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Abstract. Let y=(yo, ..., yv-1). This paper is concerned with the existence of
solutions of a system of ordinary differential equations y’=g(t, y) satisfying inter-
polation conditions (*) yo(¢;)=c; for j=1, ..., N and ¢, < - - - <ty. It is shown that,
under suitable conditions, the assumption of uniqueness for all such problems and of
“local” solvability (i.e., for ¢, ..., fy on small intervals) implies the existence for
arbitrary ¢,, ..., ty and ¢y, ..., cy. A result of Lasota and Opial shows that, in the
case of a second order equation for y,, the assumption of uniqueness suffices, but it
will remain undecided if the assumption of “local” solvability can be omitted in
general. More general interpolation conditions involving N points, allowing coin-
cidences, are also considered.

Part I contains the statement of the principal results for interpolation problems
and those proofs depending on the theory of differential equations. Actually, the main
theorems are consequences of results in Part II dealing with “N-parameter families”
and “N-parameter families with pseudoderivatives.” A useful lemma states that if
F is a family of continuous functions {y°(f)} on an open interval (a, b), then F
is an N-parameter family (i.e., contains a unique solution of the interpolation con-
ditions (*) for arbitrary ¢, <---<ty on (a, b) and cy, ..., cy) if and only if (i)
%, z°€ F implies »°—z°=0 or y°—z° has at most N zeros; (ii) the set Q

={(ts, ..., tn, Y2t1), ..., Y(ty)) s @<ty <---<ty<b and y° e F} is open in R2V;
(i) ¥, ¥%, ..., € Fand the inequalities y*(1)Sy"*}(¢)forn=1,2, ... or y"(&) 2 y"*(¢)
for n=1,2, ... on an interval [«, B]<(qa, b) imply that either y°(t)=Ilim y™(t) exists

on (a, b) and y° € F or lim |y"(¢)] =c0 on a dense set of (a, b); and finally, (iv) the set
S()={y°(t): y° € F} is not bounded from above or below for a<t<b. The notion of
pseudoderivatives permits generalizations to interpolation problems involving some
coincident points.

PART 1. INTERPOLATION PROBLEMS

1. Main results. All variables and functions below are real valued. Consider
an Nth order differential equation, which we write as a first order system for the

VCCtor}’:(J/'O, .. "yN—l)a
(1.1) Yo=Y - s YN-2= V-1, Yn-1= Y(t, Yo, ..., Yn-1)-
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The questions to be discussed in this paper include, for example, the problem of the
existence of a solution of (1.1) satisfying boundary conditions at N distinct points,

(1.2) yo(t) =¢; forj=1,...,N,wheret;<---<ty,
or boundary conditions at N points, allowing coincidences,

() =cyp forj=1,...,mandk =0, ..., n()-1,

(1.3)
<< tm;n(j) = l;n(1)++n(m) =N

We shall also be concerned with the situation where (1.1) is replaced by a more
general first order system

(1.4) y' =gty),

y=o ..., yn—1) and g=(go, - - ., gv-1)- In the case N=2, we have the following
result:

THEOREM I 1.1. Let J=(a, b], —co<a<b<oo, be a half-open interval and J°
=(a, b) its interior. Let N=2,y=(y,, 1), and g=(go, g1). Suppose that
g(t, y) € C%(J x R?%, R®) is such that (io) go(t, Yo, ¥1) is an increasing function of y,
for fixed (t,y,), t€J® satisfying go— +00 as y, — +oo uniformly on (t, y,)-
compacts; (ii) all solutions of (1.4) exist on J; and (iiip) if y=(yo(t), y:(t)) and
z=(z4(t), z4(?)) are distinct solutions of (1.4), then y,(t) —z,(t) has at most one zero
on J° (that is, (1.4) and (1.2), with N=2, has at most one solution if t,, t, € J° for all
¢1, ¢3). Then every boundary value problem (1.4), (1.2) has at least one solution.

This generalizes slightly the result of Lasota and Opial [10] in replacing their
second order equation (1.1), with N=2, by a more general first order system (1.4),
with N=2. It also (1) replaces their open interval by a half-open interval and (2)
omits their assumption of the uniqueness for initial value problems. As to (1), (2),
and other generalizations for second order problems (1.1) and (1.2), with N=2, see
Schrader and Waltman [17] and references there to Jackson, Schrader, Waltman,
Bailey, and Shampine. Devices of [10], [17] can be used to obtain corresponding
generalizations of Theorem I 1.1.

THEOREM I 1.2. Let J, y, g be as in Theorem 1 1.1 except that condition (iii,) is
replaced by the following: (iii*) there is at most one solution of (1.4) satisfying

(1.5) Yo(ty) = ¢1 and y\(t2) = ca, L # 1y,

for arbitrary c,, c; and t,,t,€J°. Then condition (iii;), hence the conclusion of
Theorem 1 1.1, holds; also, every boundary value problem (1.4), (1.5) has at least one
solution if t; € J°, ty € J.

Theorem I 1.2 contains the result of Lasota and Luczynski [8] for a second order
equation (1.1), N=2, with (1.5) replaced by yu(t;)=c; and yo(t2)+vyo(tzs)=cs
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where ¢, #1,, and y is a fixed constant. In order to see this, it suffices to replace the
equation yo= Y(Z, yo, yo) by a first order system for y=(yo, y1)=(»o, Yo +v¥o),

Yo = Y1—¥Yo, y1 = Y(t, yo, y1—vYo) +¥(y1— o)

We cannot decide if the analogue of Theorem I 1.1 holds for N>2; such an
analogue becomes correct for open intervals if a condition of “local solvability” is
added.

[Added in proof (October 26, 1970). After the completion of this paper,
Professor P. Waltman showed me a preprint of the forthcoming paper Existence
and uniqueness of solutions of boundary value problems for third order differential
equations by L. Jackson and K. Schrader. These authors obtain an analogue for
N=3 of the Lasota-Opial [10] result for N=2; i.e., if N=3 and (1.4) is replaced
by (1.1), then the condition (iiig) of *“local solvability” can be omitted in the
following theorem.]

THEOREM I 1.3. Let N>2 and J°=(a, b) an open interval; also y=(yq, ..., Yy_-1)
and g=(go, ..., gn-1)- Let g(t, y) € C°(J°x RY, RN) be such that (i) all solutions of
(1.4) exist on J°; (iio) if y(t), z(¢t) are distinct solutions of (1.4), then y,(t) — zo(t) has at
most N—1 zeros onJ° (that is, (1.4) and (1.2) has at most one solution if't,, . .., ty € J°
for all ¢y, ..., cy); and (iiiy) the boundary value problems (1.4), (1.2) are locally
solvable at every point t, € J°, that is, for every t, € J°, there exists an open interval
J(to), to € J(to)=J° such that (1.4), (1.2) has a solution for all distinct t,, . . ., ty € J(t,)
and all c,, ..., cy. Then every boundary value problem (1.4), (1.2) has a unique
solution.

We can obtain a theorem for half-open intervals by adding an additional con-
dition (i*). (Incidentally, this condition always holds if N=2, under the assumptions
of Theorem I 1.1.)

COROLLARY I 1.1. Let N>2,J=(a, blandJ°=(a, b). Let g(t, y) € C°(J x R", RY)
be such that (i) all solutions of (1.4) exist on J; (i*) if yo=no(t), - - -, Yan-1(t)) isa
solution of (1.4) for n=0, 1, . . ., and y,o(t) = yoo(t) uniformly on compacts of J°, as
n — o0, then y,o(b) — yoo(b); conditions (iiy), (iii,) of Theorem I 1.3 hold on J°. Then
every boundary value problem (1.4), (1.2), with t; € J, has at least one solution.

We can deal with the more general boundary conditions (1.3) under additional
hypotheses.

THEOREM I 1.4(c). Let N>2,J°, g be as in Theorem 1 1.3 and satisfy the following
additional hypothesis: (ivg) let 1 S KN and if y=(y(t), . . ., yn_1(t)) is a solution
of (1.4), then y,(t), ..., yx_1(t) are pseudoderivatives of y, on J° in the sense of
Definition 1.3 in §1 of Part 11 below; cf., e.g., Propositions 2.1 and 2.2 in Part 11
below. Then every boundary value problem (1.4), (1.3), with 1=n(j)<K and
n(1)+ - - - +n(m)=N, has at least one solution. (B) Furthermore, if K=N and (Vo)
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solutions of (1.4) are uniquely determined by initial conditions at points t, € J°, then
a solution of (1.4), (1.3) is unique.

