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HOMOTOPY SPHERES
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1. Introduction. Let (5', 2m, <p), i=0, 1 or 3, be a free differentiable action of

Sl on the homotopy m-sphere Sm with orbit space Sm/5f and a homotopy equiv-

alence /: Va! S* -> KPk (ZC=real, complex or quaternionic according to whether

i = 0,1 or 3). By a characteristic homotopy im—q)-sphere of Sm we mean a homotopy

sphere 27"-« which is S '-invariant, that is <^(SixSm-<,)c£'"-'ic2m, and such that

/is transverse regular on KP1 withf-1iKPl)=^m-"/Si and/IS"1-«/^ is a homotopy

equivalence. In this paper, we are concerned with the problem of finding character-

istic homotopy spheres. The case f=0 and q=\ was studied by Browder and

Livesay [3]. For the case i= 1 and q = 2, Montgomery and Yang have shown that

the obstruction is preciesly the Browder-Livesay invariant which is obtained by

restricting the action to the subgroup Z2 [11]. We consider the case i=3, m = 4« + 3,

and compare the obstructions between the S^-action and S^-action for S1<=S3.

We also give some interesting examples in dimensions 11,13 and 15. Our methods

will be based on the computation of the surgery obstruction by using a formula

of Browder [2, 4.4].

Throughout the paper, Z denotes the ring of integers, a(Af ) the index of the

smooth manifold M, r(Af) the tangent bundle of M. We let CPn be the complex

projective «-space and QPn be the quaternion projective «-space.

2. The invariants I2kiS\ Z2n+1) and IikiS3, Sén+3). Suppose that S1 (resp. S3)

acts freely and differentiably on a homotopy sphere 2Z2n + 1 (resp. £4n + 3), and let

ZV=S2n + VS1 (resp. S*" + 3/S3) be the orbit space. Let/: N -> CPn(resp./: N^QPn)

be a homotopy equivalence which is transverse regular on the submanifold

CPn~k(resp. QPn~k) with n-k>2 (resp. n-k>\), and letM=f-\CPn~k)(resp.

f~1iQPn~k)). Furthermore we assume that dim M = 4q. There is an obstruction to

make / normally cobordant to /': /V-> CPn (resp. /': ZV-> QPn) a homotopy

equivalence, such that if M'=if'Y\CPn-k) (resp. ifT\QPn-k)),f': (TV, AT) -►

iCPn, CPn~k) (resp. /': (ZV, Af')-^(ßPn, QPn~k)) is a homotopy equivalence on

each term [2, 2.14]. The obstruction is simply the difference of two indices, namely

a(M)-CT(CPn-fc) (resp. a(AZ)-a(ßP"-,c)) which lies in the group 8Z, and we shall

denote it by I2kiS\ S2n + 1) (resp. Z4f£(53,14n+3)). It is precisely the obstruction of

the free S1 (resp. S3) action on 2Z2n+1 (resp. S4n+3) having codimension 2A (resp. 4A)
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characteristic homotopy sphere. For S1 action with codimension 2 characteristic

sphere, the obstruction is the invariant /(51, S2n + 1) defined by Montgomery and

Yang [11], hence I2(S\ S2n + J) = I(S», S2n + 1)if«^4. We restate a result of Browder

in [2, 4.4] as the following theorem :

Theorem 2.1 [2]. Let (S1,2Z2n + 1) or (S3,I.in+3) be a free differentiable action.

Then

I2k(S\ S2" + 1) = <LQ(r(N) © kp-i), yn_fc>- 1,

A(S3,£4" + 3) = <Lq(r(N) ®kp-*),Xn-ù-°{QPn-k),

where p is the canonical bundle over N=H2n + 1/S1 or S4n + 3/S3, associated to the

principal bundle

S1^I,2n + 1-^I,2n + 1/S1   or   S3-+Zin + 3 ̂ I,in + 3/S3

respectively, /?~l the inverse of p, Xn-k u the generator of Hiq(N), n — k = 2q or

n — k=q, and L„ the qth component of the HirzebrucKs L-genus [5],

L:(KO)~(N)-^2Hii(N,Q).
(SO

Definition 2.2. Let /?i(CPn,Z) = riâ2i (resp. piQPn,Z) = fiß^). A homotopy

complex (resp. quaternion) projective «-space M is called semiStandard if the

Pontrjagin classesp¡(M) = rta2i for /^[(n- l)/4] (resp.pi(M) = rißi, iS[n/2]), where

a, à (resp. ß,ß) are the generators of H2(M,Z), H2(CPn,Z) (resp. H\M,Z),

H\QPn,Z)) respectively.

