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AUTOMORPHISMS OF GROUP EXTENSIONS
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CHARLES WELLS

Abstract. If 1 ->■ G -í> E^-Tt -> 1 is a group extension, with i an inclusion, any

automorphism <j> of E which takes G onto itself induces automorphisms t on G and

a on n. However, for a pair (a, t) of automorphism of n and G, there may not be an

automorphism of E inducing the pair.

Let à: n —*■ Out G be the homomorphism induced by the given extension. A pair

(a, t) e Aut n x Aut G is called compatible if a fixes ker á, and the automorphism

induced by a on Hü is the same as that induced by the inner automorphism of Out G

determined by t. Let C< Aut IT x Aut G be the group of compatible pairs. Let

Aut (E; G) denote the group of automorphisms of E fixing G. The main result of

this paper is the construction of an exact sequence

1 -» Z&T1, ZG) -* Aut (E; G)-+C^ H*(l~l, ZG).

The last map is not surjective in general. It is not even a group homomorphism, but

the sequence is nevertheless "exact" at C in the obvious sense.

1. Notation. If G is a group with subgroup H, we write H<G; if H is normal

in G, H<¡G. CGH and NGH are the centralizer and normalizer of H in G. Aut G,

Inn G, Out G, and ZG are the automorphism group, the inner automorphism

group, the outer automorphism group, and the center of G, respectively. If

t e Aut G, f denotes its natural image in Out G. If g e G, Ig denotes the inner

automorphism of G induced by g: for he G, hlg = hg=g~1hg.

Maps will be written on the right; composition reads from left to right. If S and

F are sets, ST denotes the set of maps from F to S. It is sometimes convenient to

write functions exponentially; e.g., x" for x<j>.

Throughout the paper, we shall consider fixed groups G, F, n for which

0—> G-^> F A* n_> 0 is exact; G and F will be written in additive notation, II

multiplicatively. G will be identified with its image Gt < E. We fix a left transversal

T: IT -»-F, specifying 1F=0. Changing the transversal, and omitting the require-

ment 1F=0 has an effect on almost every statement herein, but the effect can

always be calculated explicitly and is ignored. (See Hall [9], Mac Lane [14], or

Rédei [17].) F can be chosen so that it is a homomorphism if and only if F splits

over G.

Every element of F can be written uniquely as xT+a for some x e II, a eG.

(When one writes functions on the left, the form a' + xT is better.) For xe IT,
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ae G, we write ax for —xT+a + xT. We have a map a: U -> Aut G defined by

ax = axa. We set â: I\ -> Out G to be the composition of a with the natural map

Aut G -> Out G. Unlike a, ä is independent of T and is always a homomorphism

(see (1.3) below).

For a, b e G, x, y e U, we have

(1.1) xT+a+yT+b = (xy)T+p.(x, y) + ay + b

for the Schreier factor function /x: II2 -> G. This function satisfies the following

relations :

(1.2) p.(x, yz) + n(y, z) = y.(xy, z) + p.(x, y)z (x, y, z e TI),

(1.3) (ax)y = [a(xy)f-x^ = -p.(x, y) + a(xy) + p.(x, y)       (aeG,x,ye XT).

2. Statement of the Theorem. Let <p e Aut (E; G). Then 95 induces automorphisms

t e Aut G and a e Aut II. The induction map Aut (E; G) -> Aut n x Aut G is a

group homomorphism. The induction map is not in general surjective; a pair (a, t)

which is induced by an automorphism <p e Aut (E; G) is called inducible.

As is customary, Z¿(I1, ZG) will denote the group of mappings (crossed homo-

morphisms or 1-cocycles) y: II -^ZG satisfying

(2.1) ixy)y = xyy+yy       (x,ye II).

(It follows that ly = 0.) Each y eZ¿(IT,ZG) induces an automorphism <p fixing G

and If elementwise, defined by the formula

(2.2) (xT+a)cp = xT+xy + a       (xeU,aeG).

This gives a map Z 1,(11, ZG) -*■ Aut (E; G).

Also, let C be the subgroup of Aut II x Aut G of compatible automorphisms as

defined in the abstract, and let H2(U, ZG)^Ext (II, G) be the group of extension

classes of G by II with the given homomorphism â (Mac Lane [14, p. 128]).