A corresponding result on a half-open interval is the following:

COROLLARY I 1.2. Let N>2, 1=K=N, J=(a,b], J°=(a,b), and ge
CO(J x R¥, RY). Assume conditions (i), (i*) of Corollary 1 1.1; also conditions (ii,),
(iiip) of Theorem 1 1.3 and condition (ivk) of Theorem 1 1.4(«) on J°. Then every
boundary value problem (1.4), (1.3), with 1 £n(j)< K and n(1)+ - - - +n(m)= N, has
a solution, provided that t,,<b or that t,=b, n(m)=1.

Note that when (1.4) reduces to (1.1), that is g,=y, ., for k=0,..., N—2 and
gy-1=Y, then the condition (ivy) of Theorem I 1.4(c) is trivially satisfied.

Also, in the case (1.1) of (1.4), Theorem 8 of Lasota and Opial [9] implies that
the condition (iiio) of Theorem I 1.3 of “local solvability” at t=t, € JO is satisfied
if there exists a continuous function M(¢) such that

(L.6) 1,30 s3] S MO(14 3, %)

for small |¢—1,| and all y=(y,, ..., yy-1); cf. also Lemma I 1.1 below. Of course,
if there exists a continuous M(t) € C°(J°) satisfying (1.6), then conditions (i), (iiio)
of Theorem I 1.3 hold. When (1.4) is “nearly” an Nth order equation, one can
obtain an analogue of the sufficient condition (1.6) for ““local solvability.”

LemMA I 1.1. Let N2, and the first N—1 components of g=(go, ..., 8n-1) €
C%Jx R, R") have the form

k+1

an - glt,y) = D Pult, )y, fork=0,...,N=2,

j=0
where P,(t, y) € C°(Jx R, R), and there exist constants M, ¢ >0 such that
(1.8) |Peit, )| S M forj=0,....,k+landk =0,...,N-2,
(1.9) Pk,k+1(t’y) g c > 0 fork=0, ceey N—2.

In addition, suppose that the Nth component gy _, of g satisfies

(1.10) lgn-1(t, ¥)| < M(1+g—0|ykl)-

Then there exists a constant >0, depending only on N and M, such that if the length
of J satisfies b—a <, then every boundary value problem (1.4), (1.3) has at least one
solution.

It will be clear from the proof that, with the same 8, other classes of boundary
value problems have solutions; for example, (1.4) and

(1.11) yt) =c¢ fork=1,...,Nandt, =t,
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Compare this result with [16] and [11], where other problems are treated, but the &
there depends on a fixed set of boundary conditions (instead of allowing all
conditions (1.3) [or (1.11)] as in Lemma I 1.1).

The condition of ““local solvability* (iiig) in Theorem I 1.4 and its corollary can
be weakened to a type of ‘“compactness” assumption (viy), suggested by the
Beckenbach-Tornheim continuity theorem for N-parameter families (see Lemma I
1.1 in Part II below).

THEOREM I 1.5. Let N>2,J°=(a, b) an open interval, y=(yy, ..., Yy-1) and
g=(go, ..., gn-1). Let g(t,y) e C%J°x RY) be such that conditions (io), (iip) of
Theorem 1 1.3 and conditions (ivy), (Vo) of Theorem 1 1.4 hold. In addition, suppose
that (Vig) if yu(t)=(Yno(t), - - -» Ya.n-1(t)) forn=1, 2, ... is any sequence of solutions
of (1.4) satisfying

(1.12)  Yuo £ Payr0 forn=1,2,... 0r Yuo Z Yny10 forn=12,...,
on some compact [a, BI<J°, then either

yo(t) = lim y,o(t) exists on J° and there

(1.13)

is a solution (yo(t), ..., yxn-1(2)) of (1.4)
or
(1.19) lim |y,(t)] = co on a dense set of J°.

Then every boundary value problem (1.4), (1.3) has a unique solution.

It can be mentioned that if (1.4) reduces to an Nth order equation (1.1) and if,
for every small interval [«, B]<J°, there exists a constant M= M(«, B) such that
gn-1= Y satisfies (1.10) for ¢ € [, B], then condition (viy) holds even if (1.14) is
replaced by

(1.15) lim | y,o(t)] = oo except at N—1 points of J°;

cf., e.g., the proof of Lemma 7.1 in [5, p. 479].

Theorem I 1.1 will be proved in §2, Theorem I 1.2 in §3, and Lemma I 1.1 in §4.
The remaining results do not really depend on the theory of ordinary differential
equations and are consequences of results on ‘‘ N-parameter families” or on
“ N-parameter families with pseudoderivatives” to be discussed in Part II below.
Thus Theorem I 1.3 is a corollary of Theorem II 1.1 below, while Corollary I 1.1
follows from Corollary II 1.1, Theorem I 1.4 from Theorem II 1.2, Corollary I 1.2
from Corollary II 1.2, and Theorem I 1.5 from Theorem II 1.3.

For older references to Nicolleti, Conti, et al., see the bibliographies of [3], [16].

2. Proof of Theorem I 1.1. In proving the existence of a solution of (1.4), (1.2)
with N=2, there is no loss of generality in supposing that #,=b. Let #;, ¢, be given,
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a<t,<b. It suffices to show that if S is the set of y,(b)-values, where y(t)
=(po(), 1(1)) is a solution of (1.4) satisfying y(¢,)=c;, then S=(—o00, ).

Let K>0 and Sy, the set of y(b)-values of solutions of (1.4) satisfying the initial
conditions

.1 y(t) = (¢;,d) forl|d| £ K.

Then Sk, is a closed connected set in the y-plane; Fukuhara [4]. Thus if Sk is the
projection of Sk, on the yo-axis, i.e., if Sy is the set of yo(b)-values of solution of (1.4)
satisfying (2.1), then Sk is a y;-interval (possibly a point) which is nondecreasing
with K, and S is the union of Sk, K>0. Hence S is connected.

Suppose that §# (—o0, ), e.g., that S is bounded from above, say S=(—o0, M).
Let y=y.(t) be a sequence of solutions of (1.4), where

(2.2) Yafty) = (c1,n) forn=1,2,....
If 1,2, ... is a sequence of ¢-values on a compact subinterval of J°, then
(23) Y™ =0 as n—o0;

for otherwise, the sequence {y.,,(¢)} has a subsequence which tends to a solution of
(1.4) uniformly on compacts of J; cf. [6, pp. 14-15]. By condition (iii,), the first
component y,o(t) of y,,(¢) satisfies

(24)  Yuo(8) > Yur1,0(8) and  puo(t) < Ysr,o(t) fora<s <t <t<b.

The sequence {y,o(t)} cannot be uniformly bounded on any subinterval of J°. For
suppose that there is a constant C such that | y,o()| £ C on [«, 8]<J°. Then there
exists a t" € (o, B), where |yno(t")| £2C/(B—«). Condition (i;) then implies that
[ ym(t™] is bounded. But this contradicts (2.3). Hence there exist sequences
{82}, {t.} such that

2.5) ty >s,—~t and t, <t,—>1,

Yno(8p) = —0 and  yuo(t;) >0 asn—oo.

Let y=y*(¢) be any solution of (1.4) satisfying y&(b)=M, so that S<(—co, M)
implies that y¥(b) > y,0(b) for all n. But, by (2.5), y&(t,) < Yno(ts), ¥§(sa) > Yno(ss) for
large n. Hence, y¥ —y,, has two zeros on (a, b). This contradicts (iii;) and shows
that S is not bounded from above. Similarly, it is not bounded from below. This
completes the proof of Theorem I 1.1.

3. Proof of Theorem I 1.2. We first verify that the conditions of Theorem I 1.2
imply (iiio) in Theorem I 1.1. Let y(z), z(¢) be distinct solutions of (1.4) satisfying
Yo =z, for some point t=1t, € J°. It will be shown that y,# z, for #, #¢ € J°. Suppose,
for example that y,(t) <z,(¢) for ¢, <t<b. In particular, y,(#,) £z,(¢;). On the one
hand, if y,(t;)=z,(t,), then, by (iii*), yo(t) # zo(t) for 1, #¢ € J°. On the other hand,
if y1(t,) <zi(ty), then yi(t;) <zg(t;) by (i), so that for small —¢, >0, yo(t) <zo(2).
Suppose, if possible, that there exists a least s, t; <s <b, where yo(s)=zo(s). Then
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Yo(8) = zo(s), and s0, y,(s) = z,(s). This contradiction shows that y,#z, on (ty, b).
Similarly, y,#2z, on (a, ;). This proves (iiio).

