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A GALOIS THEORY FOR

INSEPARABLE FIELD EXTENSIONS^)
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NICKOLAS HEEREMA

Abstract. A Galois theory is obtained for fields k of characteristic p j=0 in which

the Galois subfields h are those for which kjh is normal, modular, and for some

nonnegative integer r, h(kp' + 1)/h is separable. The related automorphism groups G

are subgroups of the group A of automorphisms a on k[X] = k[X]/Xp,*1k[X], A'an

indeterminate, such that a(X) = X. A subgroup G of A is Galois if and only if G is a

semidirect product of subgroups Gk and G0, where Gk is a Galois group of auto-

morphisms on k (classical separable theory) and G0 is a Galois group of rank pT

higher derivations on k (Jacobson-Davis purely inseparable theory). Implications of

certain invariance conditions on a Galois subgroup of a Galois group are also

investigated.

I. Introduction. Let A: be a field having characteristic p^O. The Jacobson

Galois correspondence between finite-dimensional restricted p Lie algebras of

derivations on k and their fields of constants [6] has been extended recently by

R. L. Davis [1], [2] to groups of higher derivations of finite rank and their fields

of constants.

In this paper we exhibit an automorphism group invariant field correspondence

which incorporates both the Krull infinite Galois theory [7, p. 147] and the purely

inseparable theory referred to above. The invariant subfields h are those for which

k/h is algebraic, normal, modular (as defined by Sweedler [8, Definition, p. 404])

and the purely inseparable part has finite exponent (Theorem 3.1). The associated

automorphism groups are subgroups of the automorphism group of the local ring

k[X] described below. They can also be described as groups of rank pr higher

derivations as described in §11 with the modification that dm is an automorphism

on k rather than restricting dm to be the identity map. The higher derivation

approach has the advantage of making unnecessary the introduction of the local

ring k[X]. This seems to be outweighed by the advantage of familiarity of auto-

morphisms and related constructions.

Let //<=G be Galois groups with invariant fields kH^>k°. §IV is concerned with

those conditions on H relative to G which are equivalent to ka being a Galois

Presented to the Society, October 25, 1969 under the title An extension of classical Galois

theory to inseparable fields; received by the editors March 27, 1970.

AMS 1968 subject classifications. Primary 1240; Secondary 1245, 1360.

Key words and phrases. Higher derivations, normal field extension, modular field extension,

purely inseparable field extension, semidirect product, linear disjointness, tensor product.

(x) This research was supported by NSF GP-8424.

Copyright © 1971, American Mathematical Society

193



194 NICKOLAS HEEREMA [February

subfield of kH. A partial result is obtained (Theorem 4.1). A complete solution

awaits an analysis of the above question in the purely inseparable Jacobson-Davis

theory.

II. Definitions and preliminary results. Let X denote the coset of the indeter-

minate X in the quotient ring k[X]=k[X]/X'"+1k[X], r^O. We will use the

following notation.

A: Group of automorphisms a on k[X] such that a(X) = X.

For G a subgroup of A,

Gk: {<xeG\a(k)^k},

G0: {« e G | a(a)-ae Xk[X] for a e k},

kF: {aek \ a(a) = a for a in G},

and, for h a subfield of k,

Gh: {a e G | a(a) = a for a e h}.

For f(X) in k[X] let l,(f(X)) =/(0). Then, for a e A, ac ( = £a|k) is an automorphism

on k. For ß an automorphism on k, ße will denote its unique extension to A. The

map a -> ace (=(ac)e) is a homomorphism of A onto Ak. With a subgroup G of A

we associate the groups Gc = {ac | « e G} and Gce = {ace \ a e G}.

A rank pr higher derivation on k is a sequence d={d(í) \ 0 = i^pr} of additive

maps of k into /c such that d{n\ab) = ^{din(a)dU)(b) \ i+j=n} and ö?(0) is the

identity map. The set 3tC of all rank pr higher derivations on k is a group with

respect to the composition "°" where d° e=f and fm = Ji{dweU) \ i+j=t} for

z* = 0,.. .,pr [5, Theorem 1, p. 33].

