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Abstract. Let y = (y0, ■ ■., yn-î). This paper is concerned with the existence of

solutions of a system of ordinary differential equations y'=g(t,y) satisfying inter-

polation conditions (*) y0(t¡) = ct for/=l, ..., N and tx< • ■ ■ <tN.lt is shown that,

under suitable conditions, the assumption of uniqueness for all such problems and of

"local" solvability (i.e., for tu ..., tN on small intervals) implies the existence for

arbitrary tu ..., tN and cx, ..., cN. A result of Lasota and Opial shows that, in the

case of a second order equation for y0, the assumption of uniqueness suffices, but it

will remain undecided if the assumption of "local" solvability can be omitted in

general. More general interpolation conditions involving N points, allowing coin-

cidences, are also considered.

Part I contains the statement of the principal results for interpolation problems

and those proofs depending on the theory of differential equations. Actually, the main

theorems are consequences of results in Part II dealing with "A/-parameter families"

and "/V-parameter families with pseudoderivatives." A useful lemma states that if

F is a family of continuous functions {y°(t)} on an open interval (a, b), then F

is an /V-parameter family (i.e., contains a unique solution of the interpolation con-

ditions (*) for arbitrary tx<---<t» on (a, b) and ci, ...,cN) if and only if (i)

v°, z° e F implies v° — z° = 0 or y° — z° has at most tV zeros; (ii) the set fí

= {{h, ...,tN, v°(/i), ..., y°(tN)) : tt< ii < • • • < tK <b and y° e F] is open in R2N;

(iii)y1, y2, ..., 6 Fand the inequalitiesy"(/)Sy" + 1(0for tz = 1, 2, ... ory"(i)êy" + 1W

for tz=1, 2, . .. on an interval [a, ß](=(a, b) imply that either y°(/) = lim y"(Z) exists

on (a, b) and y° e For lim \y"(t)\ =oo on a dense set of {a, b)\ and finally, (iv) the set

S(t) = {y°(t):y0 e F} is not bounded from above or below for a<t<b. The notion of

pseudoderivatives permits generalizations to interpolation problems involving some

coincident points.

Part I. Interpolation problems

1. Main results. All variables and functions below are real valued. Consider

an Mh order differential equation, which we write as a first order system for the

vectory=(y0, ...,yN-x),

(1.1) y'0 = yx, ...,y'N-2 = yN-u       y'N-x = Y(t,y0, ...,yN-x).

Received by the editors February 26, 1970.

AMS 1969 subject classifications. Primary 3436, 4110.

Key words and phrases. Ordinary nonlinear differential equations, multiple point conditions,

interpolation, /V-parameter family, pseudoderivatives.

(*) Research partially sponsored by the Air Force Office of Scientific Research, Office of

Aerospace Research, United States Air Force, under AFOSR Contract No. F44620-67-C-0098.

This paper also represents results obtained at the Courant Institute of Mathematical Sciences

of New York University, under the sponsorship of the Sloan Foundation.

Copyright © 1971, American Mathematical Society

201



202 PHILIP HARTMAN [February

The questions to be discussed in this paper include, for example, the problem of the

existence of a solution of (1.1) satisfying boundary conditions at A'distinct points,

(1.2) yQ(t,) = c,   fory = I, ...,N, where fx< • • • <tN,

or boundary conditions at N points, allowing coincidences,

ykitj) = cjk   for j = 1, ..., m and k = 0, ..., n(j)-l,

ty <■■■< tn; n(j) £ 1 ; n(l) + • • • +n'm) = N.

We shall also be concerned with the situation where (1.1) is replaced by a more

general first order system

(1.4) y'=git,y),

y=(yo, ...,yN-i)anà g=(g0, .. .,gN-y).In the case N=2, we have the following

result :

Theorem I 1.1. Let J—(a,b], -ooáa<A<oo, be a half-open interval and J°

= (a,b) its interior. Let N=2,y = (y0,yy), and g=(g0,gi)- Suppose that

g(t, y) e C°(Jx R2, R2) is such that (i0) g0(t, y0, Ji) is an increasing function of y y

for fixed (t, y0), t eJ° satisfying g0 -> ± oo as yy -> ± co uniformly on (t, y0)-

compacts; (ii) all solutions o/(1.4) exist on J; and (iii0) if y = (y0(t), J'i(O) and

z = (z0(t), Zy(t)) are distinct solutions 0/(1.4), then yo(t) — z0(t) has at most one zero

onJ° (that is, (1.4) and (1.2), with N=2, has at most one solution ifty, t2 ej° for all

Cy, c2). Then every boundary value problem (I-A), (1.2) has at least one solution.

This generalizes slightly the result of Lasota and Opial [10] in replacing their

second order equation (1.1), with N=2, by a more general first order system (1.4),

with N=2. It also (1) replaces their open interval by a half-open interval and (2)

omits their assumption of the uniqueness for initial value problems. As to (1), (2),

and other generalizations for second order problems (1.1) and (1.2), with N=2, see

Schrader and Waltman [17] and references there to Jackson, Schrader, Waltman,

Bailey, and Shampine. Devices of [10], [17] can be used to obtain corresponding

generalizations of Theorem I 1.1.

Theorem I 1.2. Let J, y, g be as in Theorem I 1.1 except that condition (iii0) is

replaced by the following: (iii*) there is at most one solution o/(1.4) satisfying

(1.5) y0(h) = Cy   and   yy(t2) = c2,       ty ± t2,

for arbitrary Cy, c2 and ty, t2 e J°. Then condition (iii0), hence the conclusion of

Theorem I 1.1, holds; also, every boundary value problem (1.4), (1.5) has at least one

solution if ty e J°, t2 e J.

Theorem I 1.2 contains the result of Lasota and Luczyñski [8] for a second order

equation (1.1), N=2, with (1.5) replaced by y0(ti) = Cy and yi(t2)+yy0(t2) = c2
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where txj=t2, and y is a fixed constant. In order to see this, it suffices to replace the

equation y'¿ = Y(t, y0, y'0) by a first order system for y = (yQ, yx) = (y0, y'0 + yy0),

y'o = yi - yy0,      y'i = Y(t, y0, yx - yy0) + y(yx - yy0).

We cannot decide if the analogue of Theorem I 1.1 holds for N>2; such an

analogue becomes correct for open intervals if a condition of "local solvability" is

added.

[Added in proof (October 26, 1970). After the completion of this paper,

Professor P. Waltman showed me a preprint of the forthcoming paper Existence

and uniqueness of solutions of boundary value problems for third order differential

equations by L. Jackson and K. Schrader. These authors obtain an analogue for

N=3 of the Lasota-Opial [10] result for N=2; i.e., if N=3 and (1.4) is replaced

by (1.1), then the condition (iii0) of "local solvability" can be omitted in the

following theorem.]

Theorem I 1.3. Let N>2 and J° = (a,b) an open interval; also y = (y0, ...,yN-x)

and g=(g0, .. .,gN-x). Letg(t, y) e C°(J° x R", RN) be such that (i0) all solutions of

(1.4) exist on J° ; (ii0) ify(t), z(t) are distinct solutions of (I A), then y0(t) — z0(t) has at

mostN— 1 zeros onJ° (that is, (I A) and (1.2) has at most one solution iftx, ..., tNeJ°

for all cx, ..., cN); and (iii0) the boundary value problems (IA), (1.2) are locally

solvable at every point tQ e J°, that is, for every t0 e J°, there exists an open interval

J(t0), t0 e J(t0)<=J° such that (I A), (1.2) has a solution for all distinct tx, ..., tNe J(t0)

and all cx, ..., cN. Then every boundary value problem (I A), (1.2) has a unique

solution.

We can obtain a theorem for half-open intervals by adding an additional con-

dition (i*). (Incidentally, this condition always holds if N=2, under the assumptions

of Theorem I 1.1.)

Corollary I 1.1. LetN>2,J=(a,b]andJ° = (a,b). Letg(t,y)e C°(JxR»,RN)

be such that (i) all solutions of (I A) exist onJ; (i*) ifyn = (yno(t), ■ ■ -, yn,N-i(t)) is a

solution of(lA)for « = 0, 1, ..., andyn0(t) —>y0o(t) uniformly on compacts ofJ°, as

n^-oo, then yn0(b) -*■ y00(b) ; conditions (ii0), (iii0) of Theorem I 1.3 hold on J°. Then

every boundary value problem (I A), (1.2), with t¡ ej, has at least one solution.

We can deal with the more general boundary conditions (1.3) under additional

hypotheses.

