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THE CLOSED IDEALS IN A FUNCTION ALGEBRA

BY

CHARLES M. STANTON(x),(2)

Abstract. We give a new method of determining the closed ideals in the algebra

of functions continuous on a finite Riemann surface and analytic in its interior. Our

approach is based on Ahlfors' mapping of a finite Riemann surface onto the unit disc.

1. Introduction. Let W be a finite Riemann surface with border I\ Let A(W)

be the uniform algebra of functions continuous on Wv)Y and analytic on W.

In this paper we give a new method for determining the closed ideals of A(W),

and we show that every closed ideal is the closure of a principal ideal. Our results

extend those of Beurling (unpublished) and Rudin [8] for the unit disc. An equiv-

alent description of the closed ideals of A(W) has been obtained by Voichick [11].

Gamelin and Voichick [5] have also proved that every closed ideal is the closure of

a principal ideal.

Voichick uses the uniformization theorem to lift A(W) to an algebra of functions

on the unit disc. He must then deal with the rather complicated boundary behavior

of the uniformizing map. We proceed in the opposite direction, making use of a

theorem of Ahlfors [1] to represent Wu Y as an //-sheeted branched covering

surface of the closed unit disc. All branching occurs on W, thus the Ahlfors covering

mapping is a local homeomorphism in a neighborhood of I\ It is thus possible to

use Ahlfors' theorem to localize the ideal theory of A(W). That is, one need study

only those ideals on whose hulls the Ahlfors mapping is a homeomorphism. Since

Wis an «-sheeted covering of the disc one can use classical techniques to show that

A(W) is an algebraic extension of the corresponding algebra in the unit disc. We

are thus able to apply the ideal theory of the disc algebra to the localized ideal

theory of A(W). Ailing [3], [4] and Stout [9]—further references can be found in

these papers—have made similar use of Ahlfors' theorem to study function theory

on finite Riemann surfaces. (See also Alling's review of Stout's paper in Math.

Reviews 32 (1966), p. 234, review #1358.
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Aside from the existence of the Ahlfors mapping, the function theoretic argu-

ments thus far are either local, or occur in the disc. To describe the ideal theory of

A(W) without mention of an Ahlfors mapping, and to prove that each closed

ideal is the closure of a principal ideal, we find it necessary to do some function

theory on the Riemann surface. Our development is analogous to Nevanlinna's

factorization of functions in the disc.

2. Some function theory. In this section we discuss some of the necessary

function theory, beginning with our generalization of Nevanlinna's factorization.

We can then state our description of the ideal theory of A(W). A brief discussion

of the Ahlfors mapping ends the section. A reference for Riemann surfaces is the

book of Ahlfors and Sario [2].

Owing to the difficulty of defining single-valued analytic functions on W, we

find it more convenient to work with certain harmonic functions in our factoriza-

tion theory. Let G(p, q) denote the Green's function of W with pole at q. We define

a harmonic Blaschke function to be a function of the form

CO

-   ^nkG(p,qk)

where the nk are positive integers and the series converges uniformly on compact

subsets of W~{qk}. If o> is an open interval on Y containing no limit points of the

set {qk}, then we can extend A to a harmonic function on (W u oS)~{qk} by setting

A(p) = 0 on o). More generally, the nontangential boundary values of A are zero

almost everywhere—with respect to harmonic measure—on T. Observe that in

the disc a harmonic Blaschke function is the logarithm of the modulus of a Blaschke

product.

Let H be the complex vector space spanned by the positive harmonic functions

on W. Each function hin H has a unique representation in the form h=q + s where

q is a quasi-bounded harmonic function and 5 is a singular harmonic function.

Now A has nontangential boundary values almost everywhere on F, and we also

denote by A the function these limits define on T. Then

q(p) = L f h(q)dqG(p,q)

where d = d+i*d—d denotes exterior differentiation—and the subscript q in-

dicates differentiation with respect to the second variable. The singular function s

has nontangential limits zero almost everywhere on T with respect to harmonic

measure.

2.1. Theorem. Let f be a bounded analytic function on W. Then there exists a

harmonic Blaschke function b, a singular harmonic function s and a quasi-bounded

harmonic function u such that log \f\=b + s + u. The functions b, s, u are uniquely

determined.
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Proof. For each p in W let np denote the order off at p. Set

b(p)= -ÏG(p,q).
QeW

The function log |/| — b is in 77 and has boundary values log |/|. Let s and u be its

singular and quasi-bounded components. The uniqueness assertion is evident.