We may now state the main result.

Theorem. There is a set map C -> H2(U, ZG) such that the sequence

1 -> Zi(U, ZG) -> Aut (E; G) -* C -* H2(Tl, ZG)

is exact. The middle two maps are the induction maps defined in the preceding

paragraphs.

Note 1. This Theorem is related to the well-known theorem that Ext repairs

the inexactness of Horn on the right. We have associated to each (a, r) e C an

element of H%(TI, ZG) so that (a, r) is associated to 0 if and only if it is inducible.

But one can think of t as being in Horn (G, E). If (a, t) is inducible, then t can be

extended to Horn (E, E).

However, here we want to extend t not merely to Horn (E, E), but to Aut E,

and in such a way that a is induced on II. Moreover, the group structure on C is
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composition, not pointwise addition. So it is not surprising that the map

C-> H2(U, ZG) is not a homomorphism.

Note 2. A useful example is a cyclic group Cmn regarded as an extension of Cm

by Cn. If d is the greatest common divisor of m and «, a pair of automorphisms

g h-> gr of Cm and « \-> hs of C„ is inducible if and only if d divides r — s. On the

other hand, C=Aut IT x Aut G in this case. A proper choice of m and « shows

that it is possible for (a, t) and (o', t) both to be compatible while one is inducible

and the other is not. A similar statement is true for a change in t while keeping o

fixed.

Note 3. The structure theorem for Aut (F; G) implied by the Theorem is a

generalization of a number of special results in the literature. See [1], [2], [5],

[7], [10], [11], [16]. In many special cases Aut (F; G) splits over Z\(f\,ZG); it

would be interesting to know precisely under what conditions this happens.

Note 4. Baer stated (in other words) that inducible pairs are compatible for the

case G Abelian in [3, §2, Folgerung 1]. He also gives a way of calculating when a

compatible pair is obstructed in that case. In §3 of [3], he characterizes the com-

patible pairs as precisely those induced by automorphisms of H2(fl, G) (again G

is Abelian).

3. Proof of the Theorem. Let REG denote the group of right translations of

elements of F by elements of G. Aut (F; G) consists exactly of the automorphisms

of F that normalize REG. Suppose 93 e Aut (F; G). Now,

xTcp = x°T+xyx       (x e IT)

for maps a: IT ->- IT and y2: IT -> G. For any ae G, xT+a is obtained from xTby

an element of REG, so there is a map t e Aut G for which

(xT+a)cp = x°T+xyx + az       (xeïl,ae G).

It follows immediately that a is a surjective homomorphism. If xaT=yaT, then

xTcp = (yT—(yyx)t'1 +(xy1)l'1)cp, so x=y; hence o is also injective.

Let y = (t~1y1; then

(3.1) (xT+a)cp = x'T+x^y + d1       (xel~l,ae G),

and <p determines y uniquely, since T is fixed. (The yx here is the same as y in [19]

and [2]; the change in notation makes some formulas simpler.)

Lemma. There is a bijection between Aut (F; G) and the elements (a, t, y) e Aut IT

x Aut G x Gn which satisfy

(3.2) (xy)y = p(x, y) + xyy+yy-p(x°-\ y*'1)*       (x, yell)

and

(3.3) aly = yy + (ay° ' *)' -yy       (aeG,ye IT).
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Under this bijection, 93 e Aut (E; G) is associated with the triple (a, r, y) in which a

is the automorphism of U induced by <p, t = 9?|G, and

(3.4) xy = -xT+x^'Tcp       (x e II).

Conversely, (a, t, y) e Aut FI x Aut GxGn is associated to the map <p defined by

(3.1).

Proof. Assume 93 e Aut (E; G). Applying 93 respectively to the sums xa~1T+ya'1T

(x, yeU) and a+y~xT (aeG,ye\T) and using (1.1) and (3.1) yields (3.2) and

(3.3). Conversely, one may calculate directly that if (a, r, y) satisfies (3.2) and (3.3)

then the map 95 defined by (3.1) is in Aut (G; E).