Theorem I 1.4(a). Let N>2, J°, g be as in Theorem 11.3 and satisfy the following

additional hypothesis: (i\K) let 1 -K?¿N and if y = (y0(t), ■ ■ -,yN-i(t)) is a solution

of (I A), then yx(t), .. .,yK-i(t) are pseudoderivatives of y0 on J° in the sense of

Definition 1.3 in §1 of Part II below; cf., e.g., Propositions 2.1 and 2.2 in Part II

below. Then every boundary value problem (IA), (1.3), with l^n(j) = K and

«(!)+••• +n(m) = N, has at least one solution, (ß) Furthermore, if K=N and (v0)
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solutions of (LA) are uniquely determined by initial conditions at points t0 eJ°, then

a solution o/(1.4), (1.3) is unique.

A corresponding result on a half-open interval is the following:

Corollary I 1.2. Fez- N>2, l^K^N, J=(a,b], J° = (a,b), and ge

C°(/x RN, RN). Assume conditions (i), (i*) of Corollary I 1.1 ; also conditions (ii0),

(iii0) of Theorem I 1.3 and condition (ivK) of Theorem I 1.4(a) on J°. Then every

boundary value problem (1.4), (1.3), with 1 ¿n(J)¿K and n(l)+ ■ ■ ■ +n(m) = N, has

a solution, provided that tm<b or that tm = b, n(m) = 1.

Note that when (1.4) reduces to (1.1), that is gk=yk + 1 for A; = 0,..., N—2 and

gN-y= Y, then the condition (ivN) of Theorem I 1.4(a) is trivially satisfied.

Also, in the case (1.1) of (1.4), Theorem 8 of Lasota and Opial [9] implies that

the condition (iii0) of Theorem I 1.3 of "local solvability" at t=t0ej° is satisfied

if there exists a continuous function M(t) such that

(L6) \Y(t,y0,...,yN.y)\ ^ M(t)(l+ "%  \yk\)
\       k = o I

for small \t—t0\ and all y=(y0, .. .,yN-i);cf. also Lemma I 1.1 below. Of course,

if there exists a continuous M(t) e C°(J°) satisfying (1.6), then conditions (i0), (iii0)

of Theorem I 1.3 hold. When (1.4) is "nearly" an Mh order equation, one can

obtain an analogue of the sufficient condition (1.6) for "local solvability."

Lemma I 1.1. Let N^2, and the first N—l components of g=(g0, .. .,gN-y)e

C°(Jx RN, RN) have the form

(1.7) gk(t, y) = 2 Pkj(t, y)yj   fiork = 0,..., N- 2,
J = 0

where Pkj(t, y)e C°(JxRN, R), and there exist constants M, c>0 such that

(1.8) \Pkj(t,y)\ Ú M   forj = 0, ..., k+l andk = 0, .. .,N-2,

(1.9) Pk.k+i(t,y) ^ c> 0   fiork = 0,...,N-2.

In addition, suppose that the Nth component gN-y of g satisfies

(i.io) \gN-iit,y)\úMli + 2\yÁ
\       k = o I

Then there exists a constant 8 > 0, depending only on N and M, such that if the length

of J satisfies b — a<8, then every boundary value problem (I.A), (1.3) has at least one

solution.

It will be clear from the proof that, with the same S, other classes of boundary

value problems have solutions; for example, (1.4) and

(1.11) yk(tk) = ck   for k = 1, ..., N and tk g t¡.
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Compare this result with [16] and [11], where other problems are treated, but the 8

there depends on a fixed set of boundary conditions (instead of allowing all

conditions (1.3) [or (1.11)] as in Lemma I 1.1).

The condition of "local solvability" (iii0) in Theorem I 1.4 and its corollary can

be weakened to a type of "compactness" assumption (vi0), suggested by the

Beckenbach-Tornheim continuity theorem for /V-parameter families (see Lemma I

1.1 in Part II below).

Theorem I 1.5. Let N>2,J° = (a,b) an open interval, y=(y0, ...,yN-x) and

g — (go, ■••,gN-i)- Let g(t, y) e C°(J° x RN) be such that conditions (i0), (ii0) of

Theorem I 1.3 and conditions (ivN), (v0) of Theorem I 1.4 hold. In addition, suppose

that(vi0)ifyn(t) = (yn0(t), .. .,yn¡N-x(t))forn=l, 2, ... is any sequence of solutions

of (I A) satisfying

(1.12) j„o^Jn+i.o  for n = 1,2, ...    or   yn0 ^ yn+i.o   for n = 1,2, ...,

on some compact [a, ß]<=J°, then either

y0(t) = lim yn0(t) exists on J° and there
(1.13) "-*»

is a solution (y0(t), .. .,y„-x(t)) of (I A)

or

(1.14) lim [j„o(OI =°o    on a dense set of J°.
n-*co

Then every boundary value problem (1.4), (1.3) has a unique solution.

It can be mentioned that if (1.4) reduces to an TVth order equation (1.1) and if,

for every small interval [a,ß]<=J°, there exists a constant M=M(a,ß) such that

gN-x= Y satisfies (1.10) for t e [a, ß], then condition (vi0) holds even if (1.14) is

replaced by

(1.15) lim l^noMI = °°   except at N-l points of/0;
n-* oo

cf., e.g., the proof of Lemma 7.1 in [5, p. 479].

Theorem I 1.1 will be proved in §2, Theorem I 1.2 in §3, and Lemma I 1.1 in §4.

The remaining results do not really depend on the theory of ordinary differential

equations and are consequences of results on "TV-parameter families" or on

"/V-parameter families with pseudoderivatives" to be discussed in Part II below.

Thus Theorem I 1.3 is a corollary of Theorem II 1.1 below, while Corollary I 1.1

follows from Corollary II 1.1, Theorem I 1.4 from Theorem II 1.2, Corollary I 1.2

from Corollary II 1.2, and Theorem I 1.5 from Theorem II 1.3.

For older references to Nicolleti, Conti, et al., see the bibliographies of [3], [16].

2. Proof of Theorem I 1.1. In proving the existence of a solution of (1.4), (1.2)

with zV=2, there is no loss of generality in supposing that t2 = b. Let tx, cx be given,
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a<ty<b. It suffices to show that if S is the set of y0(b)-values, where y't)

=(vo(0> Ji(0) is a solution of (1.4) satisfying y0(ti) = Cy, then S=(—oo, oo).

Let A">0 and SK1 the set of _y(A)-values of solutions of (1.4) satisfying the initial

conditions

(2.1) y(ty) = (cy,d)   for |</| á K.

Then SK1 is a closed connected set in the >>-pIane; Fukuhara [4]. Thus if SK is the

projection of SK1 on the y0-axis, i.e., ifSK is the set of y0(b)- values of solution of (1.4)

satisfying (2.1), then SK is a jvinterval (possibly a point) which is nondecreasing

with K, and S is the union of SK, K>0. Hence S is connected.

Suppose that S=¿( — oo, oo), e.g., that S is bounded from above, say Sc(—oo, M).

Let y=yin}(t) be a sequence of solutions of (1.4), where

(2.2) y«>(ti) = (ci, n)   for n = 1, 2, ....

If t1, t2, ... is a sequence of i-values on a compact subinterval of J°, then

(2.3) || yM(tn) || -> co    as n -> oo ;

for otherwise, the sequence {y^ÁO} has a subsequence which tends to a solution of

(1.4) uniformly on compacts of J; cf. [6, pp. 14-15]. By condition (iii0), the first

component yn0(t) of y(n)(t) satisfies

(2.4)   yn0(s) > yn+1.o(s)   and   yn0(t) < jn+1>0(0   for a < s < ty < t < b.

The sequence {yn0(i)} cannot be uniformly bounded on any subinterval of J°. For

suppose that there is a constant C such that | vn0(i)| = C on [a, ß]<=J°. Then there

exists a t"e(a,ß), where | vñ0(rn)| H2C/(ß-a). Condition (i0) then implies that

|j(n)('*")||  is bounded.  But this contradicts (2.3). Hence there exist sequences

{sn}, {tn} such that

ty > sn-> ty   and   i, < z\, -> i,,
(2.5)

yno(Sr) -*■ - oo    and   jn0(/„) -»- oo    as w -^ go.

Let y=y*(t) be any solution of (1.4) satisfying y$(b) = M, so that 5<=(-oo, M)

implies that y$(b)>yno(b) for all n. But, by (2.5), yS(tn)<yno(tn), yoisA>yno(sA for

large n. Hence, y*-yn0 has two zeros on (a, A). This contradicts (iii0) and shows

that S is not bounded from above. Similarly, it is not bounded from below. This

completes the proof of Theorem 11.1.

3. Proof of Theorem I 1.2. We first verify that the conditions of Theorem I 1.2

imply (iiio) in Theorem I 1.1. Let y't), z't) be distinct solutions of (1.4) satisfying

y0 = z0 for some point t=tye J°. It will be shown that y0 ̂  z0 for ty + te J°. Suppose,

for example that ^(f)<Zy(t) for ty<t<b. In particular, .yi(ri)^Zy'ty). On the one

hand, if yy(ty) = Zy(ty), then, by (iii*), y0(t)¿zQ(t) for ty¥=tej°. On the other hand,

if yi(h)<Zi(ri), then yó(ty)<z'0(ty) by (i0), so that for small t-ty>0, y0(t)<z0(t).