This theorem generalizes Nevanlinna's factorization. For let / be a bounded

analytic function in the unit disc and write log \f\=b+s+u as in the theorem.

Take harmonic conjugates of each of b, s, u and exponentiate the resulting analytic

functions. There then arises from b a Blaschke product B, from s a singular analytic

function S, and from u an outer function F such that |/| = |7J| \S\ \F\. Hence

/= BSF up to constant factors of modulus one.

Observe that

u(p) = - f log \f(q)\dQG(p,q)
■n Jr

and that if/is in A(W) then eu= |/| everywhere on Y. Also log \f(p)\ úu(p) on W,

and so s(p)^0 on W. In particular if co is an open interval on Y such that/is

continuous and does not vanish on co, then we can extend both b and ^ to be har-

monic on ü7 by setting them equal to zero there. We call s the singular harmonic

part off.

We can prescribe the Blaschke function and the singular harmonic part of a

bounded analytic function on W. For this purpose a theorem of Wermer [10] is

convenient.

2.2. Theorem. There are functions Zx, ..., ZN, analytic and nowhere vanishing

on W u T, such that if U is a harmonic function on W, there exist real constants

ax,...,aN such that the function U'= U— 2it = i ak log \Zk\ has a single-valued

conjugate V on W.IfU is of class C2 on an open interval on Y then V is continuous

there. If U is harmonic on such an interval, so is V.

Applying Wermer's theorem to a Blaschke function b we obtain a multiple-

valued analytic function whose only periods are of the form 2«7rz around the poles

of b. We exponentiate this function and get a bounded analytic function B with

zeros at the poles of b. The singular harmonic part of 2? is zero, for log \B\

=b — 2 ctk log \Zk\ and each function log \Zk\ is quasi-bounded. Let j be a

nonpositive singular harmonic function and let ßx, ..., ßN be real constants such

that j'=i-2k=i j8fc log \Zk\ has a single-valued harmonic conjugate t'. Let S

= exp (s' + it'). Then S is a nowhere vanishing bounded analytic function on W

whose singular harmonic part is s. Moreover 5 is analytic everywhere on Y that j

is harmonic. The function BS is thus a bounded analytic function on W whose

Blaschke part is b and whose singular harmonic part is ä.
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Let J be a closed ideal in A( W) and let F be its hull; that is E={p e WuT : f(p)

= 0 for every fie J}. We denote the order off at a point p of W by ordp/ and we

define the order of J at p to be

ordp J = min {ord „/ : fie J}.

For each/in J let s¡ be the singular harmonic part of/ The singular harmonic

part s of J is the least harmonic majorant of the family {sf : fie J}. If oj is an open

interval on Y such that there is a function/in J which does not vanish on w, then

we can extend s harmonically to u> by setting s = 0 there. For sf^s^0 and ¿7 = 0

on w.

We can now state one description of the closed ideals in A(W).

Theorem I. Let J be a closed ideal in A(W), let E be the hull of J and let s be

the singular harmonic part of J. Let f be in A(W) and let ss be the singular harmonic

part off. Then f is in J if and only if

(i) f vanishes on E,

(ii) ordp/^ ordp J for all p in W,

(iii)  Sf^S.

Corollary (Gamelin and Voichick [5]). Let J be a closed ideal in AiW).

Then J is the closure of a principal ideal.

Proof. Let s be the singular harmonic part of J and let A be the Blaschke

function

Kp) =-^orûq J-Gip,q).
qeW

According to the remarks following Wermer's theorem there is a bounded analytic

function <J> on W such that the singular harmonic part and Blaschke function of $

are 5 and A. Moreover <t> is analytic on W u (r~F). There is an analytic function

/in AiW) such that/vanishes only on T n F and log |/[ is quasi-bounded. (The

proof of this generalization of Fatou's theorem is analogous to the proof in the

case of the disc.) The closed ideal generated by/<T> is J.

Theorem I is a generalization of the theorem of Beurling and Rudin for the disc.

Let U denote the open unit disc, F the unit circle and D = U u F. Let AiU) denote

the disc algebra. If J is a closed ideal in AiU), we form a Blaschke product B from

its interior zeros, and a singular analytic function S from its singular harmonic part.