(2.1) Proposition. The map A: st -> A0 given by A(d)\k = 2 {XW» | i=0,..., /}

a/it/ A(d)(X) = X is an isomorphism of Jf with A0.

Proof. For aeA0 and aek, a(a) = ^aiXt with a0 = a. For z=0,...,/7r let

i/(i)(a)=at. Then d={dm} is in ^ and A(d) = a. This and the fact that 2 X*dm

is an isomorphism for d in Jf were essentially observed by Hasse and Schmidt [3].

Also,

A(d)A(e)\k = 2 {*W<»(IV") | 0 g ÍJ ^ /}

= 2 {Xw(d o er \i = 0,...,p'} = A(do e)\k.

For Jf a subgroup of ¿V let /c* = {a e k | í/(i)(a)=0, í>0,¿e/);F is called

the field of constants of Jf. For h a subfield of k let

•íf* = {de je I í/(()(a) = 0, i > 0,aeh}.

The following is an immediate consequence of the definitions involved.

(2.2) Proposition. For Jf a subgroup ofJf, kjr=kliJir, and, for h a subfield ofk,

A(jfh) = A\.
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A familiar property of higher derivations states that if de ¿F then dm(ap,+1) = Q

for i= 1,.. .,pr [A, Lemma 1, p. 130]. Let ka=kG where G is the group generated

by a in A. By Propositions 2.1, 2.2 and the above remark we have

(2.3) Proposition. kpT+1<=kafor a in A0.

The following three propositions are self evident.

(2.4) Proposition. Each a e A has a unique representation as a product ßy,

ß e Ak, y e A0- In fact, ß = ace and thus y = (<xce)_1a.

(2.5) Proposition. ka = ka" n k(ace)~la.

(2.6) Corollary. For G a subgroup of A, let H be the group generated by Gce

and G. Then k"=kG = k"« n k"°.

We require the following rather obvious extensions of familiar results. They are

proved in Jacobson [7, pp. 49-52] with the assumption that [k:h]<ao.

(2.7) Proposition [7, Lemma, p. 50]. Let k^>m^>h be fields such that, for some

positive integer r, mp,^h, and k/m is separable algebraic. Then k = m ®hl where I

is the separable algebraic closure of h in k.

Proof. The following argument parallels the proof in Jacobson [7]. Let {aJ = S

be a basis for k over m. Then

atap = 2*!.«.^»       bXiD.nem,

the sum being over a finite subset of S. Also, aP'ap' = 2i bP'p,vap', and bf.0.neh.

Now k"'<=l since m?'<=-h. Hence, af el and Spr spans both h[Spr] over h and

m[S"'] over m. It is sufficient to show that Spr is a basis for / over h and for k

over m.

Given b in k, m'b) = m(bpT) since b is separable over m. Now 6 = 2 ¿\a„ ¿>, in m,

and bpr = J,bP'aP'. Thus b e m[bp,]<=m[Sp'], and b is in the linear span of SpT

over m. Since A: is a separable algebraic extension of m, k" and m are linearly

disjoint over mp. The set Sp is linearly independent over m", and hence, over m.

By iteration, the set Sp' is linearly independent over m. Thus SpT is a basis for k

over m.

We observed above that h[S"']<=!. As above, if b is in /, b ehibpT)^h[Sp'].

Hence SpT is a basis for / over h.

(2.8) Proposition. Ifik/h is normal and, for some integer r, kp'<^l, the separable

closure of h in k, then k = l <g)hm where m"'<=h.

The proof of the corresponding result assuming [k:h]<oo as given in lacobson

[7, Theorem 13, p. 52] also gives (2.8) in view of (2.7).

III. The Galois correspondence. We restate the assumption made throughout

this paper, namely that k is a field having characteristic p#0.
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(3.1) Theorem. Let h be a subfield of a field k such that k/h is algebraic. The

following four conditions are equivalent.

