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A COMBINATORIAL MODEL FOR

SERIES-PARALLEL NETWORKS
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THOMAS  BRYLAWSKI

Abstract. The category of pregeometries with basepoint is defined and explored.

In this category two important operations are extensively characterized: the series

connection S(G, H), and the parallel connection P(G, H) = S(G, H); and the latter is

shown to be the categorical direct sum. For graphical pregeometries, these notions

coincide with the classical definitions.

A pregeometry Fis a nontrivial series (or parallel) connection relative to a basepoint

p iff the deletion F\p (contraction F/p) is separable. Thus both connections are zz-ary

symmetric operators with identities and generate a free algebra. Elements of the sub-

algebra A[C2l generated by the two point circuit are defined as series-parallel net-

works, and this subalgebra is shown to be closed under arbitrary minors. Nonpointed

series-parallel networks are characterized by a number of equivalent conditions:

1. They are in A[C2] relative to some point.

2. They are in A[C2] relative to any point.

For any connected minor K of three or more points:

3. K is not the four point line or the lattice of partitions of a four element set.

4. K or K is not a geometry.

5. For any point e in K, K\e or K/e is separable.

Series-parallel networks can also be characterized in a universally constructed ring

of pregeometries generalized from previous work of W. Tutte and A. Grothendieck.

In this Tutte-Grothendieck ring they are the pregeometries for which the Crapo

invariant equals one. Several geometric invariants are directly calculated in this ring

including the complexity and the chromatic polynomial. The latter gives algebraic

proofs of the two and three color theorems.

1. Introduction. The notion of series-parallel networks goes back to MacMahon

[10], who studied their enumeration. After a long period of neglect, it was revived

in a well-known paper by Shannon [14], and since then a flurry of papers has

appeared exploring their structure and applying them in various directions. A

particularly significant work is the paper by Duffin [9], where most of the known

results on series-parallel networks are developed.

In our paper we initiate (and to some extent complete) the study of series-parallel

networks by completely different techniques. Our starting point is the theory of
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combinatorial pregeometries (nées matroids) begun by Whitney [19] and recently

expounded by Crapo and Rota [7]. (See §2 where the basic concepts are

summarized.) We introduce the concept of a combinatorial pregeometry with a

distinguished basepoint, an idea suggested to the author by Gian-Carlo Rota. In

the first few sections we develop some of the general theory of basepointed

pregeometries, which appear to have many further applications.

A pregeometry is graphical when its point-circuit incidence relation is the same

as the edge-circuit incidence relation of some graph. In that case the basepoint

corresponds to a distinguished edge in the graph and hence to two distinguished

vertices (or "ports" in the literature of series-parallel networks). Circuits con-

taining this basepoint will therefore be in 1-1 correspondence with paths joining the

two ports in the classical network.

We find this an appropriate model for a number of reasons: the geometry of the

network demonstrates the essential duality between the series and the parallel

connection—the fact that the (Whitney) dual of a series connection of networks is

the parallel connection of their duals. In addition, for electrical and historical

reasons one wants two networks isomorphic under permutation of elements in

series as well as the usual graph-theoretic isomorphism. But these are exactly the

conditions under which the geometries of the two networks are isomorphic.

Except for Shannon's notion of "confluence", all classical characterizations of

series-parallel networks are derived by purely combinatorial methods, as well as

two important others—one in terms of separability (one-connectedness in graph

theory) and the other in terms of an invariant of a ring associated with all pointed

pregeometries. This ring is a generalization of a ring introduced for graphs more

than twenty years ago by W. T. Tutte [15], and its construction is reminiscent of

constructions recently used with great success in the field of algebraic geometry by

A. Grothendieck. For this reason we have decided to call it the Tutte-Grothendieck

ring.

The remarkable fact about the Tutte-Grothendieck ring is that purely combina-

torial properties of series-parallel networks can be translated by a systematic

process into algebraic properties of the ring. Specifically, to every series-parallel

network we associate a polynomial in four variables in the ring (which we call the

Tutte polynomial, after previous work of Henry Crapo [5]). By evaluating the

variables of this polynomial at appropriate integers, we obtain the values of

various important combinatorial invariants of the network, such as the number of

forests and number of spanning trees.

One of the more remarkable results of the present theory is that the classical

problem of coloring of graphs can be completely translated into simple algebraic

properties of the Tutte-Grothendieck ring. In particular, we are able to obtain the

solution of the coloring problem for series-parallel networks by purely algebraic

techniques. Admittedly, this coloring problem is not very difficult (it is not hard to

prove by standard methods that every such graph can be colored in at most three
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colors); nevertheless, the introduction of purely algebraic techniques for proving

the same results, such as when two instead of three colors are sufficient, seems

promising for future work on the coloring problem. In fact we present what

amounts to algebraic proofs for k = 2 and 3 of the famous Hadwiger conjecture—

that a graph with no subgraph homeomorphic to the complete /c-graph can be

colored in k— 1 colors—while the case k = 4 implies the four-color theorem for

planar graphs.

The idea that a Tutte-Grothendieck ring (and the more general concept, the

Tutte-Grothendieck group) could be defined for all combinatorial pregeometries

was first introduced by G.-C. Rota in his Hedrick Lectures [13]. A systematic

development of these ideas appears in the author's thesis.

The author is indebted to Professors Henry Crapo, Robert Norman, and Gian-

Carlo Rota for several conversations on this subject.

2. Basic definitions.

2.1. This section surveys the relevant notions of the underlying category for our

work, G, the category of finite combinatorial pregeometries and strong maps dis-

cussed in Crapo and Rota [7]. The reader is advised to read these basic definitions

rapidly and refer to them as they come up in the paper.

A finite pregeometry or matroid, G, is a finite set, denoted \G\, oí points with a

closure relation satisfying the exchange property: For any points p, q e G and any

subset Ps \G\, if/» e Cl (P u {q}) butp $ P, then q e Cl (P u {p}). A geometry is a pre-

geometry in which the empty set and each point are all closed. The lattice, L, of

closed sets or flats of a pregeometry is called a geometric lattice and is characterized

as a finite, semimodular, point lattice. In such lattices, each lattice element x is the

supremum of atoms representing closures of points and each has a well-defined

rank, r(x), equal to the length of any maximal chain from the 0 element (represent-

ing the closure of the empty set) to x. The semimodular law for L states that for

all x, ye L, r(x) + r(y) ^ r(x A y) + r(x V y). r(A), the rank of a set of points AÇL \G\

is defined as r(A) in the associated geometric lattice. Hence, r(G), the rank of the

pregeometry is r(l) in the lattice. A set of points A £ \G\ represents a spanning set

for G if A = G. The cardinality of a pregeometry G (or point set /lç|G[) will be

denoted ||G|| (or \\A\\) and a set of points, A, is independent if r(A)= \A\. Otherwise,

r(A)< \\A\\ and A is dependent. An independent spanning set is called a basis.

A strong map from a pregeometry G into H is a function/: \G\ u {0} -^ |.r7| u {0}

(where "0" stands for the empty set in G and //respectively) such that/(0) = 0 and

the inverse image of any closed set in H is closed in G. Pregeometries G and H are

isomorphic denoted G~H if there is a 1-1 correspondence,/, between the points of

G and H and the closed sets of G and H such that for any point p and closed set K,

p g K iff f(p) ef(K). An isomorphism class of pregeometries denoted [G] is the class

of all pregeometries isomorphic to G.

A pregeometry on the point set \G\ can be uniquely determined by C(G), the

family of minimal dependent sets or circuits of \G\. A family F of subsets is the
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circuit set for some pregeometry if no subset in F properly contains another and

the subsets satisfy the circuit elimination property C*: If Cy and C2 are two distinct

elements of F and e e Cy n C2 then the set difference (Cy u C2)\{e} is dependent

and contains an element C3e F. A pregeometry is an n-point circuit if ||G|| =n and

C(G) = {\G\}. C € C(G) is an even circuit if ||C|| is even. A subset A Ç \G\ contains a

broken circuit if for some C e C(G) and some p e C, C\{p}^A but C^A.