Suppose that a free differentiable 53-action on a homotopy sphere X4n + 3 is given

(«à 3) such that the orbit space E4n + 3/S3 is a semistandard quaternion projective

space. If we restrict the action to the subgroup S1 of S3, we have the fibre bundle

7? : S2 -> S4n + 3/S1 A S4n + 3/S3 mthp(r¡) = 1 + 4ä, ä the generator of #4(E4n + 3/S3, Z)

and/?(ÔPn) = (l+«)2<n+1)(l+4a)-1, a the generator of H*(QPn, Z) [I]. Hence we

see that S4n + 3/S1 is also semistandard. In [6], W. C. Hsiang has shown the exis-

tence of infinitely many nonhomeomorphic semistandard complex (2« + l)-spaces

and quaternion «-spaces such that their Pontrjagin classes pt are distinct for

i^[«/2]4-l.

Theorem 2.3. Suppose that S3 acts freely and differentiably on a homotopy

(4n + 3)-sphere 2¡4n + 3 («^3) such that the orbit space 1,in + 3/S3 is a semistandard

homotopy quaternion projective space. Then

■«4n-4[n/2]-4A0   > ■" )

(1)       = 2{<Llnl21+i-i(r(^n+3/S3)), xlnm+¡-i>-<hniv+i-i(ÁQPn)), ftwn+i-i»
i = 0

x < A((« - [it/2] -j)p-1), xù   M jil,
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J4n-4[n/2]-4i + 2VJ   > •" )

(2) =  y {(Llnl2] + j_iirii:^3/S3)), XM2l + i-i>-(Llnl2, + j-iiriQPn)), XM^i-i»
« = o

x (LíÍtt*v © (2«-2[«/2]-2/+ Up-1), Xi>   /or; ^ 1,

I /03    V4H + 3-V   _   / fOl   V4n + 3\
Mn - 4[n/2] - 4V3   >   ^ / —  1in-ilnl2¡-2\>J   , ^ )

(3) = í[n/2] + l{<(P[»l/2] + l(E  "      /'S  ), X[n/2] + l)

— \P[n/2] + l(ßP")> X[n/2] +1)}>

J (?3   V4n + 3\
y4«l-4[n/2] + 4A°   ' U )

= hn-mm + u + 2ÍS\Zin + 3) = 0   for [n/2]-2 > j ^ 0,

w«ere p, p denote the canonical bundles over CP2n + 1 and QPn, xa> Xa and x'd the

generators of HidiCP2n + 1,Z), HidiQPn,Z) and Hid(Lin + 3/S3,Z), respectively

icf Theorem 2.1), s[nl21 + x the coefficient of p[nl21 + x in Llnl2] + X [5, p. 12], and [n/2] is

the largest integer less than or equal to n/2.

Notation. In the proof, we will denote the canonical bundles over I.in+3/S1 and

S*n+3/53 by p' and p respectively, and x'd the generator of Hid(^in+3/S1,Z). Let

T = r(CP2n + 1), r' = r(L'ln + 3/S1), f = r(ßPn) and f'= T(Zin + 3/S3).

Proof. Since E4n+3 admits free S3-action, we have fibre bundle

r¡':S2—>Xin + 3/S1-^Xin+3/S3

which is homotopically equivalent to the standard fibration -n : S2 -> CP2n+1 £> QPn

by (/,/), that is, we have the following commutative diagram:

j,' : S2_> £4n+3/S1 -^ £4n+3/53

1/ /
r¡: S2 —> CP2n+1 -^-* QPn

Notice that p'=/*(p), p =f*ip) and r¡'=f*(r¡). By assumption we have

PipiQP71)) = Pii^n+3/S3)       and

/*(/>,(CP2"+1)) = aÇB**"/«»)   for i í [n/2].