In proving the existence of a solution of (1.4) satisfying (1.5), we can suppose
that 7, < ¢, (as the proof for t, >, is similar). We can then suppose that ¢, =b.

Let S be the set of y;(b)-values of solutions y(¢) of (1.4) satisfying y,(t,)=c;. As
in the last section, S is a connected set, and it suffices to show that S is not bounded
from above or below. Suppose that S<(—oo, M). Let {y,,(¢)} be a sequence of
solutions of (1.4) satisfying (2.2). Then, as in the last section, there exist sequences
{sn}, {t.} such that (2.5) holds.

It is clear from (2.2) that there exists a sequence {¢,,} such that ¢, <#,; — ¢, and
Yn1(ts1) = 00 as n— co. Consider any solution y=y*(¢) of (1.4) satisfying y¥(b) =M.
Thus y¥(b) > y,.(b) for all n, but y¥(t,,) <y..(¢..) for large n. Thus

Y¥(ty) = yni(t;) for some t,,t,; < t; < b.
Also y§(t:) < Yno(ta), ¥(sn) > Yao(sy) for large n, so that
y&(sy) = yno(sy) for some sy, s, < 85 < t,.

The last two displays contradict (iii*) if s,#¢,. If s,=t, so that y*=y,, at
t=s,=t,> 1, let y**=y,, for a<t<s, and y**=y* for 5, <t<b. Then y** is a
solution of (1.4) such that yF*(t,)=y.o(t;)=c, and y¥*(b)=y¥(b)=M, so that
M e S. Hence, S is not bounded from above. Similarly, it is not bounded from
below, and Theorem I 1.2 follows.

4. Proof of Lemma I 1.1. Consider the following linear system of differential
equations with continuous coefficients on an interval J: |t —1,| < L.

k+1
Vi = Z P(t)y; fork=0,...,N-2,

N
3

@.1)

V-1 = ,2) Py_1,4t)y;+ Q),

and M, ¢> 0 constants such that
(4.2) [Pef)] £ M, Perpr()Z2¢>0, |O@) < 2M,

for all j, k. The corresponding homogeneous system, Q(¢)=0, will be called the
system (4.1-0).

(a) Transformation of (4.1-0). If y=y(¢t) is a solution of (4.1-0) such that the
Euclidean length | y(z,)|| of y(¢) at t=t, is 1, then a standard inequality gives

l»(®)] = exp (LMN) for |t—1to| < L;
cf. [6, p. 54]. Hence
4.3) [ y(®)—y(t)|| £ (LMN?32)exp (LMN) for |t—to| < L.
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For i=0, ..., N—1, let y'(t)=(yof?), - . ., yn-1.4(t)) be the solution of (4.1-0)
satisfying y,(¢,) =2 or 0 according as k=i or k#i. Then (4.3) implies the existence
of a constant §=48(M, N)>0 such that if

4.4 0<L <3,
then
@5 2571 < Wi(t) = det (u(O)igmo,emn S 2641 for |t—1o] L

and k=0, ..., N—1. Thus, (4.1-0) is equivalent to an Nth order differential

equation

4.6) {ay-1---la(@oyo))- -} =0,

where the functions aq, ..., ay_, are given by

@ a(t) = W2_3/Pe—1 Wi-oW, fork=0,...,N—1,
W_o=W_,=1 and P_,,=1;

[6, pp. 51-54). The system (4.1-0) and equation (4.6) are equivalent in the sense that
if y(£)=(po(t), . . ., yx-1(¢)) is a solution of (4.1-0), then yy(¢) is a solution of (4.6).
Conversely, if yo(t) is a solution of (4.6), then y=(yy, ..., yy-1) is a solution of
4.1-0) if

k
(4.8) Vo= 2 (WW;_)w, fork=0,...,N—1,
ji=0

4.9) wo = apy, and w, =afa;_;---[a(aye)] -} forj=1,...,N—1.

(The formulae (4.8), (4.9) are not stated explicitly in [6], but can be easily verified
from the calculations there.)

(b) Transformation of (4.1). Correspondingly, the inhomogeneous system (4.1)
is equivalent to

(4.10) {ay-1- - [a1(@0y0) ]} = Wy_2Q/Wy_1,

by virtue of (4.8), (4.9).
(c) A determinant estimate. It is clear from (4.8) that boundary conditions of the
type (1.3) are equivalent to conditions of the type

(4.11) wk(tl)=y1k fOI‘j= 1,...,mandk=0,...,n(j)—l

for suitable constants y,,. Let s<#, and consider the N linearly independent solu-
tions Yoo, - - .» Yn-1,0 Of (4.6) given by

Yoo = a5 *(t) and

t Ty Ty -
@2 a0 [areodn ["aseadrs - [ arey an,
s s s

for i=1, ..., N—1. Let (Wo=aoYio, Wiz, - - -» Wi,y—1) belong to the solution y;o, by
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virtue of (4.9). We shall estimate from below the absolute value of the determinant
D of the matrix of coefficients of the (algebraic) linear system

N-1

@13) D xwult) =yu forj=1,...,mandk=0,...,n(j)-1
i=0

In fact, we shall show that there exists a constant K>0, depending only on M and
¢>0, such that

4.149) |D| 2 K n (t— 1,)r0omeh,

1S/<k=m

Consider first the case m=N, n(1)=---=n(N)=1, and denote D by

Dy = Dy(ts, ..., ty) = Dy(ts, - - > ty3 Qo - - -5 Ay-1);
so that
Dy = det (wio(t;+1))i,5=o0,....n-1
= det (ao(t;+ 1) Yio(ti+1)).s=0,...n -1

Since ¢, occurs only in the kth row, it is easy to see that
(@V-1foty- - -0ty _)Dy = a7 *(t)- - -ai M(ty-1)Dy-1,

Whel‘e DN_1=DN_1(t1, ceey tN_1)=DN_1(t1, ceey tN—l; Ay, ...y aN._l). AlSO DN=0
iftN=tN_1 and (3N'k/atk- . 'atN—l)DN=0 lf tk=tk—1 for k=2, ceey N—2. Hence

ty
Dy(ty, ..., ty) = J; ai*(sy-1) dsy_1
N -1

S3 S3
e J: ai(sp) ds, f ai*(sy)Dy_1(s1, - .., Sy—1) ds;.

2 t1

An induction on N gives (4.14) with m=N, n(1)=---=n(N)=1.

We now make an induction on decreasing m. Assume that m< N—1 and (4.14)
holds if m is replaced by m+ 1. Suppose that n(i)>1 and let D’'= D’(r) denote the
corresponding determinant with n(i) replaced by n(i)—1 and the point t=r added
to the set #,, .. ., t,, where r>t; is near #,. On the one hand, the analogue of (4.14)
holds for D', by the induction hypothesis, and implies that

lim sup | D'(r)|/(r—2)"®-* 2 K 1_[ (1, —t,)nnD,
T4+0 1Sj<ksm

On the other hand,
[a(r)(@/or)- - -ax(r)(©/or)ay(r)(@/or));-, D'(r) =0 or D,

according as 0=k <n(i)—1 or k=n(i)— 1. The last two displays imply (4.14).

(d) An a priori estimate. The fact that D+#0 implies that (4.1), (1.3) or (4.11) has
a unique solution y(t). We shall show that there exists a constant C,, depending
only on M, ¢>0, and (,, ..., t,; n(l), ..., n(m); o, - . ., Cm,nemy—1)> Such that

(4.15) ly®l, 1y'®l = Co.
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To this end, let y,=1,(¢) be the particular solution of (4.10) given by

) = | a5 ay-r) dsw_y - [ a5 ds [ (W50 Q060 Wi (500 ds

to to

Then the desired solution y(¢) of (4.1) is obtained from (4.8), (4.9), and y.(t)=
Y3 X, p10(2) +70(2), where the sum is a solution of the homogeneous equation
(4.6) and the constants x, ..., xy_, are chosen so that

N-1

Z X Yult) = Cey—nilty).

i=0

These conditions can be transformed into (4.13), where y,; depend linearly on ¢,;

with bounded coefficients. The determinant estimate (4.14) gives bounds for the

constants x, ..., Xy, implying the existence of the a priori bound C, in (4.15).
(e) Completion of the proof. Rewrite (1.4) in the form

k+1
Ve = Z Py(t,y)y;, fork=0,...,N-2,
4.16) =

N-1
V-1 = Z Py_1,4t »)y;+4(2, ),
i=o

where the functions Py _, ; and g are defined by

4.17) Py_1,; = gn-1(t, »)yi/ L+ Y]

(4.18) g = gn-2(t, YA +2[ YD/ + [ ¥])>

Then, by (1.8)-(1.10),

(419 [Pt =M, Pepn(t,y) Zc¢>0, gt )| S 2M.