G may also be uniquely determined from its set of bases, B(G). A family F of

incomparable subsets is the set of bases for some pregeometry if F satisfies the basis

exchange axiom B* : For all By and B2 in F and p e By there exists q e B2 such that

(By\{p}) u {q} is also in F.

The (Whitney) dual of G, G, is the unique pregeometry on the point set \G\ with

a set of bases consisting of base complements of G. Hence B e B(G) iff \G\ \B e B(G).

A pregeometry is self-dual if G~G.

G is the direct sum of two pregeometries: Gy ® G2 if the points of G, \G\, and

circuits of G, C(G), are the disjoint unions \Gy\ u \G2\ and C(Gy) u C(G2) respec-

tively. G y is then said to be a direct sum factor of G, and G is said to be separable.

If no such nontrivial direct sum decomposition exists, any two distinct points of G

are contained in a circuit and G is termed connected. A one point direct sum factor,

p, is an isthmus if it is in no circuits of G and a loop if it is itself a circuit.

Ifpe|G| we define two derived pregeometries on the point set |G|\{p}: the

deletion, G\p; and the contraction, G/p. If A £ |G|\{p}, and A denotes its closure in

G: then the closure of A in G\p is defined as A\{p) while its closure in G/p is defined

as Cl(A u{p})\{/?}. If Z>ç|G|, the subgeometry G\D is defined as a sequence of

deletions by points in D. Similarly we define the contraction G/D as a sequence of

contractions. An arbitrary sequence of contractions and deletions is called a minor.

An invariant is a function / defined on the class of all pregeometries such that

f(G)=f(H) if G~H. Examples of invariants used in this paper include c(G), the

complexity or number of bases of G; 1(G), the number of independent sets; and

fj.(G), the Mbbius function which is defined as /x(0, 1) evaluated on the geometric

lattice L associated with G, where for xSy, pt(x,y) is given by the recursion

fj.(x, x)=l, fi.(x,y)= — 2xS=<!/ P-(x, z)- Two other invariants evaluated on L are

the chromatic polynomial, x(G) = Z*ez. m(0, x)Xra>'r(x) and ß(G), the Crapo in-

variant which is explored in [3] with distinguishing properties; /3(G) = ß(G\e) + ß(G/e)

if e e G is neither an isthmus nor a loop ; ß(G) ä 0 ; /3(G) = 0 iff G is separable ; and

/3(G)=/8(G")forall ||G||>1.

2.2. Let C denote the category of pointed pregeometries; that is, ordered pairs

(G,p) where G is a pregeometry on the point set \G\ and/? e \G\. Morphisms in this

category are strong maps which preserve basepoint, so fe Horn ((G, pG), (H, pH))

iff is a strong map and f(pa) =pH.

3. Conventions.

3.1. All unions A\J B will be assumed to be disjoint unless it is clear that A and

B are both subsets of the same set.
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3.2. A\B denotes set difference: elements in A but not in B.

3.3. If A and B are two families of subsets of A and B respectively, then AxB

will represent all subsets Cuflof^lufi where C e A and D e B.

3.4. When no confusion will arise we will denote the pair (G, pa) by (G, p), and

sometimes G.

3.5. Given a pointed pregeometry (G, p) and a family F of subsets of G, we define

F'(G) to be the subfamily of F whose members do not contain the basepoint p and

F"(G) to be the family of all those subsets H of \G\\{p} such that H u {p} e F.

Hence F= F' u (F" x {/>}). In particular |G|' = |G|\{p}.

4. The series connection. There are two important operations on pointed pre-

geometries: the series connection and the parallel connection. We now define and

explore the series connection.

Definition 4.1. Given two pregeometries (G, pa) and (H, pH) the series connec-

tion (F,p) = S((G,pa), (H,pH)) is the pregeometry defined on the point set \F\

= \F\' u {/?}, where \F\'= \G\' u \H\' and whose circuits C((F,p)) are given by the

two families:

C'(F) = C'(G) u C'(H),       C"(F) = C"(G) x C"(H).

Proposition 4.2. The family C(F) defined by (4.1) above is the set of circuits for

some pregeometry.

Proof. Clearly no circuit denoted above is a proper subset of another. We must

show that C(F) satisfies the circuit elimination axiom C*. Assume Cx and C2 are two

unequal circuits in C(F) and e e Cx n C2. By symmetry we may assume e e G

(possibly e is the basepoint p).

If Cx and C2 are both in the family C'(F) and if they have nontrivial intersection,

then they must both lie in the subfamily C'(G), in which case C* follows from C*

in G.

If CxeC'(G) and C2 e C"(F) x{p}, then Cx and (C2n \G\')u{pG} are both

circuits of G and C* applied in G gives a circuit of G, C3. If C3 is in the subfamily

C'(G)^C(F) we are done. Otherwise C3 e C"(G) x{pa} and C3 = C3 u (C2 n |77|')

u {77} gives the desired element of C"(F) x {p}.

If the subsets Cx and C2 are both in the family C"(F) x {p}, and if Cj n |G| ^ C2

n \G\ we may proceed as in the previous case to find a circuit C'3 in G and we form

the circuit C3 of F adding (C2 n |//|') u {/7} if necessary. If Cx n |G| = C2 n |G|,

then necessarily Cx n |//|'#C2 n \H\' and applying C* in H to these above two

circuits which both contain the basepoint pH we obtain a circuit C3 e C'(#) which

of course does not contain the point e e G.

Proposition 4.3. S(G, H) = S(H, G) and S(G, S(H, I)) = S(S(G, H), I) so we can

view S as an n-ary symmetric operator. Further, if(H, p) is a loop then S(G, H) = G.

Proof. These remarks follow trivially from (4.1).
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Proposition 4.4. Ifp is not an isthmus in G or H, the bases B(F) ofS(G, H) are

given by the following families:

B'(F) = B'(G) x B'(H),

B"(F) = (B"(G) x B'(H)) u (B'(G) x B"(H)).

Proof. The bases of Fare exactly those maximal subsets of points which contain

no circuit. Clearly none of the above bases contains any circuit in C'(F). If the

subset B in B"(G)xB'(H) contained the circuit C where CeC"(F)x{p} then

C n \G\ ç(5 n |G|) u {p}, a basis for G. But C n \G\ is a circuit of G—a contra-

diction.

Now assume / is an independent subset of F. If p $ I, then the subset In \G\

is independent in G\{p} and is contained in the basis for G, BG e B'(G) while

I <~\ \H\^BHe B'(H). Hence, the subset / is contained in a basis B e B'(G) x B'(H).

If the basepoint p is in /, let I' = I\{p}. Then the subset /' is independent and as

above: /' n \G\ çBa e B'(G) and /' n \H\^BH e B'(H). Assume I'<~\\G\ is

contained in no subset BGeB"(G). Then (/' n |G|)u{/?} contains a circuit CG

where CGeC"(G)x{p). Similarly, if I'n H$BH for all BHeB"(H), then

(/' n H)kj [p] contains a circuit CH containing p and the independent set

/=3(C0 u CH) e C"(F) x {p}—a contradiction; so /' n H^BH e B"(H). Hence the

independent set / is contained in a basis B e (B'(G) x B"(H)) x {/?}.

Proposition 4.5. If the basepoint p is an isthmus of the pregeometry G, then

the family C"(G) is empty and C(F) = C'(G)\J C(H). Hence F~{p}@(G\p)

®(H\p) and B'(F) is empty; while B"(F) = B"(G)xB"(H) ifp is an isthmus of H

and B"(F) = B"(G) x B'(H) otherwise. If p is neither a loop nor an isthmus, then

B'(F) are the bases for the deletion F\p while B"(F)form the bases for the contraction

F/p. In any case, C'(F) = C(F\p).