For a function/in AiU) conditions (ii) and (iii) of Theorem I are equivalent to the

condition that f/BS be bounded. Hence in the case of the disc Theorem I reduces

to the theorem of Beurling and Rudin.

Theorem (Beurling and Rudin). Let I be a closed ideal in AiU) and let E be

the hull of I. There is an inner function <T> such that a function fin AiU) is in I if and

only iff vanishes on E andpb "x is bounded.
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We shall prove Theorem I by describing the ideal theory of A(W) in terms of

the ideal theory of the disc algebra. Our argument rests on the following theorem of

Ahlfors [1].

Theorem. There is a function f which is analytic on W u Y and which maps W

onto U and Y onto T.

This theorem is also proved in Royden [7]. A function/of the kind described in

this theorem is called an Ahlfors mapping. An Ahlfors mapping has no branch

points in T, thus its branch points form a finite subset of W, and it is a local homeo-

morphism in a neighborhood of Y. An Ahlfors mapping also takes every value

the same number of times.

3. Localization of the ideal theory of A(W). For the remainder of the paper we

let z denote a fixed Ahlfors mapping of W u Y onto D. Observe that z embeds

A(U) in A(W) as a closed subalgebra. A function a in A(U) is identified with the

function a ° z in A(W). Let « be the multiplicity of z, and let 2? be the image under

z of the set of branch points of z. Now z realizes Wu Y as an «-sheeted branched

covering surface of D. Away from z~l[B] this covering is even in the sense that

each point of D~B has a neighborhood Ksuch that z~x[V] consists of« compon-

ents, each of which is mapped homeomorphically onto V. We call such a neighbor-

hood of V evenly covered; note that any connected subneighborhood of an evenly

covered neighborhood is evenly covered.

Let J be a closed ideal in A(W) and let E be its hull. Our plan in this section

and the next is to divide E into a finite disjoint union of closed sets such that z

is one-to-one on all but perhaps one—that one being a finite subset of W. We then

apply the Silov idempotent theorem to show that J is the intersection of uniquely

determined closed ideals with these sets as hulls. In the next section we show that

these ideals can be described in terms of the ideal theory of A(U). We are thus

able to reduce Theorem I to the ideal theory of A(U).

We call a closed subset E of W u Y simple with respect to z if z is one-to-one on

E and z[E] n B= 0. Let 7s be a closed subset of W\J Y. We say that E has a

simple decomposition with respect to z if there are pairwise disjoint closed subsets

E0, Ex, ..., Em of E such that E=E0 u Ex u ■ • • u Em, £0 = £nz_1[fi] and each

of Ex, ..., Em is simple with respect to z. We say that a closed ideal in A(W) is

simple with respect to z if its hull is simple. Let J be a closed ideal in A(W) with

hull E. We say that the closed ideals J0, Jx, ..., Jm form a simple decomposition

of J with respect to z if J=J0 n Jx n ■ • • n Jm and the hulls of the Jk form a

simple decomposition of E, that is, the hull of J0 is z'x[B] n E and Jx, .. .,Sm

are simple ideals with pairwise disjoint hulls. We mention explicitly that we allow

some of the sets Ek to be empty; if Ek= 0 then Jk = A(W).

3.1. Lemma. Let J be a closed ideal in A(W), and let E be the hull of J. Let z be

an Ahlfors mapping of W. Then there is a simple decomposition ofE with respect to z.
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Proof. Let F=z[E]. Then Fis a closed subset of D, F n U is discrete and F r\T

is nowhere dense in F. Each point £ in F n F lies in an open interval I on T such

that the endpoints of / do not belong to F and / is contained in an evenly covered

neighborhood. Finitely many such intervals Iu ...,IP cover FnT and these

intervals may be chosen to be disjoint.

Choose r so that B lies in {(, e D : |£| </•}, F does not meet {Ce D : |£| =r} and

each of the neighborhoods

Vk = {Pe">eD:r < P < l,eieelk},

k=l, .. .,p, is evenly covered by z. For each k= I, .. .,p, let EUk, /= 1, ...,«,

be the components of z_1[Ffc]. Let E0 = EC\z~1[B] and E1 = E~iE0[J [JEjk).

