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TERNARY RINGS

BY

W. G. LISTER

Abstract. We characterize those additive subgroups of rings which are closed

under the triple ring product, then discuss their ¡mbeddings in rings, their representa-

tion in terms of two types of modules, a radical theory, the structure of those which

satisfy a minimum condition for certain ideals, and finally the classification of those

which are simple ternary algebras over an algebraically closed or real closed field.

The ternary version of a Lie algebra, called a Lie triple system, arose in several

contexts and received independent attention as early as 1949. Some general results

on structure and classification can be found in [2], Less attention has been given

to Jordan triple systems, while the associative analog which we study here seems

to have been considered only recently and then in the special form of Hestenes

ternary rings. References to date can be found in [4]. Apart from whatever intrinsic

interest ternary rings may have, the notions of variant and twist [3] provide a

connection with ring theoretic questions which we hope to explore in a sequel. The

present work is concerned with their characterization, imbedding in enveloping

rings, representation, radical structure and finally with semisimple ternary rings

satisfying a minimum condition.

In the development which follows, elementary ring properties and constructions

which readily translate to ternary rings are used without comment. Any standard

results in ring theory used without citation may be found in [1].

1. Identities and imbeddings. Suppose that A is a ring and T0 an additive

subgroup closed under the ternary product tuv = (tu)v. We observe that T§

= {J1ttt'i}, t¡, t{ in T0, is a subring of A, that T0 + T$ = A0 is the subring of A

generated by T0, and that T0 n T% is an ideal in A0. In addition the associativity

of A gives rise to associativity conditions on the ternary product in TQ. A natural

problem is the characterization of such subsystems.

Definition 1. A ternary ring (r-ring) T is an abelian group in which there is

given a ternary product tuv which is left, center and right distributive and satisfies

(1) (tuv)xy = t(uvx)y = tu(vxy).
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A right multiplication pina T-ring Tis an endomorphism in (T, +) for which

(2) (tuv)p = tu(vo).

Left multiplications are defined by

(2) (tuv)X = (tX)uv.

The sets of right and left multiplications in T separately form subrings of the endo-

morphism ring of Tand commute elementwise with one another. Let pxy: t -> txy

and Xxy : t -» xyt.

The identities (1) imply that pxy is a right and Xxy a left multiplication and that

\3) PmPxy  = P(uvx)y = Pu(.vxy)> ^uu^xy =  ''»(yuiO =  "(jeyu)ti-

In particular, the pxy generate a ring P of right multiplications r -> 2 ßWj and the

A^ generate the ring A of left multiplications t -*■ 2 ^W-

Let A' be anti-isomorphic to A and let F=A' ® P, the ring-theoretic external

direct sum. Call the subring E of F generated by all (A^, pxy) the ring of inner

multiplications of T.

The group (T0, +) is made a bimodule for E by setting

(4) t-(X,p) = tP,       (X,P)-t = tX.

A product in T with values in E is given by f-u = (Xtu, ptu). As additive groups let

A = T® E. Define a product in A by distributing the ring product in E and the

products (4). We have

(t-u)-v = (Xtu,Ptu)-v = tuv.

This is the essential observation in verifying that T is imbedded in A in the sense

that there is an isomorphism of Tinto A regarded as a ternary system. We denote

this structure on a ring A by Az. The following properties of the above construction

are all readily confirmed.

Proposition 1. With operations as defined above A = T® E is a ring, E is a sub-

ring, T is imbedded identically in A, E=T2 and, for e in E,

(5) ifeT = Te = 0, then e = 0.

Theorem 1. Let A = T ® E be the ring of Proposition 1, and let -q be an imbedding

ofT with enveloping ring B=Tr¡ + (Tr¡)2. Then

(i) 2 ('ivX'ív) ~* 2 U'tí defines a homomorphism of(Tr¡)2 onto E and

(ii) if T-q n (Trjf = 0   then   r¡* : fn + 2 ('ívX'Ív) -► ? + 2 h ■ 'Í   defines  a   homo-

morphism of B onto A with kernel K-q = {w | we (TV?)2 and w(Tri) = (Tr])w = 0}.

Proof. If 2 (tir¡)(t¡-n)=0then 2 (tiv)(t¡v)(tv) = ^ = l(ht¡t) for every t in T. Since

771T is an isomorphism 2 V/í=0 = (2 «Ví)-«' and similarly on the left. By (5),

therefore, 2 U ■ <*/=0. To verify that the map thus defined by (i) is a homomorphism

of (T-q)2 is routine.
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The hypothesis of (ii) implies that r„ —> t and the map in (i) jointly define on B

a map, necessarily a homomorphism. Clearly the kernel of r¡* is contained in

(F„)2, from which, by (i) and (5), the conclusion follows.

Definition 2. An imbedding -q of the r-ring T is

(i) direct in case (Ft?) n (F7?)2=0 (in direct imbeddings (Tr¡)2 is called the com-

plementary subring of Trf) ;

(ii) standard in case it is direct and (5) holds, i.e. for every w in (Tr¡f, w(Tr¡)

= (Tt])w=0 implies w=0.

Corollary. A standard imbedding exists for every r-ring T, and any standard

imbedding is equivalent to the imbedding of Proposition 1.

Theorem 1 asserts that among the direct imbeddings the standard complementary

subring and the standard enveloping ring are minimal objects. Because r-rings are

defined by an identity, the usual factor construction applies to insure that any

r-ring F has a universal homomorphism into a ring. Since F has a direct imbedding

the universal homomorphism is a direct imbedding.

Whenever convenient an imbedded image of F will be identified with T. Where

specification is necessary, products in the standard imbedding will be denoted by

x ° y. Thus A = T © T ° T denotes the standard enveloping ring with F regarded

as a T-subring, or equivalently as a subring of Az.

A useful description of r-rings is obtained from the observation that if o is an

automorphism of a ring A, if o2 = 1, and if

o _ = {a | ao = — a},       o+ = {a \ ao = a}

then o_ is a subring of A% and o2_<=o+. In order to eliminate purely additive

difficulties we will assume throughout that i-> 2/ is an automorphism of (F, +)

for each r-ring F and that the same holds for all enveloping rings considered. In

particular this makes the connection between r-rings and ring automorphisms of

period two, which we will call reflections, more exact. In the case of standard

enveloping rings the condition on T suffices, as the following summary asserts.

