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THE THEORY OF />SPACES WITH AN APPLICATION

TO CONVOLUTION OPERATORS!1)
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Abstract. The class of p-spaces is defined to consist of those Banach spaces B

such that linear transformations between spaces of numerical ¿„-functions naturally

extend with the same bound to ß-valued ¿„-functions. Some properties of p-spaces

are derived including norm inequalities which show that 2-spaces and Hubert spaces

are the same and that ^-spaces are uniformly convex for 1 <p< ». An ¿,-space is a

p-space iff/>ë<7=i2 or p^q^2; this leads to the theorem that, for an amenable group,

a convolution operator on Lp gives a convolution operator on Lq with the same or

smaller bound. Group representations in p-spaces are examined. Logical elementarily

of notions related to /»-spaces are discussed.

0. Introduction. Let R designate the field of real or complex numbers. We

denote by 38 the category whose objects are complete normed linear spaces over

R and whose morphisms are the bounded i?-linear transformations of norm f£ 1.

Thus 38(B, C) is the unit ball of HOM (B, C), the latter being the Banach space

of all bounded .R-linear transformations from B to C. The endofunctor

C i-> HOM (B, C) has a left adjoint A h> A <g> B. In more concrete terms, the

tensor product may be viewed this way: each element t e A ® B has a representa-

tion r=2f an <8> bn where {an}<=A, {bA<^B and ||r|| ̂ 2 IM ¡M <°o, indeed ||/||

is the infimum of 2 ||«n|| ||èn|| taken over all representations. The concrete viewpoint

is given only as a heuristic crutch.

Suppose (/x) is a measure space and 1 gp<co. There is an obvious endofunctor

Lp([i; ■) of the category 3# and a natural epimorphism

eP(p): Lv(ji; R) <g> • -^ LAß.; ■).

Suppose that iv) is also a measure space and y: Lpí¡jl; R) -> Lv'v; R) is a morphism.
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Given an object B of 38 we may ask whether there exists a commutative diagram

QpD

Lp(p;B)->Lp(v;B)

e■M B) p(v, B)

<p<g)B
Lp(p.; R)®B-> Lp(v; R) ® B.

Since ep(p,, B) is an epimorphism, if the morphism <pB exists it is unique.

Write SPP to designate the full subcategory of 38 whose objects are the Lp(p, R)-

spaces. We shall say that an object B of 38 is a /7-space if for each <p e ¿£p there is a

morphism q>B such that the above diagram is commutative. The full subcategory

of 3$ whose objects are /7-spaces will be denoted by 3SP.

There is an equivalent characterization of/7-spaces which is useful in the applica-

tions we have in mind. Given a Banach space B, write 5' = H0M (B, R) for the

conjugate space. Then there is a canonical morphism B ® B' -> R, called the

"trace," which has the effect b ® V -* ib, /Y> = the value of b' at b. (B ® B' may

be viewed as the space of trace-class operators on B.) The trace induces a trans-

formation

(E ® B) ® (F ® B')^ E ® F,

which is natural in E and F, called "tensor contraction," its effect is

(e ® b) ® (/(g> /3') -»■ </3, /3'>e (g>/. The examples of interest here are E=Lp(p; R),

F=Lp.(v; R) where p' is the conjugate index to p : l/p + l/p' = 1.

Theorem 0. A Banach space B is ap-space iff for each pair p., v of measure spaces

there is a commutative diagram

L>; B) ® Lp(k B') -^ Lp(p: R) <g> Lp.(< R)

ev(p,B)®"ep.(v,B')

[LP(p; R) ®B]® [Lp.(v; R) ® B']

where cB is tensor contraction.

Heuristically, the way to picture Theorem 0 is this. Suppose p is a Radon measure

on a locally compact space Zand v is a Radon measure on a locally compact space

Y. Let u: X'-> B and v: Y->B' be continuous functions of compact support.

Define q>: Xx Y-> R by cp(x, y) = (u(x), v(y)} where < , > is the pairing of B and

B'. The condition that B is a /7-space is that 95 represent an element of

Lp(p; R) g) Lp.(v; R) where norm satisfies ||q7¡ ̂ ||«|UMIí>'-

The fundamental theorem on the Bochner integral [1] is that for all measure

spaces p the transformation

e(p):Lx(p;R)® ■ ̂ Lx(p; ■)

is a natural isomorphism. Thus 38=38x, and we may restrict our attention to 38p
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for l</?<oo. The only other complete characterization available is 382=<£2

= Hubert spaces. The main analytical result in this paper is

Theorem 1. Suppose l<p<oo and lá<7áoo. If p^q^2 or p^q^2 then

ä'qcz^p. In all other cases the only ^-spaces which are p-spaces are 0 and R.