Proof. From (4.1) and (4.4).

Proposition 4.6. If the pointed pregeometries G and H each have at least two

points, then F= S(G, H) is connected if and only if both G and H are connected.

Proof. If G and H are both connected and the points e and e' are both in the

subset \G\', then there is a circuit Ce C'(G) containing both. But then Ce C'(F).

If e e G, e' e H (either could be the basepoint p); then since neither G nor H is

{p} but both are connected, e is in a circuit with p in G and e' is in a circuit with p

in H. So e and e' are in a circuit containing p in F since C"(F) = C"(G) x C"(H).

Conversely, if G is not connected, 3e, e' e G (possibly e' is the basepoint p) such

that no circuit of G contains both. Surely no circuit in the family C(H) contains e

and hence no circuit in the family C(F) contains both.

Proposition 4.7. If the point e e \G\' and F=S(G, H) then F/e=S(G/e, H) and

F\e = S(G\e, H). Hence the series operation commutes with contraction and deletion.
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Proof. Since C'(F) contains C'(G), e is a loop of G iff it is a loop of F. If e is not

a loop, the bases for G/e (F/e) are those subsets B of \G\' (\F\') such that B u {e}

is a basis of G (F). If e is a loop, the bases for G/e (F/e) and G (F) are the same.

In any case, if p is never an isthmus,

B'(F/e) = B'(G/e)xB'(H),

B"(F/e) = (B"(G/e) x B'(H)) u (B'(G/e) x B"(H)).

The case where e is deleted is proved analogously, as is the case where p is an

isthmus.

Corollary 4.8. If F=S(G, H) and the basepoint p is not an isthmus of G, then

(F,p)/\G\'=(H,p).  '

Proof. Since p is not an isthmus, G/|G|' is a loop and the result follows from

(4.7) and (4.3).

Proposition 4.9. If(F,p) = S((G,p), (H,p)) then the deletion F\p is equal to the

direct sum (G\p) © (H\p).

Proof. Both pregeometries are defined on the same point set |F|' = |G|' u \H\'

and since F= Gx © G2 iff they are defined on the same point set and C(F) = C(GX)

u C(G2) (disjoint); the proposition follows from (4.1) and (4.5).

This proposition has the following converse :

Proposition 4.10. If F is a connected pregeometry and the deletion F\p is the

direct sum of two pregeometries, G' © H', then F is isomorphic to the series con-

nection S(F/\G'\, F/\H'\).

Proof. We define the pregeometries (G, p) and (H,p) on the point sets \G'\ u {p}

and \H'\ u{/?} respectively by defining the families B'(G) = B(G'); B'(H)=B(H');

B"(G)={gs\G'\ \g\JheB"(F) for some heB'(H)}; and B"(H) = {hç=\H'\ \g

KJheB"(F) for some geB'(G)}. Then by hypothesis B'(F) = B'(G)xB'(H). We

need to show that B"(F) = (B'(G) x B"(H)) u (B"(G) x B'(H)). Assume for example

gu/!£B'(G)xB"(H). Then by definition of B"(H), g'vheB"(F) for some

subset g' in B'(G). So g' u h u {p} is a basis for F and h is an independent subset of

H'. Hence g u h is an independent subset of the subgeometry G' © H' and there-

fore an independent subset of F of cardinality one less than a basis. By basis

exchange in F we can add a point from the subset g' u h u {p} to g u h and get a

basis for F. But no point in G' can be added as g is already a basis for G'. The only

other point in the set difference is p ; hence, g u he B"(F). The family B((G, p))

= B'(G) u (B"(G)x{p}) satisfies the basis exchange axiom since F does and since

any two bases in B(G) can be extended by the same subset h in B'(H) to give two

bases in F Similarly, (H,p) is a pointed pregeometry; and F=S(G, H). By (4.8),

G=FI\H\'=FI\H'\ and H=F¡\G'\.



8 THOMAS BRYLAWSKI [February

Corollary 4.11. A connected pregeometry (F, p) of more than one point has a

unique series decomposition into series irreducible connected nontrivial pregeometries

(Gy,p), ..., (Gn,p) such that F—S(Gy, ..., G A, which is unique up to permutation

oftheGt's.

Proof. This follows from the existence and uniqueness of direct sum decomposi-

tion and (4.10), (4.9), and (4.3).

Proposition 4.12. 77ze closed sets K(F) ofF=S(G, H) are given by the following

families:

K'(F) = (K'(G) x K'(H)) u (K'(G) x K"(H)) u (K"(G) x K'(H)),

K"(F) = (K'(G) x K'(H)) u (K"(G) x K"(H)).

Proof. A set of points /1^|F| is closed iff it contains no broken circuit, i.e.,

VC e C(F), \\C\A || # 1. If a set is not closed the circuit C can be chosen to contain

any given point qeI\A. Since C'(G) = C(G') and C'(H) = C(H') and since these

circuits do not contain the basepoint p and hence \C\A\ = \C\(A u {p})\, it follows

that a set A contains no broken circuits from the family of circuits C'(F) iff

An\G'\e K'(G) u K"(G) nndAn\H'\e K'(H) u K"(H). We need only consider

those sets A such that A \{p} e (K'(G) u K"(G)) x (K'(H) u K"(H)) and which do

not contain a broken circuit from any circuit C e C"(F) x {p}.

For a circuit C in C"(G) x C"(H) x {p} and set A in \F\', the basepoint p is in the

set difference C\A. Another point will also be in the difference unless the subset

A n\G'\$ K'(G) and A n \H'\ $ K'(G). This characterizes the closed sets in K'(F).

For a set A containing p, p $ (C\A) so the set will contain a broken circuit from

C"(F)x{p} iff |(Cn |G'|)\04 n |G'|)|| = 1 or \\(C n \H'\)\(A n \H'\)\\ = l but not

both. This holds iff A\{p} is in either of the families (K"(G) \K'(G)) x (K'(H)\K"(H))

or (K'(G) \K"(G)) x (K"(H)\K'(H)).

5. The parallel connection. We now explore an operation dual to the series

connection—the parallel connection.

Definition 5.1. For two pregeometries (G, pa) and (H,pH) we define the

parallel connection

(F,p) = P((G,Pa), (H,pH)) = S(G, H);

where (A*,/?) is the (unique) pointed pregeometry dual to (K,p) with the same

basepoint.

Note since (K)~ = K, P(G, H) = S(G, H).

Proposition 5.2. Ifp is not a loop in G or H, the bases of the parallel connection

F=P(G, H) are given by the following families:

B'(F) = (B'(G)xB"(H)) u (B"(G)xB'(H)),

B"(F) = B"(G)xB"(H).
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Proof. Since the set B is a basis of G iff its complement \G\\B is a basis of G,

and since the basepoint p is in B iff p $ \G\ \B:

BxeB'(G,p)   iff   \G\'\BxeB"(G,p),

and

B2eB"(G,p)   iff   \G\'\B2eB'(G,p).

Hence, B e B"(F) iff \F\'\B e B'(S(G, H))

iff (\F\'\B)n \G\ = \G\'\BeB'(G)

and   (|F|'\£)n \H\ = \H\'\BeB'(H)

iff £ n |G|' e 5"(G) and Ä n \H\' e £"(//)

iff 5 e B"(G) x Ä"(#).

The case when B is in the family B'(F) is proved similarly where, e.g., bases in

the family B'(G) x B"(H) in P(G, H) come from bases in the family B"(G) x B'(H)

x{p}mS(G,H).

If/? is a loop of G, then, by duality, B"(F) is empty, while B'(F) = B'(G) x £'(#)

if p is a loop of H, and B'(F) = B'(G) x B"(H) otherwise.