Suppose, if possible, that there exists a least s, ty < s < b, where y0(s) = z0(s). Then
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yó(s) = z'0(s), and so, yx(s)äzx(s). This contradiction shows that y0¥=z0 on (tx, b).

Similarly, y0¥"Z0 on (a, tx). This proves (iii0).

In proving the existence of a solution of (1.4) satisfying (1.5), we can suppose

that tx < t2 (as the proof for tx > t2 is similar). We can then suppose that t2 = b.

Let S be the set of yx(b)-\alxxes of solutions y(t) of (1.4) satisfying .Vo('i) = cx. As

in the last section, S is a connected set, and it suffices to show that S is not bounded

from above or below. Suppose that 5<=(—co, M). Let {y(n)(t)} be a sequence of

solutions of (1.4) satisfying (2.2). Then, as in the last section, there exist sequences

{sn}, {/„} such that (2.5) holds.

It is clear from (2.2) that there exists a sequence {tnX} such that tx < tnX -> tx and

JViOm) ->- oo as « -> co. Consider any solution y=y*(t) of (1.4) satisfying y*(b) = M.

Thus yt(b)>ynX(b) for all n, but y*(t„x) < ynX(tnX) for large n. Thus

y*(Q = ym(Q   for some t'n, tnX < t- < b.

Also yt(tn)<yno(tn),ya(Sn)>yno(Sn) for large n, so that

y*(Sn) = yno(s'n)     for SOIÎie s'n, Sn  < s'n  <  tn.

The last two displays contradict (iii*) if s'n±t'n. If s'n = t'n so that y*=yln) at

t=sñ = tn>tx, let y**=yin) for a<ti!*s'n and y**=y* for s'n<t^b. Then y** is a

solution of (1.4) such that yo*(ti)=yno(h) = Ci and yf*(b)=yf(b)=M, so that

M e S. Hence, S is not bounded from above. Similarly, it is not bounded from

below, and Theorem I 1.2 follows.

4. Proof of Lemma I 1.1. Consider the following linear system of differential

equations with continuous coefficients on an interval J: \t —10\ :££.

%Pkft)y,   fork = 0,...,N-2,
1 = 0

¡V-l

2 PN-u(t)yj+Q(t),
i = 0

and M, c>0 constants such that

(4.2) |£w(i)l ^ M,       Pk,k+X(t) ïc>0,       I (2(01 à IM,

for all y, £. The corresponding homogeneous system, g(0-0, will be called the

system (4.1-0).

(a) Transformation of (4.1-0). If y=y(t) is a solution of (4.1-0) such that the

Euclidean length || ̂ (i0)|| of y(t) at t=t0 is 1, then a standard inequality gives

IjKOI! èexp(LMN)   for \t-t0\ ú L;

cf. [6, p. 54]. Hence

(4.3) \\y(t)-y(to)\\ â (LMN312) exp (LMN)   for |f-i0| è L.

ylc

(4.1)

y'N-i
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For z = 0, ...,N-l, let f(t) = (y0i(t), ..., JV-i,i(0) fee the solution of (4.1-0)

satisfying yM(t0) = 2 or 0 according as k = / or k ^ i. Then (4.3) implies the existence

of a constant S = S(AF, A^)>0 such that if

(4.4) 0 < F < o,

then

(4.5) 2fc"1 ̂  1^(0 = detC^O),./^.u-x ^ 2k+i   for |/-r0| S L

and A:=0, ...,N—l. Thus, (4.1-0) is equivalent to an Mh order differential

equation

(4.6) {a»-i---[oi(ab^«)T---}'-0,

where the functions a0, .. .,aN-y are given by

ak(t) = W2_y/Pk_y.kWk.2Wk   fork = 0,...,N-I,

W_2=W-y = l   and   F_1>0 = 1;

[6, pp. 51-54], The system (4.1-0) and equation (4.6) are equivalent in the sense that

if y(t) = (y0(t), ■ ■ ., jV-iW) is a solution of (4.1-0), then y0(t) is a solution of (4.6).

Conversely, if y0(t) is a solution of (4.6), then y = (y0, . ■ -,yN-y) is a solution of

(4.1-0) if

(4.8) y„ = J (Wi/Wj.y)wj   fork = 0,...,N-l,
i = 0

(4.9) h>o = a0.Vo    and    w, = ú^-V-r ■ ■ [ayia0y0)']' • • •}'   for j = I, ..., N-l.

(The formulae (4.8), (4.9) are not stated explicitly in [6], but can be easily verified

from the calculations there.)

(b) Transformation o/(4.1). Correspondingly, the inhomogeneous system (4.1)

is equivalent to

(4.10) {aN-y-[ayia0y0)']'- ■ ■}' = WN.aQIWN.u

by virtue of (4.8), (4.9).

(c) A determinant estimate. It is clear from (4.8) that boundary conditions of the

type (1.3) are equivalent to conditions of the type

(4.11) wk(tj) = yik   for y = 1, ...,wandA; = 0, ...,«(y')-l

for suitable constants yjk. Let s<ty and consider the N linearly independent solu-

tions y00, ..., Vw-i.o of (4.6) given by

Joo = ab~Ht)   and

(412) /*' fi fi-i
J¡o = aö\t)     af Vi) dry       a21(r2) dr2 ■ ■ - af Vt) drt,

J$ Js Js

for i= 1, ..., TV-1. Let (wi0 = a0yi0, wilt ..., wi(JV_!) belong to the solution yi09 by
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virtue of (4.9). We shall estimate from below the absolute value of the determinant

D of the matrix of coefficients of the (algebraic) linear system

N-l

(4.13) 2 xiwik(tj) = Ym   for/ = \, ■ ■-,m andk = 0, ..., n(j)-\.
t = o

In fact, we shall show that there exists a constant K> 0, depending only on M and

c>0, such that

(4.14) \D\ = K    [7    (tk-tA*"™».
lSi<kSm

Consider first the case m = N, n(l)= • • ■ =n(N) = l, and denote D by

DN = DN(tx, ..., tN) = DN(tx, ..., tN; a0, ■ ■ -, ax-x);

so that

DN = det(wi0(fi+1))i,y=o.N-i

=  det (a0(z'y+1)>'io(i',+ l))i,y = 0.N-l-

Since tk occurs only in the kth row, it is easy to see that

(8»-i/dtx-- -dtN_x)DN = a:\tx)- ■ ■ar\tll.1)Dll.1,

where DN.x = DN_x(tx, ..., tN-x) = DN.x(tx, ...,tN.x;ax, ..., aN.x). Also DN=0

if tN = tN_x and (dN-k/dtk- ■ dtN.x)DN = 0 if tk = tk.x forA: = 2, ..., 7V-2. Hence

r'jz
DN(tx, ...,tN)= flrX^-i) dsN-i

Jts-i

rs3 f52
• ■ •       fli Ks2) ds2      ax HíO-D/v-iÍíi, ■■■,sN-x) dsx.

Jt2 Jh

An induction on N gives (4.14) with m = N, n(l)= ■ ■ ■ =n(N) = l.

We now make an induction on decreasing m. Assume that m = N— 1 and (4.14)

holds if m is replaced by m +1. Suppose that n(i) > 1 and let D' = D'(r) denote the

corresponding determinant with n(i) replaced by n(i)— 1 and the point t = r added

to the set tx, ..., tm, where r> t¡ is near f¡. On the one hand, the analogue of (4.14)

holds for D', by the induction hypothesis, and implies that

lim sup l/rO-jl/íz-O""'"1 = K (ifc-f,)n0önü).

On the other hand,

[ak(r)(d/dr)- ■ .a2(r)(8/dr)ax(r)(d/8r)]r=hD'(r) = 0   or   D,

according as 0^k<n(i)-l or k=n(i)-l. The last two displays imply (4.14).

(d) An a priori estimate. The fact that £^0 implies that (4.1), (1.3) or (4.11) has

a unique solution y(t). We shall show that there exists a constant C0, depending

only on M, c>0, and (tx, ...,tm; n(l), . ..,n(m); c0, ..., cmMm)-X), such that

(4-15) ¡XOII, 1/(011 = C0.
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To this end, let >'o = '?o(0 be the particular solution of (4.10) given by

*?o(0 =      a0-1(aN^y)dsN.y •••     * aô1(s1)ds1    ' [rVN.2(s0)Q(s0)/rVN.y(s0)] ds0.
Jto Jto Jto

Then the desired solution y(t) of (4.1) is obtained from (4.8), (4.9), and y0(t) =

1t = i Xiyi0(t)+-no(t), where the sum is a solution of the homogeneous equation

(4.6) and the constants x0, ..., xN-y are chosen so that

N-l

I
i = 0

I    —  -L

2 WitciU) = cki-nk(t¡).

These conditions can be transformed into (4.13), where ykj depend linearly on ckj

with bounded coefficients. The determinant estimate (4.14) gives bounds for the

constants x0, ■ ■ -, xN_y implying the existence of the a priori bound C0 in (4.15).