Suppose that J is the interval |t—¢,| <L and that (4.4) holds.

In the Banach spaces C°(J, R¥) of continuous, R"-valued functions with the
sup norm on J, let = be the set of functions z(t)=(zo(¢), . . ., zy_1(t)) of class C*
satisfying

(4.20) Iz, 12Ol = Co;

cf. (4.15). Consider a map T: Z — X, where y(¢)=Tz(t) is the unique solution of the
linear system

k
Vo= Z Pt z(t))y; fork =0,...,N=2,

+1
=

(=)

(4.21)

2 -

Yh-1= 1_20 Py i(t, 2())y;+4(t, 2(2)),

-
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satisfying (1.3). Parts (a)-(d) on linear systems (4.1) imply the existence of such a
unique solution y(¢), and (4.15) shows that y € Z. It is clear that T is continuous.

Since Z is a compact, convex set of C°(J, R"), the Schauder theorem implies that
T has a fixed point y=y(¢). This proves Lemma I 1.1.

PART II. N-PARAMETER FAMILIES AND PSEUDODERIVATIVES

1. N-parameter families. The following definition was given by Beckenbach [2]
for N=2, and by Tornheim [15] for arbitrary N:

DEFINITION 1.1. N-PARAMETER FAMILY. Let J° be an open r-interval (a, b). A set
F of functions f°(¢) € C°(J°) is said to be an N-parameter family on J° or to inter-
polate uniquely at N distinct points if, for every set of N distinct points ¢, < - - - <ty
of J° and every set of N numbers c;, ..., cy, there is one and only one element
Jo € F satisfying

(1.1) fot)=¢ forj=1,...,N, wheret;, <---< ty.
The basic facts about N-parameter families are contained in the following lemma:

LeMMA II 1.1 (BECKENBACH [2], TORNHEM [15]). Let F={f°} be an N-parameter
Samily on J°=(a, b). («) If f°, g° are distinct elements of F such that f°—g° has
N—1 zeros on J° then f°—g° changes signs at each of its zeros. (B) If f°(t)
=fot, ty, ..., ty, C1y - .., Cy) IS the unique element of F determined by (1.1), then f°
is a continuous function of its 2N+ 1 variables for teJ® a<t,<---<ty < b,
(c1, ..., cy) ERY,

DeFINITION 1.2. A family F={f°} of continuous functions on an open interval
J°=(a, b) will be said to be a local N-parameter family if, for every t, € J°, there is
an open interval J(2°), 1, € J(t,)<J°, such that the set of restrictions f°|J(¢,) of the
elements f° € F is an N-parameter family on J(¢,).

THEOREM II 1.1. Let J°=(a, b) be an open interval. Let F={f°} be a family of
continuous functions on J° satisfying (i) F is a local N-parameter family on J° and
(ii) if f°, g° are distinct elements of F, then f°—g° has at most N—1 zeros on J°.
Then F is an N-parameter family on J°.

The proof of Theorem II 1.1 is contained in the following three propositions.
PROPOSITION 1.1. Assume the conditions of Theorem 11 1.1 and let
A=AJ%) ={(t;,....,tn\)ERY;a < t; <---< ty < b},
Q=QU°% ={(ty, ..., tnw, f2(t), ..., fOty)) EAX RN RN : fO¢ F},
Then Q is an open subset of R?".

Proof. Let 1, eJ and s; < - - - <sy be points of J(t,). Let

fo(t)=fo(t9 S1s e ey SNy €15+ - v CN)
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be the unique element of F satisfying f°(s;)=c¢; for j=1, ..., N. For fixed ¢, and
$1, - .., Sy, consider the map @: A x R¥ — Q defined by

(D(tla crey tN’ Cis oo s cN) = (tl, ORI tN’fo(tl)a . ',fo(tN))'

Then ¢ € CO%(A x RY), for fO(t, s1, ..., Sy, €1, - - -, Cy) IS @ continuous function of
(t,c1, ..., cy) by Lemma II 1.1 applied to J(¢,) and to small open (necessarily
overlapping) t-intervals covering a closed subinterval of J°. It is one-to-one by
condition (ii) of Theorem II 1.1. Since the domain A x RY is open in R?", its range
Q is open in R?¥, by the Brouwer theorem on the invariance of domain.

The next result is a generalization of the continuity theorem (Lemma II 1.1) for
N-parameter families.

ProPOSITION 1.2. Let F be a family of continuous functions f°(t) on an open in-
terval J° = (a, b) such that (') the set Q< R?N is open and (i) if f°, g° are distinct ele-
ments of F°, then f°—g° has at most N—1 zeros on J°. (a) If f°, g° € F and f°—g°
has exactly N—1 zeros on J°, then f°—g° changes signs at each of its zeros. (b) If
)=, ts, ..., ty, C1, ..., Cy) is the unique element of F satisfying (1.1), then f°
is a continuous function of its 2N + 1 variables for t € J°, (ty, .. ., ty, €1, . .., Cy) € Q.

Proof. We indicate the proof of the first part (with a slight variant of Becken-
bach’s proof [2] of the first part of Lemma IT 1.1). Let f°, g° € F be distinct elements
of F with f°—g0 vanishing at t=1,, ..., fy_,. Suppose that f©—g°>0 for small
|t—t,] >0 for some k. Choose s arbitrarily, t,_; <s<t,if k>1ora<s<t if k=1
If £>0 is sufficiently small, so that g°(,+¢) is sufficiently near to f°(z,) =g°t),
then the openness of Q implies that there exists an 4° € F such that

Ro(t) = fot,) = g°(ty) forj # k,
ho(s) = f%s) and h(tc+e) = g°(ti+e).

Hence f°—h°=0 at the N—1 points t=t,, j#k and t=s, while i°—g°=0 at the
N—1 points t=t,, j#k, and t=t,+e¢. But it is also easy to see that either f°—h° or
h°—g° vanishes on (s, t,+¢). This contradicts condition (ii) and proves the first
part of Proposition 1.1.

We shall omit the proof of the second part, as it follows the proof of the last
part of Lemma II 1.1 in [15}.

REMARK. Let F satisfy (i), (ii) of Proposition 1.2. It is tempting to try to enlarge
F and Q as follows: Let F, be the closure of F with respect to uniform convergence
on compacts of J° and let Q,=Q N (A x RY), where Q is the closure of Q in R2Y.
Unfortunately, even for N=1, it is easy to see that both of the following assertions
(@), (B) can be false: («) if £, g° are distinct elements of Fj, then f°—g° has at most
N—1zerosand (B)if (t, ..., ty, €1, - - -, Cy) € o, then there is an f© € F; such that
fot)=c, for k=1, ..., N.

PROPOSITION 1.3. Let F be a set of continuous functions f°(t) on an open interval
JO=(a, b). Then necessary and sufficient for F to be an N-parameter family on J° is
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that it have properties (1'), (ii) of Proposition 1.2; the property (iii) if 12, f2, . . . is any
sequence of elements of F satisfying

o) £ f21() form=1,2,... or
) 2 @) forn=12, ...,

on a compact [o, B]<J°, then either

(1.2)

(1.3) fO@t) = lim f2(¢) exists on J® and f° € F
or
(1.4) lim |f2(t)| = o on a dense set of J°;

and the property (iv) that, for all t,€J°, the set S(t))={f°(t,) : f°€ F} is not
bounded from above or below.

It is clear from Lemma II 1.1 that Fin Theorem II 1.1 has the properties (i), (ii),
(i), (iv). In fact, if (1.3) does not hold, then |f(¢)| — oo as n — oo except for at
most N—1 points of J°. Thus Proposition 1.3 implies Theorem II 1.1.

Proof. The necessity of (i), (ii), (iii), (iv) is clear from Lemma II 1.1, the proof
of Proposition 1.1, and from Proposition 1.2.

Assume conditions (i'), (ii), (iii), (iv). We shall show that F is an N-parameter
family, i.e., that Q=AXxRV. Let k, where 1<k=<N, and (¢, ...,ty) €A,
(15 -+ s Ck—1y Cia1s - - -» Cy) be fixed, and let S={c,: (t;, ..., ty, C1, ..., Cy) € Q}
Clearly S is open.