Now we consider the standard free action of S3 on Sin+3. This action has charac-

teristic (4[«/2]+4/+3)-sphere siínl2]+ií+3. Hence by Theorem 2.1, we have

(Lint2, + iif ®in-[n/2]-j)p-i),xlnl2]+jy = a(ßP^+0

or

(Llnl2¿f)Liiin-[n/2]-j)p-1)+ ■ ■ ■ +L:ni2] + iHn-[n/2]-j)p-1), ftn/2]+,>

(6) = aiQP^+')-(Llnl2]+iif)+ ■ ■ ■ +L[n/2] + 1(f)

x Lj _ x((« - [n/2] -j)p - !), xt*m+,>.
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Since/*(/?((QPn))=Pi(Zin+3/S3) for i£[nß], Lt(f') =/*A(f) for i£[n/2]. Thus we

obtain

<An/2i(OA{(«-[«/2]-;)(p')-1)+ • • • +An/2] + J((«-[«/2]-/)(p')-1), Xmm.i)

= </*{An,2](f ) A((« - [n/2] -j)p -l)

(?) + • • • +Llnl2: + j((n-[n/2]-j)p-1)}, X['n,2] + i>

= a(ßP^+0-<An/21+/f)4- • • • +L[n/2] + 1(f)

x Lj _ x((n - [«/2] -j)p "*), xmm + ;>

by (6). Again by Theorem 2.1,

J /-Ç3   V4n + 3\
■<4n-4[n/2]-4Ati   ' ■" J

=   < An/2] +/0 + • ■ • + An/2] + l(f') A -1((« - t«/2] -/)(P') "1), XÍn/2] + y>

+ {L[nm(f')L1{(n-[n/2]-j)(p')-1)

+ ■■■ +Llnl2:+j((n-[n/2]-j)(p')-i), Xinm + i>-°(QPmi)

= 2{<Llnlv+j-i(T(Zin + 3/S3)), xlnm+i-ù
( = 0

-<Llnl2]+j_i(r(QP-)), xinl2: + i-iyKLi((n-[nl2]-j)p^), Xi>

by (7), and (1) is proved.

The proof of (2) is similar. We have r'=ir'*f' ®tt'*t¡' and t — tt*t ®tt*t). As

we remarked before,/*/?:(T) =Fi(T) f°r i'á[w/2]. The standard free A-action on

54n + 3 has characteristic sphere silnl2:+i>+1, hence

l   = <An,2] + XT©(2«-2[«/2]-2/+l)p-1),X[n/2] + ,>

= <Llnl2:+j(TT*f®TT*r, © (2n-2[n/2]-2j+l)p-1), x,«m+i>.

For simplicity, let k = 2n — 2[n/2] — 2j+l, then

<Llnm(TT*f)Li(TT*r¡ ®kp~1)+--- +L[nl2i+j(TT*7j  © kp'1), Xln/2] +/>

=   1 -<An/2]+;("-*T)+ • • • +An/2] + lOr*,r)A'-l('r*1J © ^_1)> X[n/2]+i>

,Q. =   1— (Lln,2)+j(TT*f), Xlnm+j)
(o)

-<L[B/2] + i('r*f), XW2] + i)<Ij-i(A © A>-1)> Xi-l>

=   1 — \An/2] + ?(v) X[n/2] + y)

-<An/2]+iO0, xtn/^+iXA-iC^*1? © ^p"1)» Xy-1>-

If we use the fact that Tr'*f*=f*Tr*, we can see that

<An/2](7r'*f')A(y*v © kp'-1)+ ■ ■ ■ +Llnm+i(TT's © kp'-i), x'lnl21+iy

(9) = l-<L[n/2]+Xf),x[n,2]+i>

-<An/2] + lO0, ÍW2]tl>{¿/-l("*1 © kp~l), Xi-1>-

Therefore, if we substitute (9) into the formula for hn-unm-a + aiS1, S4n+3), the

conclusion of (2) follows. The proof of (4) is essentially the same but a little
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simpler. The statement (3) follows from (1), (2) and (5). This completes the proof

of Theorem 2.3.

As a simple consequence, we state the following:

Corollary 2.4. (i) If Z4n_4[n/2]_4(S3,£4n + 3)^0, then

Iin-l[nl2]-aiS  , S ) ^ Z4n_4[n/2] _ 6(o   , S ).

(ii) Z2(S\Z15) = Z6(S\S15) am/ Ia(S\ £19) = Z6(S\ Z19), */«<* L3(S15/S3) = 0,

L4(219/S3)= 1 am/ <L1(ir*, © p"1), Xl>- 1.