Now Ey is a finite set, and so F0, the sets {p} where p is in Ey, and the sets Ejk n F

form a simple decomposition of £.

Corresponding to each simple decomposition of the hull there is a uniquely

determined simple decomposition of the ideal. This argument depends on the Silov

idempotent theorem, and we prefer to present it in the more general context of

Banach algebras.

3.2. Lemma. Let A be a commutative Banach algebra with identity e, and let S be

maximal ideal space of A. Let Sy, ..., Smbe pairwise disjoint closed nonvoid subsets

of S such that S=Sy^J ■ ■ ■ u Sm. FAen there exist closed ideals /, ..., Imin A such

that

(i) Sk is the hull of Ik, k = 1, ..., m,

(ii) 0 4=0.
Furthermore, ifJy, ..., Jm are closed ideals in A satisfying (i) and (ii), then Ik=Jk.

Proof. Let elt ..., em be idempotents in A such that ex+"■ ■ ■ +em = e and the

Gelfand transform of ek is the characteristic function of Sk. Let Ik = {fe A : fek = 0}.

Then Ik is a closed ideal in A with hull Sk and Ç) Ik = 0.

For the uniqueness we may assume that J^I* for each k because we can replace

each Jk by Ik n Jk. Let /' and J' be the smallest closed ideals in A which contain

I2 u • ■ • u Im and J2 u ■ • ■ u Jm respectively, Then /' and J' have hulls S~Sy.

Since Iy and /'have disjoint hulls and / n F = 0, A=Iy ©/'. Similarly A=Jy ©J'.

Since Jy^Iy and /'<=/' it follows that Iy=Jy. Hence Ik=Jk, k = l, ..., m, by the

same argument.

3.3. Proposition. Let z be an Ahlfors mapping of W. Let J be a closed ideal in

AiW), and let E=E0 U Ey U • ■ • u £m be a simple decomposition of its hull with

respect to z. Then there is exactly one simple decomposition J' = J0 n A n ■ • •

C\ Jmof J with respect to z such that the hull of Jkis Ek,k=l, ..., m.

We obtain Proposition 3.3 by applying Lemma 3.2 to the algebra AiW)/J,

whose maximal ideal space is F, and then using the natural one-to-one correspond-

ence between closed ideals in AiW)/J and closed ideals in A'W) which contain J.
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The fact that the ideals in a simple decomposition are uniquely determined by

their hulls leads to the following remark. Let F be a set occurring in a simple

decomposition of the hull of a closed ideal J, and let JF be the corresponding ideal.

Then JF is the smallest closed ideal in A(W) whose hull is F and which contains J.

4. Proof of Theorem I. The Ahlfors mapping and the Silov idempotent theorem

allow us to apply the ideal theory of A(U) to describe the simple ideals in A(W).

By borrowing techniques from the theory of closed Riemann surfaces, we can show

that A(W) is an algebraic extension of A(U). Indeed for/in A(W) there exist

ax, ..., an in A(U) such that

(1) /"+a1/"-1+---+an = 0

and for £ in D~B, (-l)kak(Q is the kth elementary symmetric function of the

values of /on z-1[£] (cf. Ailing [3]). Equation (1) is determined by its construction

and we shall call it the standard equation for/with respect to z.

Let J be a closed ideal in A(W) with hull E. Let I=Jn A(U). Since A(U) is a

closed subalgebra of A(W), 7 is a closed ideal in A(U). Moreover the hull of 7 is

z[E]. For let F be the hull of 7. Then z[E]<=F. To obtain the reverse inclusion we

let £ be in D~z[E]. Then there is an /in J such that / vanishes at no point of

z_1[£]. Let fn + axf~1+ ■ ■ ■ +an = 0 be the standard equation for/ Then an is in

7 and an(Q^0. Thus £ is not in F, and so F=z[E]. A refinement of this argument

shows that if £ is in F~ B and z_1[£] n E consists of exactly one point p, then

ordp ./=ordc7. We need only choose /not to vanish on z~l[l]~{p} and so that

ordp/=ordp J. Then ordc an = ordp/=ordp J.