Corollary 5.3. The contraction S(G, H)/p is equal to the deletion P(G, H)\p.

Proof. The families B"(S) and B'(P) are equal when the basepoint p is not an

isthmus of S(G, H), and otherwise both pregeometries are the direct sum of the

deletions G\p and H\p.

Proposition 5.4. If (H, p) is an isthmus, then P(G, H) = G, so the operations of

series and parallel connections are both commutative, associative operations with

identities.

Proof. Similar to (4.3).

There are a number of propositions for parallel connections analogous to similar

propositions in §4 for series connections which follow trivially from duality; the

facts that (F¡e)~=F\e, (F\e)~=F/e, (G © H)~ = 0 © H; and the appropriate

propositions in §4.

Proposition 5.5. // ||F|| ä 2, then F=P(G, H) is connected iff both G and H are

connected.

Proposition 5.6. If e is any point in \G\' and F=P(G, H) then contraction and

deletion of e commute with the parallel connection: F/e=P(G/e, H) and F\e

= P(G\e,H).

Proposition 5.7. If F=P(G, H) and the basepoint p is not a loop of G, then

F\\G\' = H. Hence (G,p) and (H,p) are subgeometries ofP(G, H).

Proposition 5.8. If F=P(G,H) then the contraction F/p is separable: F/p
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= (P¡P) © (G/p). Further if F is connected and F/p is the direct sum of two pre-

geometries, G' © 77', then F is isomorphic to the parallel connection P(F\ \G'\, F\\H'\).

Proposition 5.9. A connected pregeometry (F, p) of more than one point has a

unique parallel decomposition into parallel irreducible connected non trivial pregeom-

etries (Gy,p), ..., (Gn, p) such that F=P(Gy, ..., Gn), where P can be viewed as a

symmetric n-ary operator.

Proposition 5.10. If F=P(G, H) and p is not a loop in G or H, the circuits of F

are given by the following families:

C'(F) = (C"(G) x C"(H)) u C'(G) u C'(H),       C"(F) = C"(G) u C"(H).

Proof. The circuits are the minimal dependent sets (i.e., those which are not

contained in any basis). Since the family B"(F) equals B"(G) x B"(H), a set containing

the basepoint p is dependent in F iff its intersection with the subgeometry (G, p) (or

(H, p)) is dependent in that subgeometry. Hence C"(F) = C"(G) u C"(H). Also,

since (G, p) and (H, p) are subgeometries of (F, p), C'(F) contains the two families

C'(G) and C'(H). If C=g u h where g e C"(G) and h e C"(H), then C is dependent

by the circuit elimination axiom applied to the circuits g u {p} and h u {p}. On the

other hand, if a circuit D is in C'(F), but g = D n |G| and h = D n \H\ are in-

dependent and if, e.g., g <£ C"(G), then g u {p} is also independent and g is con-

tained in a set B e B"(G). Thus D is contained in a basis B' e B"(G) x B'(H)—a

contradiction. Hence the circuit D is in the family C"(G) x C"(H).

Proposition 5.11. The closed sets K(F) ofF=P(G, H) are given by the following

families:

K'(F) = K'(G) x K'(H),       K"(F) = K "(G) x K"(H).

Proof. Assume the basepoint p is not a loop in G or H. Then no other sets can

be closed since (G, p) and (H, p) are both subgeometries and hence, if the set K

is closed in F then the subsets K n |G| and Kr\ \H\ must also be closed, while

peKiffpeKn \G\ andpeATn \H\.

None of the above closed sets contains a broken circuit from a circuit in G or

H. But if CeC"(G)xC"(H) and DeK'(G)xK'(H) and ||C\D|| = 1, then either

(C n |G|')£(i> Ci |G|') or (C n \H\')^(D n \H\') since the subsets \G\' and \H\'

partition both C and D. Assume the former. This means D n \G\' e K'(G) contains

a broken circuit C e C"(G)—a contradiction. Consequently, no element of K'(G)

x K'(H) contains a broken circuit.

Similarly, if DeK"(G)xK"(H), then if \\C\D\\ = \\C\(D u {p})\\ = l, either

||(Cn \G\')\(Dn |G|')| = 1 or ||(Cn \H\')\(Dn |#|')|| = 1. Assuming the former we

have ||((Cn |G|') U{p})\((D n \G\') u {p})\\ = 1. But the former member of the

above difference is a circuit in G while the latter is a closed set of G. So when p

is not a loop, the closed sets are as given above.
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Now assumep is a loop in G. Then p is a loop in Fand (F,p) = (H/p) © (G,p).

Then since K"(H) = K(H/p), K"(G) = K(G), and K"(F) = K(F) : K'(F) = K'(G) x K'(H)

vacuously, while K"(F) = K"(G)xK"(H) by properties of direct sum.

Proposition 5.12. In the category C of pointed pregeometries, direct sums exist

and are equal to the parallel connection: (G,p)®c(H, p)=P((G,p), (H,p))

= (P,P)-

Proof. We must make sure that all goes well in the following commutative

diagram:

(G,p)-^ (P,p)<-^- (H,p)

where (F, p) is an arbitrary pregeometry and g and h are arbitrary strong maps.

The canonical injection map, ia, is strong since if p is a loop in G or not a loop in

H, ia is injection of a subgeometry. If p is a loop in H and not in G then ia is

contraction by p followed by injection. Similarly for iH. For any point e in (P, p) we

define g © h by (g © /î)(e) =g(e) if e e G and /¡(e) if e e H. Then if a closed set /I is

in K'(F), then g"1(^)eÄ"(G) and h~1(A)eK'(H) since both g and h are strong

and preserve p. Hence (g© /¡)_1(^) eK'(G)xK'(H)'^K(P). A similar argument

holds for a closed set /ei"(f)x{/i}. So g ©A is strong. The facts that g

= (g® h)° (iG), h = (g@h)o (iH), and that g © A is unique follow from point set

considerations and noting that the functor to the set category is injective on

morphisms.

Note that in the category of pregeometries and strong maps this construction

shows that the parallel connection is the pushout from one point.

6. The Tutte-Grothendieck ring. In this section we construct the Tutte-

Grothendieck ring for pointed pregeometries in analogy to the ring for (nonpointed)

pregeometries explored in [2].

Definition 6.1. A J-invariant / is an invariant defined on the category G of

pregeometries taking values in a commutative ring R such that for all pregeometries

G, Gx, and G2,f(G)=f(G\e)+f(G/e) when the point ee Gis neither an isthmus nor

a loop, and/ÍGj © G2) = (f(Gx))(f(G2)).

Examples of J-invariants into the integers include c(G), the complexity or

number of bases of G; 1(G), the number of independent sets; (-l)r(GV(G), the

absolute value of the Möbius function and (— l)r<G)x(G) where y(G) is the chromatic

polynomial. Others are found in [2].

Definition 6.2. In [2], the Tutte-Grothendieck ring, T, is defined as the quo-

tient ring R/I where R is the free commutative ring (without unit) generated by P,
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the isomorphism classes of (nonpointed) pregeometries; and /is the ideal generated

by ring elements of the form [GX][G2] - [G] and [H] - [H/e] - [H\e] for all [Gx © G2]

= [G] and for all points e in H where e is neither an isthmus nor a loop.

T has the universal property that there is a 1-1 correspondence of 7-invariants

f:P-+R and ring homomorphisms/*: T-+R such that the following diagram

commutes:

P^R-L+T

/X sf*
R

where i injects a pregeometry into R and p is the canonical epimorphism. The ring

Jis isomorphic to P[z, x], the ring of polynomials in two variables over the integers

without constant term. For the examples above, if (p o i)(G) =f(z, x), then c(G)

=/(l, 1), /(G)=/(2, 1), |/x(G)|=/(l,0), and (-l)r(G)x(G)=/(l -A, 0). In addition

ß(G) = df/dz\x=0,z=0.