The point of insisting on a categorical approach is that the genuine analytic

content of Theorem 1 involves only finite-dimensional Banach spaces and rests on

a result of Paul Levy, see §2 below. Indeed, the affirmative part of Theorem 1 for

real scalars could be deduced from the special case already given by Marcinkiewicz

and Zygmund [7].

We have in mind applications to group representations. Let G designate a locally

compact group. A representation f of G consists of a complex Banach space F(f)

and a continuous homomorphism U(: G—> AUTS F(£), the group of automor-

phisms (isometries) of £(£) endowed with the strong operator topology. A mor-

phism f-^>r/ of representations in a morphism £(£)-i>F(?i) of Banach spaces

such that UAx) ° h=h ° UÁ\x) for each xeG. We obtain a category Rep (G) in

which sums, tensor products, etc. are easily defined in the obvious way. Iso-

morphism classes of representations form too fine a distinction, e.g. there is one

isomorphism class of trivial representation for each isomorphism class of Banach

spaces. To avoid this difficulty the following procedure is used. Given a repre-

sentation i let F=F(|), and let F' = HOM (F, C) be the conjugate Banach space.

Then there is a morphism E ® £" ms)> CAT}), the space of bounded uniformly

continuous functions on G in the supremum norm, defined by fl(f)(e ®fi)(x)

=f(Ui(x)e). The coimage of n(£) is called the space of (¡-representative functions,

and it is denoted by A(Ç). Thus A($) is a Banach space whose elements are canon-

ically identified with certain bounded uniformly continuous functions on G; the

norm in A(£) is the quotient norm from E <g) £". Example, i is trivial iff A(£)

= constant functions.

For the sum of representations it is clear that addition of functions gives an

epimorphism A(Ç) + A(rj) -> A(C + r¡).

Similarly, for the tensor product of representations, multiplication of functions

gives a morphism A(£) ® A(r¡) -í- A({ (g) r¡).

Of particular interest are the regular representations. Let LP(G; ■) designate the

functor arising from the left-invariant Haar measure on G. A functor

A,, : Rep (G) ->■ Rep (G) is defined by putting Ap(f) the representation whose

representation space is E(XP(Ç))=LP(G; F(f)) and whose operators are given

x -> U(x) where U(x)fi(y)= Ui(x)f(x~1y), the element/e LP(G; £(£)) being viewed

as a function on G with values in £(£). The representation A„(C) (C being the

trivial representation on C) is called the left-regular representation on Lp. We write

Ap=A(XPiC)). (Had we used the right-regular representation we would have gotten

the same Ap.) There are two important remarks to make about the representation

K(0-
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Remark I. Given a representation 6 let £° designate the trivial representation

with the same representation space. Then there is a natural isomorphism

Ap(f) J™». Ap(f°) of representations given by m)f(y)=U¿y-1)f(y) for

feLp(G; £(£)).
Remark II. Multiplication of functions gives a morphism Ap (g> /4(£) -»■ v4(Ap(^)).

The relevance of/»-spaces in representation theory is a consequence of

Lemma 0. If B^O is a p-space then A(XP(B)) = AP.

Proof. Recall that A(£) is in general defined as the coimage of

£(£) <g> £'(£) H£^ CU(G). Let LP(G; B) ® Lp.(G; B) J^ LP(G: C) ® £,.(<?; C) be

the morphism of Theorem 0. Then

n(Ap(fi)) = n(Ap(0)oyB.

Since yB is an extremal epimorphism, taking coimages gives the desired equality.

Combining this last result with Remarks I and II gives

Theorem A. If $ is a representation in a p-space £(£), then multiplication of

functions gives a morphism Ap ® A(£) —> Ap.

Taking Ç=XP(C) we get

Corollary. Ap is a Banach algebra under pointwise addition and multiplication

of functions.

A deeper result which depends on Theorem 1 is

Theorem B. If p-¿q^2 or p^q-2 then multiplication of functions gives a

morphism Ap ® A„-> Ap.

Proof. Take f=A„(C) in Theorem A.

For amenable groups Theorem B has some powerful implications. One can

show that the conjugate Banach space to Ap is canonically isomorphic to CONVp,

the operators on LP(G; C) which commute with right-translations. The result is

Theorem C. Let G be an amenable group and suppose p^q^2 or p^q = 2. Then

identification of functions gives a morphism Aq -> Ap. Dually there is a morphism

CONV, -> CONVp, i.e. convolution operators on LP(G; C) are convolution operators

on Lq(G; C) with contraction of norms.