(e) Completion of the proof. Rewrite (1.4) in the form

(4.16)
N-l

y'k = 2 PMÍ.t, y)y<   for k - 0, ..., N-2,
1 = 0

N-l

y'N-y = 2 pN-i.Ât,y)yj+<i(t,y),
/-o

where the functions PN-ij and q are defined by

(4.17) PN-u = gN-i(i,y)yilii + \\y\\)2,

(4.18) i? = ^-i(Fy)(l+2||v||)/(l + |v||)2.

Then, by (1.8)-(1.10),

(4.19) \Pkiit,y)\ Í M,       Pk.k+y(t,y) £ c> 0,        \q(t,y)\ ^ 2M.

Suppose that J is the interval \t-t0\^L and that (4.4) holds.

In the Banach spaces C°(J, RN) of continuous, /^-valued functions with the

sup norm on J, let S be the set of functions z(t) = (z0(t), ..., zN-y(t)) of class C1

satisfying

(4.20) ||z(0||, 1/(01 = C0;

cf. (4.15). Consider a map F: 2 ->- S, where y(t) = Tz(t) is the unique solution of the

linear system

(4.21)

n, t x

y'k = 2 PwC' ̂ 0)^   for A: = 0, ..., TV-2,
1 = 0

N-l

y's-i = 2 ^-ij(i»z(0)^+»7(r,z(0),
i-o
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satisfying (1.3). Parts (a)-(d) on linear systems (4.1) imply the existence of such a

unique solution y(t), and (4.15) shows that y eS. It is clear that £is continuous.

Since S is a compact, convex set of C°(J, RN), the Schauder theorem implies that

£has a fixed point y=y(t). This proves Lemma I 1.1.

Part II. TV-parameter families and pseudoderivatives

1. /V-parameter families. The following definition was given by Beckenbach [2]

for N=2, and by Tornheim [15] for arbitrary N:

Definition 1.1. /V-parameter family. Let/0 be an open ¿-interval (a, b). A set

£ of functions f°(t) e C°(J°) is said to be an N-parameter family on J° or to inter-

polate uniquely at N distinct points if, for every set of N distinct points tx< ■ ■ ■ <tN

of J° and every set of N numbers cx, ..., cN, there is one and only one element

f0e F satisfying

(1.1) f0(tf) = Cj   forj = 1, ..., N, where tx < ■ ■ ■ < tN.

The basic facts about /V-parameter families are contained in the following lemma:

Lemma II 1.1 (Beckenbach [2], Tornheim [15]). Let F={f°} be an N-parameter

family on J° = (a, b). (a) Iff0, g° are distinct elements of F such that f°—g° has

TV—1 zeros on J°, then f° — g° changes signs at each of its zeros, (ß) If f°(t)

=f°(t, tx, ..., tN, cx, ..., cN) is the unique element of F determined by (1.1), thenf0

is a continuous function of its 2N+1 variables for teJ°, a<tx< ■ ■ ■ <tN < b,

(cx, ...,cN)eRN.

Definition 1.2. A family F={f0} of continuous functions on an open interval

J° = (a, b) will be said to be a local N-parameter family if, for every t0 ej°, there is

an open interval /(/°), t0 eJ(t0)^J°, such that the set of restrictions f°\J(t0) of the

elements/0 e £is an /V-parameter family on J(t0).

Theorem II 1.1. Let J° = (a, b) be an open interval. Let £={/0} be a family of

continuous functions on J° satisfying (i) F is a local N-parameter family on J° and

(ii) iff0, g° are distinct elements of F, thenf°—g° has at most N— 1 zeros on J°.

Then F is an N-parameter family on J°.

The proof of Theorem II 1.1 is contained in the following three propositions.

Proposition 1.1. Assume the conditions of Theorem II 1.1 and let

A = A(J°) = {(tx, ...,tN)eRN;a<tx<---<tN<b},

Q = D(7°) = {(ilf ..., tN,f°(tx), .. .,f°(tN)) e A x Fcr : /° e £}.

Then Ü is an open subset of R2N.

Proof. Let f0 eJ and sx < ■ ■ ■ <sN be points of J(t0). Let

f°(t)=f°(t,sx,...,sN,cx,...,cN)
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be the unique element of £ satisfying f°(s¡) = c¡ for7= 1, ..., N. For fixed t0 and

su ..., sN, consider the map $:AxF->-Q defined by

<&(?!, ...,tN,cx,...,cN) = (tx, ..., tN,f°(tx), . ..,f°(tN)).

Then <f> e C°(Ax £w), for f°(t, sx, ..., sN, cx, ..., cN) is a continuous function of

(t, cx, ..., cN) by Lemma II 1.1 applied to J(t0) and to small open (necessarily

overlapping) /-intervals covering a closed subinterval of J°. It is one-to-one by

condition (ii) of Theorem II 1.1. Since the domain A x RN is open in £2W, its range

Q is open in R2N, by the Brouwer theorem on the invariance of domain.

The next result is a generalization of the continuity theorem (Lemma II 1.1) for

vV-parameter families.

Proposition 1.2. Let F be a family of continuous functions f°(t) on an open in-

tervalJ0 = (a, b) such that (i') the set Q.<=R2N is open and (ii) iff0, g° are distinct ele-

ments ofF°, thenf°-g° has at most N- 1 zeros on J°. (a) Iff0, g° e F andf°-g°

has exactly N— 1 zeros on J°, then f° — g° changes signs at each of its zeros, (b) If

f°(t)=f°(t, tx, ..., tN, cx, ..., cN) is the unique element of F satisfying (1.1), thenf0

is a continuous function of its 2N+1 variables for t eJ°,(tx, ...,tN,cx, ...,cN)eQ..

Proof. We indicate the proof of the first part (with a slight variant of Becken-

bach's proof [2] of the first part of Lemma II 1.1). Let/0, g° e Fbe distinct elements

of £ with/°-g° vanishing at t = tx, . .., ts-i- Suppose that/°-g°>0 for small

\t—tk\ >0for some k. Choose s arbitrarily, tk^x<s<tk if k> 1 or a<s<tk if k= 1.

If e>0 is sufficiently small, so that g°(tk + e) is sufficiently near to f°(tk)=g°(tk),

then the openness of Q implies that there exists an h° e F such that

h°(t,) = f°(t,) = g°(tA   for j*k,

h°(s)=f°(s)    and    h\tk + e) = g\tk + e).

Hencef°-h° = 0 at the N-l points t = tj,j+k and t = s, while h°-g° = 0 at the

N— 1 points t=tj,j^k, and t = tk + s. But it is also easy to see that either/0 — h° or

h°—g° vanishes on (s, tk + e). This contradicts condition (ii) and proves the first

part of Proposition 1.1.

We shall omit the proof of the second part, as it follows the proof of the last

part of Lemma II 1.1 in [15].

Remark. Let £ satisfy (i'), (ii) of Proposition 1.2. It is tempting to try to enlarge

£ and Q. as follows : Let £0 be the closure of £ with respect to uniform convergence

on compacts of J° and let £)0 = ön(Ax RN), where Q is the closure of Q in R2N.

Unfortunately, even for /V= 1, it is easy to see that both of the following assertions

(a), (ß) can be false: (a) iff0, g° are distinct elements of £0, then/°-g° has at most

TV- 1 zeros and (ß) if (tx, ..., tN, cx, ..., cN) e Q.0, then there is an/0 e £0 such that

f°(tk) = ck for k = l, ...,N.

Proposition 1.3. Let F be a set of continuous functions f°(t) on an open interval

J° = (a, b). Then necessary and sufficient for F to be an N-parameter family on J° is
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that it have properties ii'), (ii) of Proposition 1.2; the property (iii) ifp,f2, ... is any

sequence of elements of F satisfying

fin°(t)ifin°+1(t)   fiorn =1,2,...    or

fn°(t)^fin°+i(t)  fiorn =1,2,...,

on a compact [a, ß]cJ°, then either

(1.3) f\t) = lim Pit) exists on J° andfi0 e F
n-»oo

or

(1.4) lim |/n°(í)| = oo on a dense set ofJ°;
n-»oo

and the property (iv) that, for all t0ej°, the set S(t0) = {f°(t0) :fi°eF} is not

bounded from above or below.