Let J be a closed ideal in A(W) with hull E, and let l=J n A(U). Then 7 is a

closed ideal in A(U) with hull z[E]. On the other hand let J be a closed ideal in

A(U) with hull T-'and inner function O. Let ß be the smallest closed ideal in A(W)

which contains J. Then the hull of ß is z~x[F]. Moreover if/is in f, then/O-1

is a bounded analytic function on W. For ß is the closure of the set of all functions

/of the form/= axfx + ■ ■ ■ + amfm where akeJ andfk e A( W). The assertion follows

because /O " * is bounded for each such function / and this property is preserved

under uniform convergence.

The next lemma is the main step in our treatment of simple ideals.

4.1. Lemma. Let z be an Ahlfors mapping of W and let J be a closed ideal in A( W)

which is simple with respect to z. For each fin A(W) there is an a in A(U) such that

f—a ° z is in J.

The following lemma is useful in the proof of Lemma 4.1. It is nothing but the

Silov idempotent theorem stated in an immediately applicable form.

4.2. Lemma. Let z be an Ahlfors mapping of W and let A(U) be embedded in

A( W) by means ofz. Let I be a closed ideal in A(U) with hull F and inner function <I>.

Let E be a closed subset ofz'1 [F] such that z is one-to-one on E and z[E] = F. Let ß
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be the smallest closed ideal in A(W) which contains I. Then there is a function A in

AiW) such that

ii) hip) = 1 for p in E and hip) = 0 for p in z'1 [F] ~E.

(ii) A(l —A) is in f.
(iii) A(l — A)<f»-1 is a bounded analytic function on W.

Proof. The hull of J is z_1[F], so the maximal ideal space of AiW)/ / is z~x[F\.

Now z~1[F]~E is a closed subset of IF u T. (This fact follows from the covering

properties of the mapping z. Its proof is similar to the proof of Lemma 3.2.) Thus

Fand z~1[F}~ E disconnect the maximal ideal space of AiW)//. Hence AiW)//

has idempotents e and l—e whose Gelfand transforms are the characteristic

functions of £ and z_1[F]~£. Let A belong to the coset e in AiW). Then A= 1 on

F and A = 0 on z~1[F]~E. Since e(l -e) = 0 in A(W)/f, A(l -A) is in /. By our

earlier remark, A(l -A)(p_1 is bounded.

Proof of Lemma 4.1. Embed A(U) in A(W) by means of z. Let E be the hull of

J and let l—JC\ A(U). Let <1> be the inner function of/and let # be the smallest

closed ideal in A(W) which contains I. Let A be a function as in Lemma 4.2. Since

A does not vanish on the hull of J, A is an invertible element in the algebra A(W)/J.

InthisalgebraA(l-A) = OforA(l-A)isin/and/c,/. Thusl-A = 0iny4(M/)/J«r;

that is, 1 —A is in J.

We assume first that/does not vanish on F, and we prove that there is a function

a in AiU) such that fih — a is in J. Let the standard equation for/A be

(fih)n + qy(fih)n-1+q2(fihY-2+ ■ ■ ■ +qn = 0.

The coefficients q2, ..., qn belong to /, for there is a relatively open set Vin D and

there are relatively open sets Vlt ..., Vn in W U Y such that z maps each Vk

homeomorphically onto V, F<= Vy and z-1[z[£]]c: V2 u- • -u Vn. We may assume

that A does not vanish on Vy and 1 -A does not vanish on K2 u- • u Vn. Conse-

quently A*-1 is bounded on (V2 u- • -u Vn) n W.

For £ in V let pk be the point of Vk which lies over £. The coefficients c72, ..., qn

are given by the formulas

?a(£) = 2 fiPiVKPUfXPiVKPi)
i*i

«7.(0 = (-irn f(Pi)h(Pi).
i

Thus for each k = 2, ...,«, q$>_1 is bounded on F n U—and so on U—and qk

vanishes on z[E]. Therefore t72, .. .,c7„arein/. It now follows that (fh)n+q1(fh)n~1

is in J. Since/A does not vanish on F, (/A)""1 is invertible modulo J and so fh+qx

is in J.

We have shown that if/does not vanish on E, then there is an a in A(U) such

that fh — a is in J. If/ is any function in A(W) there is a constant a such that/+a
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does not vanish on E. There is an a in A(U) such that (f+a)h — a is in J. Now

(f+a)(l—h) is in J, thus f+a — a is in J. Since a — a is in A(U) the lemma is

proved.