Definition 6.3. Let G' be the category of pointed pregeometries and strong

maps /: (F, pF) -> (G, pG) such that not only f(pF) =pG but /" 1(/7G) =pF. In this

category parallel connection is still direct sum since the canonical injections satisfy

the added constraint. There are three distinguished functors from G' to G, the

category of pregeometries and strong maps.

The functor T: G' -> G is the forgetful functor which sends a pointed pregeom-

etry (F,p) to its underlying (nonpointed) pregeometry F, and a strong map

/: (G, p) -> (H, p) to its underlying strong map/: G -> H.

The functor T deletes the distinguished element, so T'((F,p)) = F\p and

T'(f: (G, p) -> (H, p)) =/' : (G\p) -> (H\p), where /' as a set function is the restric-

tion of/to the subset |G\/?|;/is strong since the closed setsof the deletion H\p are

K'(H) u K"(H) and inverse images under / of the former are in K'(G) and of the

latter in K"(G).

T" is the functor which contracts by the distinguished element T"((F,p))=F/p

while T"(f: G -> //)=/": G//7 -> ////7, where/" as a set function is again the

restriction of/to |G\/>|. The morphism/" is strong in G since a set C is closed in

the contraction G/p iff C u {/?} is closed in (G, />).

Definition 6.4. A J'-invariant defined on P', the set of isomorphism classes of

pointed and ordinary pregeometries, and taking values in a commutative ring, is a

J-invariant on ordinary pregeometries; and for a pointed pregeometry satisfies

the following identities : f((F, p)) =f((F\e, /?)) +f((F/e, p)) for all (F,p); ee\F\',

e not an isthmus or loop ; and f((F, p)®G) = (f(F, p))(f(G)) for all pointed pre-

geometries (F,p) and (nonpointed) G where (F, p) @G=(F® G,p).

Examples of T'-in variants include/o T where/is a J-invariant and T is the

forgetful functor.

Definition 6.5. Let P' be the set of isomorphism classes of pointed and ordinary

pregeometries, and R' the free comutative ring (without unit) generated by the
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elements of P'. Let i: P' -*■ R' be the canonical injection and /' the ideal of R'

generated by elements of the forms :

l(F, P)] - [(P, P)\f] - [(P, P)lf];        K*© G, p)] - [(F, p)][G] ;

[G]-[G\e]-[G/e];   and    [G@H]-[G][H]

for all pregeometries G, G' ; pointed pregeometries (F, p) ; and for all points e e G,

fe \F\p\ where neither e nor fis a loop or isthmus. Let T' be the quotient ring

R'/r and p: R' -* T' the canonical ring epimorphism p(r) = r + F. If t = p o i, then

(T', t) is universal in the following sense : for all commutative rings R and for all

ring homomorphisms f*: T'-*- R, f=f* ° t: P'-*- R is a J'-invariant. If any other

pair (T", t') has this property, there is a unique ring homomorphism h: T'-> T"

such that t' = h ° t in the following commutative diagram:

R
iy    \/°

/Ni      ,/h'pit

Definition 6.6. Let Q denote the class of polynomials whose variables are

pointed and nonpointed pregeometries over the integers (without constant term).

For a point p', let Z)p- : Q -*■ Q be the partial function whose domain is all poly-

nomials, q, in which each term contains exactly one factor F,; such that/?' is in the

pregeometry P}; and for such a polynomial q=2i Tit GijFj, P>Á<¡) = Zj Ot G^F]

where F] = (p')(F,\p') if /?' is a loop or isthmus and F'¡ = (F,\p') + (Fj/p') otherwise.

For any pointed pregeometry (F,p) and ordering O on the point set \F\p\=(py,

.. .,pn), let D0(F) = (DPn ° DVn_x ° • • ■ °DPl)(F), which is well defined since for all

j, 1 újún, DPj is defined on the polynomial q,■_,. = (DVj_1 ° • ■ • ° DPl)(F). Similarly,

we define D0(G) for an ordering of all the points of a nonpointed pregeometry.

Two polynomials of the same length, J;- T~[t Gi;- and 2y Eli G¡; are said to be equiv-

alent if, for some ordering of the terms, [G0] = [G,'7] for all i, j, GH and Gy, so Qf~

is the set of all polynomials of isomorphism classes of pregeometries (and is set-

isomorphic to R').

Let [q] denote the equivalence class of the polynomial £7; and z, x, z' and x' the

equivalence classes of an isthmus, a loop, a pointed isthmus, and a pointed loop

respectively.

Lemma 6.7. (i) [D0(F)] is a polynomial with positive integer coefficients in the

variables z, x, z', x'.

(ii) [D0(F)] = [D0,(F)] for any orderings O and O' of the points of \ F\p \ (or \ F\ if

F is ordinary).

Proof. We will show this if F is a pointed pregeometry.

(i) Inductively, if ||(F,/?)|| = 1, then /? is either a loop or an isthmus and hence

[D0(F)]=x' or z'. Assume (i) for all \\(F,p)\\<n and let D0(F) =

(DPn *DH_to...o DP2)(DP1(F)) which equals (DPn o ... . DP2)((F\Pl)(py)) if Pl
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is an isthmus or loop and equals (DPn ° • • • o DP2)((F\px) + (F/px)) otherwise. But

F\px and F/px both satisfy the induction hypothesis relative to the induced ordering,

O'=(p2, ..., p„), and by multiplying [D0(F\px)] by [px]=x or z in the first case or

summing [D0.(F\p)] and [D0-(F/p)] in the second case, we are done.

(ii) We can effect any reordering by interchanging consecutive points, so we

need only show this for 0 = (px, ■■■,pk,pk+x, ...,/>„) and 0' = (px, ...,pk+x,

pk, ..., pn). But by the way we define the operator D0, we need only check that on

the relevant variables Fi} of

(/V, o ... o DPl)(F),       (DPk o DPk +L)(F„) = (DPk + L o Z>Pt)(FM).

Let Fy be any pointed pregeometry containing the points pk and pk+x.

Case I. lfpk is neither an isthmus nor a loop of Fi;, andpk+x is neither an isthmus

nor a loop of Ftj\pk or F^/pk, then, in Flj,pk and pk+x are not a two-point circuit,

neither pk nor pk+x is an isthmus or loop, and there must be a circuit Cx containing

pk+x that does not contain pk. Butais in some circuit C2and using circuit exchange

with Cx if necessary, we see that pk must be in a circuit that does not contain pk+x.

Hence, pk+x is neither an isthmus nor a loop of FXj and pk is neither an isthmus

nor a loop  of Fij\pk+X or F(j/pk+x. By looking at the set of bases we have

(Fii\Pk)\pk+i = (Fii\pk+X)\pk; (Fa\pk)/pk+x = (Fn/Pk+^Pk-,

(Fif/p^lPk+i = (Fi,!pk+i)/pk;   and   (Fi3/pk)\pk+x = (Fti\pk+X)lpk

(e.g., both sides of the last identity define the pregeometry G on the point set

\Fii\(Pk Vpk+x)\ with bases, those subsets of \G\ which when adjoined with pk

form a basis for Ftf).

Case II. If^fc is a loop (isthmus) of Fi;, then it is a loop (isthmus) of Ftj\pk+X and

Falpk+X. In any case, ((Dk+x(Fij))\pk)(pk) = Dk+x((FiJ\pk)(pk)).

Case III. If neither pk norpk+x is a loop or isthmus of Fti butpk+x is a loop of

Fa/pie (Pk+i is an isthmus of Fy\/>fc), then {pk+x, pk} forms a circuit (every circuit

containingpk+x containspk). But this means that in Fj; (F¡,), pk=pk+1 and there is

a strong map automorphism of FtJ which interchanges pk and pk+x. Clearly, then

[D0(F)] = [D0.(F)].