It is clear from Lemma II 1.1 that Fin Theorem II 1.1 has the properties (i'), (ii),

(iii), (iv). In fact, if (1.3) does not hold, then \fi°(t)\ -*■ °o as n -*■ oo except for at

most N— 1 points of/0. Thus Proposition 1.3 implies Theorem II 1.1.

Proof. The necessity of (i'), (ii), (iii), (iv) is clear from Lemma II 1.1, the proof

of Proposition 1.1, and from Proposition 1.2.

Assume conditions (i'), (ii), (iii), (iv). We shall show that F is an Af-parameter

family, i.e., that Q. = AxRN. Let k, where l£k£N, and (í„...,í,)eA,

icy, ..., cfc_i, Cfc+i, ..., cN) be fixed, and let S={ck: ity, ..., tN, Cy, ..., cN) e Q}.

Clearly S is open.

We shall show that S is also closed. If S is not empty, consider a sequence {ckn}

satisfying ckn e S for n= 1, 2, ..., and ckn —> ck as n -> oo. We wish to show that

ck e S We can suppose that {ckn} is a monotone sequence, say, for definiteness,

that ckn^ck.n+y for «=1,2, .... By Proposition 1.2, if f° e F satisfies finit,) = c;

for j^k,f°(tk) = ckn, then

i-l), + k-Vn0it) ̂  (-îy^-VÏ+iW   fortes, ti + 1), i = 0, ..., k-2,

/n°(0^/n°+i(f)                  for/e(rk_lsik+1),

(~i)i+kP(t) á (-l)i+yn°+i(0      forrea, ti+1), i - k+1.N,

where a=t0 and b = tN+1. Thus, by condition (iii), either (1.3) holds and ck e S or

(1.4) holds.

In the latter case, choose an arbitrary/° e F satisfying f°(tk)>ck>fi°(tk) for

» = 1, 2, ... ; cf. condition (iv). Then, for large n,f°—fi° vanishes on either side of

tk arbitrarily near tk, and also arbitrarily near t¡,jj=k. Thus, for large n,f°—fi°^0

has N zeros on J°. This contradiction shows that (1.4) cannot hold. Thus S is

closed. Hence S=0 or S=(-00,00). Clearly Q.(a, b) = A(a, b) x RN. This proves

Proposition 1.3.

It will be useful below to have the following remark.
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Proposition 1.4. Let G(t,xx, ...,xN) be continuous on J°xX, where J°

= (a, b), X<^RN is open. Let F be the family of functions f°(t) = G(t, xx, ..., xN) on

J°, for fixed (xx, ..., xN). Let F have the properties (ii), (iii), (iv) of Proposition 1.3.

Then F is an N-parameter family on J°.

In fact, that £ has the property (i') is clear from the proof of Proposition 1.1.

Under additional conditions, we can get an analogue of Theorem II 1.1 on half-

open intervals.

Corollary II 1.1. Let N> 1 and J=(a, b] be a half-open interval. Let F be a

family of continuous functions on J such that their restrictions to J° = (a, b) is an

N-parameter family on J° (e.g., let their restrictions satisfy (i), (ii) of Theorem II 1.1).

In addition, suppose that (ivb) the set of numbers {f°(b):f° e £} is not bounded from

above or below and (v) iff0 and fx,f2, ... are elements of F satisfying (1.3), then

fn(b) -^f°(b) as n —>• co. Then, for arbitrary points tx < ■ ■ ■ < tN of J and arbitrary

Cx, ■ ■ -, cN, there exists at least one f° e F satisfying (1.1).

Proof. Only the case tN = b need be considered. Let/c°(0 6 £be the unique element

of £ satisfying

fc°(ti) = cj   for j*N   and   f°(s) = c,

where s is fixed on tN^x<s<b. Let S={f°(b) : —co<c<oo}. It suffices to show

that S=(-oo, co).

By Lemma II 1.1, the function/°(i) is continuous for teJ°, — oo<c<co. By

condition (v) of the corollary, it is also continuous for teJ, — co<c<oo. For by

Lemma II 1.1, if c<d, then

(-l)w-1+i/c° < (-iy-1+%°   on (tt, ti+x)   for i = 0,..., N-l,

where t0 = a. Thus 51 is connected.

It suffices now to show that S is not bounded from either above or below. But this

can be done by the arguments used in the last part of the proof of Proposition 1.3.

Definition 1.3. Pseudoderivatives. Let J5" be a family of ^-valued functions

f(t) = (f°(t), . ..,fK~\t)) defined on an open interval J° and let/°(/)e C°(J°). Let

£ denote the family of continuous functions £={/° : (f°, ■ ■ ■ ,fK~1) e ¿F}. Suppose

that for every t0 eJ° and every set of K numbers c00, ..., c0yK-x, there is at least

one/e#" such that

(1.5) fk(to) = cok   for/c = 0, ...,£-1.

Also, for/0, g0 e F, suppose that

(1.6) (t-to)'[f0(t)-g°(t)] > 0   for small \t-t0\ > 0

whenever

(1.7) f(t0) = gKto)   far / - 0, ...,/-1 (¡S K-2),

(1.8) f'(t0) > g'(to).
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This situation will be described by saying that the elements fi° e F have K— 1

pseudoderivatives (fi^to), .. .,fK~1(to)) at t = t0, and the function fi=fi'(t) will be

called the z'th pseudoderivative of/0.

Remark 1. Note that, in this definition,/'(r0) is a fixed functional (i0,/°)i->

f'(to) of t0 e/°,/° e F. There is no assumption that F is a linear set nor that there

is any linearity in the map/0 !->■/'. Nor is there any assumption of continuity for

the map t i-^-f'(t). Even if/0, .. .,fK~l are continuous functions oft, the functions

P, .. .,p-x need not be pseudoderivatives of/1 and, of course, it is meaningless

to speak of a "product rule."

Remark 2. Definition 1.3 implies the following converse for the property

"(1.7), (1.8) => (1.6)": If (1.7) holds and

(1.9) (t-t0)'[P(t)-g0(t)] > 0   for either small t-ta > 0 or t0-t > 0,

then

(1.10) f'(tQ) ^ g'(t0).

Remark 3. The defining properties of pseudoderivatives depend on the differ-

ences fi°(t)-g°(t), .. .,fiK-\t)-gK-\t). Hence, if c0(/)>0, c(t)>0, h0(t), ...,

hK-y(t) are arbitrary functions on J, with c0(t), h0(t) continuous, then the functions

Co(t)fi°it) + h0it) have the pseudoderivatives c(t)f\t) + hy(t), ..., c(t)fK~1(t) +

hK-y(t). See also §3 below.

Definition 1.4. A family F of functions fi° with N-l pseudoderivatives

fi1, .. .,/w_1 on J° as in Definition 1.3, K=N, is said to

(i) interpolate uniquely at N coincident points or to have the property of unique

initial values if, for every t0 eJ° and every set of N numbers c00, ..., c0,N-y, there

is one and only one/0 e F such that

(1.11) fik(to) = c0k   fork = 0,...,N-l;

(ii) interpolate uniquely at N arbitrary points if, for any integer m, ISmSA', any

points ty< ■ - ■ <tmofJ°, positive integers n(l), ..., n(m) satisfying «(1)+ • • • +n(m)

= N, and N numbers c,k, wherey= 1, ..., m and zV = 0, ..., n(j)— 1, there is one

and only one/0 e F such that

(1.12) fk(t,) = cjk   forj=l,...,manak = 0,...,n(j)-l.

Theorem II 1.2(a). Let l=iK^N and F be a family of continuous functions f°

with K—l pseudoderivatives f1, .. .,fK~x on an open interval J°. Suppose that F

interpolates uniquely at N distinct points (i.e., that F is an N-parameter family on J°).

Then, for every choice of ty < ■ • ■ < tm on J°, (n(l), ..., n(m)) with 1 ̂ n(y') áK and

n(l)+ ■ ■ ■ +n(m) = N, and N constants (c10, ..., cm,n(m)-i), there exists at least one

fie F satisfying (1.12). (ß) If, in addition, K=N and F interpolates uniquely at N

coincident points (i.e., F has the property of unique initial values), then F interpolates

uniquely at N arbitrary points.
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This was stated in Hartman [5] for the case that/0 e CN~1(J°) and fk = dkf°/dtk;

cf. Theorem (I) and Lemmas 7, 8. (For a related result on linear families of solutions

of an Kth order linear differential equation, cf. [l]and [12].) Actually the proof in [5]

was given for the case that/1, .. .,/*-1 are the pseudoderivatives of Example 1 of

the next section. The same proof is valid whenever/1, ...,fK~1 are pseudo-

derivatives in the sense of Definition 1.3.

