l,

then Dvu(a0, t0)>0 while (i?-/)«(a0, f0) = i;/?n(íí0)(-l)'l+1 ^0. Hence \u(a, t)\

SC'<!,  OSíár.   Finally,   set  v(a, t) = u(a, t)-SÁ(¿?-I)u(a, t).  Then   v(a, t)
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e C2(0) n C\Ô) and Dv(a)v(a, t) = 0 on 80 for 0<t^T; hence v(a, t) e 3(A) for

these / [23, Theorem 2]. Thus û(x, t)e3(Ä) and (I-8/8t)û(x, t) = 0 by Theorem

2.3. Since û(x, 0) =/(x), iî(x, /) = r¡/(x) for 0 -¿ t g T by standard arguments.

9. A converse of Theorem 2.1. A process {x¡, Bt} is said to be a Hunt process

if (i) it is a strong Markov process with right-continuous paths, (ii) each sample

path {x¡(cu)} has a left-limit {xt_(w)} at all t, and (iii) {x,, Bt} is quasi-left continuous,

i.e., if {ßn > t} e Bt for all í and ßn f j8, then i>x(xfin ->xß,ß< oo)=Px(ß < oo). If X is

a locally compact metric space, such processes can be constructed corresponding to

any strongly-continuous Markovian semigroup {Tt} on

Co(X) = {fix) e BC(X) : Jim f(x) = 0}

(see [2, Chapter 3]). We will also make use of the condition L of Meyer [10, p. 160],

which can perhaps be most perspicuously stated as [10], [12]

(L) There exists a nonnegative finite measure ¡x on X such that if

r(A) = sup {t : xt(u>) <£ A} for some "nearly Borel" set A, then Pu(t(A) <ao)

= ¡xpv(T(A)<°°h(dy) = 0 implies Px(r(A)< oo) = 0.

By a generalized continuous additive functional (gcaf) we will mean a continuous

additive functional of the type considered in §3.1, i.e., satisfying (2.1), (2.2) with

(2.1 (ii)) replaced by (a) <¿o("0 = 0,0 ¿ &(<") á oo and (b) <f>t(w) = oo implies <f>t-(<*>) = oo,

and (2.2) interpreted in the sense of continuity in the extended real numbers. By

Theorem 3.2 and §4, such {</>t} can be used in Theorems 2.1, 2.2, with (2.8) replaced

by (4.2).

Our result is

Theorem 9.1. Let {x¡, Bt} be a Hunt process satisfying condition (L) on a locally

compact metric space X, and assume that almost every sample path of xt(w) is

continuous except for a discrete set of jumps. Then, there exists another strong Markov

process {yt, Nt} on X, which has continuous paths up to its termination time, and a

gcaf{<j>t} of{yt} and substochastic kernel K(x, A) such that

(9.1) Ttf(x) = T?f(x) + E'x[X[tSi] £ Tt.zf(z)K(yz, dz)}

forf(x)e^(X), where Px(r>t\Na>) = exp(-<t>t) and T¡f(x) = E'x[f(yt)l Tt°/(x)

= Ex[f(yt)x[z>t]]- Moreover, for fixed {yt} and K, {Tt} is the unique Markovian

solution of (9.1), and hence we have equality in (4.2) or (9.7).

Remark. That {x((cu)} have discrete jumps a.s. is not essential ; all that is required

is that there exists a Markov time t^ou) such that if Tn + 1 = Tn + öIi>T1 then

Px[rn —> oo]= 1. We would then conclude that the process {yt} was continuous at

the analogue of the {t„}. Also, one can construct simple examples where the gcaf {<f>t}

obtained from Theorem 9.1 is not of the form (2.1), (2.2).
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Proof. Set r1(co) = inf {t : x¡(cu)#x¡_(co)}, t2 = t1 + 8Zít1 and for all n^2,

Tn + i = Tn+ Ö^Tj.Thus Tn(oj) is the nth jumping time of x¡(tu); as the remark indicates,

we could have made it the nth jump of amplitude at (note Tn + 1=oo by definition

if r„eö. Define T? f(x) = Ex[f(xt)x^>n} and, as in Moyal [13], let {77} be the

minimal solution of

(9.2) 77/(x) = 77/ix) + Ex[XlZl snTl'.zJ(xZl _)].