Theorem 2. If A is a ring such that a->2a is an automorphism of (A, +) and if

a is a reflection of A, then ct_ is a r-subring T of A, T2<=o+ andT® T2 is an ideal of

A which is o-invariant. Conversely, ifTis a r-ring such that í —> 2i is an automorphism

of(T, +)andifA = T@T° Tistandard) then fortin F, wz>zF°F, a: z*+w->( —i) + w

is the unique reflection in A with <?_ —T.

Proof. We prove only the second assertion. The map o is readily verified to be a

reflection with T<=o_. If F^ct_ there is a w = 2 U ° *7#0 in <r_ n o+.

0 = 2 2 h ° t[ -> 2 W(20 = 0,   all t in F,

_> 2 Ut'A = 0,       all t in T,

-> 2 h ° «Y = 0>     contradiction.
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2. Homomorphisms and ideals. The elementary theory of r-ring homomorph-

isms duplicates that for rings. In particular, the fundamental isomorphism theorems

hold. Kernels of homomorphisms of a r-ring T are the subgroups U oi(T, +) for

which UTT+TUT+TTU^ U. There are three varieties of one-sided ideals.

Definition 3. A subgroup U oi(T, +) is

(i) a right ideal in case UTT<= U,

(ii) a left ideal in case 7TC/<= U,

(iii) a medial ideal in case TUT<^ U,

(iv) an ideal in case U is right, left and medial.

Any ring A becomes on iteration of its product a r-ring which we denote by A%.

If A is a ring with a 1 then the right ideals of Az are the right ideals of A, while the

medial ideals are the ideals of Az and these coincide with the ideals of A.

If A = T+ T2 is any enveloping ring for T the right ideals in T are the submodules

of T as right T2 modules. An ideal of a given variety in T generates an ideal of a

given variety in A. Some useful basic information on this matter is summarized as

follows :

Proposition 2. Let A = T+TZ. If U is a right ideal in T then UTis a right ideal

in T2 and U+ UT is a right ideal in A. If U is a left and right ideal in T then UT and

TU are ideals in T2. If U is an ideal in T then UT+TU is an ideal in T2 and

U+TU+ UT is an ideal in A.

3. Modules. Two sorts of modules for r-rings suggest themselves. One arises

from the representation of a r-ring T as a r-ring of endomorphisms of an abelian

group. Every enveloping ring for T becomes such a module under right multi-

plication by elements of T, but (T, +) is not naturally endowed with this structure.

The natural operators on (T, +) are the elements of T2. Translating this into a

purely internal form yields a second, more general, type of module.

Definition 4. (i) A (right) T-module is an abelian group M and an abelian

group homomorphism m® t ® t' ^¡-m-t-t' oí M (&T ® Tinto M such that

(m-tx-t2)-t3-ti = m-(ri*3f3)-f4 = m-tx-(t2t3ti).

(ii) A special (right) T-module is an abelian group M and a homomorphism

m <g) t^-mt of M (g) Tinto M such that m-tx-t2-t3 = m-(txt2t3).

The group (T, +) becomes a T-module under t0-t-t' = t0tt', with right ideals as

submodules.

A special T-module X is a module for the universal enveloping ring for T where

x-(tt') = xtt'. Iteration of the action of T on X converts X into a T-module

denoted by Xz. If M is a submodule of Xz then M n MT is a submodule of X

and M+M-T is the enveloping special module of M in X. In the sequel we will

often write xt or mtt' for module operations.

Every T-module M can be imbedded in a special T-module A'in the sense that M

is isomorphic to a submodule of X. To see this let M be a T-module, let
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m o t: t' -> mtt', and let M° F={2 w¡ ° t). Since M ° Fisadditivelyagroupofendo-

morphisms of (F, +), we can consider the abelian group X= M © M ° T.

Proposition 3. Fez* X=M@M°T. The definition im + 2 m¡ ° t) ° t

= m° i + 2 miht converts X into a special T-module in which M and M °T are

imbedded T-modules. For m! in M ° F,

(6) ifm'°T=0,thenm' = 0.

Proof. The action of F on X is well defined, for if 2 f*h ° U = 0 then (2 »J( °tt)°t

= 2 r(w¡ ° ?¡)=0 = 2 Wjiji. The validity of the converse proves the final assertion.

The special F-module identity derives from

(m + 2 Wj o z*¡) o w- ° M2 ° m3 = imuyU2) °u3 + (2 mdiUy) °u2°u3

and

imuyu2) ° u3: t' ->■ imuyu2)u3t',       m ° iuyU2u3): t' -*■ m{uyU2u3)t',

imtUy) ° u2° u3 = (mtUy)u2u3 = mtiuyU2u3).

Since m ° t ° u=mtu, we have at once that A" is a special F-module and that M is

imbedded in X. Clearly M o T is a submodule of Xt. Its relation to M is given by

im o t) o ty o t2 = imtty) o Z*2.

Proposition 3 shows that every F-module has a direct imbedding in a special

F-module. Equivalent imbeddings can generally be identified, and for each T-

module M there is a universal imbedding of which we make no significant use here.

In any direct imbedding MT will be called the complementary submodule. Basic

properties of the imbedding constructed in Proposition 3 are given by the module-

theoretic analog of Theorem 1.

Definition 5. An enveloping special module X (or imbedding) of a F-module

M is called standard in case X=M © MT and (6) holds; i.e., for m' in MT, m'T

= 0 implies m' = 0.

Theorem 3. Every standard enveloping module for M is equivalent to the module

X= M © M ° F of Proposition 3. If Y=M © MT is any direct special enveloping

module, then m + 2 mji -> m + ^m¡° t¡ is a homomorphism of Y onto X with

kernel {m' \ m' e MT and m'T=0}.

Proof. If «2 + 2 Wjii = 0 then m = 0 = ^imiti, hence J<mitit = 0 for every t in F,

whence 2 w¡ ° ¿¡ = 0. Thus a map is defined, and it is clearly a homomorphism.

The element m + 2 m^x is in the kernel if and only if m=0 and 2 ntiU = 0- The latter

is equivalent to 2 wiriz'=0 for every t in T.

It follows that the direct imbedding of Proposition 3 is a standard imbedding

and that any two standard imbeddings are equivalent. In particular we refer to the

standard complement M ° Tfor M. Unless otherwise indicated the action of Fin a

standard special enveloping module will be denoted by x ° t.
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The relation between M and M o F is reflexive in favorable circumstances. We

call a F-module or special F-module completely reducible in case it is complemented

and has no null submodules. The argument in the ring case carries over directly

to show that a F-module is completely reducible if and only if it is a sum of ir-

reducible (nonnull) submodules.