We shall show that S is also closed. If S is not empty, consider a sequence {c;,}
satisfying ¢, € S for n=1,2, ..., and ¢, — ¢, as n — c0. We wish to show that
¢ € S. We can suppose that {c,,} is a monotone sequence, say, for definiteness,
that ¢, Sc¢.npq for n=1,2, .... By Proposition 1.2, if f € F satisfies f2(t;)=c;
for j#k, f(t,) = cyn, then

(=DPE2e) £ (DR () forte(t, tiy), i=0, ..., k=2,
f2(t) £ f2a() for € (fe-1, e+ 1)
(_1){+W(t) é (_ 1)‘+m0+1(t) fOI' te (tiy ti+1), i = k+ la L] Na

where a=1, and b=ty ;. Thus, by condition (iii), either (1.3) holds and ¢, € S or
(1.4) holds.

In the latter case, choose an arbitrary f° e F satisfying f°(t,) > ¢, > f2(t,.) for
n=1,2, ...; cf. condition (iv). Then, for large n, f°—f? vanishes on either side of
t, arbitrarily near #,, and also arbitrarily near t;, j#k. Thus, for large n, f*—f2#0
has N zeros on J° This contradiction shows that (1.4) cannot hold. Thus S is
closed. Hence S=g or S=(—o0, ). Clearly Q(a, b)=A(a, b) x R¥. This proves
Proposition 1.3.

It will be useful below to have the following remark.
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PROPOSITION 1.4. Let G(t, Xy, ..., Xy) be continuous on J°x X, where J°
=(a, b), X<R" is open. Let F be the family of functions f°(t)=G(t, x,, ..., Xy) on
JO, for fixed (x1, ..., xy). Let F have the properties (ii), (iii), (iv) of Proposition 1.3.
Then F is an N-parameter family on J°.

In fact, that F has the property (i) is clear from the proof of Proposition 1.1.
Under additional conditions, we can get an analogue of Theorem II 1.1 on half-
open intervals.

CoROLLARY II 1.1. Let N>1 and J=(a, b] be a half-open interval. Let F be a
family of continuous functions on J such that their restrictions to J°=(a, b) is an
N-parameter family on J° (e.g., let their restrictions satisfy (i), (ii) of Theorem II 1.1).
In addition, suppose that (iv,) the set of numbers {f°(b): f° € F} is not bounded from
above or below and (V) if f° and [, f2, ... are elements of F satisfying (1.3), then
f3(b) — fO(b) as n — oo. Then, for arbitrary points t,< --- <ty of J and arbitrary
¢y, ..., Cy, there exists at least one f° € F satisfying (1.1).

Proof. Only the case ty=b need be considered. Let f2(¢) € F be the unique element
of F satisfying

fot) =¢; forj#N and fXs)=c,

where s is fixed on ty_; <s<b. Let S={f2(b) : —o0<c<wo}. It suffices to show
that S=(—o0, ).

By Lemma II 1.1, the function f2(¢) is continuous for ¢ € J° —oo<c<oo. By
condition (v) of the corollary, it is also continuous for ¢ € J, —o0 <c¢<oo. For by
Lemma II 1.1, if ¢<d, then

(=¥ < (=¥ on (4, tiyy) fori=0,...,N—1,

where t,=a. Thus S is connected.

It suffices now to show that S is not bounded from either above or below. But this
can be done by the arguments used in the last part of the proof of Proposition 1.3.

DEFINITION 1.3. PSEUDODERIVATIVES. Let & be a family of R%-valued functions
f@O)=(f°t), ...,f¥Y(2)) defined on an open interval J° and let f°(t) € C°(J°). Let
F denote the family of continuous functions F={f° : (f°, ..., ¥~ 1) e #}. Suppose
that for every ¢, € J° and every set of K numbers cqq, . . ., Co k-1, there is at least
one fe & such that

(1.5) f*(to) = ¢ fork =0,...,K—1.
Also, for f°, g° € F, suppose that

(1.6) (t—t)[f°(t)—g°1)] > 0 for small [t—¢,| > 0
whenever

1.7 fito) = g'(ty) fori=0,...,1-1(=2 K-2),

(1.8) Sfi(to) > g'(t0)-
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This situation will be described by saying that the elements f° e F have K—1
pseudoderivatives (f(z,), ...,/ ~1(¢,)) at t=t,, and the function f*=7"(¢) will be
called the ith pseudoderivative of f°.

REMARK 1. Note that, in this definition, f*(¢,) is a fixed functional (¢,, f°) —>
Sfi(to) of 1, €J°, f° € F. There is no assumption that F is a linear set nor that there
is any linearity in the map f° > f*. Nor is there any assumption of continuity for
the map ¢+ f¥(¢). Even if f°, ..., f¥-1 are continuous functions of ¢, the functions
f% ..., f%"1 need not be pseudoderivatives of f* and, of course, it is meaningless
to speak of a “product rule.”

REMARK 2. Definition 1.3 implies the following converse for the property
“(1.7), (1.8) = (1.6)’: If (1.7) holds and

(1.9)  (t—t)[f°(t)—g°t)] > 0 for either small t—t5 > 0 or t,—¢ > 0,
then
(1.10) Sf1(to) 2 g'(t0).

REMARK 3. The defining properties of pseudoderivatives depend on the differ-
ences fO(t)—g°(t), ..., X Y (t)—g¥~(t). Hence, if co(t)>0, c(t)>0, ho(t), ...,
hg _4(t) are arbitrary functions on J, with ¢y(¢), ho(t) continuous, then the functions
co(t)f°() +ho(t) have the pseudoderivatives c(¢)f2(t)+hy(2), ..., c(O)fX- 1)+
hi _1(t). See also §3 below.

DerINITION 1.4. A family F of functions f© with N—1 pseudoderivatives
fY ...,f¥ 1 onJO as in Definition 1.3, K= N, is said to

(i) interpolate uniquely at N coincident points or to have the property of unique
initial values if, for every ¢, € J° and every set of N numbers cq, . . ., Co 51, there
is one and only one f° € F such that

(1.11) fk(t0)=COk fOl‘k=O,...,N—I;

(ii) interpolate uniquely at N arbitrary points if, for any integer m, | Sm< N, any
points ; < - - - <t, of J°, positive integers n(1), . . ., n(m) satisfying n(1) + - - - +n(m)
=N, and N numbers c;,, where j=1, ..., m and k=0, ..., n(j)—1, there is one
and only one f° € F such that

(1.12) f¥t)=cy forj=1,...,mandk =0,...,n(j)—1.

THEOREM II 1.2(«). Let 1S K=< N and F be a family of continuous functions f°
with K—1 pseudoderivatives f*, ...,fX~! on an open interval J°. Suppose that F
interpolates uniquely at N distinct points (i.e., that F is an N-parameter family on J°).
Then, for every choice of t;<---<t, onJ° (n(l), ..., n(m)) with 1 <n(j)<K and
n(1)+---+n(m)=N, and N constants (1o, - - ., Cn.nemy~1), there exists at least one
f € F satisfying (1.12). (B) If, in addition, K=N and F interpolates uniquely at N
coincident points (i.e., F has the property of unique initial values), then F interpolates
uniquely at N arbitrary points.



216 PHILIP HARTMAN [February

This was stated in Hartman [5] for the case that f© € C¥~1(J°) and f*=d*f°/dt*,
cf. Theorem (I) and Lemmas 7, 8. (For a related result on linear families of solutions
of an nth order linear differential equation, cf. [1] and [12].) Actually the proofin [5]
was given for the case that f*, ..., fX~! are the pseudoderivatives of Example 1 of
the next section. The same proof is valid whenever f*, ...,f%~! are pseudo-
derivatives in the sense of Definition 1.3.

In order to extend the last result to half-open intervals, we need another result
of [5]. Consider a set of conditions (1.12) and divide the set of integers j=1, ..., m
arbitrarily into two sets {j'}, {j"}, where 1 =n(j")<K, but n(j")=1. In the next
lemma, we consider the partial data {t;, n(j'), ¢;+} to be fixed, while {z,-, n(j")
=1, ¢;»o} is arbitrary, with all ¢;, ;. distinct (not necessarily ¢, < - - - <t,).