(iii) For«^5,Z4n_4[n/2]_2(S1,S4" + 3) = Z4n_4[n/2]_6(51,2:4" + 3);/a«(i0«/);;/

3{<L[n/2] + 2(r(£4» + 3/S3)), x'lnl21 + 2> - <L[n/2) + 2(r(ßP»)), xtn/2] + 2»

= (2«-2[«/2]-4){<ZL[n/2] + 1(r(S4-3/53))) -n/2] + i>

-<An/2] + l(T(ßPn)),X[n/2] + i>}.

We may derive the similar results in other cases.

To conclude this section we prove the following characterization theorem.

Theorem 2.5. Let S3 act freely and differentiably on a homotopy i4n + 3)-sphere

E4n + 3 (n ^4). Then the orbit space Hin + 3/S3 is a semistandard homotopy quaternion

projective space if and only //(4) is satisfied.

Proof. We use the notation of Theorem 2.3. Suppose (4) holds. It suffices to

show that the following relations are satisfied :

(10) (Ljif), x'¡> = (Ljif), xj)   for 1 S j g [n/2].

From Z4n_8(S3, S4n + 3)=Z4„.6(5'1, 24"+3)=0, we obtain

<La(f © («-2XP')"1), x'2> = (L2ir © (2«-3)(p')"1), v2>

= (L2W*f © tt'*v' © (2«-3)0>r ^ v2>

because t'=tt'*t © Tr'*r¡'. Simplifying this equation we get

(Lxir), Xi>{(Lxiin-2)ip')^), x'i>-(LETT'S © (2«-3)(p')"*), vi>}

= <U«'*r¡' ®i2n-3)ip')-í),x'2>-(L2Íin-2)ip)-í),x2>.

Similarly if we consider the standard free S3 action on Sin + 3, we have

Z4n_8(S3, 54"+3) = Iin-eiS\ S*" + 3) = 0;

thus the same argument implies

<£i(t), ^1>{<Z.1((«-2)(p)-1), Xi>-(LxÍtt*v © (2«-3)p"1), Xl>}

= (L2iTT*r, © (2«-3)p"1), x2>-<¿2((«-2)(p)-1), X2>.

By comparing (11) and (12) we have

(13) (Lxif'),x'i> = (Lxif),Xi>
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since

<L1((«-2)(/5')-1),xi> = <L1((«-2)/5-1),x1>,

<A(t'V © (2n-3)(P')-i), x'ù = <A(^*?y © (2n-3)p-'), Xl>,

<L2(y V © (2n-3)(p')-i), v2> = <L2(7r*7, © (2«-3V"1), y2>,

and

(L2((n-2)(p')-i),x'2y = <A((»-2)A1),X2>.

Next we see from Iin-S(S3, Zin+3) = (L2(f' © (n-2)p~1), x2>-l=0 and

An-8(S3,S4n+3)=0that

(14) <A(f ), X2> = <L2(f), xa).

Now we suppose that

<A(A>, Xi> = <Li(f), xi}   for 1 í i < [fl/2].

But

/te-«-4(S8,E*"+8) = <A+1(f' ©(«-i-l)(p')-1),x;+i>-^(ôi>i+1) = 0

and

A-4i_4(53, S4n + 3) = <A + l(T©(«-I-l)p-1),Xi + l>-cr(ßPi + 1) = 0.

Thus,

<Li+1(f'),xi+i> = ^Ôi5i+1)-<A(f'),x;><A(("-i-l)(p)-1),xi>

-<!,„((«-./-ixw_,),«;+i>
= a(ßP'+1)-<A(f), x.Xàa-i-1)?-1), Xi>

-<A + i(("-I- 1)/5_1), X¡ + i>

= (A + iOO, X¡ + i>-

This completes the proof of the theorem.

3. Lower dimensional examples. This section contains some results on the free

differentiable actions of Z2, 51 and S3 on homotopy spheres of dimensions 11, 13

and 15.

I. Actions on homotopy ll-spheres. In [8] we studied the differentiable actions

of S3 on homotopy ll-spheres and proved

Theorem 3.1. Let EJ,1 denote the Milnor sphere which represents the generator of

011 [9]. Then a homotopy ll-sphere E11 admits a free differentiable S3-action if and

only ifL11x32kI,1M1 for some k=0, ±1, ±2, ±3, ±4, ±5, ±10, ±11, ±12, ±14,

±16 (mod 31). These all admit infinitely many topologically distinct actions which

can be distinguished by the first Pontrjagin classes of the orbit spaces.