Theorem 4. If M' = M °T and M" = M' *T, the standard complement of M',

there is a homomorphism of MTT onto M" with kernel {m\ me MTT and mTT= 0}.

Proof. If M'T is any complementary module for M' then the homomorphism of

Theorem 3 induces a homomorphism <p of M'Tonto M' * T. But MTT=iM ° T)°T

is such a complement and according to Theorem 3 the kernel is

{m\me MTT and mT = m ° F = 0},

which is equivalent to the assertion.

Corollary. If M is completely reducible then M is a standard complement for

M ° F and X= M © M ° T is a standard special enveloping module for both M and

M°T.

Proof. The submodule MTT has a complement in M which must be null. Thus

q> is a homomorphism of M onto M" whose kernel is a null submodule.

For subsets, Y, Z of a special F-module we use (Y:Z)={t \Zt<= Y}.

Definition 6. The kernel of a special T-module X is (0 : X). The kernel of a

T-module M is KiM)={t \ MtT=0}. A special kernel, as the kernel of a homo-

morphism, is an ideal. The kernel of a module is a left-right ideal.

Proposition 4. If X= M © M ° F then (0:X) = KiM) n K(M o F).

Proof. For X o t = 0 it is necessary and sufficient that M ° t = 0 and M °T° t

= 0. The former is equivalent to MtT=0 and for the latter we have M°T° t

= MTt.
It will be convenient to make use of an easily verified analog of Theorem 2. By a

semireflection in a special F-module X we mean a semi-endomorphism 2 of X with

Ea=l, Sr4!, and with t-> -t as associated automorphism of F. Thus (xt)1¡

= -(xl)t.

Theorem 5. If X is a special T-module for which x->2x is an automorphism of

(X, +) and if'2 is a semireflection of X, then 2_ is a T-module M and M © MT is

^-invariant. Conversely, if M is a T-module for which m-^-2m is an automorphism

of (M, +), if X=M © M °T, and i/E: m + m! -»■ (-m) + m' for m in M, m! in

M o F, then 2 is the unique semireflection in X for which M=E_.

As for r-rings we limit our consideration to modules and special modules in

which x -> 2x is an additive automorphism. Theorem 5 shows that M © M °T

inherits this property from M.
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Theorem 6. A special enveloping module of an irreducible T-module M is com-

pletely reducible if and only if MT^ M ° T. In this case the standard complement

M °T is irreducible and X= M ® M ° T is reducible if and only if M = Yz for some

irreducible special T-module Y, in which case X= Yx @ Y2, K,£ Y and M~M ° T

= YZ.

Proof. If Z=M+MTis any enveloping module, either M n MT=0 or M<= MT,

in which case MT^MTT^M so M =MT and M=\ Yz for some special irreducible

Y. But then the homomorphism determined by mt^>-m°t (Theorem 3) is an

isomorphism of M onto M ° T since M is irreducible. Should Z=M ® MT, let

N be the kernel of the natural homomorphism of MT onto M ° T. Because AT=0,

Z is completely reducible only if tV=0.

Let jVcM»rbea submodule. If A^O, N ° T/0 and N » T is a submodule of

M, hence No T=Mand N^N° T° T=M° Twhich is therefore irreducible. Now

let F be a proper submodule of X and let 2 be the semireflection of X with S _ = M.

If y2=ythen Y=( Y n M)® (Y n Mo T). In case Yn M#0, y=>Mand y=*

follows. By the corollary to Theorem 4 this argument also applies if Y n M o T#0.

We conclude that y2# y. But now y+ YZ. and fn yi are E-invariant sub-

modules of X, from which it follows that X= Y ® yS. The projection of X onto

y along yS is an endomorphism of A'which maps M isomorphically since yE has

no nontrivial ^-invariant subsets. Moreover, the image M' of M in Y must have

M' ® M"Z> = X, and we therefore conclude that Yz s M. By the corollary to

Theorem 4 and the fact that M o T is irreducible, M ° T^ ¡Tt.

Conversely, if M ~ Yz let 95: 2 Ji'i ->■ 2 J* ° U be the natural isomorphism of Yz

onto FjoJ. Then {y+ycp} is a proper special submodule of Yz® Yx ° T, for

(yt+y o t) o t' = (yt) o t'+ytt'=y' ° t'+y't'.

The situation detailed above can be described as follows: if M is irreducible

M ® M o T is E-irreducible i.e. has no S-invariant submodules. A S-irreducible

module is either irreducible or the direct sum of isomorphic, irreducible sub-

modules.

There is no difficulty in establishing the T-module structure of an irreducible

special T-module.

Theorem 1. If X is an irreducible special T-module then either Xz is irreducible or

X=M ® M o T for some irreducible T-module M and M=£YZ for any special

T-module Y.

4. The radical. Definition 6 provides a natural basis for the specification of a

Jacobson radical. In this section we show that with the appropriate definition of

modular, the theory can be developed along expected lines.

Definition 7. The radical R(T) of a r-ring Tis the intersection of the kernels of

its irreducible modules. The r-ring T is semisimple in case R(T) = 0 and primitive

in case it has a faithful irreducible special module.
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From Proposition 4 it follows that F primitive implies F semisimple. Further-

more, R(T) = f] K(M) = fï (AW) ^ *W ° F)) = f] (0 : M © M o F), the intersection

being taken over all irreducible M. But if Af= A/ © M ° F, M irreducible, then by

Theorem 6 either X is irreducible or K(M) = K(M °T) = (0:X) and ÄT(Af) = Ä'(F)

where FT ̂  Af and F„ hence F, is irreducible. This proves the essential part of the

following, the remainder being either immediate consequences or else the direct

translation of applicable ring-theoretic arguments.

Proposition 5. For any r-ring T

(i) R(T) is the intersection of the kernels of its faithful irreducible special modules,

(ii) R(T) is the intersection of the ideals WofT such that Tf W is primitive,

(Hi) RiJ) is an ideal and T/R(T) is semisimple.

Definition 8. A right ideal U of F is modular provided there exist zVi in F

such that {t-tQtyt} = il-t0ty)T^ U.

Theorem 8. A right ideal U of T is maximal and modular if and only if there

exists a T-module M and a nonzero element e of M such that U={t \ etT=0}. A

T-module M is irreducible if and only if M=T— U for some maximal and modular

right ideal UofT.