(i) h = ka for a subgroup G of A.

(ii) k is a normal modular extension of h such that h(kpr + 1)/h is separable.

(iii) There are intermediate fields I and m such that m"'*1<^h, m/h is modular,

l/h is normal separable and k = l ®hm (that is, k is generated by I and m, subfields

which are linearly disjoint over h).

(iv) There are intermediate fields I and m such that l/h is normal separable, m is a

tensor product over h of simple purely inseparable extension of h having degree

^pT + 1 and k = l ®h m.

If k satisfied one of (i) through (iv) and G = Ah then l=kao and m=kG* where I

and m are given by (iii) or (iv) above.

Proof. By Corollary 2.6 we may assume that Gce<^G and hence that /cG = /cG*

n kao. We first prove that kao is normal over ka and is the separable closure of kG

in k. The modularity of k/ka will follow essentially from certain results due to

Sweedler.

(3.2) Lemma. a(kGo) = kGofor a e Gc.

Proof. Suppose to the contrary that for some a in Gc and a in kGo, <j(a) = b $ kGo.

Choose a e G0 for which a(b)^b. Then ß = ae'1aae is in G0, whereas ß(d) + a, which

is a contradiction. Thus, o(kGo)<=kGo and o~1(kG°)<^kGo. Hence o-(kG°) = kG°.

(3.3) Lemma, k is a normal extension ofkG.

Proof. By Lemma 3.2, the restriction to kG° of a in Gc is an automorphism. Let

K be the group of all such automorphisms on k°°. Since ka = kG«^ n kG°, and

Gk = Gce, the subfield of kGo invariant under K is kG. Thus kGo/kG is normal separable.

By Proposition 2.3 kp,+1<^kG° from which we conclude that kGo is the separable

closure of kG in k.

To complete the proof, let a be in k and let f(X) be its minimum polynomial

over kG. Then for some positive integer e, f(X) = g(Xe) and g(X) is a separable

polynomial. Since g(X) has ap° in kGo as root, g(X) splits over ka». Let g(X) =

(X—bx)- ■ -(X-bt) with ap' = bx. Given bt, there is an « in G° such that a(/j1) = /jj

or [cc(a)]pe = b¡ and evidently each b¡ has a peth root in k. It follows that f(X) splits

in k which proves the lemma.

The field kGo is the field of constants of the group A-1(G0) of higher derivations

and thus, by a theorem of Sweedler, k/kGo is modular [8, Theorem 1, p. 403].

We conclude that k/ka is modular from the following.

(3.4) Proposition. Let k be a normal extension of a field h with the property that

for some positive integer r, h(kpT) is separable over h. There is a unique extension k'

ofk, modular over I, the separable closure of h in k. Moreover, k' is modular over h.

Proof. This result with the added assumption [k:h]<co is due to Sweedler [9,
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Corollary 7, p. 206], Sweedler's proof with obvious modifications and using (2.8)

of this paper where needed suffices to prove the above.

If kjh satisfies (ii) then, by Proposition 2.8, the conditions of (iii) are fulfilled,

the modularity of m/h following from a result of Sweedler [8, Lemma 5 (3), p. 407].

The equivalence of (iii) and (iv) is also due to Sweedler [8, Theorem 1, p. 403].

We show that (iv) implies (i) as follows. Let G* be the group of extensions to A

of the automorphism group of / over h.

(3.5) Proposition. k°^ = m.

Proof. Clearly m^k°x. If a e kai then, since hikpr + 1)cl, a"r+l is in lnk°i = h.

Hence a is in m and we have kGi=m.

Let Jfy represent the group of all rank pr higher derivations of m into m which

are trivial on h. Each deJfy has a unique extension to k since k/m is separable

algebraic [4, Theorem 3]. Then 3t = {d \ dis an extension to k of an element of J^}

is a group of rank pr higher derivations on k with the property l^k^. Let G be

the subgroup of A generated by Gj and Ajf. By Corollary 2.6, ka=kGi n kGo

= m C\ kjr=h.