The details of Theorem C will be given elsewhere. One remark is in order. The

right-regular representations give the same Ap, and one finds that ii/(x)=f(x~1)

then ./V-*/is an isomorphism of Ap with Ar. For commutative groups Ap = Ap.,

and Theorem C is an easy deduction from the Riesz Convexity Theorem. On the

other hand it is not known whether for any noncommutative group one has

AP = AP. when p¥^2. Thus the only known proof of Theorem C depends on

Theorem 1 above.
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1. Preliminaries. We define a measure space (/x) to be a Boolean a-algebra Ji"ß

together with a countably additive function it: Jtu -^ [0, +oo] such that for

EeJ?u,li(E) = sup{ix(F):E=>FeJir'll,n(F)<oD} and n(E) = 0 iff F=0, the

minimum element of J¡fu. For 1 i=/?<oo the functors Lp(fj.; ■) on 31 are constructed

by the following procedure. Put ^„ for the directed set whose objects A are finite

collections of disjoint elements D e J¡fu with 0</u(F))<oo and whose morphisms

are T -< A when each element of T is a union of elements of A. Given a Banach space

B put Fp(/xA; B) for the vector space of functions fi.A->B with the norm ||/||

= {2dsa \f(D)\PBlx(F>)Y!lp■ If T-<A there is a natural extremal monomorphism

LJi/iT; 5)Íí£^Fp(/xA; B) defined by fv+g where g(D)=fi(C) if A 3 D<=CeV

and g(F>)=0 if D e A meets no element of T. The inductive limit of the direct

system of functors LPi¡iA; ■) is, by definition, Fp(/n; •). The natural "inclusions"

z'(r, A) have natural retractions r(A, T) where LP(^A; B) r(A,r)> Lp(ixV; B) is defined

by gy->fiwheref(C)=fj.(C)~1%DcCg(D)/j.(D). In the limit one has

/(A)                r(A)
Lp(fiA; ■)->Lp(tx; ■)-> Lp(fiA; •)

where /' is "inclusion," r is "conditional expectation," and r ° z'=id.

The projective limit of Lp(ßA; ■) r(Ar)> Lp(nT; •) taken with 2ß as an inverse

system yields functors Lp(n; •). There are natural extremal monomorphisms

LAfi; )<=LPiiJ.; ■). Moreover, if 1</?<oo and l/p + l/p' = l there is a natural

identification of L^ip.; B') with the conjugate space of Fp(tt; B); this is a triviality

since conjugation takes inductive limits into projective limits. What is not banal

are conditions under which Lp(fi; B) and Lp(n; B) coincide. If, however, one knows

a priori that Fp(ju.; B) is reflexive it is immediate that it coincides with Lp(¡x; B)

and hasFp(/x; B') for conjugate space; fortunately this simple remark is all that is

needed here.

The definition of Lp(¡x; ) given above is technically very convenient and side-

steps pathologies. It requires only a little care to convert other definitions into the

form used here. For example, suppose X is a locally compact Hausdorff space. Let

Jf be the collection of compact subsets of X. A Radon measure on A' is a function

fj.:jr^[0, oo] with the properties: (1) rt(0) = O; (2) n(K)^ti(L) if K^L;

(3) n(KvL) = ri(K) + ix(L) if KnL=0; (4) if K^M then for each e>0 there

exists L<^M\K such that fj.(M)<iJ.(K) + ^(L) + e. One can then prove that there

exists a unique countably-additive set-function, also denoted by /x, defined on the

Borel field of X such that ¿t(F) = sup {i¡(K) : E~=>KeCf}. A measure space (¡x) is

obtained by taking Ji^ to be the Borel sets modulo Borel sets of measure 0. Let

LPi¡x; B) be defined as the Banach space obtained from the vector space of con-

tinuous maps fi.X^B of compact support endowed with the pseudonorm

11/11 p = {.f l/l s dfj.}llp. It is very easy to see that one has natural transformations

i(A)                 r(A)
L^A;*)->Lpfa; ■)-+ FPG*A; •)
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where r(A) is "conditional expectation" and i(A) arises by lifting the elements of

A to Borel sets in X and approximating the indicator function of a Borel set of

finite measure in the Lp-norm by continuous functions of compact support. In the

limit one has

lp(p; •) —►£,(/*; •)
r
—>Lp(p; ■)

where f ° fin the inclusion of Lv inLp. Since f is obviously a monomorphism, imust

be an isomorphism.