Proof. Suppose U is maximal and modular. Then T3<£U, where F3 = (2 zy.-rf},

so M' = T— U is irreducible. Let M=M' ° T, choose t0, ty so that (1 —t0ty)T^ U,

and let q>: r-> t+U. Now (?0<p) o ty ° t=(t0tyt)<p=t<p for every t in T, and as a

consequence if w0 = it0<p) ° ty, w0TT=M, i.e. w0 is a generator of M. By Theorem

6, M is irreducible. By Theorem 4, if w>0°i'°r=0 then w0 ° i=0 whence U

= {t | w0ot °F=0}.

Conversely, if U={t | ez"F=0} where e=/=0 is an element of an irreducible M,

then eTT—M and so there exists t0 with ei0F/0, which implies etQT=M. In

particular, et0ty=e for some ty. Nowe ° (t0tit — 0 = (eVi) ° f—e ° t=0=e(tot1t—t)T

for every t in F. The final relation asserts (1 —t0ty)Tcz [/.

To prove the second assertion it remains to consider an irreducible M and non-

zero e in M. The module M ° F is irreducible and has a generator e ° r0. The map

t -»■ ezy is a homomorphism of F onto M with kernel í/={í | eior=0}. But M ° F

is irreducible and M is a standard complement for M °T. Thus ezy=0 if and only

if (e ° t0) o t o F=0, hence £/ is maximal and modular by the first assertion of this

theorem.

Lemma. If U is maximal and modular then (U:T2)={t | F2íc U} is the kernel of

an irreducible module and (U:T2)<^ U.

Proof. Let M be an irreducible module and e a generator for M for which

U={t | erF=0}. Then MtT=(eTT)tT=e(T2t)T, so that MtT=0 if and only if

F2/c u. Because MtT=0 implies etT=0, (U:T2)^ U.
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Theorem. 9. For any r-ring T, R(T) =f) U, U maximal and modular.

Proof. By the lemma D^H (U:T2)=> R(T). If M is an irreducible T-module

K(M) = f] {t | etT=0} over all nonzero e in M where, according to Theorem 8,

these are maximal and modular. But R(T) = C] K(M), M irreducible, so /?(T)=> f) U,

U maximal and modular.

Definition 9. A right ideal F of a r-ring T is (right) quasiregular whenever v

is in (1 — vt)T for every v in V and t in T.

The quasiregular condition is equivalent to (1— vt)T=T for all v in V, t in T.

We simply note that if v is in {<*' — vtt'} so is vtt' and therefore also t '.

Theorem 10. The radical R(T) is quasiregular and contains every q.r. right ideal.

Proof. Should R(T) fail to be q.r. then U0 = (l —r0t0)T is a proper right ideal

for some r0 in R(T) and t0 in T. By definition U0 is modular. No proper right ideal

containing U0 has r0 as a member, and by a Zorn argument the set of right ideals

containing U0 and excluding r0 has a maximal element which must therefore be a

maximal and is necessarily a modular ideal U. But U=> R(T) and the hypothesis is

therefore contradicted.

Now suppose the V is q.r. that M is an irreducible T-module but that Kd: K(M).

Choose ein M and v0 in F so that ev0T^0. Because M is irreducible ev0T= M and

a t0 exists for which e7y<)=e- This and the fact that Fis q.r. imply the contradicting

conclusion e(v0tot — t)T=0 = eTT.

The preceding theorems provide a basis for the straightforward derivation of

T-ring analogs of many results concerning the radical of a ring. Some are immediate,

for example the right-left symmetry of the radical. Others, however, fail fundamen-

tally. A right ideal which is nilpotent in the obvious sense need not be in the radical

as we shall see from an example. An efficient way to read off certain properties of

the r-ring Tis to relate R(T) to the radical R(T+ T2) of enveloping rings, a matter of

interest in its own right. The main theorem is separated into three lemmas:

Lemma A. IfA = T+T2 is any enveloping ring for T then R(T)<= R(A).

Proof. Let X be an irreducible ^(-module with kernel K(X). By restriction X is

a special T-module which is irreducible since T generates A. If r is in R(T) then r

is in the kernel of this module by Proposition 5. Thus r is in f) K(X), over all

kernels of irreducible ,4-modules, and this is R(A).

Lemma B. If A = T®T2 then R(A) n T<=R(T).

Proof. If r is in R(A) n T then rT^R(A) so (1 -rt)A=A for every t in T. But

since (1 -ri)TcTand (l-rt)T2^T2, (1 -rt)T=Tand r is in R(T).

Lemma C. IfA = T®T2 then R(A) n T2 = R(T2).

Proof. If r is in R(A) n T2 then (1 —rtt')A = A for every t and ?' in T, which

implies (l-rtt')T2 = T2, i.e. rtt' is in R(T2). But {tt'} generates T2 and therefore

rT2^R(T2). This last implies [1, p. 9] that r is in R(T2).
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If w is in R(T2) then (1 -wtt')T2 = T2 for every t and t' in T. Letting r=wt we

conclude that U=(l -rt)T is a modular right ideal in T. But then UT=T2 and

UTT=T3^U, hence t'-u+rtt' is in {/ for every t' in T, and therefore U=T

=(\-rt)T. Now each of the following implies its successor: rT<= R(T)^R(A),

rA^R(A), r in R(A); wT<=R(A), wAcR(A), w in R(A).

Theorem 11. IfA = T®T2then R(A) = R(T) ® R(T2).

Proof. Because the reflection a in A with <j_ =T preserves quasiregularity R(A)

is a-invariant and R(A) = R(A) n T © R(A) n T2. The conclusion now follows

from the lemmas.

Theorem 11 has the consequences listed below. The first two are immediate.

To obtain the third suppose that A = T@T°T and B=U® (UT+ TU). Using the

property R(B) = R(A) n B [1, p. 10], and noting that U® U2 is an ideal in B, we

infer

R(U) = R(U® U2)nU = R(B) n (U® U2) n U

= R(B) nU = R(A) nBnU

= R(A) n U = (R(T) ® R(T2)) nU = R(T) n U.

Corollaries. (1) IfA = T®T2 and T is semisimple then R(A)^T2 and R(A)

={a | aT=0}.

(2) // T is semisimple then A = T@T2 is semisimple if and only if A = T®T°T

is standard.

(3) If U is an ideal in T then R(T) n U=R(U).