As the construction of Ikeda-Nagasawa-Watanabe [6, II, Theorem 2.2] indicates,

there exists a model {v¡, A^} of {77} which has continuous paths strictly before its

termination time and is a strong Markov process. Since 0 á T?f(x) á T't'f(x) if

/(x)äO by (9.2), there also exists a contractive multiplicative functional {at} of {yt}

such that

(9-3) 77/(x) = Ex[f(yt)at] = Ex[f(yt)Xiz>a]

where Px[r>t\Nca] = at [2, Theorem 9.3]. By (9.3) we may as well assume

at(u)) = at+(oj) and cí¡(cu) = o£C(<b)_(oj) for t^l(oS). I now claim at(oj) = exp( — <j>t(oj))

for some gcaf {<£,}; all that is necessary is to prove at(oS) e C([0, oo)) a.s. P"x. How-

ever, if ß(o>) = inf{t : a¡_(oj) — ce¡(co)ae} for some e>0, then either ß(w) = oo or

ß(co) < £(cu), in which case yt(w) is continuous at ß(u>). Hence [11, p. 118] ß(oj) is

accessible, and there exist stopping times ßn \ ß, ßn<ß, such that

£*lX[/¡ < oo](«/! _-«„)] = Px[t = ß < oo]

= Px[ßn  <  r, ßn  j   r  <  OO]  = Px[ßn <   T, ßn  t   F <  «j]

= ^[|3n < t1s ft, t Tl < oo] = 0

since {x¡} is quasi-left continuous and xZl¥=xZl_ a.s. Hence /3(cü) = oo a.s.    Q.E.D.

By a theorem of Watanabe [22], there exists a nonnegative continuous additive

functional {ot((u)} of {x¡} and a kernel n(x, /Í) (0^n(x, A)^oo) such that for all

Borel functions /(x, j)äO

£,(2 «"*VK.-> *ü) = £*(£" e"ÄS £/(*„ y)n(xs, dy) das).

It follows from the construction in [22] that we also have

(i) For any stopping time ß(a>) of {x<}

(9.4) Ex(y exp(-Arn)/(xIn_,xIn)j = Extt$ *-* £/(xs, j)n(xs, ¿j>) <fo,).

(ii) There exists sets rmf Xfor which n(x, Ym)Sm.

In particular, if fS = r1 and A^Ym,

Ex(exp (-Xr1)xA(xZl)) = Exl\ ' e"Asn(xs, ^)JasJ

=£"(K"^"fc'r-),fo-)
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by (9.4). Since xrm t* 1 and n(x, A)^n(x, Fm), we can take the limit and conclude

(9.5) Ex(exp (-AtJxaM = Ex(exp (~\tJK(xXi-, A))

where K(x, A) = hm n(x, A)/n(x, Fm)^ 1.

Now, by the strong Markov property at t (see Theorem 5.4)

Tl'f(x) m TaJ(x) + E'x[xlzSnn_zf(yz)l

Taking Laplace transforms both here and in (9.2)

Kf(x) = Rlf(x) + Ex[e-^R'U~(yz)l

Kf(x) = Rlf(x) + Ex[exp(-Xri)Rlf(xZl.)].

Hence by the pointwise density of the range of R"A = 2(A") in B0(X) = B'¿(X),

Px(ri Ú t, xZl. eA)= Px(t £t,ytG A),

Ex[XíZláaK(xZl-, A)] = E'x[XlzánK(y„ A)].

Combining (9.5), (9.6) and the relation

TJ(x) = T?f(x) + Ex[XlZláaTt-Zíf(xZl)]

yields (9.1).

For uniqueness, we note that by §4 (4.2) and (9.1)

(9.7) A, £ Al(I+Sd(I-S°AK)

where S'if(x) = Ex[§™ e ~ Asf[ys] d<f>s], with (9.7) being attained iff we have uniqueness

in (9.1) or iff there exist no bounded Borel solutions of

f(x) = SZmx) = E'x[e-^Kf(yz)] = Ex(exp (- AtJ/O,,))

again by (9.5), (9.6). However by (4.8)

f(x) = (S°,KTf(x) = Ex(exp(-Xrn)f(xZn))->0

since t„ -» oo a.s.    Q.E.D. And we have equality in (9.7).
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