The last sentence of the theorem remains to be proved. In establishing that (i)

implies (ii) it was shown that k°o = l. The proof of (3.5) gives m = kGK.

(3.6) Definition. A subgroup G of A is Galois if G=Ah for a subfield h of k

such that k/h is algebraic.

(3.7) Definition. A subfield A of A: is Galois if (i) k/h is algebraic and (ii)

h = kG for a subgroup G of A.

Theorem 3.1 identifies those subfields of h which are Galois. The Krull infinite

Galois theory asserts that a subgroup G of Ak is Galois if and only if Gc is compact

in the finite topology [7, Example 5, p. 151]. R. L. Davis has characterized those

subgroups of 3f having the form $fh and hence, via A, those subgroups of AQ

which are Galois, with the assumption, however, that [k:h]<co [1], [2].

The following result reduces the question of when a subgroup of A is Galois to

subgroups of A0 and Ak.

(3.8) Theorem. A subgroup G of A is Galois if and only z/(i) Gce^G and <ii) Gce

and G° are Galois.

Proof. The necessity of (i) is clear (see the first sentence of the proof of Theorem

3.1). If G is Galois then in the notation of Theorem 3.1 G=> A' and G=>Am where

k=l ®kG m. For a in A1, ac is an automorphism on k which is the identity on

kpr+1 ikpr+1<=l) and hence is the identity on k. Thus, a is in A0 or AlcG0. By the

last sentence of Theorem 3.1 G0^Al and we have G0 = Al. Also, by Theorem 3.1

Gk^Gm. Conversely, if a is in Am then, letting /3 = ace_1a, we have k/kß is separable

algebraic since by (2.5) m<^kß. However, kB is the field of constants of a finite

higher derivation and hence k = kß, aeAk or Amc.Ak n G = Gk. Hence Gce = Gk

=Am and Gce is Galois.
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Suppose, conversely, that G satisfies (i) and (ii). We first show that k/kG is

algebraic. Lemma 3.2 applies since its proof does not require k/kG to be algebraic.

By Lemma 3.2 Gc|fc<=o is a group of automorphisms with the property that kG<¡

is algebraic over its subfield of invariants which is kG. Since kp,*1(^kG<> we have

k/kG algebraic. Let h = kG and H=Ah. Then G<=H, Gc<=/£ and G°<=//°. By

Theorem 3.1 k = m ®hh m = kGK = kH* and l=kGo = k"o. But kG" and k"* are the

fields of invariants of Gc and Hc respectively and, since Gc is Galois, Gc^> Hc or

GC=HC. Similarly, G0 = H0 and G = GceG0 = HceH0 = H.

(3.9) Definition. Given subgroups Hx and H2 of a group //, we say Hx is H2

invariant if for a in H2, a~1Hxa<^Hx.

We consider the following question. When are two subgroups H of Ak and K

of A0 compatible in the sense that there is a group G in A for which Gk = H and

G0 = £? Such a group will exist if and only if KH is such a group and, since K

must be an invariant subgroup of G, £ and H will be compatible if and only if K

is H invariant.

Let 'S be the set of groups of automorphisms on k, @> the set of groups of rank

pr higher derivations on k.

(3.10) Definition. A pair (H, Jf) in (gy.3¡ is compatible if there is a subgroup

G of A such that Gc = H and G0 = A(Jf ). A pair (H, Jf) is Galois if it is compatible

and HeA(jf) is Galois.

Given (//, Jf) in &x¿&, jf is invariant under H if given ae H and i/={z/a)} in

Jf then a-1 í/ct = {ct_1 dmo} is in Jf. We sum up these remarks with

(3.11) Proposition. A pair (H, Jf) in CS x 3> is compatible if and only if Jf is H

invariant. A compatible pair (H, Jf) is Galois if and only if H" and A(jf) are Galois.

Proof. The last sentence follows from Theorem 3.8. The rest is a translation of

the condition for compatibility of He and A(Jf) stated above.