The particular convenience here of the given definition of Lp-spaces rests on two

observations. The natural diagram (in B)

i(A,B)
Lp(p.A; B)

ep(pA, B)

Lp(pA; R)

-+LÁPIB)

pO*. b)
/(A, R) ® B

B-->Lp(p;R) B

is commutative and the right-hand side is the inductive limit of the left-hand side.

The natural diagram

r(Y, B)
Lp(v; B)-> Lp(vT; B)

p(", B)
r(Y, R)®B

Lp(y; R)®B-> Lp(vT; R)

SpK, B)

B

is commutative, and although the left-hand side is not always the projective limit

of the right-hand side (it is if B is a /»-space) the image of

Lp(v; R)®B-+ proj lim [Lp(vY; R) ® B]^ proj lim Lp(vT; B) = Lp(v; B)

lies in the subspace Lp(v; B) of Lp(v; B). It is easy to verify that any morphism

<p: Lp(p; R) -^-Lp(v; R) is sufficiently well approximated by the morphism

r(F, R) o cp o /(A, R) where Ae®, and fe®, that if for a given Banach space B

and each T, A there is a morphism q>B(T, A): L„(pA; B) -^-Lp(vF; B) such that

«ps(r, A) o £p0xA; B) = ep(vT; B) o {[r(T, S)«r /(A, R)] ® B}

then q>B = proj limsv ind limS/j <ps(r, A) has the property that <pBoEp(p;B)

= £„(!;; B) o (cp <g) B). The functors Lp(pA; ■) are naturally isomorphic to Lp(m; ■)

where m is the cardinality A. Thus the test for whether a Banach space B is a p-

space may be reduced to the consideration of morphisms cp: Lp(m; R)^>Lp(n; R)

where m and n range over the natural numbers. A restatement of this fact is

Proposition 0. Given a pair m, n of natural numbers, say for a Banach space B

that B e 38p(m, n) if
it, m p in

2 2 m<a s 2 i^ipi=i i=i



1971] THE THEORY OF p-SPACES 75

for each m-tuple bx, .. .,bme B and each matrix M with m columns and n rows

having entries in R such that

n

2

for all m-tuples rx, ..., rm e R. Then the class of p-spaces is characterized by 38p

=n:,n=i^4

Remark. As will be seen in Lemma 1, the elements of 38p(2, 2) already have the

Clarkson inequalities, in particular 382 = 382(2, 2) = Hilbert spaces. It seems

unlikely, however, that 3Sp=38p(m, n) for any finite m, n if p=£ I, 2.

Many properties of /7-spaces can be derived from abstract arguments. In a

category with pullbacks and pushouts we say that a monomorphism i is an extremal

monomorphism if i—f° g and g is an epimorphism imply that g is an isomorphism.

If A -i> B is an extremal monomorphism we say that A is a subobject of B. In the

category of Banach spaces, extremal monomorphism = isometry; hence a subspace

has the same norm as the ambient space. Dually for extremal epimorphisms and

quotients. Let 3i be a directed set and 38 a complete category; given a functor

F:@> ->38 such that whenever x,ye2 and x <y the morphism F(x) -+ F(y) is an

extremal monomorphism, we say that the inductive limit, ind lim® £ is a direct

union.

If J1 is a category with a terminal object and Sf is a category with objects a, b, z

and morphisms a -> b, a -» z, then the inductive limit of a functor £: Sf -> 38

such that £(z) = 0 is called a "cokernel." A cokernel is a quotient, and the converse

is true in some categories, e.g. Banach spaces. Inductive limits commute with each

other; so that to show that an inductive limit has certain properties with respect to

Lp(p; •) functors it is often sufficient to consider only Lp(m; ■) with m a natural

number, e.g. Lp(p,; ■) commutes with direct unions and preserves extremal epi-

morphisms (view these as cokernels). Also Lp(p; ■) preserves extremal monomor-

phisms (although tensor products do not in general). The following list gives

obvious results.

Proposition 1. A subspace of a p-space is a p-space.

Proposition 2. A direct union of p-spaces is a p-space.

Proposition 3. A quotient of a p-space is a p-space.

Proposition 4. Be38p iff B' e 38p..

Proposition 5. If B is a p-space so is Lp(p; B) for any measure space (p). If A

and B are p-spaces so is A ®p B, the completion of A + B for the norm \\(a, b)\\

= {\a\pA+\b\pB}1"'.

1 = 1

7» V HI

2 M^i ^ 2 i'*

Some remarks.
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Remark 1. A Banach space B is a /?-space iff each finite-dimensional subspace

is a p-space.