In order to extend the last result to half-open intervals, we need another result

of [5]. Consider a set of conditions (1.12) and divide the set of integers y'= 1, ..., m

arbitrarily into two sets {;"}, {/'"}, where lûn(j')^K, but n(j")= 1. In the next

lemma, we consider the partial data {tr, n(j'), crk} to be fixed, while {tr, n(j")

= 1, cro} is arbitrary, with all tr, tr distinct (not necessarily tx < ■ ■ ■ < tm).

Lemma II 1.2. Let F satisfy the conditions of Theorem II 1.2(a). Then there exists

a subfamily F' = F'{tr, n(j'), crk} of F with the following properties:

(0 iff0 e F', then f° satisfies the partial set of conditions

(1.14) fk(tr) = crk   for allf andk = 0,..., n(j') -1 ;

(ii) there exists a uniquef° e £' satisfying (1.12) as in Theorem II 1.2(a); and

(iii) iff0, g° are distinct elements of £', thenf°—g° has at most N— 2 n(j')— 1

zeros^ty, andiff°—g° has exactly /V—2«(/)—1 zeros^ty, thenf°—g° changes

signs at each of these zeros and (t — ty)nin[f°(t) — g°(t)] is of the same sign for small

\t-tr\>0.
The families £' can be chosen to be decreasing if either an n(j') is increased or the

set {tj.} enlarged, and additional conditions added io (1.14). ( When the uniqueness part

(ß) of Theorem II 1.2 holds, then £' is merely the set of all P e F satisfying (1.14).)

For a proof, see Lemmas 3, 5 and 7 of [5] (also Lemmas 4, 6, 8 for the paren-

thetical part).

Corollary II 1.2. Let F be a family of continuous functions f° on a half-open

interval J=(a, b] having K— 1 pseudoderivatives f1, .. .,/K_1 on J° = (a, b). Let F

satisfy the conditions of Theorem II 1.2(a) on J° and conditions (iv6), (v) of Corollary

II 1.1. Then there exists anf° e F satisfying (1.12) with tx, ..., tm eJ, 1 Sn(j) = K,

n(l)+ • ■ ■ +n(m) = N, provided that tm<b or that tm = b, n(m)=l.

Proof. In view of Theorem II 1.2(a), we need consider only the case tm = b, n(m)

= 1. The corollary is correct if m = N (so that m(j) — \ for 7=1, ...,N) by

Corollary II 1.1. Assume that h < N; that the corollary is correct if there are at least

h+\ points z> for which «(/') = 1; and that in this case,/0 can be chosen in

F' = F'{tr,n(j'),crk}.

Consider a given set of conditions (1.12) involving h points tr for which n(j")= 1,

and let i be the largest in the set {/} with n(j') > 1. Let £' be the family belonging to

tr,n(j'),Cyk, and F" the corresponding family with n(i) replaced by n(i) — 2 if

n(z')>2 or with tt deleted from {tr} if n(i) = 2. We can also suppose that £'c£". By
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Lemma II 1.2(iii), if/0, g° are distinct elements of F", then f°-g° has at most

W- [I «0") - 2] - 1 zeros ï tf.

Let z*m_! <i< tm = b and let/0 be the unique element of F', supplied by Theorem

II 1.2(a) and Lemma II 1.2, satisfying (1.12) with the condition fi°(b) = cN replaced

by fi°(s) = c. Then, by Lemma II 1.2(iii),

(1.15) p(t) increases with c on (tm-y, tm)

and, fory'=l, ..., m,

(1.16) (- l)nU)+-■■+n<-mfi°(t) increases with c on (t,.y, tt)

where tQ = a. By Lemma II 1.1 (ß), we have, except possibly at N—m+1 points,

(1.17) fic°(t)-+ ±oo   as c^ co on (tm_y, tm),

(1.18) (- l)n«>+■ •+nMP(t) -> ± oo   as c -> ± oo on (/_ ls fy).

Let S={f°(b) : — oo<c<oo} and suppose, if possible, that S is bounded from

above, say, S<=( — oo, cN). By the induction hypotheses (on A), there exist elements

P eF" satisfying (1.12), except the two casesy'=z, k = nii)—l and k = nQ) — 2, but

satisfying

(1.19) (-lf'+'+^f/^-2^)-/"«»-2^)] > 0,

where/1, .. .,P~X are the pseudoderivatives of/0 (in fact, we could also specify

P at some point t=±ty, ..., tm).

Thus, (1.19) and the definition of pseudoderivatives imply that, for any c,

(1.20) (-l)n<i + 1> + -+n<m)(f-'i)n<i)"1[/0(0-/0(0] > 0

for small \t — tz\ ¥=0. But (1.17), (1.18) show that, for some t near tz, and on either

side of th the reverse inequality holds for large c. Thus, for large c,f°—f° has a

zero on each of the intervals (?¡ — e, r{), (f¡, íj + e) if e>0. Also/0—/0 has a zero, for

large c, on (s, fm) = (*» *)•

The /-values in the definition of F" (which are the r;, including z"¡ or not, according

as n(i) > 2 or n(i) = 2) have total assigned multiplicities 2 "(y ') — 2. Apart from these

t-values,p —fi° has 2 «0")—l +3 zeros at points r>#A and 3 other points. Since

2"(y'") + 2 = A7-[2n(y")-2], this contradicts Lemma II 1.2(iii) applied to the

family F" and/0, g°=f° e F". Hence S is not bounded from above. Similarly, it is

not bounded from below.

Finally, it can be seen that Sis connected, as in the proof of Theorem II 1.1 and

Corollary II 1.1. Hence S=(-oo, oo). This proves Corollary II 1.2 for the case of

A points {z>}.

In the next theorem, we shall use the notion of the continuous dependence on

initial conditions.

Theorem II 1.3. Let F be a family of continuous functions f°(t) having N—l

pseudoderivatives f1, .. .,fN~1 on an open interval J°' = ia, b) such that (i) F has the
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property of unique initial values and iff°(t)=f°(t, t0, c00, ..., c0,w-i) is the unique

element of F satisfying (1.11), then for some fixed t0eJ°,f° is continuous for

(t, c00, ..., Cq.at-i) eJ°xRN; (ii) iff0, g° are distinct elements ofF, thenf° — g° has

at most N— 1 distinct zeros on J° ; properties (iii), (iv) of Proposition 1.3 hold. Then F

interpolates uniquely at N arbitrary points ofJ°.

In fact, £ is an /V-parameter family on J°, by Proposition 1.4, with

G(t, xx, ..., xN)=f°(t, t0, xx, ..., xN). Thus Theorem II 1.3 is a consequence of

Theorem II 1.2.

2. Pseudoderivatives. In this section, we shall illustrate the concept of pseudo-

derivatives by a number of examples of interest.

Example 1. Let £ be a family of continuous functions f°(t) on an open interval

J° with the property that, for every t0 e J°, there are K— 1 numbers

f\t0), ...,fK-\t0) such that

(2.1) f%t) = f%tQ) + (t-t0)f\t0)+ ■■■ +(t-to)K-1fK-1(to)/(K-l)\ + o(\t-t0\K-i),

as t -> t0. Then/0 has the pseudoderivatives/^/o), .. -,fK~1(t0) at t = t0.

Example 2. Leta0(0> •••> aN_x(t) be positive continuous functions on J° = (a, b)

and let £ be the family of solutions u=f°(t) of the Nth order linear differential

equation

(2.2) {aN-x---[ax(a0u)']---Y = 0.

Then M =/°(0 e £ has the N-l pseudoderivatives f1 = (a0f°)',f2 = [ax(a0f°)']', ....

Example 2a. Consider the system of linear differential equations

(2.3) yl = 2 aii(t)yj   for /' = 0, ..., TV- 2,
7 = 0

N-l

(2.4) y'N-x = 2 aN-XiJ(t)yj,
7 = 0

with continuous coefficients on J° = (a,b) and aiA + x(t)>0 on (a, b) for

z'=0, ...,N—2. Let a<t0<b. Then for every sufficiently small interval (a, ß),

t0e(a,ß)cz(a,b), the system (2.3)-(2.4) is equivalent to an equation (2.2) for

"=Jo (with continuous positive coefficients a0, ..., aN_x defined in terms of a

fundamental matrix for (2.3)-(2.4)); see Hartman [6, pp. 51-54]. Thus the con-

clusion of Example 2 is applicable on small (a, ß).

Example 3. Consider again the system (2.3)-(2.4) and let & be the family of

solution vectors (.Vo(0> •■■>3;w-i(0) and lßt F be the corresponding family of

functions y0(t). Then y0(t) e F has the pseudoderivatives yx(t), ..., yN _ j.(0 on (a, b).