5. Examples, (a) Let Xx, X2 be vector spaces over a division ring A and let

T=T(XX, Y2) = HomA (Xx, X2) ® HomA (X2, Xx). Set X=XX ® X2 and regard T

as a subset of A = HomA (X). With the operations induced from A, Tis a r-ring and

T@T2 = T@ToT=A. Let t/12 = Hom (Xx, X2) and U2X = Horn (X2, Xx). Then

UX2 and U2X are left-right ideals in T with U22 = U22x=0. Since ^ is simple and

semisimple, T is simple (T3/0 and T has no proper ideals) and semisimple. If Xx

and X2 have finite dimensions nx and «2 then Tcan be identified with the r-ring of

all nx + n2 by nx + n2 matrices with zeros in disjoint nx by nx and n2 by n2 square

submatrices on the diagonal.

In the natural way Xx is a T-module and X= Xx® Xxo T. Clearly, X is a faithful

special T-module, in fact, K(XX) = X2 and K(X2) = XX.

(b) In example (a) let X0 be a subspace of Xx and take

T0 = {t\ teTand X0t = 0}.

Then T0=U0® U2X where C/0 = {i | t e UX2 and A^O}. We find that

R(T0) = {t\teU2X and X2t c ^o}.

In   this   case   we   still   have   T0 © T2 = T0 © T0 o T0   so   that   /?(T0©Tf) =

R(T0) ® (T0R(T0) + P(To)Tq). However, in terms of modules we find A=X2 © A^To
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but Xy = X2T0 is not a standard complement for X2 if Xo^0. For every x2 in X2

and t in R(T0), x2t0Tc:X0T0=0. But if x2^0 there is a r0 for which x2t0=£0.

(c) Let <1> be a field and let A0 = <t>*[u, v] be the ring of polynomials with zero

constant term. The automorphism o of A0 which fixes O and for which uo= —u,

vo=—v determines the r-subring T0 = $>t [u, v] consisting of odd polynomials.

Clearly Tl = <$>%[u, v], the ring of even polynomials. Let B0 = uvA0, observe that B0

is à-invariant and set

A = A0/B0 = (TQ/uvT0) © (n/uvn) = T@T2

where F= T0/uvT0. Evidently, if x and y denote the cosets of u and v respectively,

then F has basis {x2k~1,y2k~1}, T2 has basis {x2k, y2k, xy} and the multiplicative

relations derive from x2y =y2x = 0. This means that F has ideals <DÎ [x], O* [y] and

F= Ot [x] © «it [_v], so that, as the sum of semisimple ideals, F is semisimple. On

the other hand W={axy}, a in <D, is R(T2).

Theorem 11 does not settle the relation between R(T) and R(T+T2) in case

T+T2 is not direct. In certain cases the crucial Lemma B holds and this implies

Lemma C and Theorem 11. For example, if T=T2 = A% for some ring A or if

R(T+T2) is nil then R(A) n F<= R(T). We have no example to show that the

general form of Lemma B fails.

6. Special types of r-rings. A r-ring cannot contain an identity but certain

r-rings generate identities in the sense defined below. This determines the ternary

version of inverse. The ternary form of commutativity is clear.

Definition 10. (i) A r-ring is commutative in case it satisfies tuv=utv=uvt.

(H) A r-ring F admits an identity provided there exist elements {e¡, e[} such that

2 <?i^!f = 2 texe\ = t for every t in T.

With the above usages as a basis the definitions of inverse, r-division ring, and

r-fleld are obvious. If F admits an identity specified by {et, e'i) then a module M

for F is unital provided 2 mefi'i = m identically in M. A summary of elementary

properties follows.

Proposition 6. (i) If T admits an identity, then every enveloping ring for T has

an identity, and if some A = T@T2 has an identity then T admits an identity.

(ii) If'T admits an identity, its standard enveloping ring is universal and T2 ~ T ° T

in every enveloping ring.

(Hi) If T admits an identity, the standard enveloping module of every unital T-

module M is universal and MT1^ M °T in every enveloping special T-module.

(iv) If T is commutative, so is its standard enveloping ring, and T is commutative

if it has a commutative enveloping ring.

(v) If T is a r-division ring, then T2 is a division ring in any enveloping ring.

(vi) If the standard enveloping ring ofT is a division ring, then T is a r-division ring.

Proof. The first assertion in (i) is immediate. Suppose then that e = e++e_ is

an identity in A = T® T2. For t in Fwe have et = e+t+e„t = t, hence e+t=t and
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e_r = 0. This implies e_/l = 0 which with e_e = e_ implies e_=0 and e = e+

= 2 eie'i f°r suitable {e¡, e[} in T. As for (ii) note that if A = T+ T2 has an identity

then it has no left or right annihilators. In particular by Proposition 1 and part (i)

of Theorem 1 the kernel of the canonical homomorphism of T2 onto T° Tis zero.

By part (ii) of Theorem 1 the kernel of the canonical homomorphism of any

T@T2 onto T © T ° T is also zero.

To verify (ii) suppose that M is unital and Y=M+MT. Then MT is unital for

/fít(2 £¡£¡) = 2 m,(eied = WŒ teie'd ~ mt-

As a consequence Y is (special) unital and the result now follows by consideration

of the canonical homomorphism of Theorem 3 and the canonical homomorphism

2 Wjij —> 2 rn¡ o f¡ of any MT onto M ° T.

To establish the first part of (iv) it is sufficient to prove that every element of T

commutes with every element of T2, which is obvious, and that the elements of T

commute. But (uv — vu)T=T(uv — vu) = 0 identically in T, which in the standard

imbedding implies uv=vu.

For (v), if T is a r-division ring it has no proper one-sided ideals. Moreover if

W^O is a right ideal in the nonnull ring T2, then UTis a right ideal in T, hence

WT= T and WT2 = T2=W. Thus T2 is a division ring. The final property (vi)

requires only the observation that the inverse of an element of T must also be in T.

The limitations in (iv) and (v) above are necessary. In particular a r-division ring

may have an enveloping ring which is not a division ring. The following pair of

examples are instructive. Let 1, i,j, k be a standard basis for the division algebra of

real quaternions. The space spanned by j, k is a r-division ring with the complete

ring of quaternions as enveloping ring. On the other hand, using matrix unit nota-

tion, consider the subspaces of the algebra of 2 by 2 real matrices spanned by eX2 — e2X

and exx — e22. This is a T-division ring with the full ring of matrices as enveloping

ring. In both examples T2 is the complex field.