We now proceed to prove the Theorem. First, note that (3.3) immediately

implies that the induction map Aut (E; G) -*■ Aut II x Aut G actually has image

in C. (Every inducible pair is compatible.)

We next show that the sequence of the Theorem is exact at Aut (E; G). In the

first place, the second map of the sequence takes y eZl(U,ZG) onto the auto-

morphism in Aut (E; G) corresponding to (1,1, y), so the composite across

Aut (E; G) is 0. Secondly, assume (1, 1, y) corresponds to an automorphism of E

that fixes G. Then (3.3) for the case <j=t=1 yields the fact that riy<ZG. Using

this, (3.2) immediately implies that y e Zl(U, ZG).

We now construct a map C -s* Gn*n which will induce the right-most map of the

Theorem.

Let (a, t) e C; then by definition, for any y e H, there is an inner automorphism

j of G depending on y such that, for all ae G,

(3.5) a(y") = (a^yY.

Let y : II -> G be a map with the property that j is the inner automorphism induced

by —y"y. It follows that (<r, r, y) satisfies (3.3). We then associate to (ct, t) the map

k: Il x II -> G which measures how y deviates from satisfying (3.2). Specifically,

(3.6) k(x, y) = (xy)y+p.(x"-\ y^J-yy-xyy-^x, y)       (x, y e II).

The following four steps then complete the proof of the Theorem.

1. Im k^ZG. It follows from (3.3) that for any a e G, (a(xa~1y°~1)y is obtained

from dL(xy) by conjugation by (xy)y. However, it also follows by applying first

(1.3) and then (3.3) that one gets the same result by conjugation by p.(x, y) + xyy

+yy—p.(xa'1, y"'1)1. Therefore, k(x, y), the difference of these two elements, is in

ZG.

2. The function k is a 2-cocycle. First,

-k(xy, z) + k(x, yz) = p,(xy, z) + (xy)yz + zy-Li(xya'1, z"'1)'

(3-7) + Kx° - \ (yzy - J - (yz)y - xy(yz) - p.(x, yz)

ix, y,ze II).
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Apply (1.2) to the fourth and fifth terms, and (1.3) to the penultimate term. Then

apply (3.3) to the (new) fourth term and (1.2) to the last two terms. The right side

of (3.7) is now

p(xy,z) + (xy)yz + p,(x°-',y°-'yz + zy-p(y°-',z°-'y
(3.8)

-(yz)y + p(y, z)-(xyy)z-p(x, y)z-p.(xy, z)       (x, y, z e IT).

Use (3.6) to replace the second and third terms of (3.8) by k(x, y)z + p(x, y)z

+ (xyy)z+yyz, and the fourth, fifth and sixth terms by — yyz — p(y, z) — k(y, z).

It then follows from the fact that Im k<=ZG that (3.8) is k(x, y)z — k(y, z). Thus k

is a 2-cocycle.

3. Changing y changes k by a coboundary. Suppose (<r, t, y') also satisfies (3.3).

Let k'(x, y) be defined by (3.6) with y in place of y. We shall show that k(x, y)

— k'(x, y) is the coboundary of y — y (whose image is clearly within ZG). By using

(3.6) and the fact that, for a, b e G, a + b = b~a + a, we have

(3.9)   k(x,y)-k'(x,y) = (xy)y-[(xy)y']g-yy + (yy')h-xyy + xy'y       (x,yefl)

for certain elements g,heG which an easy calculation shows are in Im (y —y')

cZG. This proves that k — k' is a coboundary.

4. Any cocycle cohomologous to k arises from some y. Let k" = k+Sf, i.e.

k"(x, y) — k(x, y) + (xy)f—xfy—yf, for some/: IT -+ZG. If y+/is put in the right

side of (3.6) in place of y, then the left side becomes k". But y+/satisfies (3.3)

when y does, so this proves the assertion.

Since it is clear that k can be chosen to be 0 if and only if (cr, t) is inducible, we

have now proved that the map that takes (a, t) onto the cohomology class of k

is well defined and that its "kernel" is exactly the collection of inducible pairs of

automorphisms in C. This proves the Theorem.

The author wishes to acknowledge the useful comments and suggestions of

J. Altinger, J. Duskin, D. H. Lee, and the referee.
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