These are all possible cases so we may denote [D0(F)] unambiguously by D(F),

the (pointed) Tutte polynomial of (F, p).

Lemma 6.8. If P'=P'(z, x, z', x') is the polynomial ring over the integers without

constant term and t': P' ->P' is the function that sends a pregeometry F to its Tutte

polynomial D(F), then for any commutative ring R and homomorphism h: P' -> R,

h ° t' is a J'-invariant.

Proof. From properties of D, if an ordinary point of F is neither a loop nor

isthmus, D(F\e) + D(F/e) = D(F) by letting e=px in 0(F). Further, D(F@G) =

D((F)(D(G))) = D(F)D(G) if G is a nonpointed pregeometry by letting 0(F® G) =

(0(G), 0(F)). Hence, h ° t '(F)=h(D(F)) = h(D(F\e)+D(F¡e))=h(D(F\e)) + h(D(F/e))
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= ihot )iF\e) + ihot ')iF/e)      and      h ° t \F © G)=/t(D(F © G))=/i(i)(F)Z)(G))

= (A(W))(/z(£>(G))) = ((/t » t')(F)W ° i')(G)).

Theorem 6.9. The (pointed) Tutte-Grothendieck ring, 7", is algebraically isomor-

phic to P'(z, x, z', x'), a polynomial ring over the integers in four variables without

constant term.

Proof. By the above lemma and (6.5) there exists a homomorphism h: 7" -> P',

such that h° t = t'. By a small notational abuse, denote the cosets in 7" of an

isthmus, loop, pointed isthmus, and pointed loop by z, x, z', and x' respectively.

Then h(z) = z, h(x) = x, h(z')=z', and h(x') = x'. Since P' is free on these four vari-

ables, there is no relation in 7" among these cosets. If t'(F)=f(z, x, z , x') it is easily

seen (by ordering the points of F and observing that the operators DPi correspond

to generators of /') that F=f(z, x, z', x') (mod /') when both are viewed as

elements of R'. Hence any generator of R' and so any element of R' can be

expressed as a sum of products of the above four cosets. We have shown that

T' is the free commutative ring on four generators and hence is isomorphic to

P', while t = t'.

Proposition 6.10. We see by (6.9) that T' has the additional property that any

T'-invariant f corresponds to a unique homomorphism f* (which is found by evaluating

f*(z) = the value of f at an isthmus, etc.) such that f=f* ° t. We also note that

t((F, /?)) = z'fy(z, x) + x'f2(z, x) since D(F) leaves p as a one-point factor of every

term and hence as a pointed isthmus or loop. The isomorphism classes of nonpointed

pregeometries P generate an ideal of T' isomorphic to T: T~P(z, x)~P'(z, x, 0, 0)

by the obvious isomorphism.

Example 6.11. Since the operation of duality commutes with t, f(F) = t(F) is a

J'-invariant from P' into 7". Computing the one-point cases, if t(F)=f(z, x, z, x')

then 1(F) =f(x, z, x', z').

Lemma 6.12. If (Cn,p) is a circuit of n points (with basepoint), then t((C,p))

= z'(z"--2 + zn-3_|-hz+l)+JC'_

If(Cn, p) is the rank one pointed pregeometry in which the empty set is closed and

n- 1 other points are in the closure of p, then t((Cn, p)) = z' + x'(xn~2+xn~3-\-

+x+l).

Proof. t((C\ /?)) = t(p) = x' ; and for all n > 1, t((Cn, /?)) = t((Cn, p)\e) + t((Cn, p)/e)

=z'zn-2 + t((Cn-1,p)).

(Cn, p) is isomorphic to the dual of (Cn, /?), hence the second half of the lemma

follows from (6.11).

For a pointed pregeometry F and its Tutte polynomial t(F), let dF/dz'

= d(t(F))fdz' = the coefficient of z' in t(F). Similarly for dFjdx'.

Theorem 6.13. If (F,p) is a pointed pregeometry and T, T', T" are the three
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functors of (6.3), then if the Tutte polynomial of F, t(F) = z'fy'z, x) + x'f2(z, x)

=z'8F/ez' + x'dF/Bx', then

(toT)(F) = zfy + xf2.

If p is either an isthmus or a loop,

(toT')(F) = (toT")(F)=fy+f2.

Otherwise, ifp is neither an isthmus nor a loop,

(t o T')(F) = (Z- l)fy +f2, (t o T")(F) = fy+(X~ l)/a.

Proof. The functor T treats F like a nonpointed pregeometry and since (/ o T)(F)

is independent of the way the points of T(F) are ordered, we can make p the last

point in the ordering, treating it as an ordinary isthmus or loop.

If/? is an isthmus in F, then/2=0, and z'((t ° T')(F))=z'(t(F\p)) = t(p © (F\p))

= t(F) = z'fy=z'(fy+f2). The cases where p is a loop and for T" are proved

analogously.

If/? is neither an isthmus nor a loop, then

Case I. If F=iCn,p) © G, then T'(F) is the direct sum of G and n-1 isthmi;

hence t(T'(F))=z-\t(G)) = ((z-l)fy+f2)(t(G)) by (6.12).

Case II.  If F=(Cn, p) © G, T'(F) = (Cn.y) © G and

(toT)(F) = (z + x"-* + x"-*+-.-+x)(t(G)) = ((z-l)fy+f2)(t(G))

by (6.12).

Case III. In all other cases, if any point e is not an isthmus or a loop, and e is

not in the closure of/? (i.e., Fhas no two-point circuit {e,p}) and also e is not incident

with all circuits containing p, then p is neither an isthmus nor a loop of (F, p)\e or

(F,p)/e and so, (F\p)\e = (F\e)\p and (F\p)/e = (F/e)\p. Hence (toT')(F) =

(t o T')(F\e) + (t o T')(F/e). We can continue to decompose by such points, e, as

long as the above conditions are met, i.e., until we have a sum of indecomposable

pointed pregeometries which must be of the form of those handled in Case I and II

above. Then by distributivity the theorem is proved.

T" can be shown dually or by the observation that if/? is neither a loop nor an

isthmus, then (t o T) = (t ° T) + (t ° T") and hence (/ o T")(F) = zfx + xf2 - ((z- l)/i +f2)

=A + (x-\)U

Corollary 6.14. If e is neither an isthmus nor a loop of the (nonpointed) pre-

geometry G, and if we know the Tutte polynomials of the deletion and contraction of

G by e, t(G\e) = d(z, x), and t(G/e) = c(z, x) ; then we can compute the (pointed) Tutte

polynomial of (G, e) :

(x + z-xz)t((G, e)) = z'(c-(x-l)d) + x'(d-(z-l)c).

Proof. The above is the solution to the simultaneous linear equations found in

(6.13): c=fy + ix-l)f2, d=(z-l)fy+f2.
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Theorem 6.15. If in either G or H, p is neither an isthmus nor a loop, the Tutte

polynomials of the series and parallel connections are given as follows:

,«,„ *™       ,\t     ,s 8G dH , dG OH   8G dm      ,\8GdIT\
t(S(G,H)) = z^)__+__+__j+* L_ _|

and

,*>,„ TT*       ,\8G8H1      ,|\      ^8G8H   8G 8H    dG dm
t(P(G,H)) = z'[ww\+X'[(x-l)^^ + ̂ ^+^w\.