The radical theory of commutative r-rings appears to lack novelty. We give one

example of an expected result, using the appropriate notion of subdirect sum [1,

p. 13].

Theorem 12. Every semisimple commutative r-ring is a subdirect sum of r-fields.

Proof. Let T be such a r-ring and A = T@ToT. Because A is commutative and

semisimple (corollary of Theorem 11), A is a subdirect sum of fields Fa, with each

of which there is given an epimorphism «: A -*■ Fa. Clearly these maps imbed Tin

the complete direct sum U of the r-rings Ta = Ta. Since Fa = Ta + T2 and Fa is

simple, either Ta = T2 and Ta is the r-field of a field or Fa = Ta © T2 and Ta is a

r-field by (vi) of Proposition 6.

If M is a T-module, Definition 4(i) implies that the maps m -> 2 mtih form a ring

of endomorphisms of (M, +). It is natural to take the centralizer of this subring as
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the centralizer H(M) of M. Of course H(M) is a ring and if M is irreducible H(M)

is a division ring. In order to recover the r-ring structure it is necessary to imbed

M in a special T-module and to use the natural definition of the centralizer H(X)

of a special F-module X.

Proposition 7. If X= M © MT and if o is the semireflection of X determining

M then

(i) o*: y -> ayo'1 is a semireflection in the ring HiX),

(Ü) o*_={y | My^MTand(MT)y^M},

(Hi) o*={y\ My^M and (A/F)y<= MF}, and

(iv) ifMT^ M o T then o* s HiM).

Proof. Only (iv) requires more than a simple check. Suppose then that y0 is in

HiM). Clearly if y0 extends to an element y of HiX) that extension is unique. But

if MT= M o T then the definition y: 2 w» ° f> ~^ 2 (m\Y<A ° h of y on M o F is

unambiguous and together with y0=y on M defines an element of H(X).

Even if (iv) holds it may occur that o*_ © (o*_)2#H(X). If, however, M is ir-

reducible then the nonzero elements of o*_ are isomorphisms of M and M ° T so

that either o* = 0 (in example (a) of §5 take M=XX and dim A^dim X2) or aï. is

a r-division ring and its standard complement is o% =(o*_)2^H(M).

7. Nonstandard imbeddings and primitive r-rings. According to Theorem 3 a

nonstandard complement MT for a F-module M is distinguished by the fact that

2 mdi -> 2 Wi ° í¡ is a proper homomorphism. Application of this to the regular

representation of F in any enveloping ring provides a connection with comple-

mentary subrings. In general it is easy to produce examples of either (see examples

(b) and (c) in §5). The ready examples do not, however, exhibit a nonstandard

complement for an irreducible submodule of a faithful irreducible special module.

From Theorem 7 it follows that if X= M + MT is faithful and special-irreducible

then MT^M o T. The question is the following: Can M have other imbeddings? If

F admits an identity the answer is negative (Proposition 6 (Hi)) and in §8 we will show

this applies to primitive r-rings satisfying a chain condition. It can also be shown that

the answer is negative if Fis commutative. Thus an example for which the answer is

affirmative not only sheds light on the structure of H(X) (Proposition 7) but has

independent interest as well.

Let F be a vector space over a field <T? of characteristic 0 with a countable basis

e0, ey, .... Let «be the linear transformation defined by e0u=0, e,u**iei+1, i=l, 2,

... ; and let v be given by eov=0, eiv=ei.1, /—1, 2, .... Let A = <I>*[u, v] be the

algebra strictly generated by u, v. In the space V- [eQ] = V, u and v induce maps

w and v which generate the homomorph A of A. We assert that if F is the r-ring

generated by u, v then A = T® T2. Moreover the subspaces K1 = [e1, e3, es, ...]

and V2 = [e0, e2, eit ...] are F-modules with V2= VyT. Since eoT=0, VXT is not

standard, yet Vx is irreducible and V^ Vy © V2 is a faithful special F-module.
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What requires proof is that Vx is irreducible and that V is faithful. The key

properties are:

(i) The set {vku1}, k^O, /SO (v°ü° = 1), is a basis for 2 and {irV}, k^O, 1^0, is a

basis for A, provided we take v°u° = w, where ^^ = 0, exw = ei, i= 1, 2, .... Thus

the canonical homomorphism of A onto A is an isomorphism and V is therefore a

faithful ^-module.

(ii) The formulas

i([(k+l)v*-1Ük-ükÜk+1] = aikëk+x

and

eiKfe-i)«?*-1«*-2-^«*-1] - ßikek-x

hold, where aik = (k + l)\8ik and /3ifc = (A:-l)!8ifc.

This implies that A contains all linear transformations whose matrices have

finitely many nonzero entries and thus that A is dense.

8. Semisimple r-rings with minimum condition. As for rings, the condition that

every set of right ideals in a r-ring has a minimal element is equivalent to the

nonexistence of infinite, properly descending chains of right ideals. We call these

rings and r-rings Artinian. In general, however, an enveloping ring of an Artinian

r-ring need not be Artinian. For semisimple r-rings the situation is otherwise and

the structural implications are strong.

Theorem 13. A r-ring T is semisimple and Artinian if and only if its standard

enveloping ring A is semisimple and Artinian.

Proof. Let A = T®ToT. By Theorem 11 if A is semisimple so is T, and any

properly descending chain of right ideals of T generates (in any direct imbedding)

a properly descending chain of right ideals in A.

Suppose then that Tis semisimple and Artinian. By the corollary to Theorem 11

A is semisimple. The Artinian condition implies that any intersection of right ideals

of T is a finite intersection. Let Ux, .. .,£/*„ be maximal modular right ideals of T

for which 0 = P| U¡. Each U¡ generates the modular right ideal Ut+U(T of A, and

every proper modular ideal of A is contained in a maximal modular ideal B¡ of A

[1, p. 6]. From Bx n T= Ut it follows that (f) B¡) n T=0. Let a be the reflection in

A with a_ =T. We write B" for Bo.

[(C) Bt) n T]° = (f| Bf) n T = 0   and   Bf a U,.

As a consequence ii B=(~)Bi then Ba = f\Bai and B r\ Ba n T=0. Since fini'

is à-invariant B n B"^T2, consequently (B n Bc)T=0, and by the semisimplicity

ofA, BnB° = 0.