LemMma 11 1.2. Let F satisfy the conditions of Theorem 11 1.2(). Then there exists
a subfamily F'=F'{t;, n(j"), c;.} of F with the following properties:
(i) if f° e F', then f° satisfies the partial set of conditions

(1.14) f¥(t;) = ¢y foralljandk =0, ...,n(j)—1;

(ii) there exists a unique f° € F’ satisfying (1.12) as in Theorem 1I 1.2(«); and

(>iii) if f°, g° are distinct elements of F', then f°—g° has at most N—> n(j')—1
zeros#t;., and if f°—g° has exactly N—Y n(j")—1 zeros#t,, then f°—g° changes
signs at each of these zeros and (t—t,)"’[f°(t) — g°(¢)] is of the same sign for small
[t—1;]>0.

The families F’' can be chosen to be decreasing if either an n(j') is increased or the
set {t;.} enlarged, and additional conditions added to (1.14). (When the uniqueness part
(B) of Theorem 11 1.2 holds, then F' is merely the set of all f° € F satisfying (1.14).)

For a proof, see Lemmas 3, 5 and 7 of [5] (also Lemmas 4, 6, 8 for the paren-
thetical part).

CoROLLARY II 1.2. Let F be a family of continuous functions f° on a half-open
interval J=(a, b} having K—1 pseudoderivatives f*, ...,f%"* on J°=(a, b). Let F
satisfy the conditions of Theorem 11 1.2(«) on J° and conditions (iv,), (v) of Corollary
I1 1.1. Then there exists an f° € F satisfying (1.12) with t,, ..., tp,€J, 12n(j)=K,
n(1)+ - - - +n(m)= N, provided that t,,<b or that t,=b, n(m)=1.

Proof. In view of Theorem II 1.2(«), we need consider only the case t,,=b, n(m)
=1. The corollary is correct if m=N (so that m(j)=1 for j=1, ..., N) by
Corollary IT 1.1. Assume that 4 < N; that the corollary is correct if there are at least
h+1 points #;,. for which n(j")=1; and that in this case, f° can be chosen in
F'=F'{t;, n(j’), ¢juc}-

Consider a given set of conditions (1.12) involving A points ¢;- for which n(j")=1,
and let i be the largest in the set {j’} with n(j')> 1. Let F’ be the family belonging to
t;, n(j"), ¢y, and F” the corresponding family with n(i) replaced by n(i)—2 if
n(i)>2 or with ¢, deleted from {z,} if n(/)=2. We can also suppose that F'< F". By



1971] N-PARAMETER FAMILIES AND INTERPOLATION PROBLEMS 217

Lemma IT 1.2(iii), if f°, g° are distinct elements of F”, then f°—g° has at most
N—=[2 n(j")—2]—1 zeros #t,.

Let t,,_, <s<t,=>b and let f? be the unique element of F’, supplied by Theorem
IT 1.2(«) and Lemma II 1.2, satisfying (1.12) with the condition f°(b)=cy replaced
by f°(s)=c. Then, by Lemma II 1.2(iii),

(1.15) » f(¢) increases with ¢ on (¢, _1, t,)

and, for j=1, ..., m,

(1.16) (= D+ +amgO(r) increases with ¢ on (¢;_4, t,)

where t,=a. By Lemma II 1.1(B), we have, except possibly at N—m+ 1 points,
(1.17) fAt)— +oo asc—o0on (ty_q, ty),

(1.18) (= Dr@+etamfd(t) » + o0 as c—> +ooon (¢_q,t).

Let S={f2(b) : —o0<c<oo} and suppose, if possible, that S is bounded from
above, say, S<(—o0, cy). By the induction hypotheses (on 4), there exist elements
f° e F" satisfying (1.12), except the two cases j=i, k=n(i)—1 and k=n(i)—2, but
satisfying

(1.19) (= Dro*rnmfrO=2(1) — f2O=(1)] > 0,

where f2, ..., f¥~1 are the pseudoderivatives of f2 (in fact, we could also specify
f° at some point t#ty, ..., t,).
Thus, (1.19) and the definition of pseudoderivatives imply that, for any c,

(1'20) (_ 1)n(i+ D+ +n(m)(t_ ti)n(i)— I[fO(t) __fco(t)] > 0

for small |z—1,]+#0. But (1.17), (1.18) show that, for some # near #;, and on either
side of ¢, the reverse inequality holds for large ¢. Thus, for large ¢, f°—f2 has a
zero on each of the intervals (t,—e, 1), (¢, t;+¢) if e>0. Also f°—f? has a zero, for
large ¢, on (s, t,)=(s, b).

The t-values in the definition of F” (which are the ¢;, including ¢, or not, according
as n(i) > 2 or n(i)=2) have total assigned multiplicities > n(;j’)—2. Apart from these
t-values, f°—f? has > n(j")—1+3 zeros at points #;»#b and 3 other points. Since
>n(j")+2=N—[3> n(j")—2], this contradicts Lemma II 1.2(iii) applied to the
family F” and f°, g°=/2 € F". Hence S is not bounded from above. Similarly, it is
not bounded from below.

Finally, it can be seen that S is connected, as in the proof of Theorem II 1.1 and
Corollary II 1.1. Hence S=(—o0, o). This proves Corollary II 1.2 for the case of
h points {z,-}.

In the next theorem, we shall use the notion of the continuous dependence on
initial conditions.

THEOREM II 1.3. Let F be a family of continuous functions f°(t) having N—1
pseudoderivatives f*, ..., ¥~ on an open interval J°=(a, b) such that (i) F has the
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property of unique initial values and if f°(t)=f°(t, to, Coos - - -5 Co,n—-1) IS the unique
element of F satisfying (1.11), then for some fixed t,€J° f° is continuous for
(t, Coos - - -» Con-1) EJ° X RY; (ii) if f°, g° are distinct elements of F, then f°— g° has
at most N — 1 distinct zeros on J°; properties (iii), (iv) of Proposition 1.3 hold. Then F
interpolates uniquely at N arbitrary points of J°.

In fact, F is an N-parameter family on J° by Proposition 1.4, with
G(t, xq, ..., xy)=f"(t, to, X1, ..., Xy). Thus Theorem II 1.3 is a consequence of
Theorem II 1.2.

2. Pseudoderivatives. In this section, we shall illustrate the concept of pseudo-
derivatives by a number of examples of interest.

ExAMPLE 1. Let F be a family of continuous functions f°(¢) on an open interval
J° with the property that, for every f¢,€J° there are K—1 numbers
i), ..., fE(to) such that

(2.1) f(t) = fO>te) + (t—to)f*(t0) + - - - +(t—10)* "~ (t)/(K— D) +o(|t —t,|* 1),

as t — to. Then f° has the pseudoderivatives f(z), ..., f¥~1(2,) at t=t,.

EXAMPLE 2. Let ao(?), .. ., ay_1(t) be positive continuous functions on J°=(a, b)
and let F be the family of solutions u=f°(¢) of the Nth order linear differential
equation

22) {ay-1---la(@ou)]-- -} = 0.

Then u=f°(t) € F has the N—1 pseudoderivatives f*=(a,f°)’, f2=[a1(aof°)7, - - ..
ExaMPLE 2a. Consider the system of linear differential equations

i+1
2.3) yi= > aft)y, fori=0,...,N=-2,
=0
N-1
24 V-1 = Z ay-1,()y;
=0

with continuous coefficients on J°=(a,b) and a;;,,(¢)>0 on (a,d) for
i=0,...,N—2. Let a<ty<b. Then for every sufficiently small interval («, B),
to € (o, B)<=(a, b), the system (2.3)-(2.4) is equivalent to an equation (2.2) for
u=y, (with continuous positive coefficients a, ..., ay-, defined in terms of a
fundamental matrix for (2.3)-(2.4)); see Hartman [6, pp. 51-54]. Thus the con-
clusion of Example 2 is applicable on small («, B).

ExAMPLE 3. Consider again the system (2.3)-(2.4) and let # be the family of
solution vectors (yo(t), ..., yy-1(¢t)) and let F be the corresponding family of
functions y,(¢). Then yy(t) € F has the pseudoderivatives yy(¢), . . ., yy-1(t) on (a, b).

This is a consequence of the following:

PrOPOSITION 2.1. Let 1K< N; and let g(t, yo, - .., Yis1) for i=0, ..., K=2
and gx_1(t, Yo, -+ s Yn-1)s - - -» &u—1(t, Yos - - -, Yn-1) be continuous for a<t<b and
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arbitrary y=(yo, Y1, - . .» Yn_1), Such that solutions of the system of differential
equations

(2.5) yi =gt Yo, ..., yi41) fori=0,...,K-2,
(2.6) yi =8t Yo, - s yn-1) fori=K-1,...,N—-1,
exist on (a, b). In addition, assume

2.7 g is locally, uniformly Lipschitz iny fori =0, ..., K-3,
(2.8) g, is increasing in y;,, fori=0, ..., K-2.