The proof of this theorem is based on the examples constructed by the Hsiang

brothers [7] and the following fact [8]: Let S3 act freely and differentiably on a

homotopy ll-sphere X11. Then either
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(i) /71(E11/53) = (672A: + 2)â for some integer k, and

p.^11) = -(I3k+l)ik+l)k/31       (modi),

or

(ii) pxiX11/S3)=i672k+ 194)<î for some integer k, and

/¿(E11/,?3) = -7(-Jfc+lX7Jfc+2X*-7)/31       (modi),

where ä denotes the generator of ZZ4(S11/S3, Z) and ^(S11) the Eells-Kuiper

/¿-invariant [4].

It is said in [8] that the homotopy sphere kH]}, k odd, admits no free differ-

entiable ^-actions. Since we made some errors in computation, this does not follow

from Lemma 2.1 of [8]. We conjecture that this result remains true. We correct

this by proving the following Lemma 3.2. The proof being essentially the same, we

only sketch the proof.

Lemma 3.2. Let S1 act freely and differentiably on a homotopy W-sphere S11.

Then

^(S11) = (9/+102«2+288/3 + 148;+720I7-r496i)/992       (mod 1),

for some integers i,j and t. Moreover,

p^/S1) = (24/+6)«2,

PaÇZ^/S1) = (1008i2 + 264/-r-15 + 1440/)a4,

where a denotes the generator o/ZZ2(S11/S'1, Z).

Proof. Let Z)2->- W^.'L11/S1 be the associated disk bundle of the principal

bundle f: S1 -+211 ^S11/^1. We see that j?(£) = 1 + «2, œ2iW)ïO and the index

aiW) = l. Let

p^/S*) = rxa2,      p^/S1) = r2a\

PiiW) = r3ß\ p2iW) = uß\

ß=n*a and rx, r2, r3, rteZ. We have r3 = ^ + 1, ri = rx + r2. Since ß reduction

mod 2 is a>2iW), the invariant K^11) is well defined [10]. By substituting the above

data into the formula for v, and using the fact that f(S11) = 2/x(211) (mod 1) [10], we

have

496*(S11) = 992M211)

= {-312 + 80r1-64r2 + 142rf + 60r1r2-45r3}/26-32-5 (mod 496).

The rest of the proof is just repeating the same argument as in the proof of Lemma

2.1 of [8].

Theorem 3.3. Let S1 act freely and differentiably on a homotopy W-sphere Eu.

Then I//fi, Z11) = 16(9/2 + 2i+ l4j)for some integers i andj. Hence if I2iS\ S11)=0,

then i is even andlZ^xml*}} for some even integers m.
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Proof. It is known that p(p~^=(1 + a2)"1. We apply Theorem 2.1 to obtain

I2(S\ S») = <L2(t(Z"/SI) © p"1), xù-1

= (L2rL^/S')+Lx(^/Si)Lx(p-1)+L2(p-'), y4>-1

= ^ [7(1008i2+264i+15 + 144Q/)-(24i + 6)2]

-i(24i+6)i+¿(7-l)-l

= I6(9i2 + 2i+l4j).

Corollary 3.4. There exists free differentiable Z2-action on kl.]}- for some k

such that this action cannot be extended to the free differentiable action of S1.

Proof. Let I(Z2, S11) be the Browder-Livesay invariant [3], [11]. Montgomery

and Yang showed that I(Z2, I¡11)=I2(S1, S11) [11]. Santiago has constructed the

free involution (Z2, SJ1) for all k eZ such that

I(Z2,2Z^) = o(Wk) = 8k,

with SJ1 bounding a 7r-manifold Wk2 [12], [14]. Thus for k odd, or k is not of the

form 2(9i2+2i+l4j), the free Z2-action on klZ]} cannot be extended to free S1-

action.

Theorem 3.5. Let S3 act freely on homotopy ll-spheres 211 and Z2<^Sl are

subgroups of S3. Then

(i) px(L11/S3)=(672k+2)äfor some integer k, and I(Z2, T,11)=I2(S1, S11)=224fc

or

(ii) p1(Z11/S3) = (612k+194)ä for some integer k, and I(Z2,?,11)=I2(S1, S11)

= 224/c+64.

In particular, S11 has S1-invariant characteristic 9-sphere S9 if andonly ifZ^xS11.

The involutions in (i) for different k are all differentiably distinct. This answers

a question of the Hsiangs [7].

Proof. If px(Z11/S3) = (672k + 2)á, then

PxQl^/S1) = (672k + 6)ß2,   and   p^lZ^/S1) = (645l2k2 + 3072k+l5)ßi,

where ß2=TT*ä, n: S^/S1 -^"/S3 the natural projection [7]. Similarly, if

/?1(S11/53)=(672/c+194)â, then

Pi&^/S1) = (672k + m)ß2,   and   p^/S1) = (64l2k2 + 39936k+6l59)ß\

Thus (i) and (ii) are easily computed as in the proof of Theorem 3.3. We note that

72(51,S11)=0 if and only if px(l,11/S3) = (612k+2)á for k=0. Hence /¿(Z11)

s-(13Jfc+lXfc+ l)k/3l =0 (mod 1), and so X^xS11 by [4].

II. Actions on homotopy \3-spheres. Let S1 act on a homotopy 13-sphere S13

with/?1(S13/5'1) = 7a2, a the generator of H2(Z13/S\ Z). W. C. Hsiang has shown
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that there are infinitely many nonequivalent actions of S1 on some 213 with

px(Z13/S1) = la2 and different second and third Pontrjagin classes [6]. Let

p2(L13/S1) = r2ai andp3iI,13/S1) = r3a6. Since the index a(S13/5'1) = l, we have

1 = (Lsi^/Si), [X^/Si]}

= ^1-^(62^-91^ + 686)

where [S13^1] denotes the fundamental class of S13/^1. It is not difficult to see that

r2 = 62f+ 21    and   r3 = 91/ + 35       for some ieZ.

Now a reduction modulo 2 is the second Stiefel-Whitney class ^(S13/^1) which is

different from zero. Thus by [5], ^(S13/^1, a/2) is an integer. A simple calculation

shows that

AŒi3/^ all) - ~259+l4r2-r3 _     37iA(l   /S , aß)-2e.33.5.7        - 26^23

hence i= 26 • 32 ■ 5 • i for some / e Z. Thus,

/4(S\S13) = <L2(t(Z«/5:i) ©2p"1), y4>-l

45

Therefore we complete the proof of

Theorem 3.6. There are infinitely many free differentiable Stadions on homotopy

\3-spheres so that none of them has a characteristic homotopy ^-sphere.

III. Actions on homotopy 15-spheres.

Theorem 3.7. Let S3 act freely and differentiably on S15.

(i) 215/S3 is a semistandard homotopy quaternion projective 3-space if and only

if US3, S")=/e(SSE").
(ii) If 2Z15/S3 is a semistandard quaternion projective 3-space, then hiS1, S15)

= Z6(51,S15) = 27-217/ for some ieZ, and S15 e 32¿>P16 ©Z2. Hence there are

infinitely many free S3-actions on some 215 so that npne of them has a S1-invariant

characteristic \3-sphere S13 and S'^-invariant characteristic homotopy 9-spheres.

Proof. Let AGS18/S8)=rt«', i=\, 2, 3, a the generator of ZZ4(S15/S3, Z). Then

Z4(S3,S15) - ¿<7r«-rî-10rx+17>-l

and

hiS\^) = l(7r2-rf +5^-43)-!,
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whence Ii(S3,'Z15)=I6(S1,'Z15) if and only if r1 = 4. Repeating the argument used

in the proof of Theorem 3.6, since <r(215/S3)=0, we see that r2 = 31i+12 and

r3 = 26i + 8 for some ieZ. But ~L15/S3 is a spin manifold, hence Â3(zZ15/S3) is an

even integer and ¿3(215/S3) = i/(26-3). Thus f=27-3-i for some ieZ. By Theorem

2.3 (3),

h(S3, S") = ¿ {<p2ÇZ15/S3), *2>-</?2(ßP2), xa}}

= 1 {(311 + 12)-12}

217Í     217-27-3j •     i<-   7
= —r=- =-T?- = 2'-217i   for some 1 = 15/ eZ.

45 45

Now let Wie be the total space of the disk bundle D* -> IF-> S15/^3 associated to

the principal bundle S3 -»■ S15 -+ S15^3. By using standard technique (cf. proof

of Lemma 3.2), we obtain the Eells-Kuiper /¿-invariant as follows:

M*15)

12096/?3( W)px( W) + 5040/?2( W)2 - 22680/>2( W)Pl( W)2 + 9639/?t( Wf -181440
215-34-5-7-127

3/(32i-3)    .     , ,.
=     2-127       (m0dl)-

Hence 215 e 32èP16 © Z2 by [4].

4. Free 53-actions with codimension 4 characteristic homotopy spheres. In this

section we like to compare the invariants I2(S1,'Lin+3) and h(S3, S4n+3) for any

free differentiable action of S3 on a homotopy sphere 24n+3, where S1(=S3. The

arguments are similar to those used in §2, so we shall use the notation of

Theorem 2.3.

Theorem 4.1. Suppose that a free differentiable action of S3 on a homotopy

(4n + 3)-sphere S4n+3 is given, «S3, and let S1 be the subgroup of S3. Then

I2(S1,Zin+3)=h(S3,I,in + 3).

Proof. According to Theorem 2.1, we have

/2(1s1,2:4"+3) = <Ln(r'©p'-1),Y;>-i

= <AÁV*f' ®tt's © p'-i),x'n>-i

= <Ln_xW*f'), x'n-ù<A(y V © p'-1),A")

+ <Ln.2(TT'*f'),x'n-2) <L2(y V © p'"1), x'2>

+ ■■■ +<.Ln(TT'*r¡' ® p'-l), Xn>+{<Ln(TT'*f'), y;>-l}

= <L„-1(f),x;-i>+<Ln_2(f'),x;-2><L2(7r^ © p-1), X2>

+ ■■■ +{Ln(TT*r, ® p-i), vn> + {<Ln(f'), ?.>-!}
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because <Li(ir"V © p'"1), xi> = 1 and tt'*J* =f*-n*. Similarly,

Z4(S3,S4" + S) = <LB_1(r' ©p'-^^-^-^ß^"1-1)

= <LB-i(*'), 3ft-i> + <L„-a(f'), xi-aXW1), xi>

+ -..+<Ln_1(p'-1),x;-1>-ir(ßP"-1).

But <LB(ir'*f'), xi.)-1 = -o-(ßPn_1)- Thus it suffices to show that

<U^ © p"1), xù = <Lfc-i(/s-1), x*-i>   forfe ■> 1

since (Lfc.^p'-1), xic-i> = <Z-fc-1(p"1), Xk-i> for fcfcl. By direct computation,

we see easily that the above relation holds for k=\,2. Suppose it is true for

k<m^n. We consider the standard free action of S1 and S3 on 5'4m+3. The same

computation gives

0 = I2iS\ <S4m + 3)

= <Z.m_1(f), Xm-ù+(Lm-2if), Xm-2>(L2ÍTT*ri © p-1), X2>

+ • • • +<L»(**i, ©p-1), Xm>+{<Lm(í), xmy-1}.

0 = his3, S*m+3)

= (Lm-Xif), Xm-l> + (Lm-2if), Xm-2>(Lxip~1), XÙ

+ ---+<Lm_1(p"1),Xm_1>-a(ßP'"-1).

Again <Lm(f), xm> -1 = -^ßP"1"1) and so

(LmÍTT*r¡ © p"1), Xm> = (Lm.xip~1), xm-x)

follows from induction hypotheses. This completes the proof of the theorem.

Added. In the paper Differentiable S1 actions on homotopy spheres (to appear),

G. Brumfiel has found all possible homotopy spheres in dimensions 9, 11 and 13

which admit free differentiable actions of S1. He also studied the free differentiable

actions of S1 on homotopy spheres which do not bound w-manifolds.

The authors were informed that the action on homotopy spheres not in bP2n

were also studied by D. Frank.

Concerning the problem related to the existence of characteristic homotopy

spheres, the authors also showed the following results: There are homotopy

(4/1+1)- or (4« + 3)-spheres which admit infinitely many topologically distinct free

differentiable actions of S1 or S3 with characteristic homotopy spheres in certain

dimensions and without characteristic homotopy spheres in some other dimensions

(cf. Free differentiable actions of S1 and S3 on homotopy spheres, Proc. Amer. Math.

Soc. 25 (1970), 864-869). We remark that Theorem 4.1 can be generalized as

follows with the same proof:

/4»+«(¡S1,S*"+8) = Z4k(53,S4"+3)+Z4fc+4(53,S4n+3)   forO g k < n-2.

See also a paper of B. Conrad iExtending free circle actions on spheres to S3 actions,

mimeographed, Temple University, Philadelphia, Pa., 1970).
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