Remark 2. The serious problems about p-spaces may be stated in terms of the

range 1 </?^2.

Remark 3. For any pair (¡j), (v) of measure spaces there is a measure space

(n x v) such that Lp(¡i; Lp(v, R)), Lp(v; Fp(¿¿; R)), and Lp(¡x x v; R) are canonically

isomorphic. Thus spaces of the form LPi¡x; R) together with their subspaces and

quotients spaces are the only obvious />spaces when 1 <p<cc; no examples of

p-spaces are known to me which are not obtained this way.

The next is an example of how abstract methods may be used.

Proof of Theorem 0. Since tensor products commute with inductive limits, to

prove the existence of the required morphism

yB: L„0; B) ® F>; B')^Lp(ß; R) ® Lp(v; R)

for arbitrary measure spaces i¿, v it suffices to consider the cases ^ = m,v = n where

m and n range over the natural numbers. Now suppose B is finite dimensional. If

X anà Y are finite-dimensional Banach spaces then X <g> Y' and HOM (X, Y) are

conjugate to each other. Thus the existence of

yB: Lp'm; B) <g> Lp(n; B') -* Lp(/m; R) ® Lp.'n; R)

is equivalent to the existence of a conjugate morphism

8B: HOM (£„(«; /?), Fp(/i; *)) -> HOM iLp'm; B), Fp(/i; B))

where <r->B = SB(<p) ¡s exactly the morphism required in the definition ofp-space. In

view of Proposition 0, we have proved Theorem 0 for finite-dimensional Banach

spaces B. Now let B be an arbitrary Banach space and FJ> B a finite-dimensional

subspace; m and n are kept fixed in all that follows. Suppose the required morphism

yB exists. Then we get a morphism

yFyB: LPim; F) (g) Lp.in; B") -> Fp(#«; R) <g> Fp,(«; /?)

given by yF,B = YB°(LP(m;i) ® Fp<(/i; 5')). Now B'A+F' is an extremal epi-

morphism; hence so is Fp-(/i; /'); and therefore Lp(»i; F) ® Fp.(n; z') is an extremal

epimorphism whose kernel is obviously contained in the kernel of yF¡B. It follows

that yF%B must factor through Lp(m; F) ® Fp-(n; F'); this gives the existence of yF.

Conversely, if yF exists we may define yFmB by yF,B=yF ° (Lp(m; E) ® Fp(n; z")).

Assuming that yF exists for every finite-dimensional subspace F, the morphism

ys = ind limP yFtB has the required properties.

2. Subspaces of ^„-spaces. To say that a Banach space B is a subspace of an

-S?p-space is to say that there exists a measure space (ll) and an extremal mono-

morphism B-h- Fp(/x; R). A continuous function i/> defined on a group Zis negative-
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definite   if   2 ^(*t~~ xi)ciC,=\ 0   for   all   finite   collections,   xx, ...,xneX  and

cx, .. .,cneC with 2 Ci=0.

Theorem 2. >4 Banach space B is a subspace of an ¿tfp-space, 1^/7^2, iff

XM* 1*11" zi a negative-definite function on B. (Equivalently xM*exp (— ||x||p) ¿s a

positive-definite function on B.)

Corollary 1. Ifpfíqf¿2 then an &Q-space is a subspace of an &p-space.

Proof of Corollary 1. A theorem of Bochner [2] states that if ^ is a positive-

valued negative-definite function and 0 < a ¿ 1 then i/>" is negative-definite. If B is

an ^,-space then >/>(x)= \x\q is negative-definite by Theorem 2; hence xh- ||jc||p,

which is iua for a=p/q, is negative-definite.

Corollary 2. If p£q£2 or p~¿q^2 then &<^38p.

Proof of Corollary 2. By Propositions 1 and 2 it follows from Corollary 1 for

finite-dimensional SCq spaces with pSqS2 that Z£q<^38p since 3?p<^3&p is already

known (and obvious). \ip~^q = 2 then &q,<^â8v, which implies ¿£q<^38p.

The necessity of the condition of Theorem 2 is banal. One has only to prove that

x\-+ ||x||" is negative-definite on L„(p; R) since the condition is obviously hereditary.

On the other hand it is clearly preserved by direct unions; so it is sufficient to prove

it for Lp(m; R). For x &Lp(m; R) one has ||x||p= |^i|p+ ■ • ■ +|*m|p; a°d the sum

of negative-definite functions is negative-definite. Therefore the only question is

whether xt-> \x\" is negative-definite on R. Now >/)(x)=\x\2 is obviously negative-

definite on R (whether R=R or C), and |x|p = </ra(x-) for «=p/2gl.