IV. The subgroup subfield correspondence. In this section we consider some of

the implications of invariance. Specifically, let H<^G be Galois subgroups of A.

We consider the consequences for kH/k° of invariance of H0 in Gk and of Hk in Gk.

The objective of this section is the identification of conditions on H relative to G

equivalent to kH/kG being Galois. Theorem 4.2 is a partial result in this direction.

The discussion following Corollary 4.4 indicates that invariance conditions alone

will be insufficient to determine whether or not k"/ka is Galois.

(4.1) Theorem. Let G be a Galois subgroup of A. Then Gk is G0 invariant if and

only if Gk is G or {1}.

Proof. If Gk is G0 invariant then Gk is invariant in G. Hence, since Gk n G0={1},

G is the direct product of Gk and G0 which means that for de A_1(G0) and a in

G%, adm = du)a, i=l,...,pr. Using the freedom available in constructing d in

A_1(G0) we will exhibit d and « in Gk which do not commute assuming that Gk

and G0 are nontrivial. By Theorem 3.1(iv), m is a tensor product over h = kG of
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purely inseparable extensions hixz) where /A, the degree of xz over h, is such that

nz^r + 1. It follows that the set S={xf'}z is a p-independent subset of h and hence

of / since separable extensions preserve p-independence. Let S u Sy be a p-basis

for /. Then {xz} u Si is a p-basis for k. We now use the fact that a higher derivation

dis determined by its action on ap-basis which action may be arbitrarily prescribed

for each map of d [A, Theorem 1, p. 131]. We defined d by the requirement d(i\s) = 0

for j e {xz} U Sy and i<pr. For Xy e {xz} we let dp\xy) = a el, a$m, and let dp'

map every other element of {xz} u Sy into 0. Clearly d is trivial on S U Sy and

hence A(¿/) is in G0 since G0 is Galois. However, a(a)#a for some a in Gk and

ad{p')ixy) = aia)^a = dip'\xy) = dp,aixy). Thus, if Gk is G0 invariant, either G0 or

Gk must be the trivial group.

(4.2) Theorem. Let H<^G be Galois subgroups of A. Let k=l (g)k° m as in

Theorem 3.1. Then kH = ly (g)fco m, with /i<=/ and niy^m if and only if H0 is Gk

invariant. Moreover, if kH = ly (gfcG my, then k"o = l ®to my, and kHk = ly ®k° m.

Proof. Assume F = l, ®t« mj. Then k"° =>/ <g> my and kH^^>ly ® m. But,

k=k"o ®fc" kHk = il (g Wi) (g)fcH (/j ® #»). This in turn means that kHo = l <g) Wi and

k"* = ly <g) m. If aeGk then «(/)<=/ and o¡|m is the identity. Hence a'kH°) = k"°,

from which it follows that if ¿/ is in A " ̂ Z/o) then a "1 da is in A ~ 1iH0) or //0 is G^

invariant.

Conversely, assume that H0 is Gk invariant and let M=GkH0. By Theorem 3.8

Gk and H0 are Galois. Since Mce = GckHle = Gk and M0 = H0, M is also Galois by

Theorem 3.7.

(4.3) Lemma. kH<¡=my ®fco / w/zere my = kHo n kG" and kH*=m ®k° ly where

Proof of lemma. By the proof of Theorem 3.1 k"o = A;Mo is the separable closure

of kM = k"o n kGk = my in k. However, / <gika my is the separable closure of my in k.

We prove this as follows. Let {xz} be a basis for I ® my over «i and {x„ y A a

basis over Wj for the separable closure of my in k. In general, if a field A;' is a

separable algebraic extension of a field A' and £/ is a linear basis for k'/h' then

Up = {up \ue U} is also a basis. Hence {xf+1, vj'+1} is a basis for the separable

closure. However, {j>f+1}c/ and {xp,+ 1} spans / over tm».. Thus {v„} is empty and

l®kG my is the separable closure of my in A:, and kH» = l (g^o «^

Considering the remaining equality, we clearly have kHk^>kGk=m and hence

k"k^>m (g /j. To establish equality, let {xz} be a basis for ly/kG, {xt,y0} for //A:G

and {z0} for w/A:G. Assume that 2 CD.azDy„ is in kH* and not in /w (g z^ where C„.a

is in A;G. Then, since kpT+1^kGo, we have K^'z?'*1)1?*1 is in k"*nkGo = ly.