This last relation shows that 0 is a finite intersection of maximal modular right

ideals of A. Assuming this intersection irredundant we construct a composition series

for right ideals : A => Bx => Bx n B2 => • • •. But any operator-group with a composition

series is Artinian.
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Corollaries. If T is semisimple and Artinian :

(1) T admits an identity.

(2) A is universal for T and every enveloping ring of T is semisimple and Artinian.

(3) In any enveloping ring for T, T2^T °T.

(4) Every homomorphic image of T is semisimple and Artinian.

The first assertion follows from the fact that every semisimple Artinian ring has

an identity. Proposition 6 (ii) gives the next two, and the last follows from the

corresponding property for A.

Theorem 14. If T is semisimple and Artinian, then

(i) T2 is semisimple and Artinian,

(ii) every unital T-module is completely reducible,

(Hi) T is the direct sum of a finite number of minimal right ideals, and

(iv) F is the direct sum of a finite number of simple ideals.

Proof. Theorem 11 asserts the semisimplicity of F o F and the corollary above

extends this to any T2. The ring T2 is Artinian since every properly descending

chain of right ideals in F2 generates such a chain in A = T© T2, which is Artinian

by Theorem 13. The assertion (ii) follows from the observation that a unital T-

module is a unital F2-module with the same submodules. Application of (ii) to F

as a F-module shows that F is the direct sum of minimal right ideals, necessarily

finite since Fis Artinian.

The final property can be obtained by using the fact that A = Ay ©• • •© An,

where A is the standard enveloping ring for Fand each A¡ is a simple ideal. Let a

be the reflection in A with T=o_. If Aio=Ai- let F, be r-ring corresponding to

o\At. If A¡ is not à-invariant let B¡ = Ai © A,o and let Ft be the r-ring corresponding

to o\B¡. In the first case any proper ideal in F¡ generates a proper ideal in At; hence

F¡ is simple. In the second case we need to observe that this proper ideal is o-

invariant and that B, is a-simple in the sense that it has no proper a-invariant

ideals. Thus, again, F¡ is simple. Clearly the F{ are ideals in F so that Fis the direct

sum of the distinct F¡.

The argument above gives more than is claimed in Theorem 14. It shows that

simple Artinian T-rings are of two types. These can be characterized very simply

in the manner suggested by Theorem 6.

Theorem 15. If T is simple and Artinian, then either

(i) T^ B% for some simple, Artinian B and A = T@T°T is the direct sum of two

simple ideals isomorphic to B, or

(ii) TjkBt for any B and A is simple.

Proof. The proof of Theorem 14 shows that the simplicity of F is equivalent to

the a-simplicity of A. Suppose that A is a-simple but not simple and B is a proper

ideal. Since B n Bo and B+Bo are a-invariant ideals, A = B@Bo. If <p is the

corresponding projection of A onto B, then <p|Fis a monomorphism which must

be an isomorphism of F and Bx because F generates A.
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Conversely if T^ Bz for some simple B then T is simple. For if U is a right ideal

in Bz, [/=> UBB= UB. Furthermore the simplicity of B assures that an isomorphism

¡/j of T and Bz is extended uniquely to an epimorphism from A to B by

Í + 2 W/^ *H2 (íirMV),
and the kernel of this map is a proper ideal in A.

One consequence of the preceding results is that up to isomorphism T2 is inde-

pendent of the imbedding, and we will therefore refer to the ring T2. Example (a)

in §5 shows that for a simple, Artinian T the corresponding T2 is not necessarily

simple. Example (a) exhibits, however, the only other possibility.

Theorem 16. If T is simple and Artinian, then either

(i) T has no proper right-left ideals and T2 is simple or

(ii) T has precisely two proper right-left ideals Kx, K2 and KXK2, K2KX are distinct

simple ideals in T2 such that Kf = KI = 0 and T=KX © K2, T2 = KXK2 ® K2KX.

Proof. Suppose first that Thas a proper right-left ideal Kx. Let M=T—KX as a

right T-module, and set K[ = {t \ MTt = 0}, K2 = {t\ MtT=0}. (See Definition 6 and

Proposition 4 of §3.) Then K'x={t\ T2t^Kx}=>Kx and K2 = {t\ TtT^Kx). Now

K'x n K2 is an ideal, and ii K[ = T then T3^KX, which contradicts T3 = T. We

conclude that K'x n A"2 = 0. Furthermore K'x is completely reducible as a left module

by Theorem 14 and therefore K'x=L ® Kx. But T2K'X^KX and thus T2T = 0 which,

by the semisimplicity of T, implies L = 0.

From M(TKxT)T<^MTKx = 0 it now follows TKXT^K2 and, symmetrically,

TK2T^KX. But then KfT^Kx n A:2 = 0 and so K?=K$=0. In T2, KXK2 and K2KX

are ideals and T2 = (KX + K2)2 = KXK2 + K2KX. The fact that

(KXK2 n K2KX)KX = (KXK2 n /V,^)^ = 0

implies A'jA'a n K2Kx=0. Finally, the ring KXK2 is simple for if IF is a proper ideal

in KXK2, WT<^KX, TWç=K2 and WT+TW is an ideal in T. This argument also

shows that if T2 is not simple T has a proper right-left ideal.

Finally we verify that KXK2T=KX and K2KXT=K2. But since the only proper

ideals of T2 are KXK2 and K2KX, we have for any proper right-left ideal L of T

either KXK2T=L or K2KXT=L. TbusL = Kx or L = /T2.

Theorem 17 describes the way in which the classification of structure given in

Theorem 16 reflects in representations.

Theorem Yl.IfT is simple and Artinian a necessary and sufficient condition that

all irreducible T-modules be isomorphic is that T have no proper right-left ideals. If

T has proper right-left ideals Kx, K2 then these are the homogeneous components ofT

as a right T-module, and consequently T has precisely two nonisomorphic irreducible

modules.

Proof. Let M be an irreducible T-module. Since T is completely reducible as a

right T-module, Ms T— t/s V where U is a maximal and V a minimal right ideal.
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Let Ky = 2 Ua over all Ua s V as right F-modules. For w0 in F o F, the map t -*■ w0t

is an endomorphism of F as a right F-module and hence maps Ky into itself. Thus

T2Ky<=Ky so that Ky is a right-left ideal. As a consequence all irreducible F-

modules are isomorphic if and only if Ky = T.