4.3. Proposition. Let z be an Ahlfors mapping of W and let A(U) be embedded

in A( W) by means ofz. Let J and ß be closed ideals in A( W) which are both simple

with respect to z. Assume that J and ß have the same hull, and that Jr\A(U)

= ß r\A(U). ThenJ=ß.

Proof. We may assume that ./<= ß because we can replace J by J c\ ß. We

shall show that ß^^. Let/be in ß. There is an a in A(U) such that f—a is in J

by Lemma 4.1. Then a is in ß C\ A(U), so a is in J. Thus/is in J, and so J1: = ß.

Before applying Proposition 4.3 to Theorem I, we shall need the following

lemma.

4.4. Lemma. Let E be a closed subset of Y of harmonic measure zero and let s be

a nonpositive singular harmonic function on W. Assume that s extends harmonically

to (W u r)~7i. For each f in A(W) let sf be the singular harmonic part off The set

J of all f in A(W) such that s¡~s is a closed ideal in A(W).

Proof. In the notation of Wermer's theorem there are real constants ax, ..., aN

such that s'=s—2 «k log \Zk\ has a single valued harmonic conjugate t' and s' + t'

is analytic on (Wu Y)~E. Let S=exp (s' + it'). Then 5is analytic on (»Tu Y)~E

and |5| = \Zx\ai ■ ■ ■ \Zn\a" almost everywhere on Y.

To say that sffis is equivalent to saying that/5"1 is bounded. This last property

is preserved under sums, products and uniform convergence. Thus the lemma is

proved.

Proof of Theorem I. We first prove Theorem I under the additional assumption

that the hull of J is a finite subset of W. Let </> be a function in A(W) such that </>

is analytic onlfuT, ordp c¡i = ordp J for each// in IK and <¡¡ does not vanish on Y.

Let ß = {f e A(W) :f=g</>~1 for some geJ}. Then ß is an ideal in A(W) with

empty hull. Let J= ß n A(U). Then J is an ideal in A(U) with empty hull, and so

J=A(U). Thus ß = A(W). Therefore J is the set of all functions/in A(W) such

that ordp/äord,, J for each p in W. Since the singular harmonic part of J is

zero, Theorem I is proved under the additional assumption that the hull of J is a

finite subset of W.

We next assume that J is a simple ideal in A(W). Let I=J c\ A(U), and let sx

be the least harmonic majorant of {sf : fe I}. Then sx^s. Let ß be the set of

functions/in A(W) which satisfy conditions (i), (ii), (iii) of Theorem I and the

condition sf¿sx. Then ß is a closed ideal in A(W) with hull £and 1= ß C\ A(U).

Thus J = ß by Proposition 4.3, and so sx = s. Thus Theorem I is proved under the

additional hypothesis that J is simple.

In the general case we let E=E0 u Ex u• • • u Em and J'=J0 n Jx C\- ■ -c\Jm

be corresponding simple decompositions of E and J, and we let sx, ..., sm be the
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singular harmonie parts of J'y, ..., Jm. If f is in J then / is in each Jk and so

srúsk. The sets Ek are disjoint and each sk is a nonpositive singular harmonic

function which is harmonic on W u (r~£fc). Thus the greatest harmonic minorant

of {sy, ...,sm} is Sy+---+sm. Hence s,^Sy-{-\-sm for each / in J, and

S^Sy+---+Sm.

Let / be the collection of all/in A(W) which satisfy (i), (ii), (iii). Then £ is a

closed ideal in A(W) and /c/. If/is in ß then/satisfies (i), (ii), and sf^s^sk

for each k. Hence/is in each Jk and so/is in J.

5. Ideal theory and the Ahlfors mapping. It is of some interest to describe the

ideal theory of A(W) in terms of the Ahlfors mapping as this approach involves a

minimum of global function theory on W. In this section we sketch briefly how

this can be done. Let J be a closed ideal in A(W) and let £ be the hull of J. Our

first task is to construct a positive Baire measure /lonf corresponding to J. We

first assume that J is simple with respect to z. Let I=J n A'U); I is a closed

ideal in A(U). Let v be the positive Baire measure associated with the inner function

of/. Since z maps £ n T homeomorphically onto z[£] n Fand since v is supported

by z[£] n F, it follows that there is a positive Baire measure p. on T with support

in £ n T defined by p.(S)=v[z(S)] for every Baire set Sin En Y.