This is a consequence of the following:

Proposition 2.1. Let 1 =K^N; and let gt(t,y0, .. .,yi+x) for i=0, ..., K-2

and gK _ x(t, y0, ..., yN _ x), ..., gN _ x(t, y0, ..., yN _ x) be continuous for a<t<b and
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arbitrary y = (y0, yi, ■■-,yN-i), such that solutions of the system of differential

equations

(2.5) y'( = g{(t, y0, ..., yi+ y)   for i = 0, ..., K- 2,

(2.6) y't = gi(t, y0, . ..,yN-y)   for i = K-l, ..., N-l,

exist on (a, b). In addition, assume

(2.7) gt is locally, uniformly Lipschitz in y  for i = 0, ..., K— 3,

(2.8) gi is increasing in yi+1   for i = 0, ..., A'—2.

Let F be the family of functions {y0(t)}, where y=(y0(t), ■ ■ .,yN-y(t)) is a solution of

(2.5)-(2.6). Then y0 e F has the pseudoderivatives ylt..., yK-y on (a, b).

Remark. If A^=2, condition (2.7) is vacuous. If ä^=3, condition (2.7) can be

replaced by the condition that the (scalar) initial value problem u'=g0(t, u, yy(t)),

u(t0)=yo(to) has the unique solution u=y0(t) whenever J = Cv0(0> Ji(0> ■ ■ -»Jn-iÍO)

is a solution of (2.5)-(2.6). As for K^A, see Proposition 2.3.

Proof. Let y=(y0(t), ■ ■ .,.Vn-i(0) and z = (z0(t), . ■., zw_i(0) be two solutions

of (2.5)-(2.6). Let a<t0<b and suppose that

(2.9) yi(to) = Ziito)   for i = 0, ..., /-1 ( á K- 2), y,(t0) > z,(t0).

Let a<a<t0<ß<b; |j/OI> |z/í)| ^AFfor a^t^ß; and

¡+i

n in\        1^' "°> • ••»".+!)-£.('» v°' • • -, »i+i)| â F 2 I«í-»íI

for i = 0,..., K-3; \u¡\, \v,\ ^ M; and a S t á ß.

To simplify the typography, let t0 = 0. Below we shall consider only small t ^ 0 ;

the desired inequalities for r < 0 are proved in the same way.

In view of (2.5), (2.8) and (2.9), j/'_1-z;'_1>0 at r=0 and hence for small r>0,

so that V/-1 — Z/_!>0 for small ¿>0. Assume that

(2.11¡) yi+i(t) > zi+1(/)   for small t > 0

holds for some i, 0^i^I-2(^K-3). It will be verified that (2.11,.!) holds. Put

(2.12) hit) = gi(t, y0(t),.. .,yt(t), yi+y(t))-gz(t, y0(t),.. .,y,(t), zi+1(t)),

so that A¡(0>0 for small r>0. By (2.5) and (2.10),

2 \y'i-z'¡\ =o+i)¿2 \yi-*t\+Ht)
1=0 1=0

and so, for C=exp [(i + l)L(ß - a)], 2'=0 l^-z/l áCf0 ht(s)ds. Also, (2.5) and

(2.10) give

(2.13) y\-z\ ^ -L 2 Ivy-z.l+A^) ï -LC f K(s)ds+hit).
j = 0 Jo
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Since h¡ > 0 for small / > 0,

ylt)-z¿t) ^ -LCt |  ht(s)ds+  f ht(s)ds > 0.
Jo Jo

This implies (2.11,_1) and completes the proof.

Proposition 2.2. Let the assumptions of Proposition 2.1, except that involving

(2.7), hold. In place of (2.1), assume

(2.14) gi is nondecreasing in y¡,   j =£ i,i = 0,..., K—3.

For a<t0<b, 1=2,..., K—l, and an arbitrary solution z = (zQ(t),..., zN-x(t)) of

(2.5)-(2.6), assume that the initial value problem

u't = gi(t, u0, ..., ui + 1)   for i = 0, ...,/- 3,

u'i-2 = gi-2(t, u0, ■ ■ -,u,_2, z,-x(t))

and

(2.16) Ui(t0) = z,(r0)   for i = 0,..., I-2

has the unique solution u = (z0(t),..., z,_2(/)). Then the conclusion of Proposition 2.1

is valid.

Proof. Let y = (y0(t), ■ ■ -,yN-i(t)) and z=(z0(0, • • -, ^w-i(O) be two solutions

of (2.5)-(2.6), and let (2.9) hold. By (2.8) with i=I-l,y',-x(t0)>z',.x(t0). Hence

J/-i(0>zi-i(0for small t-t0>0. Thus

y'i = git, y0, ■ ■ -, Ji+i)   for i = 0,.. .,1-3,

y'¡-2 > g,-2(t,y0,...,y,-.2,zI_x(t)),

for small />0. Since u=(y0(t), ■ ■ -, y,-2(t)) satisfies the initial conditions (2.16),

it follows from a theorem of Kamke [7] and the uniqueness of the solution of

(2.15M2.16) that yt(t)^zt(t) for small t-t0^0 and z'=0,..., 1-2. It is then easy

to see from (2.8), (2.14) and (2.17) that y,.2(t)>z,.2(t) for small r-?0>0. This

argument can be repeated to conclude that j>0(0>zo(0 f°r small t—t0>0.

Similarly, it is shown that (t-to)'[y0(t)-Zo(t)]>Q for small to-t>0. Thus

yx, ■ ■.. yK-i are pseudoderivatives of y0, and the proof is complete.

Note that condition (2.7) in Proposition 2.1 is vacuous if £<3 and, when (2.8)

holds, condition (2.14) in Proposition 2.2 is vacuous if £<4. It will now be shown

that if K=N^4 and (2.7), (2.14) are omitted, then Propositions 2.1, 2.2 are false,

cf. the remark following Proposition 2.1,

Proposition 2.3. Let K=N=A. Assume the conditions of Propositions 2.1 and

2.2, except for (2.7) and (2.14). Assume also that solutions of(2.5)-(2.6) are uniquely

determined by initial conditions. Then the conclusion of Proposition 2.1 need not hold.

It will follow from the proof that, for example, the Lipschitz condition (2.7) in

Proposition 2.1 cannot be replaced by the type of inequality occurring in Kamke's
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or even Osgood's uniqueness theorem. The papers M. M. Peixoto [13] and

M. C. Peixoto [14] suggest that the example proving Proposition 2.3 cannot exist

if the family F={y0(t)} is an A'-parameter family. The proof of Proposition 2.3 will

depend on the following:

Lemma. On an interval [0, b], there exist functions h(t), U(t) with the properties:

(i) h(t) e C°[0, b], h(t)^0 according as / = 0; (ii) U(t) e C2[0, b], U(t) changes signs

for arbitrarily small t, | i/| = 1, and U(t) is a solution of the initial value problem

(2.18) U" = |t/|log|£/|+A(z),

(2.19) (7(0) = £/'(0) = 0.

The proof of Proposition 2.1 shows that the lemma is false if log \U\ is omitted

in (2.18). Assuming the lemma, we shall first prove Proposition 2.3.

Proof of Proposition 2.3. In what follows, let b, U(t) and h(t) be the data supplied

by the lemma.

It will be shown that, for a suitable choice of the function q't, u, w), the system

of differential equations

(2.20) u' = v,       v' = q(t, u, w),       w' = x — u,       x' = v

has the desired properties, if (u, v, w, x) = (y0, yy, y2, y3). By (2.20), we have

(2.21) x — u = c   and   w = ct+c0,

where c, c0 are integration constants. Hence (2.20) is equivalent to

(2.22) u" = q(t,u,ct+c0).

The function q will be chosen so that

(a) q is continuous and increasing in w for fixed (t, u);

(b) for all (c, c0), the solutions of (2.22) are uniquely determined by initial

conditions;

(c) as a function of u for bounded (t, w), q is bounded; finally

(d) q satisfies the relations

(2.23) q(t, 0, 0) = 0,

(2.24) q't, U't), t) = |U(t)\ log |U(t)\+h(t).

Conditions (a)-(c) assure that if (2.5)-(2.6) is identified with (2.20), then the

assumptions of Propositions 2.3 are fulfilled. Condition (2.23) implies that

u = v = w = x=0 is the solution of (2.20) satisfying the initial condition u(0) = v(0)

= w(0) = x(0)=0, while (2.24) implies that u=U(t),v = U'(t),w = t, x=U(t) + l is

the solution satisfying w(0) = v(0) = w(0) = (0), x(0) = 1. Since ¿7(0 is not positive

for small r>0, it follows that (v, w, x) are not pseudoderivatives of m. Hence the

proof is complete if the function q is exhibited.
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There exists a continuous increasing function m(t) ont^O satisfying m(0) = 0 and

(2.25) h(t)/m(t)-+0   as f->+().

Define a function git, w) as follows :

git, w) = w   for / ¿ 0 and for 0 < t < b, w < 0,

(2.26) git, w) = m(w)h(t)/m(t)   for 0 ^ w ^ 2í(< 2A),

g(t, w) = m(2t)h(t)/m(t) + w-2t   for 0 < 2t ^ w < oo.