The real version of Theorem 2 is known. For finite-dimensional real Banach

spaces it was observed by the author [5] to be a consequence of a theorem of

Paul Levy [6, §63] on symmetric stable laws in several variables. The extension to

the infinite-dimensional case is due to Bretagnolle, Dacunha-Castelle, and Krivine

[3]. We do not need this extension, but we wish to comment later on the proof, see

§4.
A complex Banach space B is a real Banach space equipped with an auto-

morphism /' such that i2= -id and ¡|cos 6b + sin 9(ib)\\ = \\b\\ for all b e B and all

6 e R. The complex case of Theorem 2 follows from the next (the condition that

xh> H Jcj|** be negative-definite does not depend on whether real or complex scalars

are used).

Proposition 6. Let B be a complex Banach space and BR the same space viewed

as a real Banach space. For each real morphism BR^.Lp(p; R) there is a complex

morphism £*>Lp(/x;C) given by ip(b) = cpcp(b) — icpcp(ib) where cp is a universal

constant depending only on p. If cp is an isometry so is </>.

Proof. There is a constant cp such that

/•2JI

O)"1        \Re(eiez)\pdd = cpp\z\"
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for each zeC. Observe that for each b e B, (p(eieb) = Re{ew<(>(b)}cp~1. Since

\\<p(ewb)\\ è\\b\\ for each 8 it follows that

Integrating with respect to dB and interchanging the order of integration we get

J \ifi(b)\p dfj.^\\b\\p which is what was to be proved, since b^-ifi(b) is obviously

complex linear.

3. Properties ofp-spaces. The affirmative part of Theorem 1 is a corollary of

Theorem 2; the negative part follows from Lemmas 1 and 2 below. Indeed, Lemma

1 asserts that the elements of 3SP(2, 2) must satisfy certain inequalities on the norm

that were obtained for ^„-spaces by Clarkson [4]. In particular, for 1 <p < oo, a

space in 38Pi2, 2) is uniformly convex. Combining the Clarkson inequalities with

Lemma 2, one gets that the only ^-spaces in á?p(3, 2) with q<p^2 or q>p^2

are 0 and R. After Lemma 3 one has the following, even for 38p{3, 3).

Proposition 7. Suppose 1 <p < oo. Then a p-space is uniformly convex, hence

reflexive, and its norm function is strongly differentiable everywhere except at the

origin.

The lemmas below are all based on elementary calculations using well-chosen

morphisms Fp(/n; R) -> Fp(«; R).

Lemma 1. If Be 3$ p then for all x,yeB

\\x+y\\p+\\x-y\\p á 2r(||x||p+||j>||p),       r = max (l,/?-l).

Proof. H, i?)H>2"r/p(f + 77, Ç — rj) is an endomorphism of Lp(2, R).

Corollary. £f9 n 3SP = {Q, R) unless q is between p and p'.

Proof. Each ^,-space other than 0 or R contains a subspace isomorphic to

L4(2, R). Hence it suffices to show that L,(2, R) <f 38p. Take x = ( 1, 1 ) and y = ( 1, -1 )

and look at the inequality of Lemma 1. We have ||x+.y|| = \x—y\\ =2 while ||jc||

= ||j,||=21/,1!. For/?^2 we must have 2-2p^2-2-2p"!, i.e. q^p'. For/?^2 the in-

equality is 2-2p^2p-1-2-2p,<î, i.e. q^p. Therefore q^maxip,p'). With x = (l,0)

and v=(0, 1 ) we get q ̂  min (/?, /?').

Corollary. 382 = Hilbert spaces.

Proof. For p = 2, the inequality of Lemma 1 forces equality.

Lemma 2. Suppose 2^p<co and Be38p. Then for x,heB with ¡x|| = l and

|| A || í¡ 1 we have

||;c+/z||p+||;t-/z|¡p-2||jc||p ú 2p-2/?(/?-l)||/z||2.

Proof. Let a with 0<a< 1 be given. Then there exists ß with 0</3<2 such that

the  maximum,  y,  of  |í + aíi|p+ |£-a?i|p+ |j3ti|p on  the "sphere" |p + rip = l is
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achieved at  ¿¡=-q = 2~llp.  Then  (f, -q) -^■y~1(^+arj, £—a-q, ßrj) is  a morphism

Lp(2, R)->Lp(3, R). Hence if Be38p and x,yeB with ||x|| = 1 = ||y\ we must have

||x + aj|p-H|*-ay||p+|||3y||p = (1+a)p + (l-a)p + |8p.