But this denies the independence of {xf+1, jf+1} over A:G, since zP'+1 g A;g. It follows

that k"«=m <g> /i and the proof of the lemma is complete. Now kH=kH* n ArH<>

= (m <g /x) n (mi (g l) = my (g /j.
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(4.4) Corollary. If H is an invariant subgroup of G then kH/kG is normal.

Proof. Under the given assumption H0 is Gk invariant and Hk is Gk invariant.

Thus, Hk\i is an invariant subgroup of Gk\¡ having lx as its invariant field. It

follows that lx/kG is normal and hence that k"jkG is normal.

It follows from Theorem 4.1 that the converse of the above corollary is not true.

If G = GkG0 and neither Gk nor G0 is trivial then /cG«//cG is Galois whereas Gk is

not an invariant subgroup of G(2). The following example illustrates that the purely

inseparable theory exhibits the same behavior.

Let kx be a field obtained by extending a perfect field by indeterminates xx and

x2. Then {xx, x2} is a p basis for k0. Let yx = xpx'2, y2 = xl'2, and k = k0(yx, y2)

= l<o(yi) ®kokx(y2). Consider the groups Jfcjf of rank p higher derivations

having k0(yx) and k0 as field of constants respectively.

(4.5) Jf is not invariant in Jf.

Proof. Let d={dm,.. .,dip)} and h = {hm,.. .,hw} be higher derivations. Then

„-!={/,«», _/,u>; _/!<2) + [/,(D]2)...} [5, Relation (3), p. 53] and hdh~1 = {dm, da\

dm + [ha\dw],...}, where [ha\da)] = ha)dm-daW\ We choose heJf such

that ha)(yx)=y2 and de Jf such that da\y2)^0 (for justification see proof of

Theorem 4.1). Then dm+[hmdm](yx)= -d^ha\yx)^0 and Mr1 is not in Jf.'

Let G = A(jf) and H=A(Jf). Then k° = k0, k" = k0(y) and k"/kG is normal

modular, whereas H is not an invariant subgroup of G.

References

1. R. L. Davis, A Galois theory for a class of purely inseparable field extensions, Dissertation,

Florida State University, Tallahassee, Fla., 1969.

2. -, A Galois theory for a class of purely inseparable exponent two field extensions,

Bull. Amer. Math. Soc. 75 (1969), 1001-1004. MR 39 #5524.

3. H. Hasse and F. K. Schmidt, Noch eine Begründung der Theorie der höheren Differential-

quotienten in einem algebraischen Funktionenkörper einer Unbestimmten, J. Reine Angew.

Math. 177(1936), 215-237.

4. N. Heerema, Derivations and embeddings of a field in its power series ring. II, Michigan

Math. J. 8 (1961), 129-134. MR 25 #69.

5. -, Convergent higher derivations on local rings, Trans. Amer. Math. Soc. 132 (1968),

31-44. MR 36 #6406.

6. N. Jacobson, Galois theory of purely inseparable fields of exponent one, Amer. J. Math. 66

(1944), 645-648. MR 6, 115.
7. -, Lectures in abstract algebra. Vol. Ill: Theory of fields and Galois theory, Van

Nostrand, Princeton, N. J., 1964. MR 30 #3087.

8. M. E. Sweedler, Structure of inseparable extensions, Ann. of Math. (2) 87 (1968), 401-410.

MR 36 #6391.

9. -,  Correction to: "Structure of inseparable extensions", Ann.  of Math. (2) 89

(1969), 206-207. MR 38 #4451.

Florida State University,

Tallahassee, Florida 32306

(2) The author is indebted to the referee for this observation.