Proof. We will show this for F= S(G, H). The other case is proved analogously

or by (6.11). Assume the basepoint p is neither an isthmus nor a loop in G. Then,

decomposing F and H simultaneously by points in the deletion H\p, up becomes

an isthmus in a term of the decomposition of H, then G\p will be a direct sum

factor in the corresponding term in the decomposition of F If the basepoint p

becomes a loop in a term of the decomposition D(H), then (G, p) will be a direct

sum factor in the corresponding term of D(F). Hence a term p® Hx will corres-

pond to a term p® Hx® (G\p) if p is an isthmus; while if p is a loop, a term

p® Hi will correspond to H2 © (G, p). The former terms in the Tutte polynomial

are found in 8H/8z' while the latter are found in 8H/8x'. Hence,

t(F) = ^z'[(toT')(G)]+^[t(G)]

8H  J,     ,S8G    8G~\    8H\ ,8G     , dG]

Theorem 6.16. IfP=P(G, H) and S=S(G, H), and the basepoint p is neither an

isthmus nor a loop in G or H, the following invariants can be computed:

(i) The rank function : r(P) = r(G) + r(H) -1, r(S) = r(G) + r(H).

(ii) The Möbius function: p(P)= -p(G)p(H), p(S)=p(G)p(H\p)+p(G\p)p(H).

(iii) The number of independent sets: I(P) = I(G\p)I(H/p) + I(G¡p)I(H\p), I(S)

= I(G)I(H)-2I(G/p)I(Hlp).
(iv) The number of bases: c(P) = c(G)c(H)-c(G\p)c(H\p), c(S) = c(G)c(H)

-c(Glp)c(H¡p).
(v) The chromatic polynomial: y(P) = x(G)y(//)/(A-1),

X(S) = ((A - 2)/(A - l))x(G)x(H) + x(G)x(Hlp) + x(G/p)x(H).

(vi) ß(P)=ß(S)=ß(G)ß(H).

Proof. In the following, we will make continual use of evaluations of the Tutte

polynomial in (6.2) as well as the formulas in (6.13) and (6.15). Let p(z, x, z', x')

and s(z, x, z', x') denote the Tutte polynomials of (P,p) and (S, p) respectively;

and let gx = e(8G/8z'), g2 = e(8G/8x'), hx = e(8H/8z'), and h2 = e(8H/8x'), where e

is the evaluation corresponding to the J'-invariant under consideration.

(i) r(P)-1 = r(P/p) = r(G/p ® H/p) = r(G) -1 + r(H) -1 by (5.8).

(i)' r(S) = r(S\p) =f(G\p © i/\/0 = r(G) + r(H) by (4.9).
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(ii) (- iy<«>+'«>- v(P)=(- irpvw=p(i, o, i, o)=ftA1=(- irG)+rtHv(GV(//).
(ii)' (-l)'(S)MS)=i(l,0, l,0)=gA+^i- But M(G) = (-l)r(G)Si and M#|p)

=(-l)r(H^)((l-l)Ä1+/ia)=(-l)r(H)A2, so gyh2 = (-l)r(MGh(H\p) and similarly

for g2Äi.

(iiï) I(G\p) = (2-l)gy+g2   and   I(H/p)=hy + (l-l)h2.   Hence  I(G\p)I(H/p) +

I(Glp)I(H\p) = (gyhy+g2hy) + (gyhy+gyh2) = 2gyhy+gyh2+g2hy=p(2,   1, 2,   1) = /(P).

(iii)' /(S)=5(2, 1, 2, l)=2(g1/t1+gA+>l2A1)+^2.    But    I(G)I(H) = (2gy+g2)

■ (2hy + h2) = I(S) + 2gyhy= I(S) + 2I(G/p)I(H/P).

(iv) We may evaluate at (1, 1, 1, 1) or use (5.2) and (4.4).

(v) (_iy(P)x(p)=/,(1_Aî o, 1-A, 0) = (l-X)gyhy. But (1-X)gl = (-iy^x(G)

and (l-X)hy = (-l)™x(H). Hence, (X-l)x(P) = (-l)r(0) + r(H)(l -Xfglhy =

x(G)x(H).

(v)' (-ir*X(S) = s(l-X,0, 1-A, 0)

=   (\-X)(-Xgyhy+gyh2+g2hy)

=   (X-l)((X-2)gyhy+gy(hy-h2) + hy(gy-g2)).

But, as above, gy = (-l)r(G)-1x(G)l(X-l), while (-l)r™-1x(H/p)=hy +(0-l)h2.

Hence (A-l)2?A = (-in(%(/i); ß-l)gi(h1-h2) = (-irs>x(G)x(H/p); and

(A - l)Ai(gi -g2) = ( - irs)x(H)X(G/p).

= p-7 = Ä7' ÄV = ß(G)ß(H).
dz   x=z=o      dz  ôz   x=z=0

(vi)' Since /S gives the same value for a pregeometry F and its dual, F, for all

||F|| > 1, ß(S) = ß(S)=ß(P(G, H))=ß(G)ß(H)=ß(G)ß(H).

7. Series-parallel networks. We will now define a class of pregeometries which

represent the graphs of series-parallel networks. We characterize such networks

by a number of equivalent conditions and then investigate various invariants on

the class by use of the Tutte-Grothendieck ring.

Definition 7.1. On the set A of isomorphism classes of connected pointed

pregeometries with at least two points (hence p is in a circuit) we define the algebra

A = iA,P, S) of A and the two commutative semigroup operators Pi,) and

Si-,-) (which are closed by (5.5) and (4.6)).

A is free in the following sense: for no four elements G y, G2, Hy and H2 of A

can the following identity hold: PiGy, Hy) = S(G2, H2); since if Gu Hy and F

=PiGy, Hy) are all connected, then the deletion F\p is connected, any two points

being contained in a common circuit of C'(F). Hence by (4.9), F is not a nontrivial

series connection. The above remarks along with (4.11) and (5.9) prove the follow-

ing theorem:
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Theorem 7.2. An element F of A has a unique series-parallel decomposition into

series-parallel irreducible elements. A is also dual closed.

Definition 7.3. Using (7.2) we say (F, p)e A is essentially series or essentially

parallel if the deletion F\p is separable or if the contraction F/p is separable respec-

tively. If both minors are connected, (F, p) is then series-parallel irreducible.

Definition 7.4. Denote by A [C2] the subalgebra of A generated by C2, the two-

point circuit. A pointed pregeometry (F, p) is called a series-parallel network if

(F,p) e A[C2], A (nonpointed) pregeometry, G, is termed a series-parallel network

if for some point e e G, the pointed pregeometry (G, e) is a series-parallel network.

Proposition 7.5. Any connected minor (K,p), ||/f||^2, of (F, p) e A[C2] con-

taining p is also an element of A[C2].

Proof. We use induction on the number of points, ||F||, in (F, p). The proposition

holds trivially for C2. Assume that (F, p) is a smallest series-parallel network with

a connected minor (K,p) which is not in /4[C2]. We may assume F=S(G,H)

where ||G|| < ||F|| and ||//¡| < ||F|. Then (K,p) is formed by a sequence of contrac-

tions and deletions of points in \F\\{p). But by (4.7), (K,p) = S(K',K") where

(K',p) and (K",p) are minors of (G,p) and (H,p) respectively. Also, by (4.6),

(K',p) and (K",p) are both connected; so by induction, K' and K" are both in

A[C2], hence so is K. The case F=P(G, H) is proved identically.

Theorem 7.6. A connected pregeometry (without basepoint), G, of two or more

points is a series-parallel network iff it satisfies one of the following equivalent

conditions:

(1) It is a series-parallel network relative to some point.

(2)ß(G) = l.

(3) It is a series-parallel network relative to any point.

(4) For any connected minor K of G such that || AC|| ̂ 2; K or K is not a geometry

(i.e., the individual points of K or K are not all closed).

(5) No minor K of G is isomorphic to L4 (the four-point line) or F4 (the geometry

of the partitions of a four-element set).

(6) For any connected minor KofG(\\K\\> 2), and any point ee K; K\e or K/e is

separable.

Note. (2) shows that A[C2] can be completely characterized in the Tutte-

Grothendieck ring.