In the general case let E=E0 u EyU- ■ -u Embe a simple decomposition of £

with respect to z, and let J=J0 n Jy n- ■ -n Jm be the corresponding simple

decomposition of J. Let pk be the measure determined by Jk in the above manner,

and let p = p.y + ■ ■ ■ +pm. Each pk has support in Ek n Y, and so p. is a positive

Baire measure on Y with support in £ n T.

The measure p depends only on J and z, and is independent of the particular

simple decomposition used to construct it. This can be seen by taking a common

refinement of two simple decompositions and applying Proposition 3.3 on the

uniqueness of simple decompositions. The argument is straightforward, although

somewhat tedious, and we omit it.

Let J be a closed ideal in A(W) and let p. be the measure determined by J in

the manner described above. We call p. the measure of J with respect to z. If/is in

A'W) we define the measure off with respect to z to be the measure of the closure

of the principal ideal generated by / Let A be a positive Baire measure on Y and

let v be the measure off with respect to z. We say that /is a multiple of A with res-

pect to z if v ̂  A.

We can now describe the closed ideals of A( W) in terms of z.

Theorem II. Let J be a closed ideal in A(W). Let E be the hull of J. Let z be an

Ahlfors mapping of A(W), and let p. be the measure of J with respect to z. Then J

is the set of functions f in A(W) such that

(i) / vanishes on E,

(ii) ordp/^ordp J for all p in W,

(iii) fis a multiple of p. with respect to z.
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Several preliminary results are necessary before we can prove Theorem II.

5.1. Lemma. Let z be an Ahlfors mapping of W and let A(U) be embedded in

A(W) by means of z. Let I be a closed ideal in A(U) with hull F and assume that z

is unbranched on z~ l[F]. Let Ebea subset ofWuY which z maps homeomorphically

onto F. Then there is exactly one closed ideal J in A(W) such that the hull of J is E

andJr\A(U)=I.

Proof. Let ß be the smallest closed ideal in A(W) which contains 7. Let « be as

in Lemma 4.2. Let J be the smallest closed ideal in A(W) which contains 7 and

1—«. The hull of 7is E, thus J is simple. Each/in J vanishes on E, and/O-1 is

bounded in a neighborhood of E. (Here $ is the inner function of 7.) Therefore

ifaisinA(U) n J, a vanishes on T^andaO-1 is bounded on U. Thus 7=J n A(U).

The uniqueness of J has been proved in Proposition 4.3.

It is now possible to prove that if p. is a positive Baire measure on Y then the set

of functions in A(W) which are multiples of p. is a closed ideal in A(W). It is clear

how this can be done if the support of p, is simple with respect to z. The general

case then follows by taking a simple decomposition of the support of p.

We are now ready to complete the proof of Theorem II. As we have seen in

proving Theorem I, Theorem II is valid under the additional assumption that J

is an ideal whose hull is a finite subset of W. We next assume that J is simple with

respect to z. Let E be the hull of J and let p. be the measure of J with respect to z.

LetI=J n A(U); the hull of 7 is z[£]. Let £ be in z[E] n U and let p be the point

of E with z(p) = l. Then, as we have previously remarked, ordp Jr=ordp 7. Let v

be the measure on the circle defined by v[S] = p.(z~1[S]). Then v is the measure of

the inner function of 7. Let ß be the set of functions/in A(W) which satisfy

conditions (i), (ii), (iii) of Theorem II. Now ß is a closed ideal in A(W). Since

</<= /, the hull of / is E and / is simple. Let J= ß C\ A(U). The data for 7 and

J are the same, thus 7=7. By Proposition 4.3, J = ß.

Finally, let J be an arbitrary closed ideal in A(W). Let E be the hull of./, and

let p, be the measure of J. Let ß be the set of all functions satisfying conditions

(i), (ii), (iii) of Theorem II. Then ß is a closed ideal and J^ ß. Let J = J0 n A

n-'-n/„bea simple decomposition of J. Now ß^Jk, k=0, 1, ..., m, because

the theorem has been established for the ideals Jk. Thus ß^J and ß' = J.

Added in proof. Professor Norman Ailing has called my attention to the following

related paper: B. V. Limaye, Blaschke products for finite Riemann surfaces, Studia

Math. 34 (1970).
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