Let F be the family of functions {y,(t)}, where y=yo(t), . . ., yx-1(t)) is a solution of
(2.5)~(2.6). Then y, € F has the pseudoderivatives y,, . .., yx_, on (a, b).

ReMARK. If K=2, condition (2.7) is vacuous. If K=3, condition (2.7) can be
replaced by the condition that the (scalar) initial value problem u’'=g(t, u, y,(t)),
u(to) = yo(2o) has the unique solution u=y(¢) whenever y=(yo(2), y1(2), . . ., yy-1(2))
is a solution of (2.5)-(2.6). As for K= 4, see Proposition 2.3.

Proof. Let y=(po(t), ..., yn-1(t)) and z=(z,(t), ..., zy_4(t)) be two solutions
of (2.5)-(2.6). Let a<t,<b and suppose that
.9 yito) = z(ty) fori=0,...,I1—1(2 K-2), yite) > zto).

Let a<a<ty<B<b; |y{t)l], |2At)| £ M for « <t=<PB; and
i+1

tug, ..., —gi(t vy, ..., <L -
.10) | g2, uo Uy 1)—8ilt, vo Vis1)| j__Zo |u;— ;|

fori=0,...,K-3; |y, |v] £ M;and« £ ¢t < B.

To simplify the typography, let #,=0. Below we shall consider only small =0;
the desired inequalities for <0 are proved in the same way.

In view of (2.5), (2.8) and (2.9), y; -, —z; -1 >0 at t=0 and hence for small ¢>0,
so that y;_; —z;_, >0 for small #>0. Assume that

(2.11) Yig1(t) > z,.4(t) for smallz > 0
holds for some i, 0<i<T—2 (< K-3). It will be verified that (2.11,_,) holds. Put

(212)  h(t) = g(t, yo(t), - - -, Yi(2); Vi 1(E) — &8, Yo(2), - - -5 yi(2)s 2144(2)),
so that A,(¢)>0 for small £>0. By (2.5) and (2.10),

{ i
D =zl £ G+DL Y |y—z| +h()
=0 i=0

and so, for C=exp [(i+1)L(B—a)), 3j-o |7, 2| S C [; h(s)ds. Also, (2.5) and
(2.10) give

i t
@13)  yi—zz -LS |y—z|+h(t) 2 -LC j h(s) ds+ht).
0

i=0
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Since h; >0 for small >0,

t t
y()—zt) = —LCt f hy(s) ds+ f h(s) ds > 0.

This implies (2.11,_,) and completes the proof.

PROPOSITION 2.2. Let the assumptions of Proposition 2.1, except that involving
(2.7), hold. In place of (2.7), assume

(2.14) g is nondecreasing in y;, j#i,i=0,...,K-3.

For a<ty<b,I1=2,...,K—1, and an arbitrary solution z=(zo(t), ..., zy-1(t)) of
(2.5)-(2.6), assume that the initial value problem

u, =gt ug, ..., U4y) fori=0,...,1-3

(2.15) ,
Up_g = gr-ot, Uo, . . ., Ur_2, Z1-1(1))
and
(2.16) (o) = z(ty) fori=0,...,1-2

has the unique solution u=(z(t), . . ., z;-4(t)). Then the conclusion of Proposition 2.1
is valid.

Proof. Let y=(yo(t), ..., yn_1(2)) and z=(z4(t), ..., zy-1(t)) be two solutions
of (2.5)(2.6), and let (2.9) hold. By (2.8) with i=I—1, y;_1(t;) > z;-1(%;). Hence
Vi-1(t)>z;_1(¢) for small t—1t,>0. Thus

yi =8t Yo, ., yiy1) fori=0,...,1-3,

2.17) ,
Vi-z > 8r-ot; Yo, - - -5 Vi-25 Zr-1(2)),

for small t>0. Since u=(y(t), ..., y;_o(t)) satisfies the initial conditions (2.16),
it follows from a theorem of Kamke [7] and the uniqueness of the solution of
(2.15)«(2.16) that y,(t)=z(¢) for small t—#,20 and i=0, ..., I—2. It is then easy
to see from (2.8), (2.14) and (2.17) that y;_,(¢)>z,_4(¢) for small t—¢,>0. This
argument can be repeated to conclude that yo(#) > z,(¢) for small £—¢,>0.

Similarly, it is shown that (z—t,)[yo(t)—zo(t)]>0 for small z,—¢>0. Thus
Y1, . . .. Yx-1 are pseudoderivatives of y,, and the proof is complete.

Note that condition (2.7) in Proposition 2.1 is vacuous if K<3 and, when (2.8)
holds, condition (2.14) in Proposition 2.2 is vacuous if K <4. It will now be shown
that if K=N=4 and (2.7), (2.14) are omitted, then Propositions 2.1, 2.2 are false,
cf. the remark following Proposition 2.1.

PROPOSITION 2.3. Let K=N=4. Assume the conditions of Propositions 2.1 and
2.2, except for (2.7) and (2.14). Assume also that solutions of (2.5)(2.6) are uniquely
determined by initial conditions. Then the conclusion of Proposition 2.1 need not hold.

It will follow from the proof that, for example, the Lipschitz condition (2.7) in
Proposition 2.1 cannot be replaced by the type of inequality occurring in Kamke’s
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or even Osgood’s uniqueness theorem. The papers M. M. Peixoto [13] and
M. C. Peixoto [14] suggest that the example proving Proposition 2.3 cannot exist
if the family F={y,(¢)} is an N-parameter family. The proof of Proposition 2.3 will
depend on the following:

LEMMA. On an interval [0, b, there exist functions h(t), U(t) with the properties:
(i) h(t) e CO[0, b], h(t) 20 according as t=0; (i) U(t) € C2[0, b], U(t) changes signs
for arbitrarily small t, |U| £ 1, and U(t) is a solution of the initial value problem

(2.18) U
(2.19) U(©) = U'(0) = 0.

|U| log |U|+h(t),

The proof of Proposition 2.1 shows that the lemma is false if log |U| is omitted
in (2.18). Assuming the lemma, we shall first prove Proposition 2.3.

Proof of Proposition 2.3. In what follows, let b, U(¢) and h(¢) be the data supplied
by the lemma.

It will be shown that, for a suitable choice of the function ¢(z, u, w), the system
of differential equations

’

(2.20) u =, v =q(t, u, w), w = x—u, x' =v

has the desired properties, if (4, v, w, X)=(¥o, V1, V2, Vs). By (2.20), we have
2.21) x—u=c and w = ct+c,,

where ¢, ¢, are integration constants. Hence (2.20) is equivalent to

(2.22) u' = q(t, u, ct+c,).

The function ¢ will be chosen so that

(a) q is continuous and increasing in w for fixed (¢, u);

(b) for all (c, ¢co), the solutions of (2.22) are uniquely determined by initial
conditions;

(c) as a function of u for bounded (¢, w), g is bounded; finally

(d) g satisfies the relations

(2.23) q(t,0,0) = 0,
(2.24) q(t, U(t), t) = |U@t)| log |U(H)| +h(?).

Conditions (a)-(c) assure that if (2.5)—(2.6) is identified with (2.20), then the
assumptions of Propositions 2.3 are fulfilled. Condition (2.23) implies that
u=v=w=x=0is the solution of (2.20) satisfying the initial condition u(0)=uv(0)
=w(0)=x(0)=0, while (2.24) implies that u=U(¢), v=U'(t), w=t, x=U(t)+1 is
the solution satisfying u(0)=uv(0)=w(0)=(0), x(0)=1. Since U(¢) is not positive
for small ¢>0, it follows that (v, w, x) are not pseudoderivatives of u. Hence the
proof is complete if the function g is exhibited.
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There exists a continuous increasing function m(¢) on ¢ 2 0 satisfying m(0)=0 and

(2.25) h(t)/m(t) >0 ast— +0.

Define a function g(¢, w) as follows:

git,w)=w fort=0andfor0 <t < b,w<0,
(2.26) g(t, w) = m(w)h(t)/m(t) for 0 = w = 2t(< 2b),
g(t, w) = mQt)h(t)/m(t)+w—2t for0 < 2t = w < o0,

Let f(u) be defined by

(2.27) Sf@) = |u| log [u| or flu) =0,
according as 0< |u| =1 or u=0 and |u|> 1. Finally,
(2.28) q(t, u, w) = fw)+g(, w).