(4) implies that A[C2] can be constructed inductively from C2 by adding points in

parallel (i.e., replacing points with two-point circuits), and dualizing.

(5) implies that A [C2] is contained in the class of planar graphical pregeometries,

since F4 is the canonical geometry associated with the pregeometries P5/e, F\e, and

(Fs.slfùlfi ! where P& is the geometry of partitions of a five-element set; F is the Fano

projective plane of seven points, and F3-3 is the geometry of contractions of the

Kuratowski complete bipartite graph where fx andf2 are any two edges not incident
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with the same vertex. P4 is also self-dual; and hence P4 is a minor ofP5, P5, P33, P3 3,

F, and F; and since A [C2] can contain none of the above as minors as well as no four-

point line; the Tutte representation theorem [16] gives the implication. Also it is a

trivial consequence of (5) that connected nontrivial minors of series-parallel networks

are series-parallel networks.

Proof of Theorem. (1) => (2). In (6.16) we showed that for all G, HeA[C2],

ß(S(G, H))=ß(P(G, H)) = ß(G)ß(H). But ß(C2)= 1.

(2) => (3). If II GI =2 and G is connected, then G = C2 and C2 is series-parallel

relative to both its points. Assume the theorem for all pregeometries ||G¡|| <n and

let || G || = n and ß(G) = 1. Then for any point e in G, e is neither a loop nor an isthmus

and ß(G\e) or ß(G/e)=0. Assume the former. Then, since the deletion G\e is

separable, (G, e) = S((Gx, e), (G2, e)) by (4.10) where n> ||G,|| ̂ 2, for z'=l, 2, and

both are connected. But in (6.16(vi)) we showed that under these conditions /3(G)

=ß(Gx)ß(G2) and since this could only happen if ß(Gx)=ß(G2)= 1 we are done by

induction. The same holds if ß(G/e)=0.

(3) => (4). C2 = C2 is not a geometry. We will prove the stronger result that for

any larger connected minor, K, either K or its dual K contains a two-point circuit

disjoint from any given point e e K. Assume K is a connected minor of G, || K|| ^ 3

and eeK. Then by hypothesis, (G, e)eA[C2] and by (7.5), (K, e) e A[C2]. If

\\K\\=3, K is equal to S(C2, C2) or P(C2, C2) = S(C2, C2). In any case K or

K equals P(C2, C2) in which the two ordinary points form a circuit. Assume the con-

clusion for all 3^ \K~i\ <«and let ||A^||=«. If K=S(G, H), we may assume |G|| ^3.

By induction, one of the families C'(G) or C'(G) contains a two-point circuit. But

K=P(G, H) and both families C'(S) and C'(P) preserve two-point circuits. Simi-

larly for K=P(G, H).

(4) => (5). P4=P4 and Li=Li are both geometries.

(5) => (6). By the above Note we may assume that G can be represented by a

(planar) graph and our proof will be graph theoretic. So assume || K\\ ̂  3 ; /£contains

the edge e; and that K, K\e, and K/e are all connected (i.e., two-connected in graph

theory). Then e is in a AT-circuit, C, which must have at least two other edges, since

K/e has no loops. Let the two vertices incident with e be denoted vx and v2 respec-

tively. Denote the edge of C\e incident with vx as ex and the edge incident with v2 as

e2; the edges ex and e2 must be in a circuit D^K\e. Contraction of e in K identi-

fies vx and v2 and so contracts D to two circuits Dx and D2 both incident with vxv2

and neither is a loop. Since K/e is connected there must be a path P from a vertex

in Dx\vxv2 to a vertex in D2\vxv2 which does not contain any other vertex in D.

But then the subgraph D u P u {e} is topologically homeomorphic to G4, the

complete graph on four vertices. Since P4 is the geometry of contractions of G4, K

must contain F4 as a minor.

(6) => (1). If ||G|| =2, G = C2, the two-point circuit. Otherwise for a point e e G,

G\e or G/e is separable and so (G, e) is the series or parallel connection of two of its
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minors by (4.10) or (5.8). These minors are connected and hence by induction we

may continue decomposing till we reach an element which is series-parallel

irreducible which must have cardinality less than 3 and hence must be C2.

Lemma 7.7. If (F, p) is a pointed series-parallel network, then the contraction

F/p is a direct sum of loops and series-parallel networks. Further, F/p has all even

circuits (and hence no loops) iff all circuits in the family C'(F) are even and all

circuits in the family C"(F) x {/?} are odd.

Proof. By induction, C2//? is a loop which is an odd circuit while C2 is an even

circuit containing the basepoint p. If the F of our induction step is the parallel

connection P(G, H), then by (5.8), the contraction F/p is isomorphic to the direct

sum of the two contractions G/p and H/p both of which satisfy the induction hy-

pothesis, while F/p has even circuits iff both G/p and H/p do iff (by induction) sets

in the family C(G) u C'(H) and sets in the family C"(G) u C"(H) are all even.

But then sets in C"(G) x C"(H) are also all even; hence sets in C'(F) are even, and

those in C"(F) x {/?} are odd.

If on the other hand F=S(G, H), then by (5.3), F/p=P(G, H)\p. The latter is a

connected minor of a series-parallel network and hence is series-parallel by (7.6).

Also the family of circuits, C(P(G, H)\p) = C'(P(G, H)) = C'(G) u C'(H) u (C"(G)

x C"(H)). But these are exactly C'(F) u C"(F). Hence they are all even iff all

circuits in C'(F) are even while all circuits in C"(F) x {/?} are odd.

Definition 7.8. A coloring of a graph (and hence a series-parallel network) is

a function from the vertex set of the graph into a set such that adjacent vertices are

assigned distinct elements. A graph is n-colorable if there exists a coloring into a

set with n elements.

Theorem 7.9. Three colors are sufficient to color the vertices of a series-parallel

network. The network is two-colorable iff all its circuits are even.

Proof. Let Xn(F) denote the evaluation of X(F) at A=«>0. Then, since F is

connected, nXn(F) is the number of ways of n-coloring F. (This is proved in [2] and

[12].) Hence, we must show that X3(F) is positive for all series-parallel networks F,

and X2(F) is positive iff every circuit in Fis even. We use induction and (6.16(v)).

x(G2) = A — 1 and hence X3(C2) and X2(C2) are both positive and C2 is an even circuit. If

the F of our induction step isP(G, H), then X3(F) = X3(G)X3(H)/2 which by induction

is positive since the evaluated polynomials X3(G) and X3(H) both are. X2(F)

=X2(G)x2(H), hence X2(F) is positive iff X2(G) and X2(H) both are iff (by induction)

all sets in the families C'(G) and C'(H) are even while all sets in the families C"(G)

and C"(H) are odd (and hence sets in the family C"(G) x C"(H) are even) iff all

circuits of F, C(F), are even.

If, on the other hand, F= S(G, H), then using only the first term of the ex-

pression for X(S), X3(F)^X3(G)X3(H)/2 which is positive by induction. X2(F)

=X2(G)x2(HIp) + x2(GIp)x2(H) will be 0 unless one of the terms is positive. But F
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has even circuits iff the sets in the families C'(G) and C'(H) are even while sets in

C"(G) x C"(H) are odd. All sets in the family C"(G) x C"(H) are odd iff all sets in

C"(G) are odd and all sets in C"(H) are even or all sets in C"(G) are even while

those in C"(H) are odd. By (7.7), the former case holds iff G and H/p both have

even circuits and the latter iff H and G/p have all even circuits. The former case

holds iff G and each direct sum factor of H/p have even circuits. But each factor of

H/p is a series-parallel network by (7.7), hence by induction and since x(Pi © F2)

= x(Fi)x(F2), G and H/p have all even circuits iff all factors of X2(G)X2(H/p) are

positive. Analogously, H and G/p have all even circuits iff X2(H)X2(G/p) is positive.
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