In case Ky^T, by Theorem 16, T=KX © K2 where Ky, K2 are the only proper

right-left ideals in F. It follows that K2 is the homogeneous component of its

minimal right ideals and since any minimal right ideal is a direct summand it is

isomorphic as a F-module to a submodule either of Ky or K2.

Observe that if T=AZ then F has no proper right-left ideals, for since T2 = T,

every right-left ideal is an ideal.

9. Simple ternary algebras. To complete the results in the preceding section we

sketch the classification of those simple, Artinian ternary rings which are algebras,

in the obvious sense, over an algebraically closed field or the real (actually any

formally real closed) field.

Suppose then that F is a finite-dimensional simple ternary algebra over P, an

algebraically closed field. Place Fin class I if it has a nonsimple standard enveloping

algebra. By Theorem 15 this class consists of the ternary algebras of n by n matrices

(Pn)T. If Fis not in class I put it in class II, consisting of these F with simple standard

enveloping algebras. Classes I and II are disjoint and exhaustive, again by Theorem

15.

According to Theorem 2 each F in class II is the ternary algebra o_ for some

reflection a of a simple ternary algebra A. It is easily verified that o_ ^o'_ if and

only if a and a' are conjugate in the automorphism group of A. In the case at hand

the simple algebras are the Pn and the automorphisms are all inner, i.e.

o: x -*■ s~1xs for some nonsingular n by n matrix s. The condition o2=I is equiv-

alent to s2 = al, a in P. Choose ß in P with /32ce= 1. The automorphism of Pn

determined by s' = ßs is also o and (s')2 = I. The matrix s' is similar to a diagonal

matrix j(r) = diag (1, ..., 1, — 1, ..., —1), where r denotes the number of ones.

Since the corresponding <r(r) is a conjugate of o, class II consists of the ternary

algebras F<r> consisting of all matrices

0r     I    (<%)
-1-.

_ («a) j on_r _

By restricting r to 1 árá [n/2] we assure that no two of the F<r> are isomorphic.

In order to classify the simple real ternary algebras we need to recall that the

simple real algebras fall into three classes.

A. The matrix algebras On, 4> the real field.

B. P„, P the complex field.

C. A„, A the division ring of real quaternions.

The automorphisms of the algebras in A or C are all inner, but these in B have

additional automorphisms of the form x -> s~xxs.
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As before let class I consist of the ternary algebras (<&„)„ (P„)j, and (An)t. Let

class IIA designate those with some <!>„ as enveloping algebras. Suppose then o is a

reflection in 3>n given by x^-s~1xs; where s2=al. If a>0 we may proceed as

before to replace s by an s' with (s')2 = l. The reflections produce the ternary

algebras F<r)(<t>) of real matrices. If a < 0 the matrix j may be replaced by an s' with

(s')2= — I. In this case n = 2m and every such matrix is similar to the following

matrix.

0    \lm

_ -/» ¡ o

This implies that o _ is isomorphic to the ternary algebra U consisting of all

matrices.

x ¡   y
—i-

y I —x

To determine the ternary algebras of class IIB, those with some Pn as enveloping

algebras, we first observe that the inner automorphisms give rise to the ternary

algebras F(r,(P). The automorphisms x-^s'^xs can be identified with the con-

jugate-linear reflections of the algebra of linear transformations in an «-dimensional

complex vector space V. If o is such a reflection then (using capitals for maps on V

and small letters for elements of V) o: A"->- S~1XS for some conjugate-linear

transformation S and all linear transformations X in V. Again, S2 = XI for some

complex A. Letting aS: x -*■ (ax)S and sa: x —> a(x5), c-linearity becomes 5S=Sa.

Thus (aS)2 = äaS2 so that S may be replaced by aS for any a > 0. Furthermore

S3 = SX = XS=XS so that A is real. It follows that a c-linear transformation 5

determining o may be chosen so that either S2 = I or S2= —I.

In case S2 = I we have V= Vx © V_y where V1 = {x + xS} and V_y = {x-xS};

consequently S has a diagonal matrix sw. Now regard S as a linear transformation

in V over <I>; and choose a basis elt ..., en, iey, ..., ien for V over 5> such that the

matrix of S (in V) relative to eu ..., en is sm. The matrix of S in V over O is

determined by (iek)S= —i(ekS), and the linear transformations in F have matrices

characterized by (iek)X=i(ekX).

From this information it is possible to get an explicit matrix representation of

each real, simple ternary algebra which belongs to Pn via an automorphism of the

class under consideration. The result is that each is isomorphic to one of the

ternary algebras T{£ where F^r> denotes the set of n by n complex matrices having

the form

¡Xy |   X3

Xt I iX2
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where each Xt is real and Xx is r by r. Again redundance is elimintated by requiring

0úrú[n/2].

In case S2= —I we note that there are no one-dimensional spaces invariant

under S since xS=Xx implies xS2 = (Xx)S=XXx= — x. Thus for any *#0 in V,

{x, xS} spans a two-dimensional S-irreducible subspace. It follows that V is the

direct sum of such spaces and consequently that n = 2m is even. There is a basis

ex, ..., en for V such that ekS=ek+m, ek+mS= -ek, k= 1, ..., m. As before, con-

sider Fas a real space, S as a real linear transformation, and extend the given basis

to a basis ex, ..., en, iex, ..., ien for Kover i>. An isomorph £/* of ct_ can then be

exhibited in matrix form. In terms of complex matrices it consists of all

' X\   Y '

Y\ -X

where X and Y are m by m.

It remains to describe class IIC, the set of simple, real ternary algebras with

the real algebras A„ as enveloping algebras. As before we may suppose that o is a

reflection determined by a linear transformation S in an «-dimensional vector

space V over A and that either S2=Ior S2=-I. In the first case S has a diagonal

matrix and cr_ is therefore isomorphic to the ternary matrix algebra T<r>(A).

In the second case let 1, i, j, k be a standard real basis for A and let P be the

complex subfield spanned by 1, i. Regard S as a linear transformation in the com-

plex space VP. The decomposition 2x=(x+ix)-h(x—ix) produces a decomposition

into characteristic subspaces: Yl,= Vi® V_t. Since the map x-> jx induces a

nonsingular semilinear transformation of Vi onto V_u any basis ex, ..., en for Vt

produces a basis ex, ..., en,jex, .. .,jen for VP. It follows that ex, ..., en is a basis

for F relative to which S has matrix //, and that if T=o_ then Tis isomorphic to

the real ternary algebra T$.0)(A) of all n by n matrices with entries in the space

spanned by j, k.
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