Let/(«) be defined by

(2.27) /(u) = |u| log \u\    or   /(M) = 0,

according as 0< \u\ ̂  1 or h=0 and \u\ > 1. Finally,

(2.28) qit,u,w)=fiu)+git,w).

Condition (a) on q is obvious; (b) follows from Osgood's uniqueness criterion

since, for small \uy\ + \u2\,

\f(uy)—f(u2)\ Sj — |«i — u2\ log \uy — u2\    and ( — »log u)'1 du = oo;
J + o

(c) follows from (2.27); and (2.23), (2.24) are clear from (2.27) and from (2.28).

Thus, in order to complete the proof, it suffices to verify the lemma.

Proof of the lemma. Define the sequences

(2.29) an = 2~n   and   bn = 2-"-1    for n = 0, 1, ...,

(2.30) cn = cn+1 = 22n + i exp (-22n + 5)   for odd n.

Note that A„ = 2An+1,

(2.31) cn+1/cn-^0   as even n-> oo

and that

(2.32) bncn^2bn+1cn+1   for all n.

On [0, 1], define the function U(t) by quadratures, (2.19) and

(2 331 U"{t) = (~ ')n(jrCnl2) Sin n{t~ an),bn   iian = { = an + K,

U"it) = 0   otherwise.

On the interval [an + bn, an_J, U'(t) is the constant

(2.34) U'ian + bn) = U'ia^y) = (-1)%,

where

(2.35) sn = i-lf 2 (-lTbmcm.
m=n
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Thus U(t) is linear and, by (2.29),

(2.36) £(ßn-i)= U(an + bn) + (-lYbnsn.

On the interval [an, an + bn], U'(t) is monotone and, in fact,

(2.37) U'(t) = U'(an) + (-iy$bncn[l -cosn(t-an)/bn].

From (2.34) and (2.37),

(2.38) U(an + bn) = U(an) + (-inib2cn-bnsn+x].

Consequently, (2.36) and (2.38) give the recursion formula  U(an _ x) = U(an) +

(-1)n[hb2ncn + bnsn-bnsn+x], so that

(2.39) U(an)=    f   (-l)m(Wmcm + bmsm)-    2    (-OmVn+i.
m =n+ 1 m=n+l

The series in (2.35) is an alternating series with monotone terms and, by (2.32),

the same holds for the series for sn—sn + i, so that

(2.40) sn ^sn+x> 0.

We have bncn-bn + xcn+x^sn^bncn, hence

(2.41) \bncn áíná bncn.

Furthermore, by (2.31),

(2.42) sn ~ bncn     as even n -> co,

(2.43) sn ~ \bncn   as odd « ->- co.

Note that (2.34) gives

(2.44) U'(an„x)U'(an) < 0.

We shall verify that

(2.45) £/(«.-i)£/(fln) < 0   for large«.

In fact, (2.31) and (2.39)-(2.43) imply that

(2.46) U(an) ~ ièS+1cB+1+ô*+1cB+1 = (3ß)b2ncn   for odd »,

while for even n,

-U(an) ~ [(^b2 + xcn+1 + bn+xsn+x)-(ib2 + 2cn+2 + bn+2sn+2)]-bn+xsn+2,

so that

(2.47) - U(an) ~ (lß)b2n+xcn+x > 0   as even n -> co.

By (2.42), as odd n -> oo, the quantity [... ] in (2.38) satisfies

\blcn-bnsn+x = \.blcn-(\ + o(l))bnbn+xcn+x = o(l)b2cn.
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Thus, by (2.42) and (2.46),

(2.48) U(an) ~ U(an + bn) ~ (3ß)b2cn > 0   as odd « ^ oo.

On the other hand, for even n,

U(an + bn)-U(an) = \b2ncn-bnsnJry ~ \b\cn;

so that, by (2.47),

(2.49) U(an + bn) > 0 > U(aA   for large even n.

Since U"(t)^0 on [an, an + bn] for odd n, (2.46) and (2.48) show that

(2.50) U(t) ^ min[U(an), U(an + bn)]~ (3ß)b2cn   for large odd n.

Thus, for odd«, <7(?)>0on [an, an + bn] and then changes sign once in [an + bn, an_i].

While, for even n, U(t) changes sign once on [an, an + bn], by (2.49) and ¿7"^0, and

U(t)>Q on [an+bn,an.y].

Choose b, 0< b< 1, so small that | ¿7| < 8 on [0, A], where — u log u is increasing

on 0<i/g8< 1, and that the inequalities above, specified to hold for large n, are

valid if an_y<b. On [0, A], define h(t) by (2.18). It is clear that h(t) is continuous.

It has to be verified that A(r)>0 on (0, A]. Since A(/)>0 whenever 0<r^A and

(7"(0 = 0. it suffices to examine h(t) for t on [an, an + bn] for n odd, where

0^ - U"(t)^TrcJ2^2cn. In view of (2.50), A(/)>0 holds on [an, an + bn], provided

that 2c„ á - (A2cn/4) log (bfcJA). Since this inequality is clear from (2.29) and (2.30),

the proof is complete.

3. On different sets of pseudoderivatives. This section is concerned with the

following:

Proposition 3.1. Fe? &={(P;fi\.. .J1*'1)} and &*={(P;fi¡,.. .,/*w"1)}

denote families F of the same continuous Junctions fi° on an open interval J° with

pseudoderivatives, if1,.. .,fN~1) and (/J,.. .,/^_1), having the property of unique

initial values. Let t0 e J° be fixed. Then there exists a one-to-one map ofRN onto RN,

say, z=g(y) or

(3.1) z, =£,0>o, ---,yN-i)   for i = 0,..., N-l

such that g0(y0, ■■■,yN-i) = y0and

(3.2) fiUto) = giiPito),Pito), ■ ■ • Jv-Kto))   for i = I,..., N-l.

If, in addition, the one-to-one maps RN <-> RN, given by j> <-> z=g(y), are continuous,

then

(3.3) gi = gt(y0, ...,y)  for i = 0,..., N-1

is a function of (y0,.. .,yt), independent of (yi+1, ...,y¡i-i), and is an increasing

function of y i satisfying

(3.4) gt(y0,..., A) -> ± oo   as yt -> ± oo.
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It remains undecided whether or not the last part of this proposition is correct

if it is assumed that (3.1) is a homeomorphism £" -*■ RN.

Proof. The existence of a one-to-one map RN <-> RN, given by (3.1), and satisfying

g0 = y0 and (3.2) is clear from the fact that the families &,&* have the property of

unique initial values. Assume that the map (3.1) and its inverse are continuous.

We first show that gx(y0,.. .,yN-x) is independent of (y2,.. .,yN-x). It is clear

that gx is a nondecreasing function of y,-,j>0; cf. (3.2) and Remark 2 in §1.

Suppose that gx is not independent of y2. Then there exist >>2-values, say y2 = u, v,

and (/, jo, yi), (y3, • • •, Jjv-1) such that u < v and

gi(y0, yi, u, ys, ■ ■■,yN-i)<gi(yo, yi, v, y3, ...,yN-x).

By continuity, the same inequality holds if yx on the right is replaced by yx — e for

small «>0. But (3.2) and Remark 2 in §1 imply that

gi(y0,yi, u2, u3,..., uN-x)^gx(y0, yx-e, v2, v3,.. .,vN.x)

for all ('o, Jo, Ji), ("2> •••,%-1), (v2,...,%_ i) and e > 0. This contradiction shows

that gx is independent of v2. Similarly, it is seen to be independent of y3,..., yN-X.

We now show that g2(y0,..., yN-x) is independent of (y3,.. .,yN-X). To this

end, let t0 and yx be fixed (but y0,y2,.. -,yN-i arbitrary) and consider the sub-

family^ of £consisting of elements/0 in £satisfying the initial condition/1^) = yx.

Then the family 3Fx = {(P,f2,.. .,/w_1)} has the property that/° e £0 has the

"pseudoderivatives" (/2,.. .,/Ar_1) at t = t0 if one only examines/0 for t^t0. The

corresponding subfamily £*0 of £* is determined by f0(t0)=y0,ß(t0)=gx(y0, yx),

when t0, yx are fixed, and/0 e £* has the "pseudoderivatives"/|,... ,/w_1 at i = /0

if one only considers t^t0.

The argument above, showing that gx is independent of y2,.. .,yN-x, can be

used to show that g2(y0, yx,..., yN-X), for fixed yx, is independent of_v3,...,y¡¡-i-

This induction continues and we obtain (3.3).

Since the map of RN onto RN which is the inverse of (3.1) has a form similar to

(3.3), it follows that g¡ is an increasing function of j>¡ and that (3.4) holds. Hence

the proof is complete.
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