Putting h = ay gives

||x+/z||p+||x-n||p-2 ^ (l + ||n||)p + (l-||n||)p-2.

Corollary. SfqC\^p={0,R}ifq<2^p<co.

Proof. It suffices to show that £,(2, R) $ 38p. Take *=(1, 0) and h=(0, a). The

inequality of the lemma gives

2(1+a«)""-2 g 2p~2p(p-l)a2

which cannot hold for small a since (I + a")"1"-1 ~(p/q)a" as a -> 0.

Lemma 3. For B e 38p, l<p<cc, the function xi->- |x||p is differ entiable on B.

Proof. Given x,ueB, limt-,0+ i'~1{||*+ft/llP— |[x|| "} = £(*; u) always exists. The

problem is to show that for each x e B, F(x; •) is a real-linear function on B. We

henceforth regard B as a real Banach space. The proof of Lemma 2 shows that

F(x; —u)= —F(x; u) for all x,ue B. Consider the matrix

M =

1 -1 -1

1 1 0

1       0       1

as an element of HOM (Lp(3; Q, Lp(3; Q). When p=l, ||M||=3, when p = 2,

||M|| = 31/2. Hence by the Riesz Convexity Theorem, 3~llpM gives a morphism

£p(3; R) ^£p(3; R) for 1 ¿p^ 2; that is to say

||x-j-zl|p+||x+v||p+||x + z||p ^ 3(HP+b||p+||z||p).

Putting y=tu, z=tv we get

||x-ztw + iO||p+||*+HIP+ll* + HIP-3NiP á 3íp(||m||p+ \\v\\').

Therefore, for l</?^2 we get F(x; — u — v) + F(x; u) + F(x; v)^0; and since

F(x; ■) is odd it must be linear. An argument similar to that of Lemma 2 shows that

\F(x; u)\ g/7||x||I'"1||M||. Since F(x; x)=p\\x\\p and B is uniformly convex, it follows

that x -> p ~ xF(x ; • ) is a one-to-one map of the unit sphere of B into the unit sphere

of B'. Since B' is uniformly convex, this map must be onto (the argument is this:

given fe£' with ||f|| = l there exists xeB with ||jc|| = 1 and <x, £> = 1; put

r)=p~1F(x; •); then (x,$(£+rf)} = I so |K¿:+7/)ll = 1 which forces £=r¡). For

è,r,eB' put

<Ht;v)= i™ r\u+tv\\p'-H\n
¡-♦0 +
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If f is on the unit sphere in B' then $ =p~1F(x; ■) for some xe B. One can estab-

lish that <¡>(¿¡; rj)=p'<[x, ti>, and hence f —»■ ||£||p' gives a differentiable function on

/?'. This allows me to conclude the assertion of the lemma for 2</?<oo.

4. Sheaves and elementarity. Let X be a paracompact Hausdorff space and 33

a complete category. Put r*iX) for the category of reverse inclusions of open

subsets of X. Let F: r*iX) -> 33 be a covariant functor. For each xei put F*

= ind liiru^ F where «^ is a fundamental system of neighborhoods of x. The

functor F is a J'-valued sheaf over X if

(51) Let sé be any collection of open subsets of X and sé* the subcategory of

r*iX) constituted by the morphisms í/=>í/n V for E/, Vesé; then if ^4 is the

union of the elements of sé, FÍA) with the morphisms FiA) -> F(U), U e sé gives

a projective limit, proj lim^. F.

(52) For each open set U in X the canonical morphism F([/)—>- FLet; F* an

extremal monomorphism.

If X^ F is a continuous map of paracompact Hausdorff spaces and F is a

sheaf over X we obtain a sheaf over Y by defining <pF: r*(Y)^-38 as <pF(V)

= F(<p-1(K)). The sheaf 9?F is called the direct image of F.

A class of objects of 38 will be called semi-elementary if it is stable for isomor-

phism and has the property : if F is a á?-valued sheaf over a discrete space X each of

whose stalks Fx belongs to the class and ß: X-> X is the map of X into its Cech

compactification then all the stalks of the direct image ßF belong to the class. A

stalk of the form (ßF)y where y e X is called an ultraproduct. Presumably, semi-

elementary classes are defined by properties of a special logical form appropriate

to the category in question.