Condition (a) on ¢ is obvious; (b) follows from Osgood’s uniqueness criterion
since, for small |u, |+ |us|,

) —f(a)| S — |y —y] log |uy —uy| and f+o(—ulogu)-1du=oo

(c) follows from (2.27); and (2.23), (2.24) are clear from (2.27) and from (2. 28)
Thus, in order to complete the proof, it suffices to verify the lemma.
Proof of the lemma. Define the sequences

(2.29) a,=2"" and b,=2"""1 forn=0,1,...,
(2.30) Cp = Cpy1 = 22" exp (—22"*5) for odd n.
Note that b,=2b,, .,

(2.31) Chp1/cn—>0 aseven n— o

and that

(2.32) byc, = 2b,, 10,41 foralln.

On [0, 1], define the function U(¢) by quadratures, (2.19) and

U'(t) = (= D)™(wc,/2) sin n(t—a,)/b, ifa, £t = a,+b,

(2.33) .
U’(t) = 0 otherwise.

On the interval [a,+b,, a,_,], U’'(?) is the constant

(234) U,(an+bn) = Ul(an-l) = (- l)"s,,,
where
(2.35) 5o (1" S (=)t

m=n
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Thus U(¢) is linear and, by (2.29),
(2.36) U(a,-1) = U(a,+b,)+(—1)"b,s,.

On the interval [a,, a,+b,], U’(¢) is monotone and, in fact,
(2.37) U'(t) = U'(a,)+(—1)"3b,c,[1 —cos #(t — a,)/b,).
From (2.34) and (2.37),

(2.38) U(an+by) = Ul@n) +(—1)"[4bica— basns1].

Consequently, (2.36) and (2.38) give the recursion formula U(a,_,)=U(a,)+
(= 1)"[3b3cn+ bpSp—bpSs 1], so that
239  U@)= 2 (—1)"Gbica+busw)— 2 (=1)"buSnsr.

m=n+1 m=n+1

The series in (2.35) is an alternating series with monotone terms and, by (2.32),
the same holds for the series for s,—s,1, so that

(2.40) Sp = Spyq > 0.
We have b,c,— b, +1Cn 41 =5, S b,c,, hence

(2.41) 3b.c, £ s, S byc,.
Furthermore, by (2.31),

2.42) S, ~ b,c, asevenn— o0,
(2.43) S, ~ %b,c, as odd n— 0.
Note that (2.34) gives
(2.44) U'(a,-1)U'(a,) < 0.
We shall verify that
(2.45) U(a,-,)U(a,) < 0 for large n.
In fact, (2.31) and (2.39)—(2.43) imply that
(2.46) Ua,) ~ 4b2, 11+ b2, 1601 = (3/8)b2c, for odd n,

while for even n,
—U(@) ~ (3074 16n41+bns18ns 1) =031 s 2+ bns 25n42)] — Bns1Sns 2
so that
2.47) —U(a,) ~ (1/8)b2, 1¢,.1 > 0 aseven n— 0.
By (2.42), as odd n — oo, the quantity [...] in (2.38) satisfies
3bich—busns1 = 3bica— (1+0(1))brbny16ns1 = o(1)bic,.
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Thus, by (2.42) and (2.46),
(2.48) U(a,) ~ U(a,+b,) ~ (3/8)b2¢c, > 0 as odd n— 0.
On the other hand, for even n,
U(a,+b,)— U(a,) = 3b7cn—buSnyn ~ 3bica;

so that, by (2.47),
(2.49) U(a,+b,) > 0> U(a,) for large even n.

Since U"(t)<0 on [a,, a,+b,] for odd n, (2.46) and (2.48) show that
(2.50) U(t) 2 min [U(a,), U(a,+b,)] ~ (3/8)b2c, for large odd n.

Thus, for odd n, U(¢)>0on [a,, a,+ b,] and then changes sign once in [a, + b, a,_,].
While, for even n, U(t) changes sign once on [a,, a,+b,], by (2.49) and U" =20, and
U(t)>0 on [a,+b,, a,_,].

Choose b, 0<b< 1, so small that |U| < 8 on [0, b], where —u log u is increasing
on 0<u=<68<1, and that the inequalities above, specified to hold for large n, are
valid if a,_, <b. On [0, b], define A(¢) by (2.18). It is clear that A(¢) is continuous.
It has to be verified that A(¢)>0 on (0, b]. Since A(¢)>0 whenever 0<¢t<b and
U'(t)=0, it suffices to examine A(t) for ¢ on [a,, a,+b,] for n odd, where
0= - U"(t)Smc, /2= 2¢,. In view of (2.50), A(t) >0 holds on [a,, a,+b,], provided
that 2¢, < —(b2c,/4) log (bZc,/4). Since this inequality is clear from (2.29) and (2.30),
the proof is complete.

3. On different sets of pseudoderivatives. This section is concerned with the
following:

PropGsITION 3.1. Let ZF={(f°f, ..., " Y)Y} and F={(f°;f3 ..., 8 )}
denote families F of the same continuous functions f° on an open interval J° with
pseudoderivatives, (f*, ..., ") and (f1,...,f¥~1), having the property of unique
initial values. Let to € J° be fixed. Then there exists a one-to-one map of RY onto R¥,

say, z=g(y) or
(3.1 zy = g(Yos---»¥n-1) fori=0,...,N—1
such that go(¥os . . .» Yn-1)= Yo and

B2 fdlt) = &(f°(t0), [ (t0), .. ., [N M) Sfori=1,...,N-1

If, in addition, the one-to-one maps RY <> RY, given by y <> z=g(y), are continuous,
then

(33) gi=gi(y09--'>yi) fori=03~-~,N_1

is a function of (¥, ..., y:), independent of (yi11, ..., Yn—1), and is an increasing
function of y; satisfying
(3.4) &(Yos...,y)—> too asy — too.
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It remains undecided whether or not the last part of this proposition is correct
if it is assumed that (3.1) is a homeomorphism R¥ — R¥.

Proof. The existence of a one-to-one map RY «» RV, given by (3.1), and satisfying
o= Y, and (3.2) is clear from the fact that the families &, %, have the property of
unique initial values. Assume that the map (3.1) and its inverse are continuous.

We first show that g,(y,, ..., yy_1) is independent of (y,, ..., yy_1). It is clear
that g, is a nondecreasing function of y,, j>0; cf. (3.2) and Remark 2 in §l.
Suppose that g; is not independent of y,. Then there exist y,-values, say y,=u, v,
and (¢, yo, 1), (¥s, - - ., Yx—1) such that u<wv and

81(¥o, Y1ty Y3, - - o, Yn-1) <81(Yo, Y1, U, Y3y - - -, Yy -1)-

By continuity, the same inequality holds if y, on the right is replaced by y, —e for
small £>0. But (3.2) and Remark 2 in §1 imply that

gl(yO’ Y1, Ug, U, . . ., uN—l)ggl(yO’ Y1—¢&, 09, U3, ..., vN—l)

for all (o, ¥o, ¥1), U2y - . ., Uy _1), (Vs, . . ., Uy_1) and e>0. This contradiction shows
that g, is independent of y,. Similarly, it is seen to be independent of yg, ..., yy_1.

We now show that go(yo, ..., yy_1) is independent of (yg,..., yy_1). To this
end, let #, and y, be fixed (but y,, y,, ..., yy_:1 arbitrary) and consider the sub-
family F, of Fconsisting of elements f° in F satisfying the initial condition f(z,) =y,.
Then the family % ={(f° f2% ...,f¥" 1)} has the property that f°e F, has the
“pseudoderivatives™ (f2, ..., f¥ 1) at t=t, if one only examines f° for t=t,. The
corresponding subfamily F,, of Fy is determined by f°(¢,)=yo, fa(te)=g1(Vo, 1),
when ¢,, y; are fixed, and f° € F, has the “pseudoderivatives” f2, ..., f¥-lat t=t,
if one only considers ¢ > t,.

The argument above, showing that g, is independent of y,, ..., yy_;, can be
used to show that g,(yo, J1, . . ., Yv—1), for fixed yy, is independent of y3, ..., yy_;.
This induction continues and we obtain (3.3).

Since the map of RY onto R¥ which is the inverse of (3.1) has a form similar to
(3.3), it follows that g; is an increasing function of y; and that (3.4) holds. Hence
the proof is complete.
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