In the case where 38 is the category of Banach spaces and F is a J'-valued sheaf

over X, for each element/e F(U) we put/(x) for the value of/under the canonical

morphism F(U) -> Fx where xeU. According to (S2), ||/||r/ = supxe[7 |/(*)| where

¡/Il t; is the norm in F(U) and |/(x)| is the norm in Fx. If U=> F we shall write ||/||v

for the norm of the image of/under F(U) -»■ F(V). Given xe X and be Fx there

exists a decreasing sequence {Un} of neighborhoods of x and elements/, e F(Un)

such that limN_o0/n(x) = ¿? and for each e>0 there exists an integer m such that

||/m —fin II un < £ whenever n>m.lt follows that x h> \f(x)| is an upper semicontinuous

function on U when/eF(i7); indeed \f(x)\=ii\fVejrx supj,eV |/(,y)|.

In case Xis a discrete space, Xthe Cech compactification, and Fa Banach-valued

sheaf over X we must have for each open Kc X and g e ßF(V) that y m- \g(y)\ is a

continuous function on V. It is an immediate consequence of Proposition 0 that

38p is a semi-elementary class of Banach spaces. What is much deeper is that -S?p

is a semi-elementary class in the category of real Banach spaces. This follows from

the work of Nakano [8] where the basic category is Banach lattices, but Banach-

lattice ultraproducts coincide with the Banach-space ultraproducts. (Note: {R} is

semi-elementary in real Banach spaces but not in real vector spaces; the norm-
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function on a Banach space kills infinitesimals.) For complex ^,-spaces it is not

known whether the class is semi-elementary, much less is there a concrete "elemen-

tary" characterization.

Bretagnolle, Dacunha-Castelle, and Krivine [3] proved that the class of sub-

spaces of real ^-spaces is stable for direct unions by observing that 3?p was semi-

elementary and then using a concrete form of the following argument. A category

38 is said to have the "Grothendieck property" if whenever 9> is a directed set and

£, G : 3> -> J1 are functors connected by natural extremal monomorphisms £ -► G

then the natural morphisms ind lim® £-> ind lim® G is an extremal mono-

morphism. Banach spaces have the Grothendieck property.

Proposition 8. Let S be a semi-elementary class in a complete category with

the Grothendieck property. Let J^S be the class of subobjects of objects of S. The

¿Fe is semi-elementary and stable for direct unions.

Proof. That 3tifë is semi-elementary is an obvious consequence of the Grothen-

dieck property and the fact that projective limits, in particular products, always

preserve extremal monomorphisms. Now let 3> be a directed set and <I>: ® -*■ 38

a functor such that for each xe3>, <t>(x) e 3tfê. We suppose that when x-<y,

0(;r)—> O(j) is an extremal monomorphism; then ind lim® O is a direct union.

Regard Q> as a discrete space and define £: r*(2¿¡) -»■ 38 by F(u) = Fixer/ ®(x). When

t/=> V the morphism F(U)->F(V) is projection on a partial product. For the

stalks of the sheaf £ there is a natural identification of Fx with <&(*). Let Jf be an

ultrafilter of cofinal subsets of 2. Then there is a point ce 2, the Cech compactifi-

cation, such that Jf is the trace on 2 of the open neighborhoods of c. Put Y

= (ßF)c=ind lhTu-£ We have TeJifcf since JFS is semi-elementary. Write

(Jf, 38) for the category of functors from the directed set Jf to 38. Given xe@¡,

put Sx={y e 2 : x<y} and define a functor G:2^(«V,3&) by G(x)(U)

= F(U n Sx), the morphism G(x) -> G(y) when x<y being the natural partial

product projections. We may regard ind linLr as a functor from (Jf, 38) to 38 and

hence ind lim^- G as a functor from 3) to 38. Because of the way Jf was chosen,

{U n Sx : U e Jf} is cofinal in Jf for each xe3>. Thus there is a natural identifi-

cation of indlim^G with I\ Write <D* : 9) -> (Jf, 38) for the functor <b*(x)(U)

= <¡>(x). There is a natural transformation O* -► G coming from

G>(x) -> rL<!/£t7 ®(y) as a product of morphisms <5(x) -*■ Q>(y). For fixed

^eS, 0*(x)-*■ G(x) are natural extremal monomorphisms. By the Grothendieck

property, ind lim^r Q>*(x) -*■ ind lim^- G(x) is an extremal monomorphism, but this

is simply a natural transformation O ->■ I\ Once again by the Grothendieck

property, ind lim® 0 -*■ ind lim® T = T is an extremal monomorphism, i.e. the

direct union ind lim® O is a subobject of T e ^f«?, hence the direct union